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ABSTRACT

The discovery of advanced thermal materials with exceptional phonon properties drives technological advancements, impacting innovations
from electronics to superconductors. Understanding the intricate relationship between composition, structure, and phonon thermal trans-
port properties is crucial for speeding up such discovery. Exploring innovative materials involves navigating vast design spaces and consider-
ing chemical and structural factors on multiple scales and modalities. Artificial intelligence (AI) is transforming science and engineering 2
and poised to transform discovery and innovation. This era offers a unique opportunity to establish a new paradigm for the discovery of <
advanced materials by leveraging databases, simulations, and accumulated knowledge, venturing into experimental frontiers, and incorporat-
ing cutting-edge AI technologies. In this perspective, first, the general approach of density functional theory (DFT) coupled with phonon
Boltzmann transport equation (BTE) for predicting comprehensive phonon properties will be reviewed. Then, to circumvent the extremely
computationally demanding DFT + BTE approach, some early studies and progress of deploying Al/machine learning (ML) models to
phonon thermal transport in the context of structure-phonon property relationship prediction will be presented, and their limitations will
also be discussed. Finally, a summary of current challenges and an outlook of future trends will be given. Further development of incorpo-
rating AI/ML algorithms for phonon thermal transport could range from phonon database construction to universal machine learning
potential training, to inverse design of materials with target phonon properties and to extend ML models beyond traditional phonons.
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I. INTRODUCTION dictating the rate of heat transfer. For crystalline solids, the lattice
thermal conductivity (LTC) is subdivided into two primary contri-
butions, namely, by phonons and electrons. In metals, both elec-
tron and phonon thermal conductivity coexist due to the free
conduction of electrons, whereas in covalently bonded structures
such as ceramics, phonons dominate the heat transport. For

Phonons, the quanta of atomic vibrations, dominate the
thermal transport properties in semiconductors and insulators and
contribute non-negligibly to energy transport in metals and metal-
lic systems. Because of their ubiquity, fast and accurately predicting

phonon prop ertles. and phonon—rpedlated heat transfer process in example, thermoelectric devices are crucial for reversibly converting
ordered structures is enormously important for the development of ;e heat into electricity. These devices use a special material that,
innovative energy oriented technologies (Fig. 1), including but  yhen ynder a temperature gradient, generates an electric current.
not limited to energy conversion, ' thermal management,” Thermoelectric materials scale in efficiency with the dimensionless
superconductivity,” " photovoltaics,' ™" quantum computing, ~'° figure of merit, , whereby high ZT is needed for competitive elec-
etc. Discovery of advanced thermal materials with exceptional tricity generation. The thermal conductivity x is further split into
phonon properties drives technological advancements and impacts phonon xp; and electron x,; contributions, whereby the sum of
innovations. Thermal conductivity is a basic property of materials these two yields the net thermal conductance. To increase ZT, &,
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FIG. 1. Schematics of the central position of artificial intelligence in broad phonon thermal transport research.

must be low enough despite owning strong coupling with the elec-
trical conductivity o. In addition, the phonon contribution « py, is
required to remain negligibly low which is strongly correlated with
the lattice anharmonicity, i.e., the deviation from vibrational har-
monics providing finite phonon lifetimes. Provided with this
understanding, a scientific basis for phonon transport and its con-
tributions to the LTC of ordered materials is necessary for the dis-
covery of new thermal materials for applications such as high
performance thermoelectrics.

Fundamentally, phonons exist as a function of the thermody-
namic state (i.e., temperature and pressure) and are dependent on
the entropy of the crystal. The third law of thermodynamics states
that the entropy of a perfect crystal approaches zero as the tem-
perature approaches zero, thereby suppressing the vibrations and
phonon transport. As the temperature increases, the resulting
vibrations drive the entropy and dictate both the stability (free

energy) of the crystal and its capacity to transfer heat. Like a
spring-mass system, the displacements of oscillating atoms due to
lattice vibrations are correlated with the total potential energy and
the atomic forces. An approximation of the potential energy is
made by considering a Taylor expansion about the atomic dis-
placements up to a designated order. In a real solid at finite tem-
peratures, the order of the expansion is infinitely large, but in
application the interaction may be truncated for computational
considerations. Relating the potential energy and the atomic dis-
placements are the interatomic force constants (IFCs) which anal-
ogously act as the spring constants in a crystalline system. IFCs
for second-order interactions, or equivalently the second-order
IFCs, correspond with the quadratic nature of harmonic oscilla-
tions, whereby the phonons are non-interacting and have infinite
lifetimes. Third- and higher-order IFCs are the source of
anharmonicity in the crystal and provide phonon scattering
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mechanisms as well as finite properties such as LTC and thermal
expansion.

Currently, density functional theory (DFT) is the primary
method for atomic force calculation and corresponding phonon
property prediction as a realistic chemical modeling tool.'”~** The
general workflow of DFT coupled with phonon Boltzmann trans-
port equation (BTE) for predicting comprehensive phonon proper-
ties including LTC of crystalline structures will be detailed in Sec.
I1. Despite the high accuracy of such DFT + BTE method, given the
costly nature of DFT, the calculation of atomic forces for the IFCs
is an extremely time-consuming process as it requires evaluation of
several hundred supercells containing displaced atoms by high res-
olution DFT calculations. For instance, based on the widely
employed finite displacement method (FDM), the required configu-
rations for DFT evaluation for third-order IFCs scale proportion-
ally to Ny X N, x N3 x n?, where Nj, N,, and Nj is the number of
duplicated unit cells in each of the crystallographic directions
forming the supercell and # is the number of atoms per unit cell.
For instance, a 3 X 3 x 3 primitive cell for boron arsenide requires
~360 supercell evaluations from Phono3py code, which may take
several days or even weeks depending on the computing system.
Even with a certain cutoff radius, in which supercells with pairs of
interacting atoms beyond a designated distance are neglected, the
demand is still significant in the context of hundreds to tens of
thousands of materials for LTC prediction. In general, the limita-
tions imposed by computationally expensive DFT paired with the
demanding requirements of commonplace BTE solvers currently
limits high-throughput phonon properties including but not
limited to LTC for large-scale material screening or database devel-
opment. Therefore, there is an urgent need for circumventing the
time-consuming nature of DFT + BTE calculations of phonons in
the context of large potential structures.

Artificial intelligence (AI) coupled with promising machine
learning (ML) techniques well known from computer science is
transforming science and engineering and poised to transform dis-
covery and innovation. This era offers a unique opportunity to
establish a new paradigm for the discovery of advanced materials
by leveraging databases, simulations, and accumulated knowledge,
venturing into experimental frontiers, and incorporating
cutting-edge AI technologies. On the one hand, a primary route
that recently has taken researchers by storm is using machine learn-
ing potentials (MLPs) to replace the computationally costly DFT
calculations in the phonon transport workflow. Several representa-
tive MLP algorithms and approaches will be given out in Sec. III.
In general, these MLP algorithms share the features of predicting
total energy and atomic forces of the systems with computational
speed usually orders of magnitude faster than full DFT calculations
and in the meantime with accuracy comparable or reasonably com-
parable to DFT. Such alternative approach for evaluating the
required atomic forces and the subsequent IFCs would significantly
speed up the entire workflow of phonon transport calculations.
However, care must be taken for the accuracy and extrapolation
ability of the trained MLPs, in particular, when processing a large
number of diverse structures with a broad spectrum of constituent
elements, material symmetries, etc. On the other hand, predicting
phonon properties of crystalline structures can also be understood
in the context of the general structure-property relationship. In
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fact, understanding the intricate relationship between composition,
structure, and material properties has been a long standing and
knotty problem for material physicists and chemists for decades,
ie, the well-known processing-structure-property—performance
(PSPP) relationship. Exploring innovative materials involves navi-
gating vast design spaces and considering chemical and structural
factors on multiple scales and modalities. AI/ML algorithms and
approaches provide unique strength in mapping the highly nonlin-
ear or hidden relationships between atomic structures and material
properties. In the past decade, tremendous ML techniques have
been developed to analyze high-throughput data with a view to
obtaining useful physical/chemical insights, categorizing, predict-
ing, and making evidence-based decisions in novel ways, which will
promote the growth of novel applications and fuel the sustainable
booming of AIl. While traditional materials science studies depend
heavily on the knowledge of individual experts (called domain
knowledge in the language of computer science), the ML models
are increasingly used in materials science field because of their
exceptional accuracy and efficiency. Deployment of AI/ML
approaches in thermal science, in particular phonon, thermal trans-
port field just took off recently. There are also some comprehensive
review/perspective papers in this field.” > In Sec. III A, we will
discuss some early studies of using AI/ML methods for predicting
phonon properties of crystals and their limitations, followed by
some perspective on current challenges and future trends in
Sec. IV. In short, there is plenty of room to unleash the power of
AT in phonon thermal transport, which is the main topic of this
perspective.

Il. REVIEW OF DFT + BTE APPROACH FOR PHONON
PROPERTY PREDICTION

Combining the Boltzmann transport equation (BTE) and
Fourier’s law, the lattice thermal conductivity can be calculated as

Ka =) Conave, T (1)
A

where &, denotes the lattice thermal conductivity in the o™ direc-
tion, A represents a specific phonon mode with wave vector q and
phonon branch s, v, , is the phonon group velocity of the mode 1
along the a® direction, 7, is the phonon lifetime of the mode A,
cpny. refers to the phonon volumetric specific heat of the mode 4

and is calculated as
hw,l e:‘:_%_
kg \kpT?

Cphp = WW, (2)

where kg is the Boltzmann constant, N is the total number of
g-points in the first Brillouin zone, V is the volume of the primitive
cell, 7 is the reduced Planck constant, T is the absolute temperature,
and o is the phonon angular frequency of the mode A.

The phonon lifetime is one of the key input parameters deter-
mining the LTC. The finite lifetime of a phonon results from
various scattering mechanisms, such as the intrinsic phonon-
phonon scattering, the phonon-isotope scattering, and the
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phonon-boundary scattering. The intrinsic phonon-phonon scat-
tering rates due to the anharmonic three-phonon processes are
given by’

sy (Tw

Yoy

o+ Z Wm,,) 3)

l' G

where WT and W™ are three-phonon scattering rates correspond-
ing to phonon’s absorption and emission processes, respectively.
Here, 4, A, and 1" denote the three phonons participating in the
three-phonon scattering processes or collisions. The three-phonon
collisions must satisfy the criteria of energy conservation
w; + oy =y, and the momentum conservation as well,
q t 4 =q" + G, where G is a reciprocal lattice vector. The scatter-
ing rate contributed from isotopic disorder is determined by

1

n'a)l
_ / 6wy — wy 4
= 2 el ey O S(n — o) )

where ¢, is the phonon eigenvector in mode 4, g(i) is the measure
of the strength of the phonon-isotope scattering given as
g(i) =" fu(1 — My/M;)*, with fy and My being the fractional
concentkation and the mass of the k™ isotope of the i™ atom in the
unit cell, and M; = > fixMy being the average isotopic mass.

k

To reflect the effect of rough edges on the phonon scattering
rate, the phonon-boundary scattering is considered. This scattering
rate is inversely proportional to the system length (L) along the
transport direction, which can be written as’

L _1oslu] (%)
t, 1+p L
where p is the specularity parameter characterizing the roughness
of the edge with zero standing for a completely rough boundary
and unity (1) for a perfectly smooth edge. In most calculations, a
fully diffusive assumption (p=0) is used to model the boundary
scattering.

When the events of phonon-phonon scattering as well as the
scattering with isotopic impurities and boundary are presented, the
total phonon lifetime is expressed by Matthiessen’s rule as

1 1 1 1

. 6
7 Tgnh—i_ iso TE ()

The group velocity of the phonon mode A is the gradient of
frequency with respect to wave vector,

V), = an)g. (7)

The phonon scattering rate and LTC can be obtained by
solving the semi-classical phonon Boltzmann transport equation
such as ShengBTE package,”® which requires the inputs of second-
order harmonic and third order anharmonic interatomic force con-
stants (IFCs). The second order harmonic IFCs can be used to
determine the phonon frequencies and eigenvectors using the
Phonopy package.” For the third-order IFCs, a script of thirdor-
der.py can be applied to generate different supercell configurations
with the consideration of both point-group symmetry and
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translational invariance, and the interaction cutoff up to a certain
nearest-neighbor distance is usually implemented.”® There are also
some other efficient and accurate approaches to fit the force con-
stants, for example, compressive sensing lattice dynamics (CSLD)’
and the temperature-dependent effective potential (TDEP).”"*

In 2018, three independent experiments’ " confirmed the
significance of four-phonon scattering in BAs. Subsequent studies
pursuing four-phonon effect have proved its importance in a
broader range of systems, including insulators, semiconductors,
and semimetals with topics covering thermal conductivity predic-
tions, radiative properties, and phonon linewidths. FourPhonon
module was also built within ShengBTE package and its execution
is fully compatible with ShengBTE.” It uses the second- and third-
order IFCs which are obtained from the methods described above.
CONTROL file is also needed as an input, which specifies settings
and parameters, including crystal structural information, tempera-
ture, g-mesh, broadening factor, etc. On the basis of this workflow,
FourPhonon requires an additional input file with fourth-order
IFC. Four-phonon scattering calculation is generally computation-
ally expensive, since it involves huge amount of possible four-
phonon process. A simple metric for strong intrinsic fourth-order
phonon anharmonicity was then proposed,” which is promising to
be combined with AI/ML methods to predict large-scale materials
in a high-throughput manner. To obtain more accurate phonon
frequencies and LTC, self-consistent phonon (SCPH) renormaliza-
tion are introduced into the calculations for analyzing the effects of
temperature and higher order lattice anharmonicity on phonon
thermal transport properties.”** For instance, as implemented in
the HIPHIVE package,”' the structures for the calculations of third
and fourth-order IFCs are generated using the random displace-
ment method. The second order IFCs considering the temperature
effects based on the SCPH theory are obtained by training the data
using the HIPHIVE package."**” Tadano et al proposed the
method of incorporating frequency renormalization effects by the
bubble self-energy within the quasiparticle approximation, and
then applied the developed methodology to the strongly anhar-
monic a-CsPbBrs.*” Tadano et al. also analyzed phonon transport
including a coherent interbranch component by using first-
principles based self-consistent phonon theory and solving off diag-
onal components of group velocity operators. Temperature-
dependent harmonic interatomic force constants were then
obtained for quadruple-well potential of guest atoms in type-I
BagGa;6Snso. " The relevant methodology has been implemented
into the Alamode package.*”*

The above thermal transport calculations based on phonon-
phonon scattering picture only capture the diagonal terms of the
heat-flux operator. In fact, even in the harmonic part of the heat
flux, there are off diagonal terms that contribute additional heat
transport although their magnitude compared to the diagonal part

dlagona) is usually deemed negligible in simple crystalline com-
pounds.”” This phenomenon might become more severe in highly
disordered materials where the traditional phonon picture fails, and
heat is supposedly carried by random walk among uncorrelated
oscillators. The two-channel thermal transport model was first
introduced, and relevant phenomenon was observed and evidenced
in Mukhopadhyay et al.’s study on a simple crystal Tl;VSes.** The
theoretical formalism for estimating the off diagonal contributions
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oT-diagonaly (o< derived later. Recently, a unified thermal transport

model incorporating both diagonal and off diagonal contributions
considering anharmonic phonon-phonon interactions has been
developed,49

2 g s’
off -diagonal h wq + wq 5.5 s
K = — V> Q V>
L kBTZVNZI:; 2 4 9
S 1S (7S s 08 (18
% oy (g + 1) + aymg (ng + 1)

4o — o) + (5 +T3)

(4T3, (8)

Note that the phonon lifetime 7, is replaced with the scatter-
ing rate I, = 1/7;. In addition, the group velocity is generalized to
the off diagonal form V¢ Since then, there are several studies that
have explicitly quantified the contributions from off diagonal terms
in the heat-flux operator*”’~° and even combined with a com-
plete treatment of quartic anharmonicity for both phonon frequen-
cies and lifetimes at finite temperatures.”” Despite significant
attention has been given to the off diagonal contributions to the
overall thermal transport, currently a systematic understanding and
analysis across diverse material families, complexity, symmetry, ele-
ments, bonding nature, etc. are lacking. AI/ML approaches can
exactly fit in this niche as we will see below.

Ill. STATE-OF-THE-ART Al/ML APPROACHES IN
PHONON THERMAL TRANSPORT

A. Machine learning models for single phonon
property training and prediction

In the past decade, plenty of physical properties have been
well trained and predicted by AI/ML models, provided that there is
significant amount of training data that can be obtained from
either high-throughput calculations or experiments. These success-
ful cases of material properties span from simple thermodynamics
(e.g., formation energy and energy above hull’® to basic and
easy-to-calculate mechanical properties (e.g., elastic constants,
Young’s modulus, hardness),”’*” to complex transport properties
(e.g., thermoelectrics,””””" superconductivity).”'~’® For properties
that are hard to compute, a common strategy used in many previ-
ous studies is that, in order to get large enough number of training
data, complex physics usually needs to be simplified by some
empirical models, or estimates by some rough theories, or refining
or improving previous semi-empirical models.””””® For instance, in
thermoelectrics, electronic conductivity is determined by the relax-
ation time of electrons, which, in principle, requires complicated
first-principles calculations to explicitly consider electron-electron
and electron-phonon scattering, but such calculations are
extremely computationally demanding. To bypass this obstacle, an
empirical or arbitrary (more importantly adjustable) parameter is
usually adopted, ie., the well-known constant relaxation time of
electrons (in practice, this value is chosen as about 10 fs). Despite
the success of such assumptions in many cases, the rude treatment
of single constant relaxation time of electrons could lead to unac-
ceptable error if the number of to-be-predicted structures is signifi-
cant, and more importantly nobody knows which materials will
have how much error.
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Following the procedure of using AI/ML algorithms to predict
other physical/chemical properties, an immediate approach the
researchers have recently pursued in thermal science is data-driven
approach through extraction of vital information from already exist-
ing DFT data and/or experimental measurements to explore previ-
ously unseen structures. Arguably, the most common ML strategy
used in data-driven materials science is supervised learning, whereby

a vector of input variables x are mapped to the desired output(s) y

via a tunable, continuous function f returning the model y = f(x).
As such, several papers have been published with supervised learning
of the LTC with material descriptors as the input which are signifi-
cantly cheaper to generate than conventional DFT-LTC calculations.
Here, a critical step of training a high quality and explainable ML
model is to carefully define and select the inputs for the model, the
so-called feature or descriptor engineering. Indeed, material descrip-
tors are the distinguishing factor in recent works with high-
throughput LTC due to their importance in physically representing
crystalline systems, dictating the prediction efficiency and accuracy.
There are a few basic standards for defining material descriptors:

(1) The dimensions of the descriptor should be as low as possible.
The lower dimension of the descriptors, the smaller amount of
data will be required for training.

(2) The descriptor uniquely characterizes the material as well as
the property-relevant elementary process. The ideal case is to
ensure one-to-one correspondence between input (descriptor)
and output (material property) to the largest extent. In such
cases, it will be much easier to train a ML model.

(3) Materials that are very different (similar) should be character-
ized and selected by very different (similar) descriptor values.
This property will help ML model itself adjust the internal
parameters to recognize the hidden relationship or pattern.

(4) The determination of the descriptor must not involve calcula-
tions as intensive as those needed for the evaluation of the
property to be predicted (simple calculation). This is extremely
important for phonon property prediction, since the traditional
DFT + BTE approach is very time and resource consuming.

1. Training machine learning models with predefined
elemental and/or simple descriptors

The first big category that is straightforward to execute is to
train traditional ML models with elemental descriptors and/or
simple features inspired by existing phonon transport physics and
empirical models, and then deploy trained ML models to predict
phonon properties of new structures. This method is also called
forward prediction (see the orange arrow in Fig. 2). Conventionally,
the ML models are descriptor-based, where the key descriptors rep-
resenting the system must first be defined prior to fitting a suitable
ML model for prediction. By analyzing the impact of different
choice of descriptors and four different ML algorithms including
support vector regression (SVR), fully connected neural networks
(FC), kernel ridge regression (KRR), and eXtreme Gradient
Boosting (XGBoost), Wang et al.®' found that the XGBoost algo-
rithm based on the descriptors of crystal structural and composi-
tional information can accurately predict the LTC with an average
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FIG. 2. Schematic of the possible deployment of various Al/ML algorithms and methodologies (dashed boxes) in phonon thermal transport field. The red arrows indicate
the traditional DFT + BTE approach for phonon property prediction. The orange arrows denote the AI/ML training on structure—phonon property relationship and forward
prediction of phonon transport properties, while the yellow arrow indicates the inverse design of new structures with target phonon properties. The green box and arrow
indicate the contribution of our recently developed element-specific spatial density neural network force field (Elemental-SDNNFF) that accelerates the traditional
DFT + BTE workflow to quickly and accurately predict comprehensive phonon properties of large-scale materials.”*°

mean absolute error (MAE) of 2.13 W/m K. The training dataset of
LTC contains 5486 materials with the Automatic GIBBS Library
(AGL) method using a quasi-harmonic Debye model and was
taken from AFLOW repositories. Therefore, the accuracy of LTC
training data itself is a concern. Nevertheless, feature importance
analysis yielded top five important features to impact the prediction
of LTC, being the compositional weighted atomization enthalpy
(avg(AHqtomic))> the average period [avg(period)], the volume per
atom (V,,), the mass density (p), the volume per primitive cell
(V) and the average atomic number [avg(N)]. The LTC distribu-
tion was then projected to the avg(AHutomic) — Ve and Vi, — Ve
dual-descriptor space, and low LTC materials can be found in the
bottom-left corner of the plots, i.e., a large volume of the primitive
cell and atoms. Such features learned from LTC data analysis are
consistent with already known empirical physical models for LTC,
such as Slack model”” and Debye-Callaway model.””"* For
example, both models emphasize the importance of atomic mass,
cell volume, etc.

Using a benchmark data set of experimentally measured LTC
of about 100 inorganic materials, Chen et al®’ built a Gaussian
process regression (GPR) based ML model to predict LTC.
They compared the model performance between the original
63-dimensional features (using the Matminer package) and the

reduced 29-dimensional features by recursive feature elimination
(RFE) using the linear support vector regression algorithm with
fivefold cross-validation. The accuracy of the developed ML models
was found to be comparable to the past semi-empirical Slack and
Debye-Callaway models. Since very limited number of data was
used in this study (the accuracy of the data is high though, as they
come from experiments) and there is no validation on more diverse
structures, the realistic accuracy and transferability of the trained
ML model to broader material families, plus the potential overfit-
ting problem (the dimension of input descriptors is on the same
order as the data size), are unknown. In addition, it is worth noting
that an important feature used in the model training and prediction
is not easy to compute, i.e., bulk modulus, which will be a draw-
back for fast material screening. Similarly, using experimentally
measured LTC for 350 different materials, Qin et al.*® constructed
and trained 15 traditional ML models for LTC prediction. During
the training process, eight basic properties of the materials were
used as descriptors (inputs) and the experimentally measured LTC
values were used as targets (output). The trained deep learning
models showed the highest performance of accurately predicting
LTC spanning four orders of magnitude, which have a great advan-
tage over the widely used empirical Slack model. They continued to
deploy the trained four deep learning models, combined with
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semi-supervised learning strategy, to predict LTC of 3716 materials,
and the results were validated by the optimized Slack model.”

Juneja et al” carried high-throughput ab initio calculations
on a dataset containing 195 compounds composed of 60 binary, 85
ternary, and 50 quaternaries. Out of these 195 structures, 120 com-
pounds were found to be dynamically stable with LTC spanning
over three orders of magnitude. Pearson correlation analysis on this
dataset reveals a strong dependence of LTC on some descriptors,
namely, maximum phonon frequency, integrated Griineisen param-
eter up to 3 THz, average atomic mass, and volume of the unit cell.
Using these descriptors, they then trained a GPR-based ML model
for LTC and found better performance than the Slack model.
Again, they did not do further validation or study on more unseen
structures by deploying their trained ML model. Same as the previ-
ous study, their dataset size is small and the two important features
(namely, maximum phonon frequency, integrated Griineisen
parameter up to 3 THz) are hard to obtain from high-throughput
point of view.

Similar study was conducted by Jaafreh et al,”’ who calculated
LTCs of 119 compounds at various temperatures (100—1000 K)
based on DFT and then built a predictive model using various ML
algorithms including decision tree, random forest (RF), gradient
boosting regression tree, and extreme gradient boosting. Unlike
previous studies, the accuracy of their models was validated using
new cases of four compounds, which was not seen for the model
before. They continued to use their model to screen 32116 com-
pounds in the Inorganic Crystal Structure Database (ICSD).
Cs,Snlg and SrS were selected to validate the ML prediction with
fairly consistent results with DFT calculations. This is a compre-
hensive study that includes all necessary components of data-driven
approach for phonon transport, including data generation, model
training, prediction, and validation.

2. Training machine learning models without prede-
fined descriptors

The second big category is to develop ML models without
explicitly defining descriptors. As ML algorithms have been further
developed in recent years, graph neural networks (GNNs) have
received intense interest as a rapidly expanding class of ML models
remarkably well-suited for materials applications. It is well known
that finding effective descriptors in conventional ML models as
described above could be very challenging for problems with a
large amount of compositionally and structurally diverse materials.
Instead, GNNs could potentially overcome the limitations of static
descriptors by learning the representations on flexible, graph-based
inputs. To date, a large number of successful GNNs have been pro-
posed and demonstrated for systems ranging from crystal stability
to electronic transport property prediction and even to catalyst
chemistry. This brings a new opportunity for phonon property pre-
diction. Zhu et al.”" used their recently prepared high-throughput
LTC data and trained crystal graph convolutional neural network
(CGCNN) to map with the LTC and achieved MAE of 0.14 on
log-scale of LTC and R* score of 0.85 on the same log-log scale
when compared with DFT-LTC. The GNN performance is compa-
rable to that of the RF ML model with a 154-dimensional descrip-
tor as the input (MAE of 0.12 and R? score of 0.87). The trained
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model was then deployed to predict the LTC of 92919 materials
taken from the ICSD. Further feature analysis shows three most
important features for LTC prediction, being the average volume
per atom in the ground state, average bond length, and volume per
atom, which again reproduce the previous knowledge from phonon
physics and empirical models. These relevant physical mechanisms
can be seen from Slack’s model for lattice thermal conductivity,*
namely, k¥ = AM‘S;’;;@S, where M is the averaged atomic mass, J is
the cubic root of the average volume per atom, # is the number of
atoms in the primitive cell that determines the number of phonon
branches, © is the acoustic Debye temperature, y is the Griineisen
parameter, and T is the absolute temperature. For instance, the &
parameter in Slack’s model exactly means the average volume per
atom, while the average bond length can be linked to the effect of &
and n. They also extended CGCNN with transfer learning
(TL-CGCNN) to predict experimental LTC values, with the purpose
of finding new knowledge content. This attempt is interesting as it
will lead researchers to search and design new materials in previously
unexplored regions if new knowledge is successfully extracted.

My group recently trained various GNN models on a few
thousand high-quality LTC data from our own full DFT + BTE cal-
culations. The second- and third-order IFCs required for phonon
band structure and LTC calculations were calculated using the com-
pressive sensing lattice dynamics (CSLD) method, which extracts
the IFCs from the Taylor-expanded interatomic forces in terms of
atomic displacements via the advanced compressive sensing tech-
nique. Generally, for each supercell, 16-50 randomly displaced con-
figurations were used for obtaining IFCs, depending on the
symmetry of the materials. In a recent work by Ojih et al.” various
ML models including the state-of-the-art CGCNN, and global
attention graph neural network (deeperGATGNN) were trained on
3377 high-quality DFT data, and then potential materials with high
heat capacity were efficiently searched. The deeperGATGNN model
exhibits high prediction accuracy and is used for predicting the
heat capacity of 32 026 structures screened from the open quantum
material database. Deep insight into the correlation between heat
capacity and structure descriptors was gained, such as space group,
prototype, lattice volume, atomic weight, etc. We also identified
one structure, namely, MnIn,Se,, with space group No. 227, that
exhibits heat capacity even higher than that of the Dulong—Petit
limit at room temperature.

Many mechanical properties have been found to have strong
correlations with LTC. From Eq. (1) based on the kinetic theory of
phonon transport”™ and using the single mode relaxation time
approximation of the Boltzmann equation, we know that, if the
phonon group velocity is significantly reduced, the thermal con-
ductivity is anticipated to be very low. Therefore, materials with
low group velocity should have low LTC. From the physics law, we
also know that the phonon group velocity can be roughly estimated
as voc /Elp, where E is Young’s modulus characterizing the
bonding strength and p is the mass density of the material.
Therefore, Young’s modulus or bulk modulus could be a good
strategy for screening low LTC materials. Inspired by this idea,
using 10 158 elastic constants as training data, Ojih et al.” first
trained deeperGATGNN model on five mechanical properties,
namely, bulk modulus, shear modulus, Young’s modulus, Poisson’s
ratio, and hardness. With the trained model, they then predicted
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775947 data in search of materials with low bulk modulus and
potentially low LTC. 338 structures were finally verified with first
principles. The results demonstrate that one can find materials with
extreme mechanical properties recommended by high fidelity GNN
models and low LTC material from bulk modulus prediction with
minimal first-principles calculations of the structures (only 0.04%
in the case study) in the large-scale materials pool.

A critical point that has been neglected in most of existing ML
models for phonon property prediction is the dynamical stability,
i.e., there should be no imaginary phonon frequencies in the full
Brillouin zone. It is worth pointing out the rigor of using imaginary
phonon frequency as a criterion for determining dynamical stabil-
ity, which could be a good recipe for high throughput of a large
number of structures. However, care must be taken in some special
cases. For example, some recent studies have used the self-
consistent phonon theory or temperature-dependent effective
potentials (TEDPs) and obtained positive dispersions at finite or
elevated temperatures even if imaginary frequencies occur at 0 K
phonon calculations. Moreover, even with fully positive phonon
frequencies, structures may lack dynamical stability under certain
elevated temperatures, especially for materials undergoing phase
transitions or melting at low temperatures. Nevertheless, without
confirming the dynamical stability of a crystalline structure, pre-
dicting its thermal transport property would be physically mean-
ingless. To this end, more efforts should be dedicated to screening
dynamically stable materials with high speed and high accuracy so
that the prediction on LTC of final promising structures will have a
high success rate. This task can also be done by ML models. Ojih
et al.”” reported an efficient workflow combining high-throughput
DFT computing and two different types of ML models for fast and
accurately screening ultralow LTC from large-scale inorganic crys-
tals. First, seven classification ML models on 8077 data obtained
from high-throughput full DFT calculations were trained to classify
50574 structures into positive and negative dispersions, among
which 22899 structures are predicted to be dynamically stable.
Second, with 4041 high-quality DFT-LTC data, three GNN models
were trained and used to predict LTC, with 359 randomly selected
structures verified by full DFT calculations. The result showed the
ML model successfully predicted 90% of 359 structures to possess
ultralow LTC (lower than 1 W/m K). An additional 3218 structures
with ultralow LTC are also predicted and provided. This workflow
integrating dual ML models offers a new route to accelerate the dis-
covery of novel dynamically stable materials with a high success
rate for predicting effective LTC. Moreover, the correlation analysis
reproduced the phonon transport physics for ultralow LTC from
two aspects: (1) the large P; parameter represents a large number
of three-phonon scattering channels; (2) the large thermal mean
squared displacement (MSD) reflects the soft phonon modes in the
lattice usually resulting in strong phonon anharmonicity.

B. Machine learning models for predicting
comprehensive phonon properties

1. General machine learning potential approach for
single material or limited number of structures

Despite the powerful strength of ML models in phonon trans-
port prediction, either traditional ML or state-of-the-art GNN
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model, direct establishing relationship between atomic structures
and target material property (e.g., LTC, heat capacity, etc.) may lose
the comprehensive information for phonons as would have been
obtained in the intermediate steps if traditional DFT + BTE work-
flow is applied (see the red arrows in Fig. 2). As a matter of fact,
the comprehensive properties of phonons are beneficial for many
relevant emergent applications. For example, materials with target
ultrahigh cutoff phonon frequencies would be potential candidates
for high temperature phonon-mediated superconductivity.”*™'’
Large negative Griineisen parameter in the acoustic phonon modes,
which are accessible after knowing the anharmonic IFCs, would
help design negative thermal expansion materials near room
temperature'*>”'"* and more interestingly zero thermal expansion
materials over a wide temperature range.“B =197 Quantitative charac-
terization of vibrational entropy due to the contribution of different
phonon modes will facilitate design of advanced high entropy
alloys (HEAs), in particular, vibrational entropy stabilized
HEAs.'*"""" This motivates us to re-think the whole design of ML
models for phonon properties. In particular, one step backward to
the atomic force level would be a good try.

Regardless of the ML models, again keep in mind that our
central task is to circumvent the time-consuming nature of
DFT + BTE approach for phonon-based computation. One
approach, in particular, without using AI/ML is to minimize the
number of displaced supercells and corresponding DFT calcula-
tions to compute the IFCs, as this step is most costly and time-
consuming in the pipeline. A few methodologies have been pro-
posed in recent years. For example, the Hiphive package in which a
cluster representation yields a reduction of the number of required
configurations for LTC of monolayer MoS, from 571 to only 20 to
25 configurations while maintaining the accuracy of IFCs.'"”
Similar approaches include aforementioned CSLD method and
temperature-dependent effective potential (TDEP).”"*” These
methods can reduce the total number of displaced supercells that
need to be evaluated by DFT by from several folders to up to one
order of magnitude. While they are efficient for predicting phonon
properties of single material or a limited number of materials or
material families, the required DFT computational demand is still
unbearable when dealing with large-scale materials (say, a few
thousand or more). Nevertheless, these methodologies are very
promising to accelerate phonon calculations when combined with
MLPs, as we will see shortly.

To get the desired LTC values significantly faster than tradi-
tional DFT + BTE approach using AI/ML algorithms, a very early
study was conducted by Carrete et al.''” who combined ML algo-
rithms, physical insights, and automatic ab initio calculations and
scanned approximately 79000 half-Heusler entries in the
AFLOWLIB database. Specifically relevant to ML, part of their LTC
values were obtained by random forest regression (denoted as
Kforest) Dy leveraging the LTC of 32 Heusler materials fully calcu-
lated by DFT as a training set. They then employed the fitted
model to predict the remaining LTCs. The random forest algorithm
works well in this study partially because the crystal structures are
the same half-Heusler type and the only changes among different
structures are the constituent elements occupying the lattice sites.
This method can be extended to similar problems such as predict-
ing thermal transport properties of high entropy alloys or alloying
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structures (e.g., Al,Ga,;_,N), where the main lattice symmetry and
the relative position of atoms and their neighbors keeps the same
while only the atom type and mass on the lattice sites changes.
Certainly, this method cannot be used to predict structure pool
with diverse material families and symmetries and mixed atomic
environment, etc. A fundamentally new approach should be devel-
oped in those cases.

While training aforementioned ML models with material
descriptors offers physical insights toward feature importance for
LTC prediction, limitations are present when facing high through-
put. Mainly, these models are still required to generate reference
LTC data to serve as the target during training. ML models such as
artificial neural networks (ANNs) depend on data diversity due to
their interpolative nature, i.e., they cannot perform well when pro-
vided data outside the training set. As such, the data generation for
a sufficiently robust model is expensive and may limit the predic-
tions to a small subset of materials. Additionally, because these
models are usually trained on one temperature designed to output
a single value of LTC, they are unable to provide the plethora of
information that comes with DFT + BTE LTC calculations. This
means that the plethora of information such as phonon dispersion,
mode-dependent scattering rates, temperature-dependent LTC,
phonon frequency-dependent accumulative LTC, and even off diag-
onal contribution to overall thermal conductivity are inaccessible,
all of which however are standard outputs in DFT +BTE LTC
calculations.

To circumvent these issues, the AI/ML model for phonon
thermal transport may be re-designed from a lower level, more spe-
cifically through the atomic forces. As mentioned previously, the
IFCs are critical for modeling harmonic and anharmonic properties
and their contributions to the LTC and are derived from the atomic
displacements in supercells and their corresponding forces.
Consequentially, approaching BTE solvers with already computed
atomic forces from ML maintains the rich output of information
that comes standard from phonon calculators. More importantly,
training for the atomic forces has the potential to reduce the costly
demand for training set generation. As the primary cost for model
development is the DFT calculation needed for training, the goal
should be to maximize the ratio of datapoints to DFT calculations
while maintaining accuracy. For models with material descriptors,
many DFT calculations are required for one single LTC, serving as
a single datapoint for training. Meanwhile, training on atomic
descriptors is advantageous in terms of data abundance per DFT
run because each simulation provides (3N + 1) data corresponding
to N atoms worth of force vectors and one total energy. Models
trained on such data are referred to as machine learning potentials
(MLPs). Namely, MLPs capture the explicit electronic-level features
from DFT by implicit representation of the potential energy sur-
faces as functions of the atomic nuclei positions. Due to the purely
mathematical nature of ML models, to capture the appropriate
physics the accuracy of MLPs strongly depends on the description
of the atomic environment surrounding central atoms. It is well
known that cartesian coordinates are not well-suited for the
description of atomic environments, since (1) they are not rotation-
ally invariant and cannot physically represent the potential energy,
(2) the order in which the cartesian coordinates are fed into MLPs
is ill-defined and could effectively “confuse” models, and (3) atoms
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may leave/enter the designated cutoff range and is incompatible
with MLPs due to the allocation of weights at the beginning of
training. As such, several MLPs have been proposed over the past
decade by using various improved descriptors. Many studies have
shown excellent representation of DFT-level energetics and realistic
property prediction with MLPs. Some representative MLPs in this
line include the high dimensional neural network potential
(HDNNP),'* deep potential molecular dynamics (DeePMD),''*
and GAP with SOAP descriptors,''® higher order equivariant
message passing neural networks (MACE).''” Those MLPs have
been applied for a wide array of materials, including but not
limited to molten salt,"'® metals,"'” semiconductors, organic mole-
cules,'”” superionic conductors,'”"'** and even amorphous struc-
tures.'”” In the context of phonon property prediction, several
studies have been published using MLPs as the force calculator. For
instance, Marques et al. reproduce the phonon dispersions for
cubic Si and Ge in comparison to those found from DFT,'** and
Minamitani et al. capture both Si and GaN dispersions and LTC
within 5.4%.'”” Typically, all of these studies own a root mean
square error (RMSE) of the force predictions from the MLP within
a few tens or above 100 meV/A which is at least one or two orders
of magnitude less accurate than DFT pseudopotentials but with
approximately 1000x faster evaluation time.

Undoubtedly, the robustness of the recently developed MLPs
has the potential to mitigate the current speed-related bottlenecks
in the DFT + BTE LTC workflow. However, to date a majority of
studies using MLPs also share a common denominator in that the
models are limited to a material-to-material basis or a fractional
material family.'”°'*® This is primarily due to the exponential
scaling of model parameters with the number of atomic species or
elements (denoted as Neem) contained in the training data. For
instance, the HDNNP requires Neem element-specific networks
each containing approximately Neem radial and Neem(Nelem + 1)
angular symmetry functions. When faced with data containing ele-
ments spanning the periodic table, the training efficiency and eval-
uation time is reduced significantly due to the ~N2., scaling of
the input descriptor. Additionally, training of each element-specific
network requires central atoms dedicated only to said element, e.g.,
copper networks are only trained on copper data, meaning that
little to no knowledge of atomic environments from other central
atom species are shared. For instance, an atom sharing the same
column on the periodic table may provide additional
electronic-level information for another species due to their similar
valences. In general, recent MLPs represent atomic positions
numerically and the elements with sub-models and/or specific
input descriptors, in turn diminishing prediction quality with ten
or more elements. Furthermore, descriptors should be designed to
scale independently of the elements without needing to reconstruct
and train the model from scratch. This opens the opportunity to
develop MLPs without the need to re-fit ab initio data when new
chemical element is introduced, allowing for MLPs to grow rather
than require retraining from the ground-up. Overall, independent
elemental scaling and centralized ML training are two major
factors necessary for evaluation of theoretical materials databases
containing a plethora of structures and atomic species that would
otherwise be too difficult to handle with modern MLPs.
Computing forces across many atomic environments is especially
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challenging for high-throughput LTC considering the notoriously
strict force accuracy requirements for the IFCs and the resulting
LTC.

2. Machine learning potential approach for large-scale
structures with diverse material families

. 79,80,129
In my group’s recent studies, we focus on the develop-

ment of accurate force calculators including high scope of transfer-
ability between atomic structures and elements. We have pipelined
the first-principles calculations for atomic structure optimization,
high precision DFT calculations, and postprocessing DFT results to
generate training data, and automated training of deep neural
network potential for obtaining phonon properties (Fig. 3). The
unique feature of our recently developed machine learning algo-
rithm, dubbed “spatial density neural network force field
(SDNNFEF)” (also see the green box in Fig. 2),%% is the usage of a
three-dimensional mesh of density functions, which together act to
map the atomic environment and provide a physical representation
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of the forces acting on the central atom. The high efficiency and
accuracy of our SDNNFF method benefits from several notable
advantages, including: (1) avoiding the chain rule of derivatives of
the total energy (a big source of error in obtaining atomic forces
from machine learning models); (2) using a single atom and its
neighboring environment to train the model, which gives us ever
increasing n x m scaling of the training data, where n is the
number of atoms in a supercell and m is the number of
first-principles-evaluated structures; (3) significantly reduced
number of parameters and human effort needed to successfully
train a per-atom property-converged neural network model. We
first tested our SDNNFF method on thermal transport in simple
crystals, namely, bulk diamond, Si, SiC, and BAs."”” Our new
SDNNFF method yields unprecedently low root-mean-square-error
(RMSE) of atomic forces of 1.5 meV/A for bulk Si with phonon
dispersions and temperature-dependent LTC excellently matching
the DFT and experimental results, which outperform existing
MLPs reported so far. We also did a benchmark study on amor-
phous Si and the results show that our SDNNFF method has much
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faster convergence in training process than other neural network
potentials with several folders to even one order of magnitude
smaller RMSE in predicting atomic forces, confirming its high effi-
ciency and accuracy.

Following our initial SDNNFF model, the newest solution for
descriptor development including both atomic positions and ele-
ments requires only a single neural network with independent
scaling of input size with respect to the available species in the
training set. The basic idea of the new model, dubbed the
Elemental-SDNNFE,>* is to simultaneously capture the previ-
ously accurate spatial mapping of neighbors and how atomic ele-
ments influence the signals measured at allocated 3D grid points
surrounding the central atom. Two advantages arise from the
Elemental-SDNNFF descriptor: (1) the summation of density func-
tions multiplied by the neighboring atomic weights eliminates the
need for designated slots in the descriptor vector for each element
and removes the scaling of input size with respect to number of ele-
ments; (2) by providing the central atom atomic weight in the
input descriptor vector, the network can distinguish central atoms
whereby individual element-specific SDNNFFs are not required.
The result is a neural network force field capable of modeling
atomic systems spanning the periodic table without sacrificing effi-
ciency and power of deep neural network training. To demonstrate
the effectiveness and fast speed of our new Elemental-SDNNFF
algorithm, we apply it to train on a large dataset containing a
mixture of ~80000 cubic materials, totaling 63 unique elements
across the periodic table. With individual atoms in each supercell
as separate input data entry and additional data augmentation
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technique, the total amount of training data size reaches ~4 x 107,
which is 3-4 orders of magnitude larger than traditional MLPs that
only treat the entire supercell system as single input data.
Benefiting from such an extremely large training dataset, the
Elemental-SDNNFF can capture both atomic structure and species
with significant improvement to training speed and accuracy. The
RMSE of atomic forces for the latest training round reaches a level
as low as 29.3 meV/A, which is a few folders to one order of magni-
tude lower than most of existing MLPs. The RMSE of predicted
phonon frequencies for >90% of tested structures is within only
3%, indicating that our Elemental-SDNNFF algorithm has pre-
dicted the interatomic force constants very accurately (Fig. 4). We
further used the Elemental-SDNNFF to predict LTC of these struc-
tures, and good agreement has been achieved as compared to the
full first-principles calculations. These codes and workflow are
expected to be used for more complex and larger amount of new
local atomic environment learning and thus precisely predict
phonon properties of sub-million-scale materials.

With predicted second- and third-order IFCs and then further
predicted phonon properties for 80198 cubic structures,” we
found an outstanding performance with the maximum mean
square displacement (MSD) of atoms and incorporate this as a
descriptor for lattice thermal conductivity (k) of crystals. This is
most likely due to the all-encompassing nature of thermal MSD in
describing other vibrational properties. Additionally, MSD may be
computed as a function of temperature and is more useful to
observe temperature-dependent trends of almost all vibrational
dominated or related properties. A generally inverse-linear
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relationship is observed between the log x; and the log(max MSD)
(Fig. 5), which provides evidence of linearity through predicted &,
and the max MSD. Structures with extremely high maximum MSD
are indicative of rattling atoms, where strong phonon-phonon scat-
tering and ultralow LTC is prevalent. These predictions remain
highly beneficial for quickly marking structures with strong
phonon anharmonicity, which is closely related to mechanical and
transport properties. Specifically, we found 9306 total structures
with norm. log(max MSD) higher than 0.464, among which 8873
(95.4%) structures possess LTC below 1 W/m K. Thus, the max
MSD is a reliable approach for indicating highly unique structures
with out-of-trend values of atomic displacement and corresponding
strong phonon anharmonicity, which provides a route to narrow
down potential candidates in searching ultralow LTC. The results
on 80198 cubic structures show great promise of our
Elemental-SDNNFF approach for accurate, high-throughput, and
comprehensive phonon property prediction including phonon dis-
persion, scattering rates, and LTC at a fraction of the expensive
computational cost of traditional DFT + BTE workflow for phonon
property calculation.

IV. CHALLENGES AND FUTURE TRENDS

Despite the data-driven AI/ML methods have shown great
potential in reducing computational cost of well executed
DFT + BTE approach and accurate phonon properties prediction,
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there are still a lot of challenges and issues that limit their further
widespread applications:

(1) Quality and quantity of phonon data: Many phonon properties
are complex properties that are hard to either be calculated by
DFT or train by AI/ML models, and the structurephonon
property relationship is highly nonlinear and implicit. To
let the AI/ML models cover as many material families and
symmetries as possible, a large amount of training data
are required, in terms of both quality and quantity. The
DEFT + BTE approach will still be the major way to obtain high
accuracy phonon data in the near future. To address this chal-
lenge, further work can be pursued through database infra-
structure construction. Creating a public phonon database (see
the blue arrow in Fig. 2) containing comprehensive phonon
properties will not only benefit the thermal science field, but
also become an excellent complement to the currently widely
used material databases, such as Materials Project,130
OQMD."”" In such phonon database, a web server for non-
profit researchers to effectively retrieve, quickly navigate, visu-
alize, and compare large pools of phonon band structures to
pinpoint the materials of interest is expected. More impor-
tantly, the new phonon database will provide multi-channels
for communications between users and developers. For
example, users around the world can calculate their own DFT
data with standard input and output files compatible with the
new phonon database, and then upload or contribute to the
phonon database. Such user-interactive toolsets are expected to
accelerate the accumulation speed of high-quality phonon data
and will benefit broad communities of material physics, chem-
istry, and engineering with new collaborative opportunities for
novel materials discovery in many societally important areas.

(2) Machine learning of multi-resolution data: Currently, the
majority of accurate phonon calculations are all based on first-
principles calculations, which is too computational demanding
for high-throughput screening. That is the main reason why
most existing ML studies only used a few hundred LTC data.
On the other hand, there are some theories that have captured
the correct phonon physics and can be used to generate large
amounts of data in a quick way, but the predictions are less
accurate. It is then intuitive to develop deep learning models
that can take advantage of heterogeneous multi-resolution
phonon data and scarce data for training efficient and accurate
phonon prediction models. This approach allows one to
combine the strength of data-driven modeling to learn physi-
cally consistent phonon transport prediction models, which
may have higher generalization capability as well to extend to
previously unexplored material region. The latter is always a
challenge and issue for the current AI/ML algorithms, i.e., the
so called extrapolation problem (see details below). There are a
few ML algorithms in computer science that researchers from
thermal transport field can borrow.

(3) High fidelity universal MLPs: MLPs have been proved to accel-
erate the phonon property predictions by order of magnitude
faster. However, current MLPs are usually well designed and
trained on small amounts of data, and thus those MLPs can be
only applied to a limited number of materials, or a
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material-to-material basis, or a fractional material family. It is
still a grand challenge to train ultra-large MLPs that can cover
broad material families, diverse symmetries, various atom
species, and constituent elements. Initial attempt of developing
such universal or pre-trained MLPs for elements across the
periodic table have been made in recent years, such as
CHGNet'** and M3GNet."”” These universal MLPs are suc-
cessful in some degree primarily benefited from the millions of
high resolution DFT calculations accumulated over the devel-
opment of the Materials Project database.'” While it is impos-
sible to enumerate all possible atomic configurations to do
DFT and then train universal MLPs, an effective approach
could be using ML algorithms to detect the “holes” in the
current potential “net” so that small amount of DFT calcula-
tions can be targeted to conduct and then the fidelity and
robustness of the MLPs can be further improved. The speed of
MLPs is only slightly slower than empirical theories, so univer-
sal MLPs hold great promise to quickly screen ever-large-scale
unknown structures.

Generalization ability or extrapolation of trained ML models
and inverse design: Current ML models are good at intrinsic
interpolation, i.e., they are capable of make accurate predictions
to the areas that are in the vicinity of original training data,
while it is challenging to extrapolate or predict material proper-
ties beyond the training scope. In fact, materials with excep-
tional properties are more interesting to researchers but such
outliers are usually “alone” in the vast material space and thus
it is hard to find them. Therefore, it is desirable that future ML
models should be designed as generative rather than interpola-
tive and also should be able to generate new structures with
target phonon properties, i.e., the so-called inverse design (see
the yellow arrow in Fig. 2). This requires the ML model to
understand hidden laws from the training data rather than
relying on prior intuition, and then be able to generate hypo-
thetical structures or “first materials” with specific properties.
Ongoing efforts have been made to explore and advance in
these directions. Encouraging news were presented by a new Al
tool, GNoME,"** developed by the Google DeepMind team,
where the authors claimed that > 380 000 stable materials have
been predicted using a strategy of active learning combined
with GNN. Despite a big question mark on whether those pre-
dicted materials are truly stable, in particular, dynamically
stable (absence of negative frequencies) from phonons point of
view, the predictions were claimed to span orders of magnitude
beyond human knowledge.

Extend ML models beyond phonon properties of single crystals
and even beyond phonons: Thermal transport in heteroge-
neous materials other than single crystals is equally important
for many applications, such as thermoelectric energy conver-
sion. ML models that are trained on phonon properties of
single crystals can be extended to lots of systems where struc-
tural heterogeneity occurs or even dominates. For example,
predicting thermal transport across interfaces requires the
knowledge of phonon properties of not only the two bulk
materials in contact, but also the interface they form. The
application of AL/ML in predicting the phonon thermal trans-
port in the presence of interfaces is currently an important

PERSPECTIVE pubs.aip.org/aip/jap

open research topic. An interface loses its material symmetry
and thus cannot be treated as single (periodic) crystal
anymore, which disables the continuing applications of the
well deployed recipe of ML algorithms. However, the afore-
mentioned universal MLPs can be well-suited to study interfa-
cial thermal transport, e.g, by nonequilibrium molecular
dynamics (NEMD) simulations.'”>'*° To save computational
cost of NEMD simulations (possible interfaces or material
pairs scale up as N2, where N is the total number of single
crystals), one can think of predicting phonon density of states
(DOS) of two contacting materials first and then calculating
their phonon DOS overlap as a rough estimate to narrow down
the pool of promising material pairs. Quantitative predictions
of interfacial thermal conductance (ITC) can be also made by
using DMM model as implemented in the almaBTE
package'”” to help filter out unnecessary candidates further.
All these calculations and screening process can be accelerated
by incorporating ML models, such as training phonon DOS
and ITC, designing new substrates with both high ITC and
high LTC for cooling specific heat source material. In the pres-
ence of multiple interfaces, one of the main scientific questions
is the role of disorder in interfacial phonon transport. Several
studies have been devoted to optimizing aperiodic superlattices
to minimize phonon thermal conduction with AL/ML,"*%"*
ML-enabled research have showed the possibility of minimiza-
tion of phonon thermal conduction for moderate disorder in
heterogeneous superlattices against previous physics intuition
for width-modulated homogeneous superlattices. These recent
developments on the power of Al in detecting underlying
physics rules governing phonon thermal transport will inspire
more and deeper studies in this field.

With further development of improving AI/ML algorithms for
phonon thermal transport, ultimately, the AI/ML-based approaches
are poised to revolutionize our understanding of new phonon
thermal transport phenomena in vast material space and enable
rational design of novel thermal materials with desired or controlla-
ble thermal transport properties, ushering in a new era of acceler-
ated innovation and advancement in thermal science.
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