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hending crystalline materials. With the structural information of the material, advanced quantum-mechanical
methods such as Density Functional Theory (DFT) can be utilized to calculate numerous physical characteris-
tics of the crystal [1]. As the physical and chemical characteristics of a crystal are dictated by the arrangement
and composition of its atoms, CSP is critical to finding new materials that possess the needed properties such
as high thermal conductivity, high compressing strength, high electrical conductivity, or low refractive index.
CSP-based computational materials discovery is significant and has the potential to revolutionize a range of
industries, such as those involving electric vehicles, Li batteries, building construction, energy storage, and
quantum computing hardware [2–6]. For this reason, CSP, along with machine learning (ML)-based inverse
design [5,7–10], has emerged as one of the most potential methods for finding novel materials.

Although there have been notable advancements in the field of CSP, the scientific community has yet to solve
this fundamental challenge that has persisted for decades. CSP presents a significant challenge due to the re-
quirement to search through an extensive range of potential configurations to identify the most stable arrange-
ment of atoms of a crystal in a high-dimensional space. The complexity of CSP stems from the combinatorial
nature of the optimization challenge, where the number of potential configurations grows exponentially with
the number of atoms present in the crystal [1]. Additionally, the prediction of the most stable structure relies on
several factors, including temperature, pressure, and chemical composition, further increasing the intricacy
of the problem. Historically, the main method for determining crystal structures was through experimental
X-ray diffraction (XRD) [11], which is time-consuming, expensive, and sometimes impossible, particularly for
materials that are difÏcult to synthesize.

Computational approaches for CSP provide a faster and more affordable alternative than experimental meth-
ods. A typical strategy involves searching for the crystal’s lowest energy atomic arrangement by optimizing
its potential energy surface (PES) using different search algorithms. However, in some cases, simpler met-
rics such as the cohesive energy or the formation energy of the structures can be used instead [4]. The highly
non-convex nature of the PES, which can contain a vast number of local minima, reduces the efÏciency of
the search algorithms. Moreover, finding the global minimum of a PES is categorized as an NP-hard prob-
lem [12]. Most research on the CSP problem concentrates on ab initio techniques, which involve exploring the
atomic configuration space to locate the most stable structure based on the first-principles calculations of the
free energy of possible structures [13–15]. Although these methods are highly accurate, the scalability and the
applicability of these ab initio algorithms for predicting crystal structures remain a challenge. These methods
are severely constrained because they rely on expensive first-principles DFT calculations [16,17] to determine
the free energy of candidate structures. Furthermore, these methods are only applicable for predicting struc-
tures of comparatively small systems (< 10−20 atoms in the unit cell). Although there are inexpensive models
available to estimate the free energy, they tend to have a poor correlation with reality, which can result in an in-
accurate search [14]. For example, state-of-the-art (SOTA) graph neural networks (GNNs) have demonstrated
the capability to accurately predict the formation energy of candidate structures [18–23], their performance on
predicting non-stable or meta-stable structures is significantly lower as they are usually trained with stable
crystals.

Several search algorithms have been applied to the CSP problem, including random sampling [12], simulated an-
nealing [24–26], meta-dynamics [27,28], basin hopping [29,30], minimahopping [31], genetic algorithm (GA) [14,32–34],
particle swarmoptimization (PSO) [15], Bayesian optimization (BO) [35,36], and deep learning (DL) [37,38]. Among
them, the USPEX (Universal Structure Predictor: Evolutionary Xtallography) algorithm, developed by Glass et
al., is a prominent CSP algorithm based on evolutionary principles, using natural selection and reproduction
to generate new crystal structures [14]. It incorporates a combination of three operators - heredity, mutation,
and permutation to explore the configuration space. To evaluate candidate structures, they use ab initio free
energy calculation using tools such as VASP [39] and SIESTA [40] which are highly accurate but extremely time-
consuming. Another important CSP algorithm named CALYPSO (Crystal structure AnaLYsis by Particle
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Swarm Optimization) was devised by Wang et al., which employs a PSO algorithm to explore the energy land-
scape of crystal structures and identify the lowest energy structures [15]. To accomplish this, they developed
a special strategy for removing comparable structures and applied symmetry-breaking restrictions to boost
search effectiveness. Both USPEX and CALYPSO methods have been successfully applied to predict the crys-
tal structures of diverse materials, including those under high-pressure conditions, complex oxides, alloys, etc.
The random sampling-based CSP algorithms have also demonstrated their effectiveness. For example, AIRSS
(Ab Initio Random Structure Searching) presented by Pickard et al. describes a scheme that generates diverse
random crystal structures for various types of crystals and conducts DFT calculations on them to determine
the most stable one [12]. Another genre of CSP methods are template-based approaches [41–43], which involves
finding an existing crystal structure as the template using some heuristic methods, or the ML method, etc.,
which has a similar chemical formula and then replacing some of its atoms with different elements. However,
the accuracy of these models is constrained by the diversity and availability of the templates and the complex-
ity of the target compound. Inspired by the recent success of DL-based methods in protein structure predic-
tion [44–46], a DL-based algorithm, AlphaCrystal [38], has been designed to predict the contact map of a target
crystal and then reconstruct its structure via a GA. However, the effectiveness of this model is constrained
because its performance relies on the accuracy of the predicted space group, lattice parameters, and distance
matrices. Moreover, it ultimately depends on the optimization algorithm for reconstructing the final structure
from the contact map as it is unable to provide end-to-end prediction akin to DeepMind’s AlphaFold2

[45].

Compared to previous DFT-based CSP algorithms such as USPEX and CALYPSO, a major progress in CSP
is to use ML potential models to replace the costly first-principle energy calculation. Cheng et al. developed
a CSP framework named GN-OA, in which a GNN model was first trained to predict the formation energy
and then an optimization algorithm was then used to search for the crystal structure with the minimum for-
mation energy, guided by the GNN energy model [36]. They show that the BO search algorithm produces
the best results among all optimization algorithms. However, predicting formation energy using GNNs has its
drawbacks as its performance largely depends on the dataset it is trained on. A structure search trajectory anal-
ysis [47] also showed that current BO and PSO in GN-OA tend to generate too many invalid structures, which
deteriorates its performance. While both USPEX and CALYPSO have been combined with ML potentials for
CSP before GN-OA, they were only applicable to small crystal systems such as Carbon structures, Sodium un-
der pressure, and Boron clusters [48,49] due to the limitation of their ML potential models. Recently, significant
progress has been achieved in ML potentials for crystals [50–54] that can work with multi-element crystals and
larger crystals systems. This will bring unprecedented opportunities and promise for modern CSP research
and materials discovery. For example, recent advancement in deep neural network-based energy potential
[M3GNet IAP (inter-atomic potential)] [53] has shown its capability to cover 89 elements of the periodic table
while the CHGNet [54] model was pre-trained on the energies, forces, stresses, andmagnetic moments from the
Materials Project Trajectory Dataset, consisting of ∼ 1.5 million unstable and stable inorganic structures. It is
intriguing to explore how well modern CSP algorithms based on these ML potentials can perform. Inspired by
this progress, we propose the ParetoCSP algorithm for CSP, which combines the M3GNet potential with the
age-fitness pareto GAs for efÏcient structure search. In this algorithm, candidate structures in the GA popula-
tion are compared based on both the genotypic age and the formation energy, predicted by a neural network
potential such as M3GNet or CHGNet. Compared to previous GN-OAs, we showed that the significant global
search capability of our ParetoCSP allows it to achieve much better prediction performance.

Our contribution in this paper can be summarized as follows:

• We develop an efÏcient ParetoCSP for CSP, which combines an updated multi-objective GA (NSGA-III) by
the inclusion of the age fitness Pareto optimization criterion and a neural network potential (M3GNet IAP),
utilized to correlate crystal structures to their final energy.

• Our systematic evaluations on 55 benchmark crystals show that ParetoCSP outperforms GN-OA by a factor
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of 2.562 in terms of prediction accuracy.
• We reinforce GN-OA by replacing its formation energy predictor MEGNet (MatErials Graph Network) [19]
with theM3GNet IAP final energy model and show that it improves the default GN-OA by a factor of 1.5 in
terms of prediction accuracy. We further demonstrated the significant improvement in the search capability
of ParetoCSP by showing that ParetoCSP outperforms the updated GN-OA by a factor of 1.71 in terms of
prediction accuracy.

• We provide a quantitative analysis of the structures generated by ParetoCSP using seven performance met-
rics and empirically show that ParetoCSP found better quality structures for the test formulas than those
by GN-OA.

• We perform a trajectory analysis of the generated structures by all evaluated CSP algorithms and show that
ParetoCSP generates a significantly greater number of valid solutions than the GN-OA algorithm, which
may have contributed to ParetoCSP’s better performance in predicting the crystal structures.

METHOD
ParetoCSP: algorithm description
The input of our algorithm (ParetoCSP) is the elemental composition of a crystal {28}, where 8 is the index of
an atom and 28 is the element of the 8-th atom in the unit cell. A periodic crystal structure can be described
by its lattice parameters (!) 0, 1, 2 (representing the unit cell size), and U, V, W (representing angles in the unit
cell), the space group, and the atomic coordinates at unique Wyckoff positions.

Our algorithm is based on the idea of the GN-OA algorithm [36] with two major upgrades, including the multi-
objective GA search algorithm and the use of M3GNet potential for energy calculation. GN-OA has been
proven from previous research that incorporating symmetry constraint expedites CSP [36,55]. Similar to the
GN-OA approach, our method also considers CSP with symmetry constraints. We incorporate two additional
structural features, namely crystal symmetry ( and the occupancy of Wyckoff position ,8 for each atom 8.
These features are selected from a collection of 229 space groups and associated 1506 Wyckoff positions [56].
The method begins by selecting a symmetry ( from the range of %2 to %230, followed by generating lattice
parameters ! within the chosen symmetry. Next, a combination ofWyckoff positions {,8} is selected to fulfill
the specified number of atoms in the cell. The atomic coordinates {'8} are then determined based on the
chosenWyckoff positions {,8} and lattice parameters !. To generate crystal structures, we need to tune the (,
{,8}, !, and {'8} variables.

By selecting different combinations of (, ,8 , !, and '8 , we can generate a comprehensive array of possible
crystal structures for the given 28 . In theory, determining the energy of these various structures and selecting
the one with the least energy should be the optimal crystal arrangement. However, exhaustively enumerating
all these structures becomes practically infeasible due to the staggering number of potential combinations.
To address this complexity, a more practical approach involves iteratively sampling candidate structures from
the design space, under the assumption that one of the sampled structures will emerge as the most stable
and optimal solution. Consequently, we adopt an optimization strategy to guide this search process towards
identifying the structure with the lowest energy. In particular, we utilize a GA, NSGA-III [57,58], improved by
incorporating age-fitness Pareto optimization (AFPO) [59] to enhance its performance and robustness.

First, we generate = initial random structures. We then assign them an age of 1 and convert them into crystal
graphs. There are multiple approaches to encode crystals as graphs [18,19,60–62]. In short, we can consider each
atom of the crystal as nodes of the graph, and interactions between them (e.g., bonds) can be encoded as edges.
Interactions can be limited to a certain cutoff range to define more realistic graphs. Each node and edge need
to be assigned feature vectors for the DNN to learn the specific property. After generating the initial structures,
we predict their final energy/atom using the M3GNet universal IAP [53]. Next, we calculate fitness considering
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= individuals for the next generation. The concept of age ensures a diverse population by containing both old
and young individuals and effectively prevents from converging into local optima [59]. We then increase the
generation number and repeat thewhole process by calculating the final energy/atomof each structure until the
generation number ≤ the threshold G. After finishing G. generations, we obtain a set of F non-dominated
solutions on the Pareto front. We select the solution with the lowest final energy per atom as the optimal
solution. We further relax the structure using the structure relaxationmethod ofM3GNet IAP, which produces
a more refined structure with lower final energy per atom. Finally, we perform a symmetrization operation
to symmetrize the structure to output the final structure. Figure 1 shows the flowchart of our ParetoCSP
algorithm.

AFPO
One of the key requirements for a GA to achieve a robust global search is to maintain the diversity of the popu-
lation. Here, we employed the multi-objective GA, AFPO by Schmidt and Lipson [59], to achieve this goal. The
AFPO algorithm is inspired by the idea of age-layered population structure (ALPS) [63,64], which divides the
evolving population into layers based on how long the genetic material has been present in the population so
that competitions happen at different fitness levels, avoiding the occurrence of premature convergence. The
age of an individual is defined as how long the oldest part of its genotype has been present in the population [65].
Instead of partitioning the population into layers as done in the Hierarchical Fair Competition (HFC) algo-
rithm [63], AFPO uses age as an explicit optimization criterion (an independent dimension in a multi-objective
Pareto front). A solution is considered optimal if it has both higher fitness and lower age compared to oth-
ers. This enables the algorithm to maintain diversity in the population, avoid premature convergence to local
optima, and find better solutions at faster convergence speed [59]. The AFPO algorithm starts by initializing a
population of # individuals randomly and assigns an age of one to all of them. The fitness of an individual is
evaluated by calculating its performance for all objectives. The fitness values are then used to rank the indi-
viduals based on their Pareto dominance. The algorithm then updates and assigns the age for each individual.
The age of an individual is increased by one with each generation. When crossover or mutation occurs, the
individual’s age is set to the maximum age of its parents. The algorithm uses a parameter called the tournament
size  which determines the number of individuals that compete for selection. Specifically,  individuals are
selected at random. It then forms the Pareto front among them, eliminating any dominated individuals. After
that, crossovers and mutations are applied to the parents to generate offspring. The objective function values
for each offspring are evaluated and the updated ages are assigned to each offspring. The newly generated off-
spring replace some of the older individuals in the population based on their age and fitness values. To avoid
premature convergence towards sub-optimal solutions, a few new random individuals are added to the pop-
ulation in each generation to maintain diversity. The algorithm continues to iterate through the above steps
until a stopping criterion is met, such as a maximum number of generations or a desired level of convergence.
For more details, the readers are referred to the ref [65].

NSGA-III: multi-objective GA
We use the NSGA-III [57] algorithm to implement the age-fitness-based GA AFPO. NSGA-III is an improved
version of the popular multi-objective evolutionary algorithm NSGA-II [66]. Here, we describe the NSGA-III
framework as defined in reference [57,58]. The NSGA-III algorithm begins with defining a group of reference
points. To create an offspring population&8 at generation 8, the current parent population %8 undergoes genetic
operations. The resulting population, %8 ∪&8 , is then sorted based on their nondomination levels (�1, �2,, and
so on). The algorithm saves all members up to the last fully accommodated level, �: (considering all solutions
from level (: +1) onward are rejected) in a set called X8 . The individuals from X8 \�: have already been chosen
for the next set of candidates, while the remaining spots are filled by individuals from �: .

The selection process of NSGA-III is substantially altered from the approach used in NSGA-II. First, the objec-
tive values and reference points are normalized. Second, each member in X8 is assigned a reference point based
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on its distance to the individual with a reference line formed by connecting the ideal point to the reference
point. This method enables the determination of the number and positions of population members linked to
each supplied reference point in X \ �: . Next, a niching technique is applied to pick individuals from �: who
are underrepresented in X8 \ �: based on the results of the association process explained earlier. Reference
points with the fewest number of associations in the X \�: population are identified and corresponding points
in the �: set are searched. These selected members from �: are then added to the population, one by one, until
the required population size is achieved. Thus, NSGA-III utilizes a different approach in contrast to NSGA-II
to sustain diversity among population members by incorporating a set of well-distributed reference points
that are provided initially and updated adaptively during the algorithm’s execution [58]. More implementation
details can be found in ref [67].

M3GNet inter-atomic potential
Energy potential is one of the key components of modern CSP algorithms. Here, we use M3GNet [53], which
is a GNN-based ML potential model that explicitly incorporates 3-body interactions. This model combines
the graph-based DL inter-atomic potential (IAP) and the many-body features found in traditional IAPs with
the flexible graph material representations. One notable distinction of M3GNet from previous material graph
implementations is the inclusion of atom coordinates and the 3×3 latticematrix in crystals. These additions are
essential for obtaining tensorial quantities such as forces and stresses through the use of auto-differentiation.

In the M3GNet model, position-included graphs serve as inputs. Graph features include embedded atomic
numbers of elements and pair bond distances. Similar to traditional GNNs, the node and the edge features are
updated via the graph convolution operations. Architecturally, there are several differences between M3GNet
and MEGNet. For example, M3GNet utilizes angle information between bonds, but MEGNet does not. Un-
like MEGNet, M3GNet has the many-body computation module that was proven essential for its excellent
performance. Additionally, M3GNet uses gated multi-layer perceptron (MLP) for obtaining atomic energy in
contrast to MEGNet. Our M3GNet potential was trained using both stable and unstable structures so that it
can well capture the difference between these two. For details about the training, we refer the readers to the
M3GNet paper [53]. The dataset used for training the M3GNet model is much larger than that for the MEGNet
model, and it contains both stable and unstable structures which makes M3GNet more specialized in predict-
ing energies of the intermediate unstable structures of crystals. The precise and efÏcient relaxation of diverse
crystal structures and the accurate energy prediction achieved by the M3GNet-based relaxation algorithm
make it well-suited for large-scale and fast CSP.

Evaluation criteria
Many earlier studies [12,14,15] have depended on manual structural examination and ab initio formation energy
comparison to assess the performance of a CSP algorithm. However, these metrics do not address the situation
that an algorithmmay not find the exact solution for a crystal, and it is not clear howmuch the generated struc-
ture deviates from the ground truth structure. Usually, previous works did not quantitatively report how good
or bad a solution is. Also, if two algorithms fail to generate the exact crystal structure, these metrics do not
describe which one is closer to finding the optimal solution. Recently, Wei et al. proposed a set of performance
metrics to measure CSP performance which alleviated this issue greatly [47]. We used seven performance met-
rics from that work to measure the performance of our CSP algorithm and the baselines. The required data are
the crystallographic information file (CIF) of both the optimized and relaxed final structure generated by the
CSP algorithm and its corresponding ground truth stable structure. Details about these performance metrics
can be found in ref [47]. They are shortly listed below:

1. Energy distance (ED)
2. Wyckoff position fraction coordinate root mean squared error distance (WA<B4)
3. Wyckoff position fraction coordinate root mean absolute error (W<04)
4. Sinkhorn distance (SD)
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5. Chamfer distance (CD)
6. Hausdorff distance (HD)
7. Crystal fingerprint distance (FP)

RESULTS
Our objective is to demonstrate the effectiveness of ParetoCSP for CSP by showing that the multi-objective
AFPO GA enables a much more effective structure search method than the BO and PSO and that M3GNet
IAP is a more powerful crystal energy predictor than the previous MEGNet model.

Benchmark set description
We selected a diverse set of 55 stable structures available in the Materials Project database [68] with no more
than 20 atoms. Among them, 20 are binary crystals, 20 are ternary crystals, and 15 are quarternary crystals.
We chose the benchmark set based on multiple factors such as diversity of elements, diversity of space groups,
special types of materials (e.g., perovskites), usage in previous CSP literature, etc. Supplementary Figure 1A
shows the diversity of the elements used in the benchmark set. Table 1 shows the detailed information about
the 55 chosen test crystals used in this work.

Performance analysis of ParetoCSP
The default version of ParetoCSP uses M3GNet universal IAP as the final energy evaluator for the candidate
structures to guide the AFPO-based GA in identifying the most stable structure with the minimum energy.
Our algorithm ParetoCSP predicted the exact structures for 17 out 20 binary crystals (85%), 16 out of 20

ternary crystals (80%), and 8 out of 15 quarternary crystals (53.333%) [Table 2]. Overall, ParetoCSP achieved
an accuracy of 74.55% among all 55 test crystals for this research, which is the highest among all evaluated
algorithms (≈ 1.71× the next best algorithm). Details on comparison with other algorithms and energy meth-
ods are discussed in Subsections 3.3 and 3.4. The exact accuracy results for all algorithms are presented in
Table 2. All the structures were assigned 3(exact) or 7(non-exact) based on manual inspection which was
predominantly done in the majority of the past literature [15,36].

We observed that ParetoCSP successfully found the most stable structures of all cubic and hexagonal binary
crystals and most tetragonal binary crystals in the benchmark dataset. The three unsuccessful binary crys-
tals that ParetoCSP failed to identify their exact structures are Ga2Te3 (monoclinic), Li2Al (orthorhombic),
and Ba2Hg (tetragonal). For ternary crystals, ParetoCSP successfully determined the exact stable structures
for all tetragonal crystals and most cubic and hexagonal crystals. However, there were four instances where
the prediction failed, namely for Li2ZnSi (hexagonal), Cd2AgPt (cubic), GaSeCl (orthorhombic), and K2PdS2

(orthorhombic). In the case of quarternary crystals, ParetoCSP achieved dominance over most hexagonal
and tetragonal structures. Li2MgCdP2 (tetragonal), Sr2BBrN2 (trigonal), ZrCuSiAs (tetragonal), NdNiSnH2

(hexagonal),MnCoSnRh (cubic),Mg2ZnB2Ir5 (tetragonal), Ba2CeTaO6 (monoclinic) are the seven quarternary
failure cases for ParetoCSP in terms of finding exact structures. Based on these observations, we can claim
that ParetoCSP combined with M3GNet IAP demonstrated notable efÏcacy in predicting cubic, hexagonal,
and tetragonal crystalline materials. However, its performance in predicting monoclinic and orthorhombic
crystals is comparatively less successful. This can be accounted for due to the higher number of degrees of
freedom of monoclinic and orthorhombic crystal systems compared to simpler crystal systems such as cubic
or hexagonal. Also, monoclinic and orthorhombic crystals have a varied range of complex structural motifs,
which makes it difÏcult for CSP algorithms to predict their exact structures. However, this does not diminish
the claim that our algorithm is the best among the four ML potential-based CSP algorithms evaluated here.
Later, we demonstrated that the other CSP algorithms also faced similar challenges. Ground truth and pre-
dicted structures of sample crystals are shown in Figure 2 using the VESTA tool, which contains examples of
both successful and unsuccessful predictions.
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Table 1. Details of the 55 benchmark crystals used in this work

Composition No. of
atoms

Space group Formation energy
(eV/atom)

Final energy
(eV/atom)

M3GNet final energy
(eV/atom)

TiCo 2 %< − 3< −0.401 −7.9003 −7.8986

CrPd3 4 %< − 3< −0.074 −6.3722 −6.4341

GaNi3 4 %< − 3< −0.291 −5.3813 −5.3806

ZrSe2 3 % − 3<1 −1.581 −6.5087 −6.5077

MnAl 2 %< − 3< −0.225 −6.6784 −6.7503

NiS2 6 %63/<<2 −0.4 −4.7493 −4.9189

TiO2 6 %42/<=< −3.312 −8.9369 −8.9290

NiCl 4 %63<2 −0.362 −3.8391 −3.8899

AlNi3 4 %< − 3< −0.426 −5.7047 −5.6909

CuBr 4 %63/<<2 −0.519 −3.0777 −3.0908

VPt3 8 �4/<<< −0.443 −7.2678 −7.2638

MnCo 2 %< − 3< −0.0259 −7.6954 −7.6963

BN 4 %63/<<2 −1.411 −8.7853 −8.7551

GeMo3 8 %< − 3= −0.15 −9.4398 −9.3588

Ca3V 8 �4/<<< 0.481 −3.2942 −3.1638

Ga2Te3 20 �2 −0.575 −3.4181 −3.4160

CoAs2 12 %21/2 −0.29 −5.8013 −5.7964

Li2Al 12 �<2< −0.163 −2.6841 −2.6623

VS 4 %63/<<2 −0.797 −7.1557 −7.3701

Ba2Hg 6 �4/<<< −0.384 −1.7645 −1.7582

SrTiO3 5 %< − 3< −3.552 −8.0249 −8.0168

Al2FeCo 4 %4/<<< −0.472 −6.2398 −6.2462

GaBN2 4 % − 4<2 −0.675 −7.0893 −7.0918

AcMnO3 5 %< − 3< −2.971 −7.1651 −7.8733

PaTlO3 5 %< − 3< −2.995 −8.1070 −8.1012

CdCuN 3 % − 6<2 0.249 −4.0807 −4.0228

HoHSe 3 % − 6<2 −1.65 −5.2538 −5.2245

Li2ZnSi 8 %63/<<2 0.0512 −2.5923 −2.6308

Cd2AgPt 16 �< − 3< −0.195 −2.8829 −2.8415

AlCrFe2 4 %4/<<< −0.157 −7.7417 −7.6908

ZnCdPt2 4 %4/<<< −0.444 −4.0253 −4.0164

EuAlSi 3 % − 6<2 −0.475 −6.9741 −6.9345

Sc3TlC 5 %< − 3< −0.622 −6.7381 −6.7419

GaSeCl 12 %==< −1.216 −3.6174 −3.6262

CaAgN 3 % − 6<2 −0.278 −4.5501 −4.7050

BaAlGe 3 % − 6<2 −0.476 −3.9051 −3.9051

K2PdS2 10 �<<< −1.103 −4.0349 −4.0066

KCrO2 8 %63/<<2 −2.117 −6.4452 −6.4248

TiZnCu2 4 %4/<<< −0.0774 −4.4119 −4.4876

Ta2N3O 6 %6/<<< −0.723 −9.3783 −9.3848

AgBiSeS 4 %4/<<< −0.404 −3.7363 −3.8289

ZrTaNO 4 % − 6<2 −1.381 −9.5450 −9.5429

MnAlCuPd 4 %4<< −0.3 −5.8467 −5.8774

CsNaICl 4 %4/<<< −1.79 −2.9280 −2.9448

DyThCN 4 %4/<<< −1.03 −8.3316 −8.3510

Li2MgCdP2 6 % − 4<2 −0.61 −3.4699 −3.4514

SrWNO2 5 %4/<<< −1.88 −7.2188 −7.0886

Sr2BBrN2 18 ' − 3< −1.639 −6.1437 −6.1501

ZrCuSiAs 8 %4/=<< −0.592 −6.2924 −6.2853

NdNiSnH2 10 %63/<<2 −0.599 −4.7970 −4.8101

MnCoSnRh 12 � − 43< −0.25 −7.1676 −7.1093

Mg2ZnB2Ir5 20 %4/<1< −0.454 −6.6614 −6.6577

AlCr4GaC2 8 % − 6<2 −0.151 −8.1314 −8.1246

Y3Al3NiGe2 9 % − 62< −0.735 −5.8214 −5.8305

Ba2CeTaO6 20 �2/< −3.49 −8.2048 −8.2384

The first 20 crystals are binary, the second 20 crystals are ternary, and the last
15 crystals are quarternary, and each of these types of crystals is separated by
single horizontal lines. We can see that the ground truth final energies and
the predicted final energies by M3GNet IAP are very close, demonstrating the
effectiveness of M3GNet as an energy predictor.

Now, we analyze the performance of ParetoCSP in terms of the quantitative performance metrics. As men-
tioned before, we used a set of seven performance metrics to evaluate the prediction performance of different
CSP algorithms. The values of each performance metric for all 55 chosen crystals are shown in Table 3. Ideally,
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all the performance metric values should be zero if the predicted structure and the ground truth structure are
exactly the same. We identified the values of the failure cases which indicate the poor quality of the predictions.
The process for determining them involved identifying the highest value for each performance metric among
all successful predictions (we name them satisfactory values) and then selecting the values that exceeded those
for the failed predictions. We have highlighted these values in bold letters in Table 3. We noticed that with the
exception of K2PdS2 and ZrCuSiAs, all but 12 of the failed cases demonstrated higher energy distance values
compared to the satisfactory energy distance value (0.7301 eV/atom), indicating non-optimal predicted struc-
tures. Similarly, for Sinkhorn distance (SD), apart from ZrCuSiAs, the remaining 13 unsuccessful predictions
exhibited significantly higher values than the satisfactory SD value (5.6727Å), suggesting poor prediction qual-
ity. For WA<B4 andW<04 , we assigned a cross (×) to indicate if the predicted structure and the target structure
do not have similar wyckoff position configurations in the symmetrized structures, and thus, they cannot be
calculated. We observed that 11 out of 14 failed predictions (symmetrized) do not have a similar wyckoff po-
sition compared to the ground truth symmetrized structure, indicating unsuccessful predictions. However,
for the Chamfer distance (CD) metric, only 6 out of 14 failed predictions displayed higher quantities than the
satisfactory CD value (3.8432 Å), indicating that CD was not the most suitable metric for measuring predic-
tion quality in crystal structures for our algorithm. In contrast, Hausdorff distance (HD) showed that 10 out
of 14 failed predictions had higher values than the satisfactory HD value (3.7665 Å). Notably, the only per-
formance metric that consistently distinguished between optimal and non-optimal structures across all failed
predictions is the crystal fingerprint (FP) metric (satisfactory value: 0.9943), demonstrating its effectiveness
in capturing the differences between these structures. In conclusion, all the metrics provided strong evidence
of the non-optimal nature of the 14 failed structures.

Performance comparison with GN-OA
As reported in ref [36], the GN-OA algorithm achieved the highest performance when utilizing BO [69] as the
optimization algorithm and the MEGNet neural network model as the formation energy predictor to guide
the optimization process (default GN-OA). Based on the data presented in Table 2, we observed that GN-OA
showed a significantly lower success rate than that of ParetoCSP. In comparison to ParetoCSP, GN-OA achieved
an accuracy of only 50% (10 out of 20 crystals) in predicting structures of binary crystals, whereas ParetoCSP
achieved 85% accuracy. For ternary crystals, GN-OA achieved a success rate of 30% (6 out of 20 crystals)
compared to ParetoCSP’s 80%. In the case of quarternary crystals, GN-OA did not achieve a single success,
whereas ParetoCSP achieved a success rate of 53.333%. Overall, the success rate of GN-OA was only 29.091%,
which is approximately 2.562 times lower than the accuracy achieved by ParetoCSP. Moreover, GN-OA could
not predict any structure that ParetoCSP could not predict. These clearly establish the dominance of ParetoCSP
over GN-OA, highlighting the higher quality of structure searching provided by AFPO-based GA compared
to BO and the effectiveness of M3GNet IAP-based final energy prediction compared to MEGNet’s formation
energy prediction.

To understand the deteriorated performance of GN-OA in our benchmark study, firstly, we found that the
CSP experiments conducted in the original study of GN-OA [36] primarily focused on small binary crystals,
particularly those with a 1:1 atoms ratio. Secondly, a majority of these binary crystals belonged to four groups,
namely oxide, sulfide, chloride, and fluoride, which demonstrates the lack of diversity in the GN-OA’s bench-
mark set [Supplementary Figure 1B]. Moreover, most of the crystals examined had the cubic crystal system
(mostly belonging to the �<−3< space group). It merely explored other crystal systems or space groups. This
choice of test structures for experimentation was insufÏcient in terms of CSP where only a few crystals possess
all these specific properties. A more thorough exploration of diverse crystal systems and space groups was
necessary to demonstrate the CSP performance of GN-OA. Our study effectively demonstrated that the opti-
mization algorithms used in GN-OA are inadequate for predictingmore complex crystals (such as quarternary
crystals). Furthermore, our empirical findings highlighted the shortcomings of using MEGNet as a formation
energy predictor in guiding the optimization algorithm toward the optimal crystal structures. In summary,
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Table 2. Performance comparison of ParetoCSP with baseline algorithms

Composition ParetoCSP
with M3GNet (Default)

ParetoCSP
with MEGNet

GN-OA
with M3GNet

GN-OA
with MEGNet (Default)

TiCo 3 3 3 7

CrPd3 3 3 7 7

GaNi3 3 3 3 3

ZrSe2 3 3 3 3

MnAl 3 3 3 3

NiS2 3 7 3 3

TiO2 3 3 3 3

NiCl 3 7 7 7

AlNi3 3 3 3 3

CuBr 3 7 7 7

VPt3 3 3 3 3

MnCo 3 3 3 3

BN 3 3 3 3

GeMo3 3 3 3 3

Ca3V 3 3 7 7

Ga2Te3 7 7 7 7

CoAs2 3 7 7 7

Li2Al 7 7 7 7

VS 3 7 3 7

Ba2Hg 7 7 7 7

SrTiO3 3 3 3 3

Al2FeCo 3 3 7 7

GaBN2 3 3 7 7

AcMnO3 3 3 3 3

PaTlO3 3 3 3 3

CdCuN 3 7 7 7

HoHSe 3 7 3 7

Li2ZnSi 7 7 7 7

Cd2AgPt 7 7 7 7

AlCrFe2 3 7 7 7

ZnCdPt2 3 7 7 7

EuAlSi 3 7 3 3

Sc3TlC 3 3 3 3

GaSeCl 7 7 7 7

CaAgN 3 7 3 7

BaAlGe 3 3 3 7

K2PdS2 7 7 7 7

KCrO2 3 7 7 7

TiZnCu2 3 3 3 3

Ta2N3O 3 7 7 7

AgBiSeS 3 3 7 7

ZrTaNO 3 7 3 7

MnAlCuPd 3 7 7 7

CsNaICl 3 7 3 7

DyThCN 3 7 3 7

Li2MgCdP2 7 7 7 7

SrWNO2 3 7 7 7

Sr2BBrN2 7 7 7 7

ZrCuSiAs 7 7 7 7

NdNiSnH2 7 7 7 7

MnCoSnRh 7 7 7 7

Mg2ZnB2Ir5 7 7 7 7

AlCr4GaC2 3 3 7 7

Y3Al3NiGe2 3 7 7 7

Ba2CeTaO6 7 7 7 7

Accuracy

Overall: 74.55%

Binary: 85%

Ternary: 80%

Quarternary: 53.333%

Overall: 40%

Binary: 60%

Ternary: 40%

Quarternary: 13.333%

Overall: 43.636%

Binary: 60%

Ternary: 45%

Quarternary: 20%

Overall: 29.091%

Binary: 50%

Ternary: 30%

Quarternary: 0%

Successful and failed predictions via manual inspection are denoted by a 3and 7, respec-
tively. ParetoCSP with M3GNet achieved the highest success rate in finding the exact
structures of these crystals; GN-OAwithM3GNet achieved the second best success rate.
ParetoCSP with MEGNet performed as the third-best, while GN-OA with MEGNet per-
formed the poorest. These results highlight the significant impact of using M3GNet IAP
as a crystal final energy predictor and structure relaxer and the effectiveness of the AFPO-
based GA as a structure search function.AFPO: age-fitness Pareto optimization.
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Table 3. Quantitative performance metrics of ParetoCSP with M3GNet for the 55 benchmark crystals evaluated in this work

Crystal ED ]rmse ]mae SD CD HD FP

TiCo 0.0009 0.0 0.0 0.007 0.007 0.007 0.0

CrPd3 0.0071 0.0 0.0 0.0408 0.0204 0.0136 0.0

GaNi3 0.0355 0.0 0.0 0.0839 0.042 0.028 0.0

ZrSe2 0.0206 0.0062 0.0025 0.6353 0.4235 0.5848 0.3243

MnAl 0.0 0.0 0.0 0.0002 0.0002 0.0002 0.0

NiS2 0.2016 0.2889 0.2303 5.6727 3.8432 3.7665 0.269

TiO2 0.6931 0.2304 0.1431 4.209 2.8535 1.8551 0.9793

NiCl 0.3284 0.2562 0.1723 1.3811 2.3407 1.1495 0.6431

AlNi3 0.0234 0.0 0.0 0.0727 0.0363 0.0242 0.0

CuBr 0.3225 0.2521 0.1784 1.8724 2.5043 1.0065 0.3054

VPt3 0.2415 0.3235 0.2411 1.3424 0.2395 0.2805 0.1772

MnCo 0.0 0.0 0.0 0.0001 0.0001 0.0001 0.0

BN 0.3643 0.4026 0.2454 2.513 1.947 2.608 0.8948

GeMo3 0.0401 0.0 0.0 0.1894 0.0473 0.0325 0.0

Ca3V 0.4592 0.2048 0.1149 3.3111 2.8356 3.6542 0.019

Ga2Te3 2.0112 × × 53.3896 4.6825 4.8998 1.7875

CoAs2 0.4629 0.4389 0.2684 5.3617 2.8407 2.9208 0.9943

Li2Al 30.7051 × × 61.9154 3.9575 4.8314 2.1345

VS 0.4204 0.2477 0.1806 1.9372 1.3665 1.8303 0.9189

Ba2Hg 5.206 × × 8.7511 4.9936 7.3342 1.2468

SrTiO3 0.0185 0.0 0.0 0.0934 0.0374 0.0271 0.0

Al2FeCo 0.0098 0.2357 0.112 0.137 0.0685 0.0658 0.1755

GaBN2 0.0041 0.3889 0.289 2.1663 1.5589 1.9171 0.0455

AcMnO3 0.0385 0.0 0.0 0.116 0.0464 0.0336 0.0

PaTlO3 0.0136 0.0 0.0 0.0924 0.037 0.0268 0.0

CdCuN 0.0031 0.441 0.4259 2.7337 2.9172 2.2949 0.0397

HoHSe 0.0033 0.3643 0.3148 2.859 1.906 1.9716 0.0575

Li2ZnSi 25.3593 × × 34.3079 2.9587 4.104 1.8731

Cd2AgPt 22.5447 × × 16.9997 3.5895 4.2417 2.4137

AlCrFe2 0.6621 0.2486 0.1507 3.6931 2.2245 2.2518 0.7886

ZnCdPt2 0.0384 0.4717 0.4503 3.2733 3.5537 2.0384 0.0643

EuAlSi 0.0495 0.3849 0.2963 4.5051 3.0034 2.2451 0.3419

Sc3TlC 0.0026 0.0 0.0 0.0431 0.0173 0.0125 0.0

GaSeCl 23.3337 × × 38.0257 8.615 11.7449 2.0172

CaAgN 0.0064 0.441 0.4259 3.6479 3.1055 2.4023 0.0483

BaAlGe 0.002 0.4547 0.3889 3.0476 1.6942 2.5291 0.0326

K2PdS2 0.5466 0.2467 0.1377 22.0109 3.7687 3.5226 1.3316

KCrO2 0.0342 0.2740 0.1934 2.5233 1.9562 1.8946 0.6105

TiZnCu2 0.0188 0.4083 0.3344 3.8363 2.83 1.609 0.6861

Ta2N3O 0.4603 0.2357 0.1111 3.144 2.3813 1.4458 0.7499

AgBiSeS 0.0154 0.0 0.0 0.1914 0.0957 0.0808 0.1298

ZrTaNO 0.0935 0.5182 0.5 0.4704 0.2352 0.2191 0.4131

MnAlCuPd 0.0187 0.1719 0.0865 3.3567 2.3023 2.219 0.7371

CsNaICl 0.0046 0.5 0.5 0.1822 0.0911 0.0848 0.1639

DyThCN 0.0322 0.4082 0.3333 0.1057 0.0529 0.0451 0.0216

Li2MgCdP2 39.8356 × × 36.702 3.4202 4.3517 1.8915

SrWNO2 0.0378 0.0 0.0 0.2707 0.1083 0.1001 0.0867

Sr2BBrN2 10.728 × × 34.7446 2.9484 4.7848 1.0966

ZrCuSiAs 0.1566 0.2459 0.1411 5.63 1.4075 1.5158 1.7131

NdNiSnH2 24.8101 0.4252 0.2993 10.3403 3.4393 3.6793 1.945

MnCoSnRh 56.8397 × × 12.3179 3.0676 3.5955 1.2971

Mg2ZnB2Ir5 6.8128 × × 60.6003 6.7022 7.5961 1.5616

AlCr4GaC2 0.0234 0.5563 0.3984 4.9214 2.4287 1.7347 0.0986

Y3Al3NiGe2 0.7301 0.1035 0.057 4.0638 3.1641 2.9705 0.5302

Ba2CeTaO6 52.5924 × × 78.9662 5.3529 6.8904 1.9963

For each metric and each failure case, the values, which are
greater than the range of exact predictions, are denoted by
bold letters to mark as high values that quantitatively shows
their non-optimality. Binary, ternary, and quarternary crystals
are separated by single horizontal lines.
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Figure 2. Sample structure prediction by ParetoCSP. Every ground truth structure is followed by the predicted structure. (A- P) show that
the structures of MnAl, ZrSe2, GeMo3, SrTiO3, Ta2N3O, and GaBN2 were successfully predicted, while (Q - T) show that ParetoCSP was
unable to predict the structures of GaSeCl, and NdNiSnH2. All the structures were visualized using VESTA. For better visualization, we
set the fractional coordinate ranges of all axes to a maximum of 3 for Ta2N3O, GaBN2, and GaSeCl, and we used the space-filling style for
Ta2N3O, and GaSeCl. Besides these, we set the fractional coordinate ranges of all axes to a maximum of 1 for all structures and used the
ball-and-stick style.

we established that ParetoCSP outperformed GN-OA by achieving a staggering 256.2% higher performance
in terms of success rates than that of GN-OA, and the AFPO-based multi-objective GA proved to be a much
better structure search algorithm than BO. Additionally, M3GNet IAP provided more accurate energy estima-
tions for effective CSP compared to theMEGNet used in GN-OA. ParetoCSP also performs a further structure
refinement using M3GNet IAP after obtaining the final optimized structure from the GA, which contributed
to its higher accuracy compared to GN-OA where this is entirely absent.

Figure 3 shows a performance metric value comparison for some sample crystals. For better visualization, we
limited the H-axis values to 20 for Figure 3A and B, and to 10 for Figure 3C and D. We found that the default
ParetoCSP with M3GNet achieved lower (better) performance metric values for all the chosen sample crystals
in terms of the metrics of ED, HD, and FP and for the majority of the cases for SD, and CD, compared to
the default GN-OA. For some crystals (e.g., Ta2N3O, AgBiSeS, MnAlCuPd, SrWNO2), the differences in the
performance metric quantities are huge, indicating ParetoCSP’s strong dominance over the default GN-OA.
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Performance comparison of CSP algorithms with different energy models
As discussed in the previous section, M3GNet universal IAP proved to be a better energy predictor thanMEG-
Net. To fairly and objectively evaluate and compare our algorithm’s performance, we replaced ParetoCSP’s
final energy calculator (M3GNet) with the MEGNet GNN for formation energy evaluation. Subsequently, we
also replace MEGNet with M3GNet in GN-OA to show that the M3GNet IAP performs better than MEGNet
for predicting the most stable energy for CSP. As a result, we ran experiments on four algorithms - ParetoCSP
with M3GNet (default ParetoCSP), ParetoCSP with MEGNet, GN-OA with MEGNet (default GN-OA), and
GN-OA with M3GNet.

The results of ParetoCSP with M3GNet have been discussed in detail in Section 3.2. ParetoCSP with MEGNet
outperformed the default GN-OA by a factor of ≈ 1.31 in terms of exact structure prediction accuracy. In-
dividually, ParetoCSP with MEGNet achieved 60% (12 out of 20), 40% (8 out of 20), and 13.333% (2 out of
15) accuracy in predicting structures of binary, ternary, and quarternary crystals, respectively. In comparison,
GN-OA with MEGNet achieved accuracies of 50%, 30%, and 0% for binary, ternary, and quarternary crystals,
respectively. This comparison clearly demonstrated that the AFPO-based GA is a more effective structure
search method than BO. NiS2 and EuAlSi are the only two crystals (both hexagonal) that GN-OA with MEG-
Net could predict the exact structures of but ParetoCSP with MEGNet could not. However, the opposite is
true for 8 crystals including GaNi3, GaBN2, BaAlGe, AgBiSeS, etc., predominantly belonging to the tetragonal
crystal system. Additionally, ParetoCSPwithMEGNet was not successful in predicting any structure that Pare-
toCSPwithM3GNet could not, strongly indicating the necessity forM3GNet as the energy predicting function
(outperformed ParetoCSP withMEGNet by a factor of ≈ 1.86). From Figure 3, we can see that ParetoCSP with
M3GNet achieved much lower performance metric values than ParetoCSP with MEGNet for the majority of
the cases, indicating its better prediction caliber.

Based on the analysis conducted so far, two hypotheses were formulated: firstly, that GN-OA with M3GNet
would outperform the default GN-OA, and secondly, that ParetoCSP with M3GNet would outperform GN-

Table 4. Performance results with different hyper-parameters of ParetoCSP with M3GNet

TiCo Ba2Hg HoHSe Cd2AgPt SrTiO3 GaBN2 MnAlCuPd AgBiSeS

Pop 30 7 7 7 7 3 7 7 7

Pop 60 3 7 3 7 3 7 7 3

Pop 100 3 7 3 7 3 3 3 3

Pop 200 3 7 3 7 3 7 7 3

Pop 300 3 7 3 7 3 7 3 7

CP 0.1 3 7 3 7 3 7 7 7

CP 0.2 3 7 3 7 3 7 7 3

CP 0.4 3 7 3 7 3 7 7 3

CP 0.6 3 7 3 7 3 3 7 3

CP 0.8 3 7 3 7 3 3 3 3

MP 0.0001 3 7 3 7 3 7 7 7

MP 0.001 3 7 3 7 3 7 7 7

MP 0.01 3 7 3 7 3 3 3 3

MP 0.1 3 7 3 7 3 3 7 7

MP 0.5 3 7 3 7 3 3 7 7

Gen 250 3 7 3 7 3 7 3 7

Gen 500 3 7 3 7 3 3 3 7

Gen 1, 000 3 7 3 7 3 3 3 3

Gen 2, 000 3 7 3 7 3 3 3 3

Gen 5, 000 3 7 3 7 3 3 3 3

Pop, CP, MP, and Gen denote population size, crossover probability, mutation
probability, and total number of generations, respectively. The best results
are achieved for a population size of 100, a crossover probability of 0.8, a mu-
tation probability of 0.01, and a generation number ≥ 1, 000. ParetoCSP failed
to identify exact structures of Ba2Hg and Cd2AgPt for all parameter settings
tested in this experiment. Pop: Population; CP: crossover probability; MP:mu-
tation probability.
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OA with M3GNet. As anticipated, GN-OA with M3GNet outperformed the default GN-OA (by a factor of
≈ 1.5), again demonstrating M3GNet IAP as a much better energy model than MEGNet. For binary, ternary,
and quarternary crystals, respectively, GN-OA with M3GNet (GN-OA with MEGNet) achieved 60% (50%),
35% (30%), and 13.333% (0%), respectively. Moreover, the default GN-OA did not achieve superiority over
GN-OAwithMEGNet on any chosen crystal, but the opposite is true for 8 crystals including TiCo, VS, HoHSe,
CsNaICl, etc., and a majority of them belongs to the hexagonal crystal system. However, despite the improved
performance of GN-OA with M3GNet, its efÏciency still fell short in comparison to ParetoCSP with M3GNet
due to the more effective structure search function of the latter, proving both hypotheses true. ParetoCSP with
M3GNet outperformed GN-OA with M3GNet by a factor of ≈ 1.71. Furthermore, the default ParetoCSP ac-
curately predicted every structure that GN-OA with M3GNet successfully predicted. Again, from Figure 3, we
can see that ParetoCSP withM3GNet achieved smaller performancemetric values than GN-OA withM3GNet
for the majority of the crystals. In fact, for some crystals such as Al2FeCo, Ta2N3O, AgBiSeS, and SrWNO2,
the differences of metric values are enormous. To report the final outcomes, ParetoCSP with M3GNet outper-
formed all algorithms (≈ 1.71× the second best, and ≈ 1.86× the third best). GN-OA with M3GNet ranked
second best, exceeding the performance of the third best ParetoCSP with MEGNet by a small margin (by a
factor of ≈ 1.09). The default GN-OA demonstrated the lowest performance compared to all other algorithms.

Parametric study of ParetoCSP
As a multi-objective GA, several hyper-parameters are set before running our ParetoCSP algorithm for CSP.
Here, we conducted experiments with our ParetoCSP algorithm with different parameter settings to evaluate
their effect. We selected eight crystals for this study containing both successful and unsuccessful predictions,
namely TiCo, Ba2Hg, HoHSe, Cd2AgPt, SrTiO3, GaBN2, MnAlCuPd, and AgBiSeS. The hyper-parameters
chosen for the study include population size, crossover probability, mutation probability, and total number
of generations used. The default parameter set is mentioned in Supplementary Note 1. All the performance
results are presented in Table 4.

First, we examined the effect of different population sizes on the selected crystals. We ran the experiments with
five different population sizes. The results in Table 4 show that our algorithm performed best with a population
size of 100. Conversely, it could not accurately predict the structures of any crystal with a population size of 30,
except for SrTiO3. ParetoCSP consistently performed poorly for Ba2Hg and Cd2AgPt with every population
size, while the results of SrTiO3 showed the opposite trend.

Second, we analyzed the performance of our algorithm with varying crossover probabilities. The results indi-
cated that the best performance was achieved with a probability of 0.8, and this was the only probability for
which ParetoCSP identified the exact structure of MnAlCuPd. Except for GaBN2 and AgBiSeS, for all five
other crystals, ParetoCSP showed consistent performance with other crossover probabilities. We observed
that our algorithm performed well with higher crossover probabilities for GaBN2 and poorly for AgBiSeS with
probability < 0.2.

Next, we evaluated ParetoCSP’s performance with different mutation probabilities and observed that Pare-
toCSP performed best with a mutation probability of 0.01. Only MnAlCuPd and AgBiSeS had their exact
structure successfully predicted with this mutation probability, while for other crystals except GaBN2, Pare-
toCSP performed consistently with other probabilities. Our algorithm successfully predicted the structure of
GaBN2 for mutation probabilities ≥ 0.01.

Finally, we ran experiments with different generations to investigate the impact on algorithm performance. In
ref [36], all experiments were run for 5000 steps for the BO. However, our results from Table 4 showed that
1, 000 generations were sufÏcient for ParetoCSP to achieve the optimal results for all 8 crystals. Except for
GaBN2 and AgBiSeS, for all five other crystals, ParetoCSP achieved optimal solutions within 250 generations.
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experimentally showed the output quality of each algorithm. We excluded the WA<B4 andW<04 for this study
as all four algorithms failed to predict these structures accurately. The results are presented in Figure 4 (only
two of them are shown here in the main text, and the rest are shown in the Supplementary Materials).

The comparison results for energy distance metric (ED) are presented in Supplementary Figure 2A.We limited
the H-axis value to 80 for better visualization. ParetoCSP withM3GNet dominated all other algorithms for ED,
achieving the lowest errors for 9 out of 14 crystals. ED is related to the final energy difference between the
ground truth and the predicted structure, indicating that predicted structures by ParetoCSP are energetically
closer to the energy of target structures than those by other algorithms. The only failure case where the Pare-
toCSP had the highest ED value among all algorithms was Li2Al. The three performance metrics, SD, CD, and
HD, are all related to the atomic sites of the ground truth and predicted crystal. ParetoCSP withM3GNet again
outperformed all other algorithms, achieving the lowest distance scores for a majority of the failure cases, sug-
gesting that the structures predicted by the ParetoCSP algorithms have the closest atomic site configurations
compared to the target structures among all algorithms. We presented the results in Supplementary Figure
2B and C, and Figure 4A, respectively, with the H-axis of Supplementary Figure 2B limited to 200 for visu-
alization purposes. Finally, for the FP metric, which is related to the crystal atomic site FP, ParetoCSP with
M3GNet achieved the lowest distance errors for 11 out of 14 crystals among all algorithms, proving better
atomic site prediction quality. The results are shown in Figure 4B. Li2Al again is the only crystal where the
default ParetoCSP’s FP value is the highest among all.

The observation that Li2Al had the highest ED and FP values for ParetoCSP suggests that the combination of
AFPO-based GA and M3GNet might not be the optimal choice for predicting this crystal. On the contrary,
ParetoCSP with M3GNet achieved 4 out of 5, or 5 out of 5 lowest performance metric values for Ga2Te3,
K2PdS2, Sr2BBrN2, ZrCuSiAs, MnCoSnRh, and Ba2CeTaO6, indicating that we are on the right track to predict
structures of these crystals. In summary, each of the performancemetrics is related to some specific features of
the ground truth crystals, and ParetoCSP with M3GNet outperforms all other algorithms, which indicates that
it predicts structures with better quality (closer to the ground truth structures) than other algorithms despite
none of them are exact solutions.

Structures of the failed predictions are presented in Supplementary Figure 7. Taking a closer look at the pre-
dicted structures, we can clearly notice that, with the exception of some crystals, all of the predictions have the
wrong crystal system. Moreover, none of the predicted crystals have the same space group as their correspond-
ing ground truth space group. Furthermore, all the predicted structures deviate significantly from any unstable
phase of the same crystal which indicates that the trajectories of the predicted structures by our algorithm did
not lead to the right track to find the ground truth crystal, and methods to detect these wrong trajectories in
advance needs to be added for better prediction quality.

Trajectory study
To further understand why ParetoCSP works better than GN-OA algorithm, we utilized the multi-dimensional
performance metrics of CSP [47] to examine the search patterns of both optimization algorithms employed in
ParetoCSP and GN-OA. For most of the crystals, the number of valid structures generated by ParetoCSP is
enormous. For better visualization, we selected six crystals for this study which had a comparatively smaller
number of valid structures: SrTiO3, MnAlCuPd, GaNi3, Al2FeCo, Sc3TlC, and SrWNO2. ParetoCSP predicted
exact structures of all these crystals, whereas GN-OA failed to predict the structures of MnAlCuPd, Al2FeCo,
and SrWNO2. We used a population size of 100 and a total of 250 generations for ParetoCSP. For comparing
fairly, we ran a total of 15, 000 steps with both GN-OA with MEGNet and M3GNet (GN-OA stopped making
progress after 5, 000 steps for all of our targets). To analyze the structure search process, we computed the
distance metrics between the valid structures and the ground truth structure. These distance features were
then mapped into two-dimensional points using t-SNE [70]. The purpose of t-SNE is to map data points from a
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DISCUSSION
We present ParetoCSP, a CSP algorithm that combines an AFPO enhanced multi-objective GA as an effective
structure search function and M3GNet universal IAP as a constructive final energy predictor to achieve efÏ-
cient structure search for CSP. The objective is to effectively capture the complex relationships between atomic
configurations and their corresponding energies. Firstly, ParetoCSP uses the age of a population as a separate
optimization criterion. This leads the algorithm to treat the age as a separate dimension in the multi-objective
Pareto front where the GA aims to generate structures to minimize the final energy per atom, as well as having
low genotypic age. The finding of ref [59] provides a more extensive search process which enables the NSGA-III
to perform better as shown in the trajectory results in Section 3.7, where we see that ParetoCSP generated a
lot more valid structures during the search process than other evaluated CSP algorithms. This demonstrates
the effective exploration of the crystal structure space by ParetoCSP and the efÏcient identification of the most
stable structures.

Overall, we found that ParetoCSP remarkably outperforms the GN-OA algorithm by a factor of 2.562 and
overall achieved 74.55% accuracy. The comprehensive experimentation was carried out on 55 benchmark
sets consisting of diverse space groups, which shows that the algorithm can efÏciently handle a wide range of
crystal systems, including complex ternary and quarternary compounds, whereas GN-OA performed poorly
on the quarternary crystals, and most of the ternary crystals. Moreover, a majority of them belongs to the
cubic crystals system, proving GN-OA’s lack of capability of exploring the structure space of diverse crystal
systems. However, all the algorithms show poor performance for crystals belonging to the orthorhombic and
monoclinic crystal systems. This performance limits of ParetoCSP can be attributed to either the optimization
algorithm or the ML potential.

First, we found that for both ParetoCSP and GN-OA, the search process tends to generate a majority of invalid
structures even though ParetoCSP works much better than GN-OA. These invalid structures are a waste of
search time. Better algorithms that consider crystal symmetry or data-driven generative models may be devel-
oped to improve the percentage of valid structures and increase the search efÏciency during the search process.
In ParetoCSP, the M3GNet IAP is used as the final energy predictor during the search process and structure
relaxer after finishing the search process. Compared to MEGNet, M3GNet IAP is proven to be a better choice
since after replacing GN-OA’s MEGNet with M3GNet IAP, its performance can be improved by a factor of 1.5.
Overall, our results suggest the importance of developing stronger universal ML potentials in modern CSP
algorithm development. Other IAP models such as TeaNet [50] can be experimented with to check whether
better performance can be achieved with ParetoCSP and can be compared to the results with M3GNet. Unlike
GN-OA, ParetoCSP performs a further refinement of the output structure which helped generate exact struc-
tures. We used M3GNet IAP for the structure relaxation. More advanced structure relaxation methods can be
tested instead to get better performance.

For the first time, we have used a set of seven quantitative performance metrics to compare and investigate
algorithm performances of ParetoCSP and the baselines. We can see from Table 3 that each of the unsuccessful
predictions had at least one of the performance metrics value larger than the ground truth value. Additionally,
Figure 3 shows that ParetoCSPwithM3GNet generated better solutions than any other baseline CSP algorithms
as they had much lower performance metric distances (errors) than others. Furthermore, the performance
metrics also show that even though ParetoCSP was unable to predict 14 crystal structures, it still produced
better quality structures compared to other CSP algorithms. These metrics can also be used to show, for a
specific crystal, whether the algorithm is on the right track to predict its structure or not.

Inspired by the great success of AlphaFold2 [45] for protein structure prediction, which does not rely on first-
principles calculations, we believe that data-driven CSP algorithms based on ML deep neural network energy
models have big potential and can reach the same level as AlphaFold2. For this reason, we have focused on
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the performance comparison with the SOTA GN-OA, a ML potential-based CSP algorithm, and we did not
compare our results with CALYPSO [15] and USPEX [14], despite the fact that USPEX also utilizes evolutionary
algorithms similar to ours. These algorithms are extremely slow and are not scalable to complex crystals as
they depend on ab initio energy calculations, which are computationally very expensive and slow. Currently,
they can only deal with simple chemical systems or relatively small crystals (< 10 atoms in the unit cell) which
is a major disadvantage.

CONCLUSION
We have introduced an innovative CSP algorithm named ParetoCSP, which synergizes two key components:
the multi-objective GA employing AFPO and the M3GNet IAP, for predicting the most stable crystalline ma-
terial structures. The AFPO-based GA effectively functions as a structure search algorithm, complemented by
the role of M3GNet IAP as an efÏcient final energy predictor that guides the search process. Through com-
prehensive experimentation involving 55 benchmark crystals, the potency of our algorithm has been demon-
strated, notably surpassing GN-OA with MEGNet and GN-OA with M3GNet by substantial factors of 2.562

and 1.71, respectively. Utilizing benchmark performance metrics, we have provided an in-depth analysis of
the quality of structures generated by our algorithm. Furthermore, we have quantitatively depicted deviations
from the ground truth structure for failure cases across all algorithms, highlighting the superior performance
of ParetoCSP in this aspect as well. By means of a trajectory analysis of the generated structures, we have
established that ParetoCSP produces a greater percentage of valid structures compared to GN-OA during the
search process due to its enhanced search algorithm. Given these significant advancements, we believe that
ML potential-based CSP algorithms such as ParetoCSP hold immense promise for advancing the boundaries
of CSP and facilitating the discovery of novel materials with desired properties.
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