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ABSTRACT: This paper describes how two-dimensional plasmonic nanoparticle lattices
covered with microscale arrays of dielectric patches can show superlattice surface lattice
resonances (SLRs). These optical resonances originate from multiscale diffractive coupling that
can be controlled by the periodicity and size of the patterned dielectrics. The features in the
optical dispersion diagram are similar to those of index-matched microscale arrays of metal
nanoparticle lattices, having the same lateral dimensions as the dielectric patches. With an
increase in nanoparticle size, superlattice SLRs can also support quadrupole excitations with
distinct dispersion diagrams. The tunable optical band structure enabled by patterned dielectrics
on plasmonic nanoparticle arrays offers prospects for enhanced nonlinear optics, nanoscale
lasing, and engineered parity-time symmetries.

Electronic band structures of solids describe the range of
allowed energy levels of electrons as a function of

momentum.1 Similarly, optical band structures depict electro-
magnetic modes of photonic systems. Compared to bulk
materials whose optical responses are determined by intrinsic
properties of the materials, photonic materials exhibit proper-
ties that depend on geometric structure, and their associated
optical dispersion diagrams can be engineered for applications
in small-scale optical cavities, topological photonics, and non-
Hermitian photonics.2−6 The integration of multiple length
scales with a nanosystem offers an approach for manipulating
optical interactions and enabling applications in moire ́
photonic flat bands, enhanced nonlinear optics, and large-
scale photonic circuits.7−10 The nanofabrication processes
required, however, multistep top-down lithography or bottom-
up self-assemby.11−14

Two-dimensional (2D) periodic arrays of plasmonic nano-
particles (NPs) provide a platform for modulating the optical
coupling between individual units.15−18 Surface lattice
resonances (SLRs, also termed lattice plasmons) result from
the interactions between the localized surface plasmons (LSPs)
of individual NPs and diffractive modes defined by the lattice
spacing (a0) and symmetry.19−21 Tuning the size and shape of
NPs results in either dipolar or quadrupolar LSPs with distinct
charge distributions, and varying the lattice geometry and
symmetry mediates coupling from the LSP to different
diffractive mode orders.22−26 In addition to NP lattices with
a single periodicity a0, microscale patches of NPs that sustain
two periodicities, finite-sized lattices grouped into larger arrays
with patch spacing (A0), can generate superlattice SLRs, where
A0 is an order of magnitude larger than the submicrometer
interparticle spacing.27−30 These multiple resonances arise
from the coupling between SLR modes of a single NP patch

and the high-order Bragg modes from the microscale patch
spacing; applications have included multimodal nanolasing and
biomedical imaging.31−34

The open-cavity architecture of plasmonic NP lattices
enables tunability of the surrounding dielectric environment.
In NP lattices, the highest-quality SLRs with ultranarrow line
widths (full width at half-maximum of <5 nm) are formed
when the superstrate and the substrate around the NP lattices
are index-matched.35,36 Tailoring the local dielectric environ-
ment by patterning polymer blocks around individual NPs in a
lattice has been used to manipulate the wavefront at the SLR
resonance for optical focusing and imaging.37−39 Whether
larger dielectric patches on 2D NP lattices could produce
equivalent superlattice SLR properties like that from plasmonic
NP patch arrays in a uniform dielectric environment is
unknown but would address drawbacks in their multistep
fabrication process that involves lithography, etching, and
metal deposition.13,40
Here we show that superlattice SLRs can be generated from

plasmonic NP lattices covered with rationally designed
microscale arrays of dielectric patches. First, by varying the
2D dielectric patch periodicity, we systematically tuned SLR
wavelengths at the Γ point and their associated optical
dispersion diagrams. Next, by reducing the microscale array
symmetry of the patterned dielectrics from 2D to one-
dimensional (1D), we realized switchable resonances between
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single-lattice and superlattice SLRs by controlling the light
polarization. Finally, by increasing the NP size, we found that
superlattice SLRs with quadrupolar character could be
supported with a mode dispersion behavior distinct from
that of dipolar superlattice SLRs. Patterned dielectric patches
enable a simple degree of freedom to tune multiscale optical
responses in 2D nanophotonics.
Figure 1 shows how patterned dielectric patches on

plasmonic NP lattices can produce superlattice SLRs. Contact
photolithography with a photomask having micrometer-sized
Cr patches (side length l and periodicity A0) was used to
generate photoresist patches on Au NP lattices on a fused silica
substrate (refractive index n = 1.48) (Figure 1a). The
plasmonic lattices were first fabricated using our large-scale
nanofabrication procedures of PEEL and SANE,13 where first a
thin photoresist film (n = 1.5) was spin-cast on top of the NP
lattices (Figure 1b and Figure S1). Ultraviolet light exposure
with the Cr photomask followed by photoresist development
created photoresist patches on NP lattices (Methods).
Measured height profiles (Figure S2) indicate that the exposed
Au NPs between the dielectric patches had no residual
photoresist.

Finite-difference time-domain (FDTD) methods were used
to model and compare the optical resonances of plasmonic NP
lattices with and without dielectric patches. Different from a
single index-matched, micrometer-sized patch (l = 6 μm) on
Au NPs that supports a dipolar SLR at the Γ point [λDL = 944
nm (Figure 1c, blue curve)], Au NPs not covered with a
dielectric (air only) have a high index contrast between the
superstrate and the fused silica substrate and cannot sustain
SLRs (red curve). In NP lattices patterned with photoresist
patches (periodicity A0 = 9 μm), the N = 15 and N = 14 orders
of Bragg modes from A0 induced superlattice SLR modes at
λDL1 = 923 nm and λDL2 = 965 nm (black curve). The
simulated transmission spectra show resonance features similar
to those in index-matched arrays of NP lattices (Figure S3).
Charge distribution plots indicate dipolar oscillations of Au
NPs at DL1 and DL2 (Figure S4a,b). At DL1, all NPs oscillate
with the same phase, similar to the case in a single-periodicity
lattice. The near-field distribution at DL2 is modified by the
microscale patch−patch coupling and exhibits an overall phase
shift of π across one dielectric patch (Figure S4c,d). Despite
the index-mismatched regions between dielectric patches that
cannot support SLRs, strong optical fields are maintained in

Figure 1. 2D Au nanoparticle lattices patterned with microscale dielectric patches to achieve superlattice SLRs. (a) Scheme of a Au NP lattice
patterned with 2D photoresist patches with interparticle spacing a0, patch side length l, and patch periodicity A0. (b) Scheme of fabrication of 2D
photoresist patches on Au NP arrays on fused silica by contact photolithography. (c) Simulated transmission spectra at normal incidence without
dielectrics (red curve), with a micrometer-sized photoresist patch (blue curve; l = 6 μm), and with a 2D array of photoresist patches covering the
Au NPs (black curve). Patch periodicity was (l, A0) = (6 μm, 9 μm), and NP periodicity was a0 = 600 nm with NP diameter d = 160 nm and height
h = 60 nm. The LSP wavelength of the Au NPs is λLSP = 736 nm. Transmission curves were offset by 0.1 from top to bottom.

Figure 2. Tunable optical band structures of 2D Au NP lattices covered with photoresist patches having different periodicities. Scanning electron
microscopy (SEM) images and measured dispersion diagrams of NP lattices with patterned dielectrics under TE polarization with (a) patch
periodicity (l, A0) = (6 μm, 9 μm), (b) patch periodicity (l, A0) = (6 μm, 12 μm), and (c) patch periodicity (l, A0) = (12 μm, 18 μm). The
thickness of the dielectric patches was ∼200 nm. In the SEM images, the regions between patches appeared brighter than those of the dielectric-
coated patches, which can be attributed to increased electron scattering by metal NPs.
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NP lattices with patterned dielectrics, and the |E| intensity
close to the vicinity of NPs is comparable to that of a singly
spaced lattice (Figure S4e).
Figure 2 shows the measured optical band structures of

plasmonic NP lattices supporting dipolar SLRs patterned with
dielectric patches in different spacings. Under transverse
electric (TE) polarization (along y), DL1 and DL2 appeared
at the band edge at zero wavevector (k∥ = 0) for a patch

periodicity A0 = 9 μm (Figure 2a). In reciprocal space, these
superlattice SLRs correspond to different Bragg orders that
combine the wavevectors defined by various lattice spacings.
Here, the Bragg modes can be indexed as [kx ky kx′ ky′], where
kx (ky) and kx′ (ky′) represent grating vectors from the NP
spacing (k = 2π/a0) and patch spacing (k′ = 2π/A0),
respectively. DL1 is a result of the N = 15 order Bragg
modes from patch spacing A0 = 9 μm, which is equivalent to

Figure 3. Polarization-dependent properties of 2D Au NP lattices with patterned dielectric lines. (a) SEM image of Au NP arrays (d = 160 nm, h =
60 nm) patterned with photoresist line patches. The patch periodicity was (l, A0) = (6 μm, 9 μm). Note that the line axis was not commensurate
with the underlying NP lattice and the angular offset was ∼12°. (b) Polarization-dependent transmission spectra, where the red and black curves
correspond to light polarization elight perpendicular and parallel to line axis eline, respectively. The charge distribution plot shows dipolar oscillations
in the Au NPs, where positive and negative charges are colored red and blue, respectively. (c and d) Measured optical band structures under TE
polarization. The arrows indicate the direction of eline with respect to elight.

Figure 4. Quadrupolar superlattice SLRs in patterned arrays of large Au NPs. (a) Plots of charge distributions of Au NPs patterned with photoresist
line patches at DL and HQL resonances for comparison. For Au NPs, d = 160 nm and h = 60 nm for DL modes (left) and d = 260 nm and h = 120
nm for HQL modes (right); a0 = 600 nm. (b) Measured transmission spectra at normal incidence, where red and black curves represent the
excitation polarization elight being perpendicular and parallel to line axis eline, respectively. Measured optical band structures when elight was (c and d)
parallel and (e and f) perpendicular to eline.
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the fundamental Bragg mode from NP spacing a0 = 600 nm.
Hence, under TE polarization, the dispersion of superlattice
mode DL1 followed the fundamental modes [1000] and
[1̅000]. DL2 originated from the N = 14 order Bragg mode
from A0, and the mode dispersion of DL2 followed the satellite
modes [101̅0] and [1̅010].
Microscale photoresist patterns were tailored by using

different Cr masks in contact photolithography. Increasing
the periodicity of photoresist patches from A0 = 9 to 12 μm
resulted in more high-order Bragg modes with smaller energy
separations (E = hc/λ, where h is Planck’s constant and c is the
speed of light) and hence a blue-shifted DL2 (Figure 2b). We
further increased the patch spacing to A0 = 18 μm while
keeping the ratio of l to A0 constant. The SLR of a single lattice
coupled to even higher-order Bragg modes from A0 (N = 30
and N = 29) and produced a smaller energy separation
between DL1 and DL2 (Figure 2c). In the transmission spectra,
the decreased transmission intensity at shorter wavelengths can
be attributed to optical Rayleigh scattering41 by the microscale
dielectric blocks (Figures S5 and S6). With a decrease in A0,
the wavelength separation between DL1 and DL2 became
larger, and only weak mode DL2 was observed in the
simulation for A0 = 10a0 [A0 = 6 μm (Figure S7)]. Notably,
photoresist patches can be easily rinsed off with organic
solvents, which allows for reconfigurable control38 of the
optical responses.
Unlike 2D dielectric patches on NP lattices with 4-fold

rotational symmetry, NP lattices covered with dielectric
patches having reduced symmetry enable access to polar-
ization-dependent optical properties. Figure 3a shows photo-
resist line patches on the 2D Au NP lattices. When Au NPs
exhibit dipolar charge oscillations along a light polarization
direction elight, the NPs aligned perpendicular to this direction
can couple with each other.27 Similarly, when the line-axis
direction eline is parallel to elight (along y), microscale
periodicity A0 along the NP coupling direction leads to
polarization- and orientation-dependent optical responses
(Figure 3b). In experiments, despite an angular offset of 12°
between the line axis of dielectric patches and the high-
symmetry axis of NP lattices, we observed a single resonance
DL when elight was perpendicular to eline, and the dispersion
followed the [1000] and [1̅000] Bragg modes under TE
polarization (Figure 3c). In contrast, rotating the line axis 90°
under TE polarization produced multiple superlattice SLR
resonances, DL1 and DL2. In the dispersion diagram, DL1
followed the fundamental Bragg modes [1000] and [1̅000],
and DL2 followed the satellite modes [101̅0] and [1̅010]
(Figure 3d), consistent with the dispersion behavior of
superlattice DLs in an index-matched environment.33
In addition to SLRs based on dipolar resonances, hybrid

quadrupole lattice plasmons (HQLs) are accessible in
plasmonic lattices with increased NP size, where NPs exhibit
overall quadrupolar charge oscillations with a non-zero net
dipole moment22,24 as a result of phase retardation effects
(Figure 4a). We patterned 2D photoresist patches on arrays of
large Au NPs (d = 260 nm, h = 120 nm) and observed multiple
superlattice HQL modes (Figure S8). Distinct dispersion
diagrams were observed for NP lattices with patterned
dielectric line patches. When elight was parallel to eline, both
HQL1 and HQL2 appeared in the transmission spectrum
(Figure 4b and Figure S9). The dispersion of HQL1 followed
the Bragg modes [0100] and [01̅00] under TE polarization
(elight = y) and [1000] and [1̅000] under transverse magnetic

(TM) polarization [elight = x (Figure 4c,d)], similar to HQLs in
a single-periodicity lattice.24 In contrast to HQL1, the
dispersion of mode HQL2 followed [101̅0] and [1̅010]
modes under TE polarization and [0101] and [01̅01̅] modes
under TM polarization. Changing the light polarization to be
perpendicular to the dielectric lines produced only a single
HQL resonance with a dispersive behavior similar to that of
HQL1 (Figure 4e,f). Interestingly, Figure 4f shows that new
superlattice HQLs appeared at higher energies compared to
the fundamental Bragg modes [1000] and [1̅000] (e.g., [1010]
and [1̅01̅0] modes), while the superlattice DLs dominated at
lower energies (e.g., [101̅0] and [1̅010] modes),33 which could
be attributed to higher-energy quadrupolar LSPs24 in Au NPs
compared to dipolar LSPs.
In summary, we demonstrated that patterning microscale

dielectric patches on plasmonic NP lattices enables the
formation of superlattice SLRs that are similar to those from
patterned microscale NP lattices in a uniform refractive index
environment. This work opens prospects for manipulation of
optical band structures of metal NP lattices via patterned
dielectric superstrates, which can benefit solid-state optical
devices and integrated photonic circuits. Also, microscale
patterning with dielectrics provides a general approach for
modulating other 2D nanophotonic systems for metalens
imaging, chirality engineering, and long-range optical coupling.
We anticipate that incorporating gain media such as dye
molecules into the dielectric blocks can induce side-by-side
control of gain and loss regions in plasmonic lattices for
engineered parity-time symmetry. Materials systems with
rationally tailored multiscale optical interactions offer the
potential for enhanced nonlinear optics, nanoscale lasing, and
nontrivial topological states.

■ METHODS
Fabrication of Au NP Lattices with Dielectric Patches. Lattices of
Au NPs were fabricated with a large-scale nanofabrication
process known as PEEL.13 Briefly, we generated periodic arrays
of photoresist posts on a Si wafer by phase-shifting
photolithography using a poly(dimethylsiloxane) (PDMS)
mask with pattern periodicity a0 = 600 nm. Free-standing Au
nanohole films were prepared after Cr deposition and lift-off of
photoresist posts, etching through Si to create cylindrical pits,
Au deposition, and lift-off of the Au film by etching the
sacrificial Cr layer. Metal deposition through the nanohole
films followed by removal of the Au film with scotch tape
produced NP lattices on fused silica substrates. To fabricate
the microscale dielectric patches, we spin-cast a photoresist
thin film (MICROPOSIT S1805 positive photoresist) on the
Au NP arrays at a spin speed of 3000 rpm (film thickness of
∼200 nm) and performed contact photolithography with a Cr
mask whose patterns determined the dielectric patch size.
Optical Band Structure Measurements. We characterized

optical band structures of plasmonic NP lattices by compiling
transmission spectra at different incident angles θI. In the
experiments, samples were placed at the center of a program-
controlled rotational stage. The transmission spectra were
collected by sweeping various incident angles θI from −20° to
20° in 1° increments using an automated, home-built National
Instruments Lab-VIEW program. Optical band structures of
the patterned NP lattices in wavelength (λ)−incidence angle
(θI) units can be transferred into energy (E)−wavevector (k∥)
format by the equations E = hc/λ and k∥ = (2π/λ) sin θI, where
c is the speed of light.
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Finite-Dif ference Time-Domain (FDTD) Simulations. FDTD
calculations with commercial software (FDTD solution,
Lumerical Inc., Vancouver, BC) were used to model the linear
optical properties of patterned Au NP lattices. The optical
constants of Au were taken from Johnson and Christy
measurements (400−1020 nm).42 We used a uniform mesh
size of 4 nm (x, y, and z) for the accuracy of electromagnetic
field calculations within the metal regions. The charge
distribution plots were extracted from the Ex, Ey, and Ez
values at different grid sites in the simulations and processed
in Paraview software.
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