EPJ Web of Conferences 296, 14014 (2024) https://doi.org/10.1051/epjconf/202429614014
Quark Matter 2023

Holographic transport coefficients and jet energy loss for
the hot and dense quark-gluon plasma

Joaquin Grefa'?*, Mauricio Hippert’, Raghav Kunnawalkam Elayavalli*, Jacquelyn

Noronha-Hostler?, Israel Portillo!, Claudia Ratti', and Romulo Rougemont5

'Department of Physics, University of Houston, Houston, Texas 77204, USA

’Department of Physics, Kent State University, Kent, Ohio 44243, USA

3llinois Center for Advanced Studies of the Universe, Department of Physics, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA

“Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, 37235, USA

SInstituto de Fisica, Universidade Federal de Goids, Av. Esperanga - Campus Samambaia, CEP 74690-
900, Goiania, Goids, Brazil

Abstract. We employ an Einstein-Maxwell-dilaton model, based on the
gauge/gravity correspondence, to obtain the thermodynamics and transport
properties for the hot and dense quark-gluon plasma. The model, which is con-
strained to reproduce lattice QCD thermodynamics at zero density, predicts a
critical point and a first order line at finite temperature and density, is used to
quantify jet energy loss through simulations of high-energy collision events.

Lattice QCD simulations have predicted the analytical crossover phase transition nature
between the confined hadronic gas and the deconfined strongly interacting liquid known as
quark-gluon plasma (QGP) at vanishing density [1]. However, at finite density, where the
crossover is conjectured to evolve into a first order line with a critical end point (CEP), ab-
initio lattice calculations are hindered by the sign problem. Moreover, lattice simulations
face a significant challenge related to the computation of transport observables [2] which are
needed to understand the QGP behavior to perturbatutions near and out of equilibrium.

In order to explore the QCD phase diagram, where first principle calculations are not
possible, we should employ an effective model that agrees with lattice QCD thermodynamics
at zero density, exhibits the nearly inviscid fluid behaviour of the QGP and describes decon-
fined strongly interacting matter. The holographic EMD model from Ref. [3], based on the
gauge-gravity duality [4, 5], fulfills these requirements and provides the thermodynamics for
the hot and baryon dense QGP with the advantage of being able to handle near equilibrium
calculations to compute several transport coefficients and energy loss observables [6].

1 Equation of state and baryon transport coefficients at finite
temperature and density

Based on the seminal works of Refs. [7, 8], the non-conformal bottom-up Einstein-Maxwell-
dilaton (EMD) holographic model from Ref. [3] has been devised to quantitatively describe
the physics of the strongly coupled QGP. The construction of the gravitational action includes
a 5-dimensional bulk metric g,, coupled to real scalar field ¢ (the dilaton) responsible of
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breaking the conformal symmetry of the theory through a potential V(¢). The effects due
to nonzero baryon chemical potential up are taken into account by adding a Maxwell field
A, coupled to the dilaton field through a function f(¢) in the bulk action. Since QCD is
the target dual gauge theory at the AdS boundary (far away from the black hole horizon
in the gravitational theory), the free parameters of the model and the potentials V(¢) and
f(¢) are fixed by dynamically matching the holographic entropy density and second order
baryon susceptibility at up = 0 with the corresponding lattice QCD results for 2+1 flavors and
physical quark masses from Refs. [9, 10]. The results of this fitting are shown in the left panel
of Fig. 1. On the other hand, any observable at finite g as well as other quantities computed at
zero chemical potential constitute predictions of this EMD model, which includes the location
of the QCD critical point at (7, ug)cep = (89, 724) MeV and a first order transition line [3].
Additionally, the EMD thermodynamics shows an excellent quantitative agreement with the
state-of-the-art lattice QCD data from Ref. [11]. More recently, by using Bayesian inference
techniques, different functional parametrizations of the free functions in the EMD model
were investigated and suggest a strong preference for the existence of a QCD CEP besides
delimiting its possible location when the model is constrained by lattice QCD data [12].
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Figure 1. Left: Temperature dependence of the holographic (solid lines) entropy density, pressure
and trace anomaly and their corresponding lattice results from [9]. Right: Holographic QCD phase
diagram where the crossover has been characterized by different characteristic points from equilibrium
and transport observables (taken from Ref. [6]) with all these trajectories converging at the CEP.

In addition to the equilibrium properties, the transport coefficients, which describe the
QGP response to perturbations near equilibrium and are an input in realistic hydrodynamical
simulations, were calculated for the baryon charge case in Ref. [6] by employing this EMD
model across the phase diagram including the CEP and transition line. The set of computed
transport coefficients include the baryon and thermal conductivities, baryon diffusion, heavy
quark drag force, Langevin diffusion coeflicients, jet quenching parameter, and bulk and shear
viscosities. The description of the holographic QCD phase diagram was extended by includ-
ing not only the characteristic points from equilibrium variables, but also the behaviour of
transport observables in Ref. [6]. This is shown in the right panel of Fig. 1 where the relevant
characteristic trajectories of the equation of state and transport variables, corresponding to
extrema or inflection points, converge at the CEP.

2 Jet energy loss

The transport coefficients, particularly the jet quenching parameter § obtained from this EMD
model [3], offer a unique opportunity for modeling parton energy loss since the holographic
equation of state displays an excellent agreement with lattice QCD data. Thus, we are able to
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Figure 2. Left: holographic jet quenching parameter g as a function of the temperature for two values
of the t"Hooft parameter A, and its comparison with the JETSCAPE results taken from Ref. [13]. Right:
jet quenching as a function of normalized transverse momentum py described as a ratio of the number
of jets with a time dependent §(7) over number of jets with a constant .

perform simulations of high energy heavy ion collisions in a self-consistent way by incorpo-
rating the equilibrium variables and transport coefficients from the same model.

The jet energy loss produced by the interaction with the QGP and characterized by the
temperature/time dependent jet quenching parameter is the final topic of this section. In order
to include quenching effects, we compute the time an emission within a jet takes to behave as
an independent source of radiation. This formation time can be obtained from [13]:

1
2Ez(1 = 2)(1 = cos )’

Tform = (1)
where E is the energy of the incoming particle that splits into a pair with an opening angle
6, each carrying a fraction z and (1 — z) of the parent parton. Then, at each formation time,
the emission energy and angle are computed from a distribution that depends on g. Such a

distribution reads [14]:
2 _02 2
PO, w) = awt® | 2L exp[ d ] )
q V2wg

where « is a constant, w is the emission energy, 6 is the emission angle, and L is the path
length. We translate the temperature dependence of the holographic § to a time dependence
by employing TRENTo [15] to model the initial state of a relativistic heavy ion collision. With
the holographic equation of sate as an input, TRENTo yields a map of the energy density in
the transverse plane (perpendicular to the collision axis) just after two heavy ions collide.
This energy density map is then evolved in time by using ideal Bjorken hydrodynamics to
model the QGP. For the toy model presented in this work, we took the average of all the
events within 0.25 — 0.30 centrality with JETSCAPE parameters from Ref. [16].

The jet quenching parameter § is computed by considering a probe NambuGoto (NG)
action for a classical string on top of the solutions for the EMD fields [6]. The NG action is
proportional to the t’Hooft coupling ( V1) which in our case is a free parameter that should be
fixed phenomenologically. We compare the holographic g to the corresponding result from
JETSCAPE summarized in Ref. [13] to constraint the value of the t"Hooft coupling, shown
in the left panel of Fig. 2 for two different values of A. For our simulations performed in
PYTHIA, we fixed this value to be 4 = 16. In the right panel of Fig. 2, we show on the vertical
axis the ratio of the number of jets when the jet quenching parameter is a function of time




EPJ Web of Conferences 296, 14014 (2024) https://doi.org/10.1051/epjconf/202429614014
Quark Matter 2023

§ = §(t) over the number of jets when § has a constant value of 1 GeV?/fm. The horizontal
axis is the normalized transverse momentum where the vacuum jet pr corresponds to the
absence of quenching. The downward trend represented by the red curve indicates that there
are more jets that lose less energy (near the region of zero to small normalized transverse
momentum) compared to the number of jets that are heavily quenched (to the right of the
horizontal axis). This is reasonable since one may expect jets to be heavily quenched in the
initial stages of the collision where the temperature is the highest and the energy density is
large in comparison with a reduced transverse momentum suppression as the system expands
and cools down, a process not necessarily described by the constant § scenario.

In conclusion, in this work we have shown how a time dependent § is relevant to model
jet energy loss, which motivates a more profound study of parton energy loss as a function of
time. Besides improving the statistics, we plan to refine our toy model by including the trans-
port coefficients in the Bjorken expansion, and a more realistic hydrodynamic simulation.
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