Computational and Structural Biotechnology Journal 24 (2024) 281-291

Contents lists available at ScienceDirect

Computational and Structural Biotechnology Journal

ELSEVIER

journal homepage: www.elsevier.com/locate/csbj
Research article A
Pattern analysis using lower body human walking data to identify

the gaitprint

Tyler M. Wiles !, Seung Kyeom Kim *?, Nick Stergiou®">, Aaron D. Likens® "

@ Department of Biomechanics at the University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182, USA
b Department of Physical Education and Sport Science, Aristotle University, Thermi, AUTH DPESS, Thessaloniki 57001, Greece

ARTICLE INFO ABSTRACT

Keywords: All people have a fingerprint that is unique to them and persistent throughout life. Similarly, we propose that

Bi"‘metrics . people have a gaitprint, a persistent walking pattern that contains unique information about an individual. To

Salt_ i‘_’lC_Ognmon provide evidence of a unique gaitprint, we aimed to identify individuals based on basic spatiotemporal variables.
ariability

81 adults were recruited to walk overground on an indoor track at their own pace for four minutes wearing
inertial measurement units. A total of 18 trials per participant were completed between two days, one week
apart. Four methods of pattern analysis, a) Euclidean distance, b) cosine similarity, ¢) random forest, and d)
support vector machine, were applied to our basic spatiotemporal variables such as step and stride lengths to
accurately identify people. Our best accuracy (98.63%) was achieved by random forest, followed by support
vector machine (98.40%), and the top 10 most similar trials from cosine similarity (98.40%). Our results clearly
demonstrate a persistent walking pattern with sufficient information about the individual to make them iden-

Random Forests
Support Vector Machines
Inertial Measurement Units

tifiable, suggesting the existence of a gaitprint.

1. Introduction

An interesting passage in 1897 recounts the ability for a train
dispatcher to recognize each of his 40-50 men after hearing a few words
rapidly emitted by telegraph [1]. Seemingly “every operator develops a
distinctive style of sending [telegraphs] so that he can be recognized
readily by those who work with him constantly” [1]. The train dis-
patcher’s words capture, in essence, the idea that the way people move
their bodies provides subtle clues about a person’s identity. Walking is a
fundamental movement of the human body and is ubiquitous in daily
life. Walking generally entails the same process, such as moving the
center of mass over the support leg; however, there is considerable va-
riety in the way that any given person solves this task. The uniqueness
implied by that description supports the idea that each person might
possess a “gaitprint” in the same way each person has an enduring
fingerprint observable across the lifespan. Indeed, one can reliably
identify friends and family with limited visual - in the extreme, only
auditory - information. For example, in the classic ‘point light walker’
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paradigm, reflective markers that are placed on anatomical landmarks
of a participant are video recorded during walking [2-4]. Otherwise, the
room is completely dark such that, when played, the video displays a
series of floating white dots on a black background. Days or months
later, the same collection of participants are able to recognize each
other, and naive participants can recognize changes in the behavior of
an unknown person’s actions [2-4]. Anecdotally, people can also iden-
tify others based purely on the sounds of their stepping patterns from the
variance in their cadence. This ability appears to be supported by
literature [5,6]. Despite those indirect results, the actual question as to
whether people exhibit a unique gaitprint remains unanswered. In this
manuscript, we contend that the key to discovering a gaitprint rests on
the examination of the variability in human movement. Based on that
contention, the purpose of this paper is to capitalize on the fundamentals
of human movement, and its variability, to produce evidence for unique
gaitprints, a collection of gait features that can reliably identify an in-
dividual [7]. We hypothesize that principled gait features including
movement variability can uncover a unique gaitprint for each person
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Fig. 1. (a) Indoor track where overground walking data was collected. (b&c) Anterior and posterior views of the Noraxon IMU setup.

[8]. To probe this hypothesis, we draw from numerous methods to
accurately identify individuals with quantitative descriptions of
lower-body kinematics [2,9]. We combine simple pattern recognition
techniques with detailed, multi-day measurements of gait features to
identify each individual’s gaitprint.

1.1. Human movement and the gaitprint

Many human movements, like walking, entail many repetitive cy-
cles. Despite the cyclic nature of gait, there is considerable variability
from one stride to the next. Some steps are short; some are long. Some
steps are slow; some are fast. The variability across cycles was conven-
tionally interpreted as a representation of uncontrolled noise and/or
error to be removed [8]. However, a large amount of research has
revealed that the variability underlying human movement and signals is
not merely uncontrolled noise nor error [8,10-12]. Based on these
findings, here we propose a novel hypothesis that the variability
observed over repetitive gait cycles is fundamental to the unique stra-
tegies people employ to walk about the world. That is, variability re-
flects the unique walking solutions learned over the course of
development. Hence, variability encapsulates the developmental history
of an individual and is the source of features that ultimately allow
identification from gait features.

More formally, we define a gaitprint as a set of kinematic and kinetic
features measured during locomotion that uniquely identify an indi-
vidual. As an analogy, a fingerprint contains ridges with swirls and
arches of varying widths that ultimately lead to changes in ridge
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Fig. 2. Visualization of the amount of data split into a probe and gallery for
three split methods. 70/30 data is split as 70% gallery and 30% probe. Day 1
data is split as 50% gallery and probe. Trial 1 data is split as 5.56% gallery and
94.44% probe.
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placement, orientation, or bifurcations [7]. Microclimates within the
womb detail the makeup of a fetus’ fingerprint within an environment
that will never be the same [7]. Much like the ridges of finger pads
providing meaningful information about the person, a certain set of gait
characteristics including kinematics and spatiotemporal variables
directly influence gait. Distinct joint trajectories, stride lengths, and
other parameters, are the ‘ridges’ of gait that provide distinct informa-
tion about walkers. These ‘ridges’ ultimately form a toolbox from which
we can selectively use gait features to distinguish between people using
pattern recognition.

1.2. Gait as a biometric

The use of gait features for biometrics — identification based on
bodily motion and features — is not new [13-17]. There are many
technologies that have been brought to bear in identification by gait;
most commonly, silhouette-based technologies. This method takes a
video of a person walking and creates a silhouette around them to
separate their movement from the background environment. The sil-
houette’s size, shape, or three dimensional overlays of the person’s an-
thropometrics can be compared between people for identification
purposes [18-24]. Alternatively, radar, acoustics, foot pressure, and
ground reaction forces have all been used to identify people based on
their gait [5,6,13,15,25-31]. However, a common aspect of the noted
methods is that rarely do these approaches take into consideration the
aspects of gait that are relevant from a biomechanical standpoint. To
extract biomechanically meaningful variables, two of the most precise
methods for measuring gait are optical motion capture systems or body
worn inertial measurement units. In the former, small markers are
placed on the body and tracked via infrared cameras in a fixed mea-
surement volume which severely limits the ability to obtain walking
typical of everyday activity. In the latter, small sensors are placed on the
body that directly measure physical quantities (e.g., acceleration) in
virtually any environment. Directly monitored gait kinematics, or their
estimations, have led to a range of identification success with accuracy
ranging between 42 to 100%, on par with radar or silhouettes [32-40].
Silhouette, radar, and kinematics-based identification each serve their
own purpose, each with strengths and weaknesses. For example,
silhouette and radar can be used in many locations, do not require new
or expensive equipment, and can identify individuals without their
knowledge. Kinematics identification, however, may require special
equipment applied to the participant but benefits from directly
measuring the movement of the individual. Our team’s approach
focused on circumventing issues that trouble other methods of person
identification, such as silhouette and radar, by focusing pattern recog-
nition on a simple framework of fundamental biomechanical gait fea-
tures. By providing further evidence that gait kinematics contain
information used for identification, those insights can be more effec-
tively applied to silhouette or other remote observational methods (e.g.,
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Table 1
Correct identification accuracy (%) per data split for Euclidean distance (ED), cosine similarity (CS) random forest (RF) and support vector machine learning (SVM).
Split ED Rank 1 ED Rank 5 ED Rank 10 CS Rank 1 CS Rank 5 CS Rank 10 RF SVM
70/30 91.55 94.75 96.35 95.66 97.49 98.40 98.63 98.40
Day 1 74.07 87.79 91.49 80.25 91.91 95.47 91.08 92.59
Trial 1 42.99 60.35 67.90 58.17 74.80 84.02 70.66 65.94
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Fig. 3. Identification accuracy per data split for Euclidean distance (ED), cosine similarity (CS) random forest (RF) and support vector machine learning (SVM).

Dashed horizontal line clarifies 90% accuracy.
computer vision, radar, etc).
1.3. Advantages

The present work may be distinguished not by the specific technol-
ogy or algorithms involved, but the use of meaningful features of gait.
We focus on basic lower body gait descriptors that are computationally
efficient and easily described to a lay person, unlike other, more abstract
means of pattern recognition [33,40]. For example, stride lengths and
widths can be easily recognized in real time and are intuitive to interpret
and describe. The straightforward measurement of preferred over-
ground walking focuses attention on the readily available gait features
that are the basis of all gait recognition studies. Observations in an
environment that is representative of day-to-day life (curvilinear
walking paths with variable lighting, noise, and foot traffic) rather than
a sterile laboratory with treadmills that are known to affect gait, is also a
benefit [41-43]. Those advantages serve as the foundation for the
pattern recognition study reported here. The strength of our approach is
that intrinsic kinematics-based information used for identification can
be applied to other identification methods, such as computer vision or
radar, assuming gait is captured in adequate detail [15,25,27,28,44].
That is, if the specific gait features capable of capturing a gaitprint are
known, any means of acquisition may be used for person identification.

1.4. Purpose
The purpose of this paper is to determine if gait is unique to each

person. Overall, we hypothesize that the way each person walks reveals
subtle information about their identity.
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2. Methods
2.1. Data acquisition

Twenty-six young adults between the ages 19-35 (12 female, 24.5 +
2.1 years old, 174.5 & 7.0 cm tall, weighing 72.3 + 15.6 kg), 28 middle-
aged adults between the ages 36-55 (24 female, 46.4 + 6.1 years old,
170.5 + 7.4 cm tall, weighing 80.9 + 14.6 kg), and 27 older adults
greater than 55 years old (12 female, 64.3 + 6.2 years old, 172.2 + 9.3
cm tall, weighing 80.6 + 15.9 kg) were sampled from the NONAN
GaitPrint dataset [45]. Each participant came into the lab twice, spread
one week apart, to complete 9 walking trials per session. Participants
were given a short, optional break after every 3 trials. Each trial (n =
1458 total) involved 4-minutes of overground walking at a self-selected
pace on a 200-meter indoor track. All participants and trials began at the
same starting point and were walked along the outermost lane of the
track. All 18 trials were walked clockwise (n = 846 total) or counter-
clockwise (n = 612 total) depending on the day of the week, due to
facility rules. All participants completed their second session 7 days
following their first session. All participants returned for the second
session wearing the same shoes worn during their first session. All notes
or data that deviated from our protocol can be found in the supple-
mentary material.

Kinematic data was collected by 16 Noraxon Ultium Motion inertial
measurement units (IMUs) recording at 200 Hz (Fig. 1) placed on the
extremities, trunk, and head of each participant. Sensor calibrations
were completed before each trial along the same section of the indoor
track. A total of 74 variables were calculated including bilateral
spatiotemporal variables consisting of distance traveled, average speed,
cadence, stride and step lengths, widths, and times, supplemented by the
percentage of stance, swing, and support phases (see Supplementary
Material for code and Supplementary Figures for all variables). Bilateral
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lower body joint angles (hip, knee, ankle) were used to calculate their
mean and standard deviations of peak flexion, extension, range of mo-
tion, and velocity. All spatiotemporal calculations were completed in
Matlab version R2023b and the following data handling and identifi-
cation models were completed using Rstudio version 4.3.1 [46-49].

2.2. Data handling

We used three methods to split our data into galleries and probes
(Fig. 2). Split 1 (70/30) included a random 70%/30% split of all trials to
be placed in the gallery and probe, respectively. That meant a total of
1020 walking trials were used as the gallery for the remaining 438 probe
trials. Split 2 (referred to henceforth as Day 1) used all trials from day 1
as the gallery set, and the day 2 trials were used as the probe. That is,
729 trials were used as the reference for the remaining 729 probe trials.
Split 3 (now referred to as Trial 1) used the very first trial from day 1 as
the gallery set, and the remaining 17 trials per participant were used as
the probe. A total of 81 walking trials were used as the gallery for the
remaining 1377 probe trials. For clarity, galleries and probes contained
the same participant but did not share the participant’s same trials. For
example, the random selection in 70/30 permits the opportunity for a
participant to have a random selection of their 1-17 trials in the gallery,
with the remaining trial(s) placed in the probe. For Day 1, the first 9
trials of the participant were placed in the gallery, and the remaining 9
trials were placed in the probe. For Trial 1, only the participant’s first
trial was categorized into the gallery, and their remaining 17 trials were
used in the probe. All participant data, including height, weight, an-
thropometrics, trial details, as well as kinematic features, can be found

SVM Weights RF Importance
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in the supplementary material. Kinematic time series for the young
adults are also published elsewhere, and the data from the middle and
older adults soon to follow [45].

2.3. Identification methods

Gait identification was performed using 4 common methods found in
the literature: Euclidean distance (ED), cosine similarity (CS), random
forest (RF), and support vector machine (SVM) classifiers [13,17,22,
50-53]. ED, CS, RF, and SVM can further be divided into two categories,
distance-based identification (DBI) and machine-based identification
(MBI). Both DBI and MBI methods used all 74 kinematic variables
segmented by our three methods of splitting trials into galleries and
probes. We also present DBI accuracy as Rank 1, Rank 5, and Rank 10
(Table 1 and Fig. 3). Each rank represents the most similar, as well as a
pool of the 5 and 10 most similar comparisons, to make a true or false
decision about the correct attribution of each probe trial to a gallery
trial, respectively. Regarding MBI, when applying RF and SVM, we used
public R packages including random Forest, stats, and e1071, along with
custom functions found in our supplementary material [52-54]. Our two
MBI methods only contain Rank 1 accuracy.

The two DBI methods were chosen based on their computational
efficiency and simplicity. To use ED for identification, each walking trial
was considered a vector of numbers with each cell representing a
numeric value for one of the 74 kinematic variables. ED between the
vector of a probe trial and the vector of each gallery trial, individually,
was then calculated. If the closest ED between the probe and any gal-
leries were from the same participant, that result was considered a
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Fig. 4. Identification accuracy results from the AOO identifications using Euclidean distance (ED), cosine similarity (CS) random forest (RF) and support vector
machine learning (SVM). The x-axis represents the number of variables used for the identification accuracy specified on the y-axis. Row one contains the results from
the 70/30 data split, row two contains the results from the Day 1 data split, and row three contains the results from the Trial one split. Column one shows the results
for the distance-based methods colored by rank and line type specified by ED or CS. Column two shows the results for the machine-based methods colored by RF or
SVM. Column one and two are subdivided into AOO using either the SVM weights or RF importance. The order of SVM weights and RF importance can be found in

Supplementary Figures 1-6.
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Table 2

AOO identification accuracies. Column one outlines the data distributions and
column two outlines the grouping of the identification method as distance-based
(DBI) or machine-based (MBI). Column three indicates if the 74 features were
included in the order of the greatest to least important SVM weights or RF
importance. Column four designates the most efficient identification method
according to the least amount of features in column five, and its respective ac-
curacy in column six. The asterisks in Trial 1 indicate the inability for RF and
SVM to reach greater than 80% accuracy with less than all 74 features.

Distribution Method AOO Order Method # Accuracy
Group Features (%)
SVM ED Rank
DBl Weights 10 3 81.05
DBI RF ED Rank 3 85.39
Importance 10
70/30
SVM
VBl Weights RF 10 80.82
MBI RF SVM 6 85.39
Importance
SVM CS Rank
DBI 1.21
Weights 10 87 8
DBI RF ED Rank 24 84.64
Importance 10
Day 1
SVM
MBI Weights SVM 29 80.93
MBI RF SVM 22 81.07
Importance
SVM ED Rank
DBl Weights 10 27 81.05
RF ED Rank
Trial 1 DBI Importance 10 82 81.69
MBI* N/A* RF* *74 *70.66
MBI* N/A* SVM* *74 * 65.94

correct Rank 1 identification. If one the five closest ED were from the
same participant, that was considered a correct Rank 5 identification,
and one of the ten closest ED was considered correct for Rank 10. CS
followed a similar procedure to ED, except the cosine similarity between
the vector of a probe trial and the vector of each gallery trial, individ-
ually, was calculated. If the highest CS (closest to 1 on a scale of —1 to 1)
between the probe and any gallery were from the same participant, that
result was considered a correct Rank 1 identification. Rank 5 and Rank
10 identifications follow the same procedure as ED. Summarized, ED
was calculated simply as the L2 norm between two vectors (kinematic
variables) and CS was calculated as the normalized dot product between
two vectors (kinematic variables).

The two MBI methods were chosen because they represent two
common, yet effective, machine learning algorithms. The two chosen
methods are more interpretable than many machine learning methods,
providing insight into individual feature importance. The RF classifier
constructs multiple decision trees based on subsets of the data and fea-
tures and then combines their outputs to identify unique gait patterns.
Each tree in the forest votes for a particular classification (i.e., person),
and the most popular classification is chosen as the outcome. In the
current context, this method analyzes variability in gait features with its
collective decision-making process to pinpoint individual gaitprints. The
RF input arguments were kept simple by using one permutation of 500
trees, with replacement, using one-third of the number of predictors to
split each node. Similarly, the SVM classifier identifies individuals by
finding the optimal separation between different gaitprints in a multi-
dimensional space of gait variables. SVM transforms the original gait
variables into a higher-dimensional space to make the separation of gait
patterns discernible. This separation is achieved through a decision
boundary (i.e., a hyperplane) that best divides the data points of in-
dividuals, based on their unique gait characteristics. SVM’s input ar-
guments were also simple and involved C-Classification with a linear
kernel using data scaled to zero mean and unit variance. Specific input
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arguments for RF and SVM can be found in the supplementary material,
and neither algorithm was specifically tuned to improve performance.

2.4. Three sets of identification

We performed identification using different strategies with two aims:
(1) to determine if our set of kinematic variables could be used for person
identification, and (2) to understand the relative contribution of individual
gait features for person identification. First, we took each of the three data
splits (70/30, Day 1, Trial 1) and attempted to identify all participants
using our four methods (ED, CS, SVM, RF). Second, we extracted SVM
weights (Supplementary Figures 1-3) and RF importance values (Sup-
plementary Figures 4-6) from the modeling efforts above. We then pur-
sued two additional modeling strategies, an “add one on” (AOO) approach
and a “leave one out” (LOO) approach. In AOO, we took the most
important variable (according to the SVM weights or the RF importance
depending on the data distribution) and tried to identify participants with
that single variable. We then added the second most important variable
attempted identification with those two variables. This process repeated
until we included the 74th gait feature which was the least important. In
LOO, we removed one gait feature (i.e., Cadence), calculated the identi-
fication accuracy with the remaining 73 gait features, then put it back.
Then, we removed a different gait feature (i.e., Step Time), calculated the
identification accuracy with the remaining 73 gait features, then put it
back. We repeated this process until 74 identifications were made, one for
each removed gait feature. Positive percent changes in identification ac-
curacy (LOO Identification Accuracy — Primary Identification Accuracy)
were interpreted as an improvement in identification accuracy when a
variable was excluded and negative percent changes were interpreted as a
decline in identification accuracy.

3. Results
3.1. Identification accuracy

Overall, subject identification was remarkably accurate considering
the intended simplicity of our approach (Table 1 and Fig. 3). Out of the
24 identification combinations noted in Table 1, only 5 were below 70%
accuracy, 6 were between 70-90% accuracy, and 13 were above 90%
accuracy. Of the 13 results resting above 90% accuracy, 3 reached at
least 98% accuracy. Unsurprisingly, accuracy decreased as the size of
our gallery trials decreased, more so when using DBI compared to MBI
In terms of the 70/30 split, the best approaches were RF, followed by
SVM, CS Rank 1, and ED Rank 1. In terms of the Day 1 split, the best
approaches were SVM, RF, CS Rank 1, and ED Rank 1. In terms of the
smallest gallery from Trial 1, the best approaches were RF, SVM, CS
Rank 1, and ED Rank 1. ED Rank 1 always had the worst performance
compared to all other DBI and MBI approaches.

3.2. AOO

AOO results can be found in Fig. 4 and Table 2. Overall, ED appears
more efficient than CS along with SVM being more efficient than RF.
Interestingly, SVM was best when using RF importance, and RF was best
using SVM weights, rather using than their own rankings of importance.
Unexpectedly, neither SVM nor RF reached 80% accuracy from identi-
fications trained on only the first trial.

3.3. LOO

LOO identification results can be found in Figs. 5-7 and Supple-
mentary Figures 7-12. The LOO results themselves are largely unre-
markable because all changes in accuracy were within + 4% except for
Day 1 and Trial 1 Distance Traveled. However, the average change in
accuracy (average of the 74 LOO accuracies for each distribution and
identification method), largely shows a slight decrease in accuracy when
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solid black line represents no change in accuracy.

individual gait features are removed (Table 3). In general, the DBI
methods better handle the loss of a single gait feature compared to the
MBI methods. Furthermore, the greatest average change in accuracy was
RF Day 1 and the smallest average change in accuracy was 70/30 CS
Rank 5.

4. Discussion

In this study, we demonstrated that relatively simple methods of data
identification combined with basic gait descriptors effectively distin-
guish between individuals. We applied DBI and MBI pattern recognition
to spatiotemporal characteristics derived from 81 adults walking on an
indoor track wearing IMUs. Cosine similarity was the better of the two
DBI methods reaching 98.40% accuracy when using Rank 10. Further-
more, our results showed near-perfect accuracy (98.63%) when using RF
trained on 70% of the data and probed with the remaining 30%. As we
reduced the size of our gallery set, identification accuracy decreased, but
MBI approaches proved more robust in handling such reductions.

4.1. Comparisons to previous literature

Our study’s results are consistent with, or surpass, previous literature
focusing on identifying individuals based on walking features. We out-
performed silhouette-based identification in some cases [19,22,55-58].
We also observed robust identification across days, which can plague
silhouette identification due to changes in clothing [19,59]. Further-
more, one paper collected gait data four times over two months and
achieved a best Rank 1 performance of 63%, a value lower than all our
Day 1 metrics [22]. Five out of eight of our methods were also better
than their best top 5% performance (88%) as well [22].
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A more appropriate comparison to previous literature includes our
ability to exceed the expected accuracy of at least 70% compared to
studies using similar kinematic variables [32,34-37,39]. For example,
one study applied joint angle trajectories with ED on two datasets to
reach 73% and 42% accuracy [34]. The former result is surpassed by ED
Rank 1 at the 70/30 (91.55%) and Day 1 split (74.07%), and the latter is
surpassed by Trial 1 (42.99%). Another study used 41 lower body fea-
tures to achieve 88.78% accuracy using SVM, only higher than our SVM
Trial 1 (65.94%) but not Day 1 (92.59%) or 70/30 (98.40%) [32].
Comparatively, our use of SVM achieved accuracies greater than 88.78%
with as little as 7 variables (70/30; 90.87%). Admittedly, the initial set
of gait features was quite large because we used roughly 19 trials
(essentially one participant) for every gait feature. The ability to reach
90 + % accuracy using as little as 7 gait features indicates room for
optimization because less important variables are already excluded for
good performance. The LOO results also suggest that many gait features
may be omitted without degrading accuracy. Using so many gait fea-
tures per participant is useful for identifying a gaitprint but wasteful if
the goal is to execute many computationally efficient identifications.
However, there is a possibility that our performance was inflated like
two other studies using more complex data manipulations, and many
more variables, to reach an accuracy of at least 99.5% [33,40].
Although, given our high accuracy with only small subsets of gait fea-
tures, that does not seem likely. Furthermore, we emphasize that our
model is more generalizable compared to other kinematics-based
methods because we use an intuitive approach that remains grounded
on direct kinematic measurements and potentially quicker to compute
through basic gait features. That is not to say, however, that other
methods are less capable, like silhouette identification, that reach 99%
accuracy even under multiple constraints [60]. Therefore, the
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Fig. 6. LOO identification accuracies with the x-axis showing the currently dropped variable and identification accuracy using the remaining 73 variables on the y-
axis for CS within the 70/30 split. Positive changes in accuracy are improvements and negative changes are declines in accuracy. Each line is colored by rank and the

solid black line represents no change in accuracy.

intuitiveness of this paper lends itself to support the peculiar ability to
recognize friends and family by their gait at a far enough distance where
facial features, clothing, or clear vision may be unreliable.

As anticipated, identification becomes more challenging with a
smaller gallery. Nevertheless, even with less than 6% of our data used for
gallery (Trial 1), we achieved over 80% accuracy using, which is
remarkable. Splitting our data in half (Day 1), all but one method was at
least 80% accurate. Additionally, our findings showed excellent accu-
racy (over 90%) when using a gallery from the first day’s data (Day 1)
and probing on the second day, addressing the challenges of multi-day
identification [19,22]. However, it is worth noting that our study
investigated gait with a 7-day gap, while other studies spanned months
or even one year, potentially allowing for more significant natural gait
changes [19,22,61]. Inter-day identification suggests that gait is inher-
ently variable but still contains consistent characteristics or a unique
“gaitprint”. However, the existence of unique gaitprints can only be
certain if thousands of research participants are sampled repeatedly
throughout their lifetime.

4.2. Limitations and future directions

Consistent with the limitations of other identification methods that
require a designated space for equipping participants and capturing data
(i.e., fingerprinting), the burden still lies upon the participant to come
into the lab to wear equipment that is typically not available to the
public. We hope, however, that the development of markerless motion
capture, or video-based algorithms implemented into cellphones, can be
used to provide detailed accounts of the entire body like those studied
here. Advancements in markerless motion capture technology that can
calculate reliable and accurate gait kinematics will permit highly
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accurate, yet surreptitious, person identification based on how we walk
[62]. Coupled with the present study’s ability to accurately detect in-
dividuals based on gait, we will then be able to knock out two main
problems of gait identification. The first issue is quantifying gait in a
natural environment without instrumentation and the second issue is the
currently worked on challenge of extracting gait kinematics due to the
limitations of videography [13,39,63]. Once those two issues are
remedied, researchers may then employ our biomechanical approach,
focused on directly measuring gait kinematics, with confidence that
people can be identified based on their gait patterns, without having to
consider equipment error. The eventual implementation of identifica-
tion algorithms and equipment in the commercial setting will make gait
identification a more common aspect of daily life.

There are many other ways which someone might attempt to modify
their gait. For instance, one vulnerability of gait identification is
spoofing or deception [15]. There is no doubt that gait can be changed
due to observation, to avoid falling, to be humorous, or to avoid iden-
tification. In addition, few studies report varying levels of success when
trying to impersonate other people’s gait patterns [64-66]. However,
the impersonator must know they are being monitored and may find it
difficult to copy another person’s gait over extended periods. Gait
impersonation appears realistic if the requirement is to replicate distinct
walking styles that require extended stride lengths or widths. But the
replication of joint velocities and accelerations would be a necessary,
more challenging task. Perhaps screen- or play-actors will find it easier
to impersonate someone else’s gait; but, further evidence is needed to
support or refute gait identification as a security measure [64-66].
Furthermore, changes to behavior can occur from the simple act of
observation causing participants to walk atypically (i.e., the Hawthorne
effect) [67,68]. Regardless, the robustness of our method to each of
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Fig. 7. LOO identification accuracies with the x-axis showing the currently dropped variable and identification accuracy using the remaining 73 variables on the y-
axis for RF and SVM within the 70/30 split. Positive changes in accuracy are improvements and negative changes are declines in accuracy. Each line is colored by RF
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Table 3

Change in accuracy relative to the complete feature set. Column one outlines the
data distribution, column two outlines the identification method and its corre-
sponding mean =+ standard deviation accuracy in column three. The table is
ordered from the greatest to least average magnitude using column three.

Distribution Method Change in Accuracy (%)
RF -0.09 + 0.26
ED Rank 1 -0.07 £ 0.38
CS Rank 10 -0.06 + 0.12
ED Rank 5 0.05 + 0.32
70/30 ED Rank 10 -0.03 +0.27
CS Rank 1 -0.02 £ 0.22
SVM -0.01 £0.11
CS Rank 5 0.00 + 0.20
RF -0.62 + 0.59
SVM 0.12 £ 0.27
CS Rank 10 -0.11 £ 0.26
CS Rank 1 0.07 £ 0.67
Day 1 ED Rank 10 -0.06 + 0.55
ED Rank 1 0.05 +£1.01
CS Rank 5 -0.05 £ 0.33
ED Rank 5 0.04 £ 0.63
SVM 0.20 + 0.41
RF -0.18 £+ 0.90
CS Rank 10 -0.14 £ 0.79
Trial 1 CS Rank 1 -0.14 £ 0.77
ED Rank 10 0.07 £ 2.14
ED Rank 5 0.03 +£1.74
ED Rank 1 -0.02 £ 1.79
CS Rank 5 0.01 +£1.01

288

those potential threats to identification will need to be rigorously tested
for our method to gain full utility in applied settings such as security.

Future studies in gait identification aim to achieve perfect identifi-
cation accuracy by further refining the motion capture and kinematic-
based perspective. While this paper focused on linear measures
(capturing the central tendency and the magnitude of variation) of
angular and spatiotemporal gait features as proof of concept, there could
be room for improvement by incorporating additional variables into the
identification parameters. Further refinement may also be achieved by
swapping out, or selecting, the most predictive gait characteristics for
identification. For example, our modeling efforts showed that reason-
able accuracy could be maintained with less than 10 gait features. A
feature set of 10 variables may also be further leveraged for identifica-
tion by tuning the hyperparameters of each classification method.
Parameter sweeps can be conducted for each algorithm, and each al-
gorithm’s input arguments, to maximize efficiency and accuracy.
Incorporating those features with other modeling approaches, and their
optimized forms, is an exciting area for future research in which we are
currently engaged.

We are also exploring the value of incorporating nonlinear time se-
ries measures (capturing the temporal structure of variation) as addi-
tional gait features, considering the importance of movement
variability. However, some nonlinear analysis methods require a large
number of strides for accurate results, which are not feasible in sta-
tionary camera settings where the pedestrian may walk in and out of the
capture space. Nonetheless, related work from our lab provided evi-
dence supporting the replacement of certain nonlinear analyses with
reliable results using as few as 64 data points [69]. While this reduction
still represents a significant number of strides depending on the identi-
fication space and population, we anticipate that nonlinear analyses will
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become useful predictors for identifying individuals in the near future
[70]. Specifically, the structure of trial-to-trial variability may indicate
individual uniqueness and provide insights into subtle coordination
changes that reveal a person’s identity. Our future capitalization on
more nuanced measures of gait variability, rather than standard de-
viations, is expected to improve identification accuracy. The importance
of nonlinear identifiers is supported by literature demonstrating their
usefulness when investigating gait in different populations [8,71-73].
Furthermore, a wider range of machine learning classifiers is being
investigated, and the importance of variables in machine learning out-
comes is being studied at present.

4.3. Significance

Our results suggested that a person’s identity is indeed linked to gait
patterns during overground walking. Our predictions ultimately rested
on the primacy of movement variability in forming unique gaitprints.
Consistent with that idea, variability measures were consistently among
the most important parameters for MBI. Even at the most basic level of
measurable variability, person identification has been strengthened. In
addition, the method outlined here is computationally efficient. Because
we chose easily conceptualized gait descriptors instead of complex
transformations of our data, our 74 variables were quickly calculated
and were ready for use in DBI and MBI applications. An efficient
research team should be able to execute a quick pipeline (i.e., equip the
participant with IMUs, calibrate the sensors, collect a short walking trial,
export the data, apply automated scripts) for registration within
10-15 min.

In addition, our approach stands out from several others by virtue of
a few secondary topics that are worth mentioning. First, the use of IMUs
eliminated the challenges of camera viewpoint, clothing type, lens dis-
tortions, or shadows that could hinder identification performance. Sec-
ond, our study benefited from a less constrained walking path. While
many gait identification studies focused on capturing a few strides along
a short, straight path or treadmill, we collected data from overground
walking on an indoor track, encompassing different distances, curves,
walking speeds, and number of strides [22,31-34,39,50,61,74]. Our
basic spatiotemporal variables can also be visually described without
difficulty, highlighting the observable differences that make two or
more individuals distinguishable based on gait metrics.

Many researchers already hold terabytes of data waiting to be put to
good use in more practical applications using inspiration from our
approach. We suggest that our approach may assist other research teams
to hone in on the subtle cues that may be used for security, indicate
disease or disability, change in performance, or individuality itself. Gait
identification may be used as a smart entry system, housed within a
hallway that allows access through a restricted door opened by a
particular group of individuals’ gait, rather than their fingerprint, iris
scan, or keycard entry. Gait, or other unique movements, may be used to
indicate a lack of performance, or the existence of individuality, in tasks
such as communicating through telegraphic language, or the kinematics
of typing, texting, swimming, running, or driving [1,38]. Finally, the
prediction of disease and disability later in life is an important practical
application. Many clinical populations can be described by a single,
visually distinct feature, like Trendelenburg gait. Throughout life,
chronic, debilitating restrictions to functional capacity, are often not as
noticeable due to incremental changes over many years. Future di-
rections for gait identification should, and will, significantly impact
healthcare by finding subtle gait features used for primary prevention to
support excellent health, similar to gait speed or variability [75-78].

5. Conclusion
Our study provided evidence that gait, and its variability, can serve

as a distinguishing feature in humans. With four simple identification
algorithms, we presented an easily understandable method for
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differentiating between individuals. We achieved near-perfect identifi-
cation accuracy in some cases, but also observed deteriorating accuracy
as our gallery size decreased. Future work will make use of nonlinear
methods and more sophisticated modeling techniques to maximize ac-
curacy in identifying people based on kinematic features. Moreover,
while our findings support the existence of Gaitprints, there is still much
more exciting work to be done before we can definitively claim that
Gaitprints are an enduring property of the human motor control system.
We are excited to engage in this work ourselves and look forward to
developments from the larger body of literature.
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