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Materials with ultralow lattice thermal conductivity (LTC) continue to be of great interest for technologically

important applications such as thermal insulators and thermoelectrics. We report an efficient workflow

combining high-throughput density functional theory (DFT) computing and two different types of

machine learning (ML) models for fast and accurately screening ultralow LTC from large-scale inorganic

crystals. Firstly, we train seven classification ML models on 8077 data obtained from high-throughput full

DFT calculations to classify 50 574 structures into positive and negative dispersions, among which 22

899 structures are dynamically stable. Secondly, with 4041 high quality LTC data, we train three graph

neural network prediction models to predict LTC. The LTC ML models are verified on 359 randomly

selected structures. Our ML model successfully predicted 90% of 359 structures to possess ultralow LTC

(less than 1 W m−1 K−1). An additional 3218 structures with ultralow LTC are also predicted and provided.

With further analysis of the correlation between LTC and material features, we identify two excellent

material descriptors, that can be evaluated with low computational cost for efficient screening of

ultralow LTC: the large P3 parameter which represents a large number of three-phonon scattering

channels and the large thermal mean squared displacement which reflects the soft phonon modes in the

lattice usually resulting in strong phonon anharmonicity. Our workflow integrating dual ML models offers

a new route to accelerate the discovery of novel dynamically stable materials with a high success rate

for predicting effective lattice thermal conductivity.

Introduction

Lattice thermal conductivity (LTC) measures the ability of solid
materials to conduct heat through atom vibrations and affects
their thermal transport performance. Therefore, there is
a strong impetus to identify materials with either extremely
high or low LTC and to further develop thermal management
solutions for various applications such as electronics cooling,1

building materials2 and energy systems.3 Theoretically, the
most reliable and highly accurate method to predict LTC is the
density functional theory (DFT) based anharmonic lattice
dynamics (ALD) coupled with the phonon Peierls-Boltzmann
transport equation (BTE).4,5 Despite its great success in the
past decade,6–10 such a method is computationally expensive for

the high-throughput computation of LTC for a large number of
materials, because it requires calculations of the harmonic and
anharmonic (at least the third-order) interatomic force
constants which is time- and resource-costly. Alternatively,
other empirical models to evaluate LTC have been applied,
including the Debye–Callaway model,11,12 Slack model,13 but
these methods are less accurate.14 The classical molecular
dynamics (MD) simulation15–19 can also be used to study the
thermal transport processes and to predict the LTC of materials,
however, the accuracy of this approach relies signicantly on
that of the underlying interatomic potentials which are chal-
lenging to obtain for a large number of materials,20,21 even with
the help of the recently developed machine learning (ML)
interatomic potential techniques.22,23

ML has been successfully applied for solving complex
problems and improving decision making at both the academic
and industrial levels. For instance, multi-delity ML models
offer the possibility of bridging the gap between accurate DFT-
level and rough classical-level (such as MD and empirical
models) results.24,25 With given data, ML algorithms can deter-
mine the underlying associations, even if the relationship is
highly nonlinear.26 This allows reducing the number of DFT
calculations needed to discover new materials, because ML
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models are based on statistical prediction and hence they are
computationally less expensive.27,28 On the other hand, ML has
also been used for the prediction of a vast spectrum of physical
properties,29 such as mechanical properties of metal alloys30,31

and formation energies of crystals.32–34 Carrete et al.35 and Liu
et al.36 have used ML to predict the LTC of half-Heusler struc-
tures by training on DFT LTC data. Pal et al.37 combined the
crystal graph convolutional neural network ML approach with
DFT calculations to rstly evaluate the stability of quaternary
chalcogenides and then to evaluate their thermal conductivi-
ties. Seko et al.38 applied the Bayesian optimization approach
based on a surrogate model trained on the calculated thermal
conductivity of 101 structures with simple crystal structures and
screened for 221 materials with low LTC based on only two
descriptors. ML, in particular multilayer neural network, has
been successfully used to build accurate interatomic potentials
for MD simulations for thermal transport of certain materials as
well.22,23 An interesting question is whether more systematic ML
with robust descriptors can be applied to model the LTC of
materials spanning a vast chemical (i.e., composition and
crystal structure) space.

In this work, we present a screening and prediction strategy
for identifying materials with low LTC by investigating seven
ML algorithms, including two graph neural network (GNN) for
classication, and three additional GNN models for regression.
The rst step helps to classify 50 574 structures with no imagi-
nary phonon modes and to eliminate the dynamically unstable
structures. In the second step for the so-obtained 22 899 stable
structures, we construct three GNN models trained directly on
the crystal structures, as opposed to custom physical descrip-
tors which helps improve the accuracy of the GNN model.
Thorough screening of the 22 899 stable structures gives rise to
reliable prediction of their LTCs, among which the LTC of 359
structures are veried with explicit DFT calculations with an
accuracy of 90% that have ultralow LTC. This paves the way to
design thermal management materials for future applications.
Analysis of the correlations between LTC and atomic and
structural features reveals profound insights into the under-
lying mechanisms. We further propose the P3 parameter and
thermal mean square displacements as an excellent material
descriptor for quick screening crystalline materials with
ultralow LTC.

Computational methodology

Our approach comprises two major steps: (1) using an ML
classier to lter out unstable structures from a predened pool
of structures acquired from OQMD, and (2) training a regres-
sion model to recommend ultra-low LTC structures out of the
stable structures identied in the rst step. The entire workow
is shown in Fig. S1 in the ESI.†

Data acquisition from DFT

The optimal performance of the ML models requires high
quality data either from high throughput calculations or from
experiments. The initial structure pool to be screened contained

50 574 structures taken from OQMD and re-optimized by us
using DFT with computational parameters described below. All
structures have non-zero bandgaps, i.e., they are either semi-
conductors or insulators. For an effective screening of poten-
tially dynamically stable structures, we rst built a classication
model using a dataset containing positive/negative frequency
information of 8077 structures calculated by DFT, among which
4264 were dynamically stable structures (i.e., no imaginary
frequencies in the phonon spectra were found along the high
symmetry paths in the Brillouin zone), while the rest 3813 were
not dynamically stable (i.e., there are imaginary phonon
modes). These 8077 training data from OQMD contains seven
crystal systems, with cubic crystal structures having the highest
number. The dataset for all 8077 structures used for classica-
tion model training with corresponding OQMD structure ID
and the relevant material information is provided in the sepa-
rate Excel le. Fig. 1a and b shows the distribution of the crystal
systems for our training and prediction data, where the distri-
bution of the space group number for the cubic crystal struc-
tures is also shown. Fig. 1c and d shows the element
distribution in our training and predicted dataset. The entire
dataset contains 63 elements in total across the periodic table.
We did not explore the prediction of any crystal systems and
elements outside of the training dataset. Once the classication
model was trained, it was then used to predict the 50 574
structure pool to screen the structures that are likely to be
dynamically stable. Aer the classication model was deployed
for screening, we nally obtained 22 899 stable structures.

For LTC ML model training, the data used were obtained
from our DFT calculations on 4041 crystal structures (3317
cubic structures and 724 noncubic structures). Note that the
total number of structures for DFT LTC dataset is slightly
smaller than the above dynamically stable structures, because
the BTE solutions for LTC were not converged for some struc-
tures. For the noncubic structures, since the LTC is anisotropic
in general, the average LTC along the x, y, and z crystallographic
direction was used in training our ML models. It is worth
pointing out that all the ML models were trained on the log-
scale LTC values, as our separate tests have proved signicant
performance improvement as compared to the models that
were trained on the raw LTC values. The dataset for all 4041
structures used for LTC ML model training with corresponding
OQMD structure ID and the relevant material information is
provided in the separate Excel le. All datasets used for classi-
cation and regression model training and LTC validation of
crystal structures with OQMD structure ID, chemical formula,
space group number, and other information are provided in the
Excel le as ESI.†

The DFT calculations were performed using the plane-wave
basis projector augmented wave (PAW) method,39 within the
Perdew–Burke–Ernzerhof exchange–correlation functional,40 as
implemented in the Vienna ab initio simulation package
(VASP).41–43 The cutoff energy was set to 520 eV for all crystal
structures. The energy and force criteria for the DFT calculation
of structure optimization were set to 10−8 eV and 10−4 eV Å−1,
respectively. The phonon band structures were determined
using the frozen-phonon approach implemented in the
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PHONOPY package.44 The second and third order interatomic
force constant (IFCs) required for phonon band structure
calculations were calculated using the compressive sensing
lattice dynamics (CSLD) method,45 which extracts the IFCs from
the Taylor-expanded interatomic forces in terms of atomic
displacements via the advanced compressive sensing tech-
nique. All atoms in supercells were randomly displaced with
a magnitude of 0.03 Å by the PHONOPY package. The supercell
size depends on the size of the primitive cell of each structure,
but generally speaking the supercells with lattice parameter at
least 10 Å for all 3 crystallographic directions were created. The
CSLD method has the advantage of signicantly lowering the
number of supercells needed for IFCs tting and hence the
number of DFT calculations on supercells. For each supercell,
16–30 randomly displaced congurations were used for
obtaining IFCs, depending on the symmetry of the materials.
Generally, for noncubic structures a larger number of displaced

supercells were generated. The energy and force criteria for the
self-consistent DFT calculations of atomic forces in displaced
supercells were set to 10−6 eV and 10−4 eV Å−1, respectively. For
k-points for electrons, we set up the product of the lattice
parameter along each crystallographic direction and the corre-
sponding number of k-points to be at least 40 Å. With IFCs
obtained by DFT, the phonon dispersion calculations were done
by the PHONOPY package, and the LTCs were obtained by
solving the phonon Peierls-BTE with the ShengBTE package.4

Data analysis for ML classication training

The dataset consists of 8077 unique data points with 7 attri-
butes and one output value, i.e., yes or no for having or not
having imaginary phonon frequencies, respectively. Fig. 2
shows the relationship between each feature and the target. The
somewhat monotonic relationship between the variables
justies the use of Spearman's rank correlation to evaluate the

Fig. 1 Distribution of symmetry of materials used for ML model (a) training and (b) prediction. The insets show the space group distribution of

cubic structures. Distribution of elements in the structures used for ML model (c) training and (d) prediction, where logarithmic scale is used for

the number of element count in y-axis.

This journal is © The Royal Society of Chemistry 2023 J. Mater. Chem. A, 2023, 11, 24169–24183 | 24171

Paper Journal of Materials Chemistry A



relationship between the features and the target for the classi-
cation problem. The Spearman correlation between the target
column and input is shown in Fig. 3. Most of the input attri-
butes show a low negative correlation and low multicollinearity
with the dependent variable. The number density, mass density,
and bond length all have a positive correlation with the corre-
sponding values being 0.15, 0.14, 0.04, respectively. Here, the
bond length was calculated based on the geometry of the crystal
structures. The neighbors within a cutoff radius of 6 Å of
a central atom were considered to be bonded and we took the
average of all bonding distance as the bond length of the central
atom. This calculation is repeated for every atom in the unit cell,
and we nally take the average of all atoms as the nal bond
length of the structure. For the independent variable the high-
est positive and negative correlation values fall in a range of
−0.25 to 0.15.

In checking the outliers in the data, an inter quartile range
method was used, which is graphically visualized on a boxplot
in Fig. S2(a) in the ESI.† The observation contains an upper and
lower boundary for which each of the attributes with

observations outside the specied range is considered an
outlier as described in eqn (1)–(3) and illustrated in Fig. S2(b) in
the ESI.†

IQR = Q3 − Q1 (1)

Upper boundary = Q3 + 1.5 inter quartile range (2)

Lower boundary = Q1 − 1.5 inter quartile range (3)

Q3 is the 75th Quantile describing the upper half of the dataset
and Q1 is the 25th Quantile describing the lower half of the
dataset. We, however, found no performance benet in
removing the outliers from the data.

Machine learning model training

For classication, seven ML models including two graph neural
network models were trained in this study, namely, random
forest (RF), extreme gradient boosting (XGBoost), logistic
regression, CatBoost, Light GBM, atomistic line graph neural

Fig. 2 Scatter plot between attributes. This justifies the use of Spearman's rank correlation in evaluating the relationship between the attributes

and target.
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network (ALIGNN) and orbital graph convolution neural
network (OGCNN). RF46 is based on many decision trees and
created by random feature selections and bagging47 which helps
to reduce overtting by improving the accuracy and stability of
the decisions trees, with performance demonstrated in image
classication,48 fraud detection,49 etc. Boosting50–52 is an
ensemble method where series of decision trees are trained
sequentially and each tree corrects the errors made by the
previous tree. The XGBoost53 is a scalable and efficient imple-
mentation of the gradient boosting technique,54,55 which creates
new decision trees to t the residuals of previous decision trees
by minimizing the residual errors through a process of
continuous iteration with the aim of improving the prediction
accuracy.56 CatBoost57–59 is based on the gradient boosting
decision tree that is designed to handle categorical features in
data. During the learning stage, decision trees are sequentially
constructed to produce subsequent trees with decreased loss,
and it uses ordered boosting to handle categorical features. The
predictions from each tree are then combined to form the nal
prediction. Logistic regression60 builds a logistic model for both
classication and class probability estimation.61 Light GBM62 is
a distributed high-performance framework that uses decision
trees for ranking, classication, and regression tasks63 with fast
learning speed and high parallel efficiency for a large amount of

data.64,65 In contrast, for the regression three graph neural
networks were used, namely, ALIGNN, OGCNN and global
attention graph neural network (deeperGATGNN). For all ML
models, data was split following the StratiedKFold splitting
strategy since the ML models were used to model a classica-
tion problem. Stratifying the split maintains the target class
distribution in both the training and testing data. The ML
objective is to maximize the accuracy of the binary classication
models. The metric Accuracy and F1 scores were used to eval-
uate the performance of the binary classication models as the
target class distribution is nearly balanced. For the regression
models, the metric mean absolute error (MAE) was used to
evaluate the performance of the models. All three graph neural
networks, namely deeperGATNN,66 ALIGNN,67 and OGCNN,68

have found success in the material discovery for accurate and
efficient prediction of material properties. They extract features
from the crystal structures, which are then used for training the
models. They combine the descriptors and learningmodels into
one inseparable step. The model learns material properties
directly from the connection of atoms in the crystal. For the
effective application of the ML models for classication
problem, a randomized search algorithm was used to nd the
optimal model hyperparameters. The ML models were trained
on 75% of the training dataset and 25% was used for testing.

Fig. 3 Spearman's rank multicollinearity study between the independent variables and the dependent variable for the classification model.
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Result and discussion
Results for classication models

Table 1 highlights the results describing the performance vali-
dation of the trained classication model for positive/negative
dispersions on the 25% test data of the dataset. The ALIGNN
model yields the highest performance among all classication
models trained. It is worth pointing out that we added 4 more
elemental descriptors69 to the original 7 attributes for training,
namely Pauling electronegativity, maximum principal quantum
number, average number of electrons, and number of unpaired
electrons. These descriptors are related to electron interaction,
which we believe might improve our classication model. It
turns out that the Pauling electronegativity has the highest
feature importance. However, when we compared the accuracy
of the new training with our previous training, there was only
a slight improvement in the performance of the new model
(results not shown here for brevity). More importantly, all
traditional ML models with elemental descriptors did not
outperform the graph neural model, i.e., the GNN model is still
the best model with an accuracy of 0.861 and F1 score of 0.862
for ALIGNN. We therefore decided to use ALIGNN model to
predict dynamic stability of the structures.

Fig. 4 shows the confusion matrices for all 7 models to better
visualize how the model classies the stable and unstable
structures. The confusion matrix shows the comparison
between the predicted class label and the actual class label. For
the ALIGNN model (the best performing model), we observe the
42.45% true positive, 7.63% false positive, 6.25% false negative
and 43.55% true negative predictions. Thus, the model clas-
sies the stable and unstable structures with high accuracy.
Since the ALIGNN model exhibits the highest performance
among all 7 classication models trained here, the ALIGNN was
then used to predict the dynamic stability of the original pool of
50 574 structures, among which 22 899 structures were pre-
dicted as stable. This method helps us eliminate unstable
structures from the original pool of data, and thereby acceler-
ates the discovery of new materials with high accuracy and
efficiency.

Results for regression models

For the LTC regression model, the ALIGNN is the best model
among all three GNN models investigated, as evidenced by the
relatively lowMAE value as shown in Fig. 5. This justies the use

of ALIGNN for further screening 22 899 stable structures to
search for possible low LTC materials. From Fig. 5 we can
observe the performance of our models on the testing data. The
ALIGNN model has an R2 of 0.834 and MAE of 0.081 based on
log-scale values, which means the model makes prediction that
are within 0.081 of the log value of the actual LTC. The MAE
based on the actual values are 6.986, 7.125, and 9.253 W m−1

K−1 for the ALIGNN, OGCNN, and deeperGATGNN model,
respectively. In ref. 21 which uses crystal graph convolutional
neural network (CGCNN) and RF ML models to train LTC, their
models yield LTC prediction with MAE 0.14, R2 0.85 and MAE
0.12, R2 0.87, respectively. Compared to those models, our
trained ALIGNN model has comparably good prediction
performance and thus can be used for screening LTC in the
future. The ALIGNN model performs very well because it
incorporates bond angles information in the descriptors, which
is an important factor contributing to phonon transport in
crystalline materials in terms of both harmonic and anhar-
monic interatomic force constants. Similarly, the efficiency of
ALIGNN model has also been demonstrated on training and
prediction of phonon density of states,70 electronic density of
states,71 superconducting properties,72 etc. It should be
emphasized that, the performance of all ML models on LTC is
slightly lower than that on other properties such as mechanical
properties,25 heat capacity,28 sound speed, group velocity, etc.
Although from domain knowledge the heat capacity is one of
the dominant factors in obtaining LTC, it is easier to train
because it is harmonic property (only depending on harmonic
frequencies and temperature). It seems that the ML models in
particular graph neural network models can easily capture the
inherent relationship between atomic structure and harmonic
vibrational frequencies. In contrast, LTC is a way more complex
material property since it involves both harmonic and anhar-
monic nature of a lattice and most of time those effects are
competing with each other. The only input to the LTC ML
models is the atomic structure, where optimized atomic posi-
tions and species are provided. However, those equilibrium
positions do not contain enough information for the higher
order interatomic interactions (the so-called phonon anhar-
monicity) in the crystalline structure, which plays a critical role
in governing LTC. Thus, the ML models would likely under-
perform for LTC training and prediction.

All three models, namely ALIGNN, deeperGATGNN and
OGCNN, were trained on the same dataset, and we compared
themodels based on the testing data using the MAE asmetric of
evaluation. We picked the best model for the prediction of our
LTC. In GNN model training, the model learns descriptors
directly from the crystal structures. The GNNmodels mainly use
elements and atomic distance information as descriptors. They
combine the descriptors and learning model into one insepa-
rable step, i.e., the model learns material properties directly
from the connection of atoms in the crystals.73 The crystals
structures are represented with a graph with nodes corre-
sponding to atoms and edges corresponding to bonds. Still,
there are some differences among the 3 GNN models. The
ALIGNN model incorporates bond angles to the model. This
new information helps to increase the accuracy of the model

Table 1 Performance evaluation of machine learning classification

models for positive/negative phonon dispersions

Algorithm Accuracy F1 score

Light GBM 0.757 0.756
XGBoost 0.751 0.752
CatBoost 0.750 0.763
Random forest 0.748 0.748
Logistic regression 0.633 0.633
ALIGNN 0.861 0.862
OGCNN 0.846 0.854
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since many material properties are sensitive to slight change in
bond angles. Bond angles can also be regarded as the repre-
sentation of relative orientation between atoms' neighbors,

which play a critical role in determining the anharmonicity of
a material. Thus, it is understandable why the ALIGNN model
has the highest performance in predicting LTC. The OGCNN

Fig. 4 Confusion matrix heatmap (model performance metrics) for the trained ML and GNN models. (a) OGCNN, (b) ALIGNN, (c) logistic

regression, (d) random forest, (e) light GBM, (f) XGBoost, and (g) CatBoost.
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model incorporates atomic orbital information to the descrip-
tors. From chemistry point of view, atomic orbitals directly
affect the interatomic interactions, thus the OGCNNmodel also
has an excellent performance. The deeperGATGNN model can
train a very deep network greater than 30 layers. However, since
the total number of training data for our LTC by DFT calcula-
tions is only 4014, which is far not large enough tomaximize the
advantage of very deep neural network. We anticipate that this
is the most important reason why the deeperGATGNN model
has the worst performance among the 3 GNN models. Overall,
all 3 GNNmodels have additional features added or modied to
the original construction, making them more accurate than
traditional ML models.

Overall, we have trained a reliable ML model which we can
use in screening and recommending potential low LTC struc-
tures. Aer predicting the LTC of the ltered 22 899 structures
using the trained ALIGNN model, we randomly selected 359

materials with LTC predicted to be low (less than 10Wm−1 K−1)
and validated their LTC by full DFT calculations. The calibra-
tion results of the ALIGNN model on these completely new
structures are shown in Fig. 6. It is observed that 321 of our 359
recommended structures have relatively low LTC values in the
range of 0.1–10 W m−1 K−1 at 300 K, corresponding to an
accuracy of ∼90% (321/359). In particular, 113 structures are
veried to have LTC below 1Wm−1 K−1, i.e., ultralow LTC. Such
a validation on the unseen structures results in an R2 of 0.755
and MAE 0.265 and an absolute MAE of 9.08 W m−1 K−1. The
two metrics are slightly off from those for model training and
testing. This can be understood in terms of different data used.
The training and test datasets contain majorly cubic structures,
while the validation datasets are mostly non-cubic structures. In
addition to the above 113 validated ultralow LTC structures,
additional 3218 structures are predicted to possess ultralow
LTC. The predicted LTC of these untested structures, along with
other relevant structural information, are provided in the Excel
le as ESI.†

We also noticed that our training data indeed has a lot of
cubic structures, but the trained model learn from the atomic
structures and also take into consideration the features of these
structures, such as bond length, bond angles, etc. However, as
we see from the validation of our 359 structures in Fig. 6, they
are completely new structures that have never been seen by the
trainedmodel. Specically, 308 out 359 are noncubic structures,
but the ALIGNN model still have very good performance in
making predictions of their LTC. This can be understood in
terms of the important or governing atomic features that might
have been successfully captured or learned by the ALIGNN
model, such as elements on the nodes, bond lengths (charac-
teristic feature for the bonding strength which determines the
group velocity of phonons), bond angles (the representation of
relative orientation between atoms' neighbors or local envi-
ronment, which together with bond length determines the
material symmetry and phonon anharmonicity of a material).

To validate the dynamic stability of our classication
model, 359 structures were randomly selected. Here, we point

Fig. 5 Testing results of lattice thermal conductivity (LTC) for the 3 graph neural network (GNN) models trained for 808 structures.

Fig. 6 Validation of ALIGNN prediction for the 359 selected structures

by full DFT calculations. The red color represents 113 structures with

ultralow lattice thermal conductivity (less than 1 W m−1 K−1).
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out that, we actually take advantage of the DFT calculated LTC
data to serve as calibration data for dynamic stability predic-
tion, since any effective LTC data means the LTC BTE run is
well converged and there must be no negative frequencies in
the Brillouin zone, thus such data can be automatically used
for validating dynamic stability prediction by our classication
model. To this end, the dynamically stable structures were
veried by the same 359 randomly selected structures, as done
for validating regression model. We found all 359 structures
have no negative frequencies in the Brillouin zone, and thus
prove that the classication model has very high success rate
for predicting true positive classication. Fig. S3 in the ESI†
shows the phonon dispersion of only four selected ultralow
LTC materials out of our 359 structures recommended by our

ALIGNN model. The phonon dispersion shows the relation-
ship between the phonon frequency and wave vector in the
Brillouin zone. All these materials which are predicted to be
stable do not exhibit imaginary mode in the phonon spectra,
which also validates our classication model. On the one
hand, all structures have relatively low phonon frequencies
(below 10 THz), in particular for low-lying acoustic phonon
modes, which carry relatively low thermal energy with low
group velocities and hence lead to low LTC. Optical phonons,
on the other hand, exhibit island-like isolated dispersions, due
to the considerable difference among the constitutive atom
species. However, most optical phonon modes are at band
and thus have nearly zero group velocities and do not
contribute much to thermal transport.

Fig. 7 t-SNE plot with perplexity of 50 showing analysis and insight into the different magnitude of LTC (size of circle) among all 22 899 pre-

dicted structures. (a) Mass density, (b) total weight, (c) number density, (d) number of atoms in primitive cell, (e) bond length, and (f) volume

distribution.
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Physics insight into the structure–property relationship by ML

models

In order to gain deep insight into the structure–property rela-
tionship, Fig. 7 shows the t-distributed stochastic neighbor
embedding (t-SNE)74 plot for exploring and visualizing high
dimensional data in a 2D plot. The t-SNE plot provides a deep
understanding of the correlation between LTC and atomic and
structural properties. In Fig. 7, the size of the circle denotes the
magnitude of LTC, while the color bar indicates the atomic
properties or the structural properties of the primitive cells.
Fig. 7a shows the correlation between mass density and LTC.
We observe a positive correlation between mass density and
LTC, which is consistent with domain knowledge and previous
ML models.14 Fig. 7b shows the correlation between the total
weight of structures and the LTC, where a negative correlation is
found. This can be explained by two facts: (1) the phonon
frequency is inversely proportional to the square root of the
atomic mass and low phonon frequencies (heavy atoms) usually
have relatively low group velocities. (2) Heavy atoms usually
have stronger anharmonicity. According to the kinetic theory of
phonons75 these two effects lead to lower LTC for heavier atoms.
Fig. 7c shows that the number density (number of atoms per
unit volume) is positively correlated with LTC, since the major
effect of an increased number density is closer packed atomic
structure and thus stronger interatomic bonding which favors
thermal transport. Fig. 7d shows the negative correlation
between the number of atoms in the unit cell and LTC, because
a larger number of atoms in the unit cell corresponds to a more
complex atomic structure and leads to potentially enhanced
phonon scattering and thus lower LTC. Fig. 7e shows a correla-
tion between bond length and LTC. The bond length refers to
the average distance between the atomic nuclei in a repeating
pattern of the crystal structures. It is also negatively correlated
with LTC, because large bond length means the interatomic
bonding is weak and more exible, leading to stronger phonon
anharmonicity and lower LTC. It should be noted that it is not
straightforward to accurately correlate atomic properties of
a single structure with its LTC. This can only be done when
a large amount of data is available, and the features learned
therein in a statistical way are more physically meaningful and
the correlation identied is solider, while sometimes some
outliers or out-of-trend could exist, since LTC is a very complex
material property and it depends on many detailed factors like
the crystal structures, compositions, bonding types, etc. Never-
theless, with high delity MLmodels for LTC, the t-SNE analysis
provides an intuitive understanding and observation of the
underlying physics. It also generates a few descriptors for quick
screening materials with target LTC (low or high) and training
some ML LTC models with higher prediction performance.

Proposing new materials descriptors for fast and accurately

screening ultralow LTC structures

Before closing, we explore the recommended materials by
comparing the LTC and P3 parameters. According to the domain
knowledge and previous studies,76–78 the P3 parameter repre-
sents three-phonon scattering phase space in the full Brillouin

zone. A high P3 parameter means a large number of phonon–
phonon scattering channels in the crystals and thus generally
corresponds to a low LTC. In this work, we found that the P3 has
a negatively large correlation value of −0.77 with LTC, which is
consistent with phonon transport physics and previous studies.
It is worth pointing out that it is expected to train the P3
parameter much more easily by ML models with a very high
accuracy than training on LTC. This is because the P3 parameter
is determined by scanning the possible combinations of three
phonon frequencies that fulll the physical conditions of three-
phonon scattering process. Since all quantities involved in P3
parameter calculation are phonon frequencies, which are the
harmonic properties of the lattice, it is then natural to expect
the ML models in particular the GNN models to easily capture
this relationship. In fact, we continued to train the P3 parameter
by the ALIGNN, OGCNN, and DeeperGATGNN models on 4041
DFT data (80% for training and 20% for testing) that was used
for the same previous LTC regression models. The motivation
behind this training is that we will verify from our 359 recom-
mended structures whether the low LTC materials have high P3
parameters and vice versa. Once conrmed, we can then
recommend low LTC structures just by screening P3 parameter
or more importantly do an inverse design of hypothetical
structures with the aid of P3 parameter. Moreover, calculating P3
parameters by full DFT only requires full quantication of
harmonic phonon frequencies (second order IFCs) in the full
Brillouin zone, and the computational cost is signicantly lower
than calculating LTC which requires more computationally
expensive third order IFCs.

In addition to the P3 parameter, we further examine the
thermal mean squared displacements (MSD) as related to the
lattice thermal conductivity. Similar to the P3 parameter, the
MSD can be calculated for materials with phonon frequencies
and corresponding eigenvectors from the second order IFCs,
which also provide a low-cost descriptor for the LTC.44 In
essence, the MSD provides temperature-dependent displace-
ments of atoms in the crystals, providing insight into atomic
perturbations with respect to harmonic phonons. For instance,
the high MSD is associated with weak bonding and/or low
atomic density which is also tied with low sound velocity and
LTC.79 Additionally, rattling atoms may be discovered with
unusually high MSD and has been proved to be responsible for
strong phonon anharmonicity in insulating crystals.80 We
trained three GNN models, namely OGCNN, deeperGATGNN,
and ALIGNN, for the MSD on the same 4041 DFT data (80% for
training and 20% for testing) that was used for the previous LTC
regression and P3 parameter models. Fig. S4 and S5† shows the
testing results for all three GNN models for P3 parameter and
MSDs. We can see that all three models have pretty good
performance. Comparing Fig. S4, S5† and 5, we can observe that
for the same training dataset, training on P3 parameters has
better overall performance than training on LTC, while training
on MSD yields the worst performance. This conrms our
previous hypothesis. As for MSD, the GNN models cannot be
trained very well because the MSD is a complex property that
relies on both phonon frequencies and corresponding eigen-
vectors, which is more complicated than P3 parameter. We then
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used all three models to predict the P3 parameter and MSD of
the 22 899 dynamically stable structures. We nally validated
the 359 recommended structures by comparing their P3
parameters and MSD using LTC as the color map in Fig. 8a (for
DFT data) and Fig. 8b (for predicted data). Fig. 8a and b show
the same color pattern distribution, being the red color
(ultralow LTC) occurring in the top-right corner while the blue
color (relatively high LTC) occurring in the bottom-le corner.
This indicates that both P3 parameter and MSD have strong
correlation with LTC, which is consistent with Fig. S6.† The
same color pattern in Fig. 8a and b also implies that the GGN
models are well trained for both P3 parameter andMSD, and the
model predictions are accurate. More importantly, from Fig. 8
we clearly see the trend that crystalline structures with high P3
parameters and high MSDs have low LTC. These results
evidently show that both P3 parameter and MSD, which are
relatively easier to calculate by full DFT and train by ML models
with high precision, can serve as excellent material descriptors
with low computational cost for quick screening materials with
ultralow LTC, which provides a useful and indirect route for
researchers to screen ultralow LTC by P3 and MSD via either
high-throughput DFT calculations or training ML models. As
more reliable LTC data comes out in the near future, we antic-
ipate that new and easier-to-calculate material descriptors or
features will be identied by big data analysis.

Before closing, we would like to point out that, the main
purpose of this work is to present a workow of combining two
different types of ML models for fast and accurately screening
ultralow LTC from large-scale crystals, each corresponding to
solve a critical problem in new thermal material discovery.

Specically, the classication model aims to lter out dynami-
cally stable materials rst, while the regression models aim to
predict physically meaningful LTC values. Due to the large
number of screened structures with low thermal conductivities
(3218), it is very time consuming to check all of them in the
literature. Nevertheless, we believe our predicted ultralow LTC
materials should have pretty high precision. For example, we
nd that several prototypes have already been proved by
previous experiments with similar materials possessing
ultralow LTC, including but not limited to full Heuslers (ABC2

type with space group no. 225),81 double perovskites (ABCD6

type with space group no. 216),82 half-Heuslers (ABC type with
space group no. 216),83 quaternary Heuslers (ABCD type with
space group no. 216),84 single perovskites (ABC3 type with space
group no. 221),85 layered materials (such as space groups no.
194, 187, 160, AB2C4 type with space group no. 139).86 We expect
that the screened materials will stimulate experimentalists to
perform possible synthesis and validation.

Conclusions

In summary, we have trained 7 ML models including 2 state-of-
the-art GNN models for classifying 50 574 structures into
dynamically stable/unstable categories. We further trained 3
GNN models for searching ultralow LTC. Cross-comparison of
the prediction performance and model accuracy was conducted
among different predictive models. We nally chose the
ALIGNN model to make LTC prediction on 22 899 stable
structures due to its high predictive accuracy as featured by its
low MAE values. 3218 structures are predicted to have ultralow

Fig. 8 Three-phonon scattering phase space (P3 parameter) versus thermal mean squared displacement (MSD) of the 359 low lattice thermal

conductivity (LTC) structures by (a) DFT calculations and (b) ALIGNN model predictions. The color bar represents the logarithmic value of LTC.

Both panels clearly show the same trend that the P3 parameter and MSD are negatively correlated with LTC, and thus the large P3 parameter and

large MSD are good material descriptors for quick screening materials with ultralow LTC.
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LTC (below 1 W m−1 K−1). Insight into the correlation between
LTC and various atomic and structural properties were gained
by means of the t-SNE plot. We veried 359 unseen structures
recommended by the ALIGNN model with high precision DFT
calculations, of which 113 structures possess ultralow LTC. We
further trained separate GNN models for P3 parameters and
thermal mean squared displacements. We identied strong
negative correlations between predicted P3 parameters and
MSDs and real LTC values calculated by DFT. This proves that
one can recommend ultralow LTC materials simply from P3
parameter and MSD, which is a more convenient approach for
high-throughput DFT calculations with relatively lower
computational cost than LTC itself and easier to train high
performance ML models. Finally, we emphasize that, the
combination of the classication and regression models
coupled with high-throughput DFT calculations is promising
for accelerating the efficient discovery of novel dynamically
stable materials with target physical properties. Including
dynamical stability into ML models will signicantly increase
the success rate of predicting materials with potential experi-
mental synthesis.

Data availability

All datasets used for classication and regression model
training (8077 structures for classication and 4041 structures
for regression) and LTC validation (359 structures) with OQMD
structure ID, chemical formula, space group number, and other
information are provided in the separate Excel le named
‘Datasets_pub.xlsx’. The additional 3218 structures that are
predicted to have ultralow LTC (below 1 W m−1 K−1) are
provided in the separate Excel le named ‘Ultra-
low_LTC_Predictions.xlsx’. The GNN packages used are avail-
able at the GitHub.
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