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Abstract. We employ an Einstein-Maxwell-dilaton model, based on the

gauge/gravity correspondence, to obtain the thermodynamics and transport

properties for the hot and dense quark-gluon plasma. The model, which is con-

strained to reproduce lattice QCD thermodynamics at zero density, predicts a

critical point and a first order line at finite temperature and density, is used to

quantify jet energy loss through simulations of high-energy collision events.

Lattice QCD simulations have predicted the analytical crossover phase transition nature

between the confined hadronic gas and the deconfined strongly interacting liquid known as

quark-gluon plasma (QGP) at vanishing density [1]. However, at finite density, where the

crossover is conjectured to evolve into a first order line with a critical end point (CEP), ab-

initio lattice calculations are hindered by the sign problem. Moreover, lattice simulations

face a significant challenge related to the computation of transport observables [2] which are

needed to understand the QGP behavior to perturbatutions near and out of equilibrium.

In order to explore the QCD phase diagram, where first principle calculations are not

possible, we should employ an effective model that agrees with lattice QCD thermodynamics

at zero density, exhibits the nearly inviscid fluid behaviour of the QGP and describes decon-

fined strongly interacting matter. The holographic EMD model from Ref. [3], based on the

gauge-gravity duality [4, 5], fulfills these requirements and provides the thermodynamics for

the hot and baryon dense QGP with the advantage of being able to handle near equilibrium

calculations to compute several transport coefficients and energy loss observables [6].

1 Equation of state and baryon transport coefficients at finite

temperature and density

Based on the seminal works of Refs. [7, 8], the non-conformal bottom-up Einstein-Maxwell-

dilaton (EMD) holographic model from Ref. [3] has been devised to quantitatively describe

the physics of the strongly coupled QGP. The construction of the gravitational action includes

a 5-dimensional bulk metric gµν coupled to real scalar field φ (the dilaton) responsible of
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breaking the conformal symmetry of the theory through a potential V(φ). The effects due

to nonzero baryon chemical potential µB are taken into account by adding a Maxwell field

Aµ coupled to the dilaton field through a function f (φ) in the bulk action. Since QCD is

the target dual gauge theory at the AdS boundary (far away from the black hole horizon

in the gravitational theory), the free parameters of the model and the potentials V(φ) and

f (φ) are fixed by dynamically matching the holographic entropy density and second order

baryon susceptibility at µB = 0 with the corresponding lattice QCD results for 2+1 flavors and

physical quark masses from Refs. [9, 10]. The results of this fitting are shown in the left panel

of Fig. 1. On the other hand, any observable at finite µB as well as other quantities computed at

zero chemical potential constitute predictions of this EMD model, which includes the location

of the QCD critical point at (T, µB)CEP ≈ (89, 724) MeV and a first order transition line [3].

Additionally, the EMD thermodynamics shows an excellent quantitative agreement with the

state-of-the-art lattice QCD data from Ref. [11]. More recently, by using Bayesian inference

techniques, different functional parametrizations of the free functions in the EMD model

were investigated and suggest a strong preference for the existence of a QCD CEP besides

delimiting its possible location when the model is constrained by lattice QCD data [12].

Figure 1. Left: Temperature dependence of the holographic (solid lines) entropy density, pressure

and trace anomaly and their corresponding lattice results from [9]. Right: Holographic QCD phase

diagram where the crossover has been characterized by different characteristic points from equilibrium

and transport observables (taken from Ref. [6]) with all these trajectories converging at the CEP.

In addition to the equilibrium properties, the transport coefficients, which describe the

QGP response to perturbations near equilibrium and are an input in realistic hydrodynamical

simulations, were calculated for the baryon charge case in Ref. [6] by employing this EMD

model across the phase diagram including the CEP and transition line. The set of computed

transport coefficients include the baryon and thermal conductivities, baryon diffusion, heavy

quark drag force, Langevin diffusion coefficients, jet quenching parameter, and bulk and shear

viscosities. The description of the holographic QCD phase diagram was extended by includ-

ing not only the characteristic points from equilibrium variables, but also the behaviour of

transport observables in Ref. [6]. This is shown in the right panel of Fig. 1 where the relevant

characteristic trajectories of the equation of state and transport variables, corresponding to

extrema or inflection points, converge at the CEP.

2 Jet energy loss

The transport coefficients, particularly the jet quenching parameter q̂ obtained from this EMD

model [3], offer a unique opportunity for modeling parton energy loss since the holographic

equation of state displays an excellent agreement with lattice QCD data. Thus, we are able to
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Figure 2. Left: holographic jet quenching parameter q̂ as a function of the temperature for two values

of the t’Hooft parameter λ, and its comparison with the JETSCAPE results taken from Ref. [13]. Right:

jet quenching as a function of normalized transverse momentum pT described as a ratio of the number

of jets with a time dependent q̂(τ) over number of jets with a constant q̂.

perform simulations of high energy heavy ion collisions in a self-consistent way by incorpo-

rating the equilibrium variables and transport coefficients from the same model.

The jet energy loss produced by the interaction with the QGP and characterized by the

temperature/time dependent jet quenching parameter is the final topic of this section. In order

to include quenching effects, we compute the time an emission within a jet takes to behave as

an independent source of radiation. This formation time can be obtained from [13]:

τ f orm =
1

2Ez(1 − z)(1 − cos θ)
, (1)

where E is the energy of the incoming particle that splits into a pair with an opening angle

θ, each carrying a fraction z and (1 − z) of the parent parton. Then, at each formation time,

the emission energy and angle are computed from a distribution that depends on q̂. Such a

distribution reads [14]:

P(θ, ω) = αωθ3
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where α is a constant, ω is the emission energy, θ is the emission angle, and L is the path

length. We translate the temperature dependence of the holographic q̂ to a time dependence

by employing TRENTo [15] to model the initial state of a relativistic heavy ion collision. With

the holographic equation of sate as an input, TRENTo yields a map of the energy density in

the transverse plane (perpendicular to the collision axis) just after two heavy ions collide.

This energy density map is then evolved in time by using ideal Bjorken hydrodynamics to

model the QGP. For the toy model presented in this work, we took the average of all the

events within 0.25 − 0.30 centrality with JETSCAPE parameters from Ref. [16].

The jet quenching parameter q̂ is computed by considering a probe NambuGoto (NG)

action for a classical string on top of the solutions for the EMD fields [6]. The NG action is

proportional to the t’Hooft coupling (
√

λ) which in our case is a free parameter that should be

fixed phenomenologically. We compare the holographic q̂ to the corresponding result from

JETSCAPE summarized in Ref. [13] to constraint the value of the t’Hooft coupling, shown

in the left panel of Fig. 2 for two different values of λ. For our simulations performed in

PYTHIA, we fixed this value to be λ = 16. In the right panel of Fig. 2, we show on the vertical

axis the ratio of the number of jets when the jet quenching parameter is a function of time
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q̂ = q̂(τ) over the number of jets when q̂ has a constant value of 1 GeV2/fm. The horizontal

axis is the normalized transverse momentum where the vacuum jet pT corresponds to the

absence of quenching. The downward trend represented by the red curve indicates that there

are more jets that lose less energy (near the region of zero to small normalized transverse

momentum) compared to the number of jets that are heavily quenched (to the right of the

horizontal axis). This is reasonable since one may expect jets to be heavily quenched in the

initial stages of the collision where the temperature is the highest and the energy density is

large in comparison with a reduced transverse momentum suppression as the system expands

and cools down, a process not necessarily described by the constant q̂ scenario.

In conclusion, in this work we have shown how a time dependent q̂ is relevant to model

jet energy loss, which motivates a more profound study of parton energy loss as a function of

time. Besides improving the statistics, we plan to refine our toy model by including the trans-

port coefficients in the Bjorken expansion, and a more realistic hydrodynamic simulation.
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