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ABSTRACT

Background. As fire seasons in the Western US intensify and lengthen, fire managers have been
grappling with increases in simultaneous, significant incidents that compete for response
resources and strain capacity of the current system. Aims. To address this challenge, we explore
a key research question: what precursors are associated with ignitions that evolve into incidents
requiring high levels of response personnel? Methods. We develop statistical models linking
human, fire weather and fuels related factors with cumulative and peak personnel deployed. Key
results. Our analysis generates statistically significant models for personnel deployment based on
precursors observable at the time and place of ignition. Conclusions. We find that significant
precursors for fire suppression resource deployment are location, fire weather, canopy cover,
Wildland—Urban Interface category, and history of past fire. These results align partially with, but
are distinct from, results of earlier research modelling expenditures related to suppression which
include precursors such as total burned area which become observable only after an incident.
Implications. Understanding factors associated with both the natural system and the human
system of decision-making that accompany high deployment fires supports holistic risk manage-
ment given increasing simultaneity of ignitions and competition for resources for both fuel
treatment and wildfire response.

Keywords: Firefighters, Linear regression, Simultaneous wildfire, Suppression personnel competition,

Wildfire management, Wildfire response personnel deployment, Wildfire suppression resource.

Introduction

As fire seasons in the Western US intensify and lengthen, fire managers have been
grappling with increases in the period during which simultaneous, significant incidents
compete for wildfire response resources which in some cases outstrip preparedness and
strain the capacity of the current system (Podschwit et al. 2019; Podschwit and Cullen
2020; Abatzoglou et al. 2021; Shuman et al. 2022; Cullen et al. 2023; Thompson et al.
2023). This management challenge leads us to explore a key research question: what
precursors on the day of ignition are associated with wildland fires that evolve into
incidents requiring high levels of response and suppression personnel? Answering this
question is a pivotal step in supporting risk-informed decision making in the response to
wildland fire. Our research seeks to establish the relationship between human, fire
weather and fuels related factors that influence wildfire danger and their impact on
the evolution of ignitions to become significant users of fire suppression response
personnel. This analysis supports identification of the specific characteristics and scenar-
ios, which have led ignitions to evolve into resource intensive incidents, and thus
provides the agencies with wildland fire responsibilities information about preparedness,
as well as proactive and reactive risk mitigation (Cullen et al. 2021). Understanding both
the natural system and the systems of decision-making that accompany fires which
require substantial deployments of response personnel supports holistic risk management
in an era of increasing simultaneity of ignitions and competition for resources for both
fuel treatment and wildfire response (Thompson et al. 2023).
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Wildland fire danger and incidence have intensified over
the last half-century largely as a result of three categories of
factors: (1) human presence and actions related to land use
(Balch et al. 2017; Radeloff et al. 2018), (2) a changing
climate (Abatzoglou and Williams 2016; Abatzoglou et al.
2021), and (3) fuel buildup and composition due to long
standing fire suppression policy and due to the influence of
climate change on species and stand composition (Haugo
et al. 2019). Our research is targeted to identify significant
factors associated with elevated resource use and subse-
quent increases in competition to support decision making
about resource planning, sharing and prioritisation.

Background and literature review

The interagency wildland fire response system in the United
States is managed at four levels: the incident, the local
dispatching area, the geographic area, and the national
level (Belval et al. 2022). The initial response to wildland
fires is typically managed at the incident and local levels.
Local dispatch centres are equipped with a set of standard
response protocols used when responding to initial fire
reports under different weather conditions. The majority
of fires in the US (about 97%) are controlled during the
initial response phase, when the fire is smaller than 100 or
300 acres depending on category, by personnel dispatched
by the local centre (Calkin et al. 2005). The fires that escape
initial attack require extended response, which includes
additional personnel, and some grow into large fires (gener-
ally defined as over 100 acres in timber fuels, 300 acres in
grass and brush fuels) (St. Denis et al. 2023). Fires that
continue to grow and require additional resources are man-
aged by Incident Management Teams (IMTs). Historically,
the most complex fires requiring the highest levels of per-
sonnel have been managed by Type 1 and Type 2 IMTs, with
Type 1 teams managing the most complex fires. The man-
agement of these fires can require up to thousands of people
per day, with IMTs managing the personnel, the heavy
ground equipment (fire engines, bulldozers), overhead sup-
port (i.e. management personnel) and sometimes aerial
equipment (airtankers and helicopters). Depending upon
the agency managing the fire, fire management goals and
strategies may vary substantially. However, because wild-
land fire response is an interagency system, large fires typi-
cally utilise personnel and equipment supplied by multiple
agencies. Because these fires can have a substantial impact
on the capacity of the wildfire response system (Thompson
et al. 2023), the assignment of resources to these fires is
overseen by Geographic Area Coordination Centers. During
times of personnel and equipment scarcity, distribution of
personnel and equipment between Geographic Areas is man-
aged by the National Interagency Coordination Center.
Previous research related to this topic has been focused
largely on characterising suppression costs and expenditures

(Gebert et al. 2007; Yoder and Gebert 2012; Hand et al.
2014, 2016; Belval et al. 2019 and others as detailed below).
While expenditures are related to personnel counts and
deployments, efforts to quantify the number of personnel
are needed in order to link suppression costs to the associated
workforce capacity (Bayham and Yoder 2020). Workforce
capacity is particularly relevant as funds to cover suppression
costs are fungible, while the pool of highly skilled personnel
needed for wildland fire suppression is both limited and non-
fungible in the short term. Fires that have a substantially high
demand for personnel and equipment can have a substantial
impact on the readiness of the entire wildland fire response
system (Thompson et al. 2023). Additionally, because these
earlier analyses aimed to examine suppression costs while
considering management decisions during fire incidents,
they typically take into account both factors that would be
observable at the time and place of ignition and also those
that are only observable after the fact (e.g. total burned area).
Although total burned area is certainly associated with
resource demand for an incident, it is not observable until
the blaze is extinguished and, additionally, there is debate in
the literature about whether including fire size in such models
introduces endogeneity issues (Gebert et al. 2007; Hand et al.
2017). For these reasons our analysis of key precursors of
ignitions that use a significant amount of personnel focuses
on information and characteristics that are observable at the
time and place of ignition.

Gebert et al. (2007) developed a model to estimate
expenditures on large USFS (US Forest Service) managed
fires 1995-2004 (>300 acres, or >121 ha) with a goal of
detecting extremely high cost fires, i.e. those responsible for
1-2 standard deviations above the expected expenditure
given other characteristics. For these exceptional fires they
identify the importance of factors which fall outside of the
model, for example the decision to fight fires more or less
aggressively as a result of political factors. Yoder and Gebert
(2012) built upon this foundation, modelling total and per
acre fire suppression costs for large fires (>300 acres, or
>121 ha) managed by the USFS and DOI (US Department of
the Interior). They conclude that it is possible to develop a
predictive model for cost/acre in the absence of specific
burned area data, with the inclusion of influential factors
including time (year and month), fuel type, location and
terrain characteristics (slope, elevation and aspect).

Hand et al. (2014) developed the Stratified Cost Index
(SCI) based on data drawn from large fires (not deemed
complex and >300 acres, i.e. >121 ha) in the Western
US managed by the USFS using a spatial model based on
final fire perimeters. The SCI supports forecasting of sup-
pression expenditures, exploration of the role of fire manag-
ers in related decisions and allows comparison of realised
costs relative to expected costs. These comparisons open an
opportunity to delve into the causes for such differences. In
further work based on the same dataset, the team considered
expenditure projection to support future budget decisions

2
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(Hand et al. 2016) by comparing a model which relies solely
on ignition point data and a model that incorporates the
final spatial and temporal extent of the fire. They found that
the latter model performs better due to its ability to adjust
based on post hoc information about spread and burned
area. This result has the potential to better support national
level budgeting. A final iteration of this model added the
footprint of previous fires to the variables, finding that
previous fires may provide opportunities for suppression
that might not otherwise exist, and thus may increase sup-
pression cost due to deployment of additional resources to
capitalize on these new opportunities (Belval et al. 2019).

Bayham and Yoder (2020) went a step further in model-
ling expenditures and resource allocation retrospectively
based on a dynamic model (Arellano-Bond systems estima-
tor) and pulling in information about wildfire growth, area
burned and home damage. They found that daily expendi-
tures and resource allocation are dynamic, with increases in
expenditures associated with extreme fire growth potential
of a fire and the presence of threatened homes. Gude et al.
(2013) found that the presence of homes within 6 miles of
an active fire increases daily suppression cost when looking
at fires in California’s Sierra Nevada.

Beyond cost and expenditure as metrics of resource use,
Hand et al. (2017) consider instead the impact of IMTs
(Incident Management Teams) on suppression personnel
deployment numbers relative to the impact of underlying
fire conditions. Their work focuses on Type 1 and Type 2
IMTs assigned to fires occurring between 2007 and 2011 in
the US. Using ‘days’ as a unit of analysis they find that when
checking for fire and landscape characteristics, IMT assign-
ments accounted for 14% of the variation in resource allo-
cation, while teams in California were observed to be
associated with higher levels of resource.

Bayham et al. (2020) carried out an exploration of
resource deployment in the Western US from 2007 to
2013, delving into the impact of weather over the course
of a fire on resource orders on incidents. They found that
IMT anticipation of fire growth is influenced by expected
weather which in turn affects resource orders, making the
weather a primary driver of orders. They also tested other
risk metrics such as evacuations but found little associated
effect.

Our objective is to model the total personnel time
required by individual large wildland fire incidents, as
well as the number of personnel allocated on the peak day
of usage. We estimate these quantities solely using charac-
teristics which are observable at the time and place of
ignition — rather than information gathered in the duration
or at the conclusion of the fire event. We aim to support
decision makers assessing which ignitions evolve into inci-
dents with significant demand on suppression resources
such as personnel, equipment and leadership. The identifi-
cation of significant precursors, particularly those related to
human and fuels factors, may inform and instigate medium

term change in policy and management areas such as land
use and zoning, fuels reduction and management, or agency
interactions and leadership. Finally, while precursors
related to fire weather or climate are only alterable on
substantially longer time scales than those related to
human or landscape processes, knowledge of the relative
significance and role of these in fire danger may have an
important influence on longer term decision contexts.

Methodology

We develop a framework to integrate the human, fire
weather and fuels factors and conditions that might impact
resource use, compile a dataset that reflects those factors,
and then fit statistical models to estimate total and peak
resource use for ignitions in the Western US for fire seasons
2017-2020. As outlined above, our analysis is restricted to
precursors known at the time and place of ignition to ensure
relevance in support of decision-making during fire response.
Our approach is designed to identify the drivers of personnel
use to better inform risk management.

Framework

We developed a conceptual framework of the drivers of per-
sonnel use that are observable at the time of ignition (Fig. 1).
The framework categorises the precursor variables used in our
analysis by indicating their relationship to human, fire
weather and/or fuel factors. This framework is intended to

suppression
difficulty

Human or lightning caused
within WUI

Canopy cover
Anderson 13 fuel model

past fire

Preparedness
level (GACC and
national)

Fire weather index

FIRE WEATHER

Fig. 1. Conceptual Venn diagram framework capturing the main
drivers of personnel use. Each circle presents a thematic category:
human (blue), fuels (green), and fire weather (red). Specific drivers
which are included in this analysis are placed in the appropriate
categories within the Venn diagram. Acronyms: Geographic Area
Coordination Center (GACC), Wildland-Urban Interface (WUI).
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support the interpretation and application of our results to
decision making by reflecting the extent to which human,
ecosystem and planetary systemic behaviours influence poten-
tial drivers of resource use. The variables in the framework
were chosen to support our multivariate regression based on
previous research which investigated the drivers of wildland
fire suppression costs (see section 2) and thus were hypothe-
sised to have a relationship with personnel deployment.

Data

Our outcome variables reflect the level of personnel use and
deployment in the Western US for fire seasons from 2017 to
2020 and include (1) total personnel-days on an individual
fire incident and (2) peak personnel deployed on an individ-
ual incident on the day of peak use. These data are gathered
from assignments archived within dispatching software,
specifically, the Resource Ordering and Status System
(ROSS 2017-2019) and the Interagency Resource Ordering
Capability (ROSS/IROC (Resource Ordering and Status
System/Interagency Resource Ordering Capability) 2022).
Assignments are archived for all crew, equipment, overhead,
and aerial resources ordered to a fire. Both total and peak
personnel deployment count distributions are characterised
by long righthand tails and thus were log-transformed in
order to meet the assumptions required to fit a traditional
Gaussian regression model (Fig. 2).

Data are leveraged from multiple sources. Data from the
European Centre for Medium-Range Weather Forecasts
Reanalysis version 5 (ERA5 2023) support characterisation
of fire weather conditions using information drawn from the
Canadian Fire Weather Index (FWI) System (Van Wagner
1987) coincident with the ignition date and the three prior
days (see Table 1 for details). Data related to the human and
fuels themes are pulled from the Fire Occurrence Database
Plus (FOD Plus; Pourmohamad et al. 2023), LANDFIRE,
IMSR, and datasets from the US Geological Survey (USGS).
Table 1 provides an overview of each specific factor name, a
short description of the factor, and the source from which we
obtained the data, while summary statistics are presented in
the Appendix 1. Specifically, the human factors we identified
as potential drivers of resource use include the fire cause, i.e.
human or lightning (Short 2022), and whether the ignition
occurs within an area classified as either interface or inter-
mix WUI (Radeloff et al. 2018). Managing agency for the fire
and the suppression difficulty index (SDI) (Pourmohamad
et al. 2023) are part of both the human and fuels themes.
Similarly, preparedness level (PL) on day of ignition
(Pourmohamad et al. 2023) is part of the human and fire
weather themes. Fuel model (Landfire 2023a) and canopy
cover (Landfire 2023b) are both solely in the fuels category.
The Geographic Area Coordination Center (GACC, see Fig. 3)
with which the ignition location, and whether there was a
fire at the ignition location in the past 10 years, are associ-
ated with all three major thematic categories.

The sample used to fit the statistical model is composed
of fire incidents occurring in Western GACCs occurring
during the period 2017-2020, for which at least one
ICS209 record exists (St. Denis et al. 2023). ICS209 records
are created for fires that exceed 100 acres (40 ha) in timber,
300 acres (120 ha) in grass and brush, or has a Type 1 or 2
incident management team assigned; thus, our data only
includes fires that were not contained by an initial response
effort. Western GACCs include the Pacific Northwest,
Northern California, Southern California, Rocky Mountain,
Northern Rockies, Southwest, and Great Basin (see Fig. 3 for
spatial boundaries.) This time window is narrowed to allow a
focus on recent fire seasons, acknowledging that personnel
deployment and use has changed substantially over time.
Only individual fire incidents were included, while complexes
were filtered out. This step was taken because complexes
merge multiple ignition points into a single management
unit and thus it is not possible to attribute personnel use to
each individual ignition point. The sample was restricted to
fires for which ground personnel or overhead personnel were
deployed, those with only aerial personnel assigned were
excluded. The filtering process yielded a sample of 1941
fires available for analysis (see Fig. 4).

Spatial locations of ignition points are displayed by year
between 2017 and 2020 in Fig. 4. Note that we do not use
year as a precursor in the regression analysis because the
intensity of a particular year/season and its influence on
resource demand and deployment is not discernable until
the fire season has concluded (and we restrict our analysis to
factors that are observable on the day of ignition). We
display the data by year to give a sense of the variability
of the timing and intensity of fire seasons experienced in the
Western US during the temporal scope of our analysis.

Statistical modelling approach

To model the impact of potential drivers on personnel use, we
use a multivariate linear regression approach, specifically
Ordinary Least Squares (OLS), to explore the association of
personnel use with human, fire weather and fuels factors and
conditions at the point and time of ignition. This facilitates
comparison with existing literature on cost drivers (e.g.
Gebert et al. 2007; Yoder and Gebert 2012; Gude et al
2013; Hand et al. 2014, 2016; Belval et al. 2019; Bayham
and Yoder 2020). Like suppression costs, the distribution of
resource use on large fires is strictly positive and not normally
distributed, while being characterised by a long righthand tail
(see Fig. 2). Thus, we transformed the response variables
(total personnel and peak personnel) using the log function
(Ives 2015; Knief and Forstmeier 2021). There were no zeros
or negative values in the response data, so there was no need
for any additional modification. We considered the use of a
generalised linear mixed model to directly account for the
non-normality of the data within the modelling framework,
using both a negative binomial and a Poisson response
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Fig. 2. Histograms for count of Total and Peak Personnel on individual fire incidents (2017-2020) in the Western US. Lefthand panels

display raw counts, righthand panels display log-transformed counts.

distribution (see O’Hara and Kotze 2010 and St-Pierre et al.
2018). The regression analysis was carried out using the Im
function in R core Team with model diagnostics completed
using the DHARMa package (Hartig 2022). We found that the
OLS model based on log transformed data resulted in a better
fit as gauged by diagnostic residual analysis. For additional
checks on model robustness, we reviewed AIC (Akaike

Information Criterion) for analytic information about model
selection and goodness of fit. Separately we carried out a
stepwise regression to explore further whether the theoretical
basis for inclusion of variables had implications for statistical
efficiency. Finally, we partitioned our dataset into a training
set and a testing set to check for outliers with undue influence
through residual analysis.
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Table 1.

Descriptions and source information for precursor variables.

Variable

Description

Source

Total Personnel

Peak Personnel

Agency

GACC

PL

Cause

SDI

Fire Weather Index (FWI)

The number of total personnel days assigned, including ground and
overhead but excluding aerial personnel on a fire incident.

The number of total personnel assigned, including ground and
overhead but excluding aerial personnel, on the day of peak
personnel use

Managing agency

Reference category:

FS = US Forest Service

DOI = US Department of the Interior
Interagency = Multiple agencies
State = State level agency
Geographic Area Coordination Center encompassing the point of
ignition

Reference category:

NWCC = Pacific Northwest

ONCC = Northern California

OSCC = Southern California

RMCC = Rocky Mountain

NRCC = Northern Rockies

SWCC = Southwest

GBCC = Great Basin

Preparedness Level assigned by NIFC on the day of ignition, related
to planning, organisational readiness, burning conditions, fire
activity, and resource availability.

PLs range from 1to 5, with PL at level 4 or 5 reflecting a high level
of deployment and competition for resources

PL GACC =1if the PL for the GACC encompassing the ignition is at
4 or 5, and = 0 otherwise.

National PL = 1 if the PL for the nation is 4 or 5 at the time of
ignition, and = 0 otherwise.

Cause of Ignition

Reference category: Natural + Other = Fire started naturally
(lightning), or cause is unknown. Human = Fire caused by human
activity or behaviour

Suppression Difficulty Index (SDI) at the point of ignition
integrating information about topography, fuels, expected fire
behaviour with 15 mph upslope winds and fully cured fuels,
firefighter line production rates given fuel conditions, and
accessibility (distance from roads/trails).

SDI is a static variable taking a continuous value between 1and 10,
with higher values reflecting higher suppression difficulty.

Percentile in the historic FWI distribution 2001-2020 corresponding
to the average FWI at the ignition point during a 4 day window,
including the 3 days prior to ignition and the day of ignition. In this
analysis the FWI serves as a proxy for potential fireline intensity
dictated by fire weather. Note: the FWI values used in this analysis

ROSS/IROC (Resource Ordering and Status System/
Interagency Resource Ordering Capability) (2022)

ROSS/IROC (Resource Ordering and Status System/
Interagency Resource Ordering Capability) (2022)

Pourmohamad et al. (2023)

ROSS/IROC (Resource Ordering and Status System/
Interagency Resource Ordering Capability) (2022)

Pourmohamad et al. (2023)

Pourmohamad et al. (2023)

Pourmohamad et al. (2023)

ERAS (2023), https://www.ecmwf.int/en/forecasts/
dataset/ecmwf-reanalysis-v5

Hersbach et al. (2020)

Canadian Fire Weather Index (FWI) System, Van
Wagner (1987)

(Continued on next page)
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Table 1. (Continued)
Variable Description Source
are drawn from the Fire Weather Index indicator itself from within
the Canadian FWI system.
Past Fire Past fire at the ignition point Welty and Jeffries (2021)

Canopy Cover

Anderson 13

Wildland-Urban
Interface (WUI)

Reference category: No past fire or past fire more than 10 years
prior to ignition

Past Fire within 010 years (Y = 1)

USGS data establish most recent past fire perimeters at point of
ignition including wildfire and prescribed burning.

Canopy cover is assigned given the average percent cover of the
tree canopy in a 1 mile radius around ignition point, to the midpoint
of binned values as follows: Bucket raster cells as 10-20%, 20-30%,
etc. for percent cover, then assign canopy cover as the value of the
midpoint of its corresponding bucket, i.e. 10-20% = 15. For
consistency canopy cover data are taken at the point of ignition
for the closest year (2014) that preceded our window.

Anderson 13 fuel models for fire behaviour reflect fuel type at
ignition point. Values are extracted from LandFire. Fuel models are
categorised into 4 main vegetation groups, plus 3 additional groups,
according to Anderson (1982).

Reference category: Grass
Slash (Y =1)

Timber (Y =1)

Shrub (Y =1)

Agriculture (Y =1)

Barren (Y =1)

Urban (Y =1)

The WUI variable reflects whether ignition occurs within the WU,
and in particular within an interface or intermix area.

0 = not within WUI

1 = within interface WUI

2 = within intermix WUI

Intermix = at least 50% vegetation cover surrounding buildings

Interface = buildings are within 2.4 km of a patch of vegetation at
least 5 km? in size that contains at least 75% vegetation

USGS and GIS calculation of distance from ignition point to
nearest WUI polygon, where distance = 0 implies ignition
within WUL.

https://www.sciencebase.gov/catalog/item/
61aa537dd34eb622f699df81

Landfire (2023b)

https://www.landfire.gov/cc.php

Anderson (1982)

https://www.fs.usda.gov/rm/pubs_int/int_gtr122.pdf
Landfire (2023a)
https://www.landfire.gov/fbfm13.php

Carlson et al. (2022)

https://www.sciencebase.gov/catalog/item/
617bfb43d34ea58c3c70038f

Results

We present results of two regression models to assess relation-
ships between total personnel and peak personnel assigned to
fire incidents and key precursors related to human, fire
weather or fuel factors as outlined below. Table 2 presents
the coefficients (f3), associated standard errors and P-values
relating precursors to the log-transformed outcome variables
(i.e. log(total personnel) and log(peak personnel), as well as
the interpreted percentage differential in expected personnel

assignments (i.e. 100 X (1 — exp(B))). Our models for
total personnel (F-value = 27.8) and peak personnel
(F-value = 28.2) both explain approximately 26% of the
variance in resource use and are statistically significant
(P < 0.001). A separate stepwise model excluded almost
none of the statistically non-significant variables included in
our full model. Specifically, the stepwise regression retained
variables representing SDI, managing agency, human versus
lightning caused fire, vegetation categories and preparedness
level for at least one of our two outcome variables, regardless

7
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Fig. 3. The spatial boundaries associated with
the nine Geographic Area Coordination Centers
(GACCs) that cover the continental United States.
In this analysis, we did not consider fires that

e 1000

e 10,000
® 25,000 @ 90,000

Total personnel used

Ignition day of year Jan Dec
Fig. 4. Fire incidents in the sample from years 2017 through 2020.
Each panel represents 1 year of data, while each marker represents
one fire incident. The size of the marker reflects the total personnel
used in each incident while the colour of the marker represents the
day of ignition recorded in the ROSS/IROC dataset.

of P-value. Additionally, applying a stepwise approach did not
improve observed explanatory power, i.e. R did not increase,
and the AIC (Akaike Information Criterion) was approxi-
mately the same. For these reasons, and reasons of theoretical
defensibility, we present the full models here rather than
stepwise models or other models excluding non-significant
variables more generally. Additionally, regression residuals

T
80°W ignited within the Eastern or Southern GACCs.

were examined and found to be normally distributed, consist-
ent with the assumptions underlying linear regression. Finally,
validation by partitioning the dataset into training (80%) and
testing (20%) segments found nearly identical results to the
full model fit we present in terms of R?, AIC, model coeffi-
cients and residuals.

The GACC where the ignition occurred and the agency
which manages the incident are both found to be significant
predictors of personnel counts. Relative to the Pacific
Northwest, ignitions in California are on average associated
with statistically significantly higher total personnel counts
(138% higher for Northern California and 387.9% higher for
Southern California) while ignitions in other locations are
associated with lower personnel counts (Rocky Mountain
48.5% lower, Northern Rockies 65.7% lower, and Great
Basin 31.1% lower). For peak personnel counts we see
similar patterns with California ignitions associated with
higher peak personnel assignments than in the Northwest
(144.7% higher for Northern California and 340.6% higher
for Southern California) while other locations are associated
with lower counts on average (Rocky Mountain 35.3% lower
and Northern Rockies 63.2% lower). Regarding managing
agency relative to ignitions managed by the Forest Service,
Interagency-managed ignitions are associated with on aver-
age 25.6% lower peak personnel counts. In contrast, fires
managed by the Department of the Interior (DOI) are asso-
ciated with 34.9% higher total personnel counts and 32.5%
higher peak personnel counts.

We also observe statistically significant relationships
between climatological precursors and assigned personnel
counts. FWI observed for the 4-day window prior to, and
including, the day of ignition as a percentile of the historic
distribution at the point of ignition, is observed to be sig-
nificantly associated with personnel counts. Each additional
percentile relative to the historic distribution of FWI
(e.g. increase from g3 percentile to g4t percentile), is

8
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Table 2. Regression models for total personnel and peak personnel deployment.

Input Variables

Log(Total Personnel)

Log(Peak Personnel)

p (s.e) % p (s.e) %
DOI (Ref = FS) 0.299°** (0.152)° 34.9¢ 0.281** (0.122) 325
Interagency -0.125 (0.147) -1.8 -0.295** (0.117) -25.6
State Agency 0.069 (0.181) 71 0.224 (0.145) 251
GACC ONCC (Ref = NWCC) 0.867%** (0.191) 138.0 0.895%** (0.152) 1447
GACC OSCC 1.585*** (0.174) 387.9 1.483*** (0.139) 340.6
GACC RMCC -0.485*** (0.169) -38.4 -0.436*** (0.135) -353
GACC NRCC -1.071%** (0.160) -65.7 -0.999*** (0.128) -63.2
GACC SwWcCC 0.004 (0.154) 0.4 -0.193 (0.123) -17.6
GACC GBCC -0.372*** (0.129) =311 -0.228** (0.103) -204
PL GACC = 4/5 (Y = 1) -0.056 (0.110) 55 -0.011 (0.088) -1
National PL = 4/5 (Y = 1) 0.014 (0.098) 14 -0.104 (0.078) -99
Human Caused (Ref = Natural + Unknown) 0.007 (0.087) 07 0.104 (0.069) n.0
Suppression Difficulty Index 0.145 (0.125) 15.6 0.035 (0.100) 3.6
Ignition FWI Percentile 0.011*** (0.002) 11 0.009*** (0.002) 0.9
AT3 — Agriculture (Ref = Grass) 0.116 (0.389) 23 0.036 (0.31) 37
Al3 — Barren -0.045 (0.28]) 44 -0.115 (0.225) -10.9
AT3 — Shrub 0.234** (0103) 264 0.178** (0.082) 195
Al13 — Slash -1.179 (1.019) -69.2 -1.936** (0.814) -85.6
AT3 — Timber 0.239% (0.133) 27.0 0.114 (0.106) 121
A3 — Urban 0.026 (0.168) 26 0.140 (0.135) 15.0
Past Fire w/in 10 years (Y = 1) -0.269%* (0.130) 2236 -0.208** (0.104) -18.8
Canopy Cover% w/in 1 Mile 0.039*** (0.003) 40 0.019*** (0.003) 1.9
WUl-Interface (Ref = Not within WUI) 0.859** (0.337) 1361 0.596** (0.269) 815
WUI-Intermix 0.371*** (0.144) 44.9 0.489*** (0.115) 63.1

(Intercept)

R?, F-value, model signif.

4100%%* (0.278)

R? = 0.26, F(24,1916) = 27.8%**
AIC = 769471, BIC = 7839.56

3.056*** (0.222)
R? = 0.26, F(24,1916) = 28.2%+*
AIC = 6823.8], BIC = 6968.65

***%P < 0.01; **P < 0.05; * P < 0.1, N = 1941.

A relating input variable with log(outcome variable).

B(s.e. or standard error) for f.
%, i.e. 100%(1 - exp(p)).

associated with on average 1.1% higher counts in total
personnel assignments, and 0.9% higher counts for peak
personnel, holding all other variables at their means and
categorical variables at their reference levels.

With regard to fuels factors, we test both canopy cover
and fuel category. Each percent increase in canopy cover
averaged over a 1-mile radius around the ignition point is
associated with a statistically significant increase of 4% in
total personnel and 1.9% in peak personnel. Turning to
Anderson 13 categories, compared with grass as the refer-
ence category, characterisation of the ignition point as
Shrub is associated with 26.4% higher total personnel

assignment and 19.5% higher peak personnel assignment,
while categorisation as Slash is associated with 85.6% lower
peak personnel assignment.

Fire within the past 10 years at the point of ignition is
associated with a statistically significant lower count in
terms of total personnel assigned (23.6% lower) and peak
personnel assigned (18.8% lower). Finally, a WUI designa-
tion at the point of ignition is associated with a statistically
significant increase in personnel counts relative to non-WUIL.
WUI Interface categorisation is associated with 136.1%
higher total personnel assignment and 81.5% higher peak
personnel assignment, while WUI intermix categorisation is
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associated with 44.9% higher total personnel assignment
and 63.1% higher peak personnel assignment.

Discussion

Our analysis yields statistically significant linear regression
models for both total personnel use and peak personnel use
related to fire response in the Western US explaining 26% of
observed variance and relying solely on precursors that are
observable at the time and place of ignition. The most signif-
icant and impactful precursors are geographic location (rep-
resented by GACC), FWI, canopy cover, WUI category and a
history of recent fire on the landscape. These results align
partially with, but are distinct from, prior studies which (as
mentioned above) focus on modelling expenditures related
to suppression and include precursors such as total burned
area which becomes observable only after an incident.

Fire weather has a pronounced effect on fire behaviour
and resource demand in our results. Our model includes two
precursors representing the influence of weather. We find
that personnel use increased significantly with FWI percent-
ile. Locally, extreme fire weather conditions concurrent with
the ignition date have been shown to be linked with a
variety of fire impacts including eventual fire size (Riley
et al. 2013; Jolly et al. 2019). This result also tracks with
several regression models estimating suppression costs that
include energy release component or growth potential as the
fire weather indices in the model (i.e. Gebert et al. 2007;
Yoder and Gebert 2012; Gude et al. 2013; Hand et al. 2016;
Belval et al. 2019; Bayham et al. 2020), as well as the Hand
et al. (2017) findings indicating that resource use is associ-
ated with fire evolution and also with fire weather. While not
revealing a statistically significant association with peak
personnel use, national and GACC PL do exhibit a negative
sign on the fitted coefficient, suggesting a reduction in peak
deployment for ignitions which occur during periods in
which intense resource competition at the regional and
national scale is already being experienced. The importance
of fire weather aligns with the impact of simultaneous
demand across the whole response system on specific days,
a situation which is strongly influenced by larger scale
climate/weather anomalies (Abatzoglou et al. 2021).

Further, these results shed light on the potential impacts
of increasing competition for resources over time. This com-
petition is driven in part by a relatively small number of
large fires that commandeer significant resources (Thompson
et al. 2023). Given that future climate projections suggest an
increase in the number of simultaneous and significant fires
that compete for finite response and management resources
(Podschwit and Cullen 2020; McGinnis et al. 2023), this
work supports decision making about resource sharing, plan-
ning and prioritisation.

Location represented by GACC is observed to be a highly
significant precursor in the resource use models presented

here. Resource use is significantly higher for wildfire igni-
tions in California GACCs in this analysis, in alignment with
results reported in related research (Wei et al. 2020). This
finding may indicate that fire response is approached differ-
ently in the California geography given the presence of CAL
FIRE (California Department of Forestry and Fire Protection)
operations. A distinct signal for California was similarly
reported by Hand et al. (2017) and Hand et al. (2016).
Interestingly, several other regions are associated with
reduced levels of resource assignment on average, including
Northern Rockies, Rocky Mountain and Great Basin (for total
personnel only), even though our models are controlled for
fire weather and the presence or absence of people and
property through WUI categories. The presence and influ-
ence of different agencies in these regions may be driving
some of this difference. For example, CAL FIRE is the second
largest wildland firefighter organisation in the world with a
mission that aligns with aggressive suppression actions,
which often require substantial personnel and equipment.
Likewise, approximately half of the population living in the
WUI in the Western US resides in the state of California
(Radeloff et al. 2018) contributing to California’s overall
elevated risk and resource demand.

We find that resource use is positively associated with the
extent of canopy cover while resource use is negatively
associated with a history of past fire (which serves to reduce
fuel load) on the landscape. This result suggests the impor-
tance of fuel abundance and availability in contributing to
the evolution of an incident from an ignition to a heavy use
of personnel. We further include Anderson 13 fuel category
as a predictor (e.g. timber, slash, shrub) despite its lack of
statistical significance when canopy cover is controlled. The
inclusion of both precursors, even though some fuel types
are consistent with canopy cover while others are not, rep-
resents an acknowledgement that there may be contexts
where both fuel type and canopy cover are important pre-
cursors for resource use. Earlier work by Gude et al. (2013)
also considered the role of fuels in explaining variance in
resource use, and found that the percentage of forest in a
final fire perimeter is associated with a decrease in daily
suppression expenditures. Gebert et al. (2007), Yoder and
Gebert (2012), Hand et al. (2016) and Belval et al. (2019)
also found fuels to be important. We would note that these
previous approaches included different model outcomes
(suppression expenditure) and examined precursors such
as final fire perimeter known only after the incident had
concluded. In addition, some models used a different unit of
analysis (day) and a different precursor representing fuel
(percentage of forest/wildland rather than canopy cover).
All of these represent substantial differences relative to our
analysis.

Turning to consideration of people and property we find
that ignition within a WUI area is associated with an
increase in both total and peak resource use when compared
with ignition outside of a WUI area. The presence of people
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and property in close proximity to ignitions has been estab-
lished previously as significantly associated with personnel
deployment, which is in alignment with our findings. For
example, Gebert et al. (2007), Hand et al. (2016), Gude et al.
(2013), Belval et al. (2019) and Bayham and Yoder (2020)
find that fire proximity to homes increases expenditures and
changes resource allocation. Interestingly we do not find SDI
and ignition cause (human vs lightning) to be statistically
significantly associated with resource use, although this
result may be due to the model controlling for location
and WUI status, both of which represent the presence or
absence of people and property.

We acknowledge that our models leave substantial
unexplained variance, a result which is also consistent
with previous related work. One possible interpretation of
this result is that it is difficult to account for the impact of
temporal behaviour as fires evolve. This is true whether one
focuses on individual fire incidents as we do, or daily out-
comes such as those examined by Hand et al. (2016). We
acknowledge that while our model focuses on total person-
nel which are aggregated across a whole fire incident, and
also peak personnel on the day of maximum use, the evolu-
tion of fire incidents over time plays an important role in
resource demand and deployment.

Finally, the role of the managing agency in resource
demand is found to have several significant associations
with personnel deployment. Fires managed by the US
Department of Interior are found to be associated with
higher levels of total and peak personnel use relative to
those managed by the US Forest Service, a result which
aligns with the impact of agency found in models of suppres-
sion costs. By contrast, we find that interagency managed
fires are associated with lower peak personnel deployment
relative to those managed by the Forest Service. Examining
this result a bit further we compared the number of total and
peak personnel on each fire in our sample (from archived
dispatching records) to the number of personnel recorded in
the ICS-209s. In the ICS-209 records we found additional
resources recorded for interagency fires beyond those which
were included in the archived dispatching records, while US
Forest Service fires appear to have relatively complete dis-
patching records of personnel. This discrepancy aligns with
findings in existing literature that interagency fires appear to
use resources that are not archived or captured by the inter-
agency wildfire dispatching system (USDA (United States
Department of Agriculture) 2023).

The data used in this study open several avenues of future
research that might be developed to examine additional ques-
tions regarding personnel use and deployment. For example,
models might be developed to examine specific personnel
types and compared with the presented model to see what
precursors are associated with relatively higher use of equip-
ment (i.e. engines and bulldozers) or crews. Future work
might also investigate daily use of personnel. While the data
compiled did not include daily observations, other datasets do

support such analyses. Finally, future research might investi-
gate the use of tools to model nonlinear relationships. We
leave these areas as next steps for future studies.

Conclusions

This research identifies the key characteristics of ignitions
that are likely to evolve into substantial uses of personnel
both across the life of the incident and also on the day of
peak deployment. The most significant and impactful pre-
cursors are found to be geographic location (with California
associated with the most substantially elevated deploy-
ments), fire weather, canopy cover, the presence of people
and property as indicated by WUI status, and a history of
past fire on the landscape. All these precursors are observ-
able at the time and place of ignition and in advance of
containment or extinction of the incident. The models were
designed using only precursor variables in order to provide
historical context and enhanced understanding of personnel
use on individual fires to support a wide variety of policies
and management decisions such as staffing levels, resource
sharing agreements, land use and zoning, and fuels reduc-
tion and management. Combining the results of this
research with other studies such as projections of climate
change or fuels management effects on fire behaviour allows
managers to explore the potential impacts of these changes
on personnel use. Finally, for precursors for which policy
and management levels may exert influence — for example
WUI status through zoning or history of fire on the land-
scape through prescribed burning - these results provide
support for taking proactive steps to reduce the long-term
risk associated with wildfire and its impacts.
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Appendix 1.

Summary statistics for precursor input variables

Variable Mean s.d. Median Min Max
Total Personnel 1661 5284.56 277 1 90598
Peak Personnel 180.9 363.07 65 1 4832
FWI Percentile 82.54 13.27 86 12 99
SDI 0.30 0.36 0.16 0 2.59
Canopy Cover 12.24 16.52 3.06 0 74.88
Anderson 13 Count %

Grass 808 42

Agriculture 21 1

Barren 4 2

Shrub 504 26

Slash 3 0

Timber 393 20

Urban 7 9

Total 1941

GACC Count %

OR-NWC 294 15

CA-ONCC 134 7

CA-OsCC 193 10

CO-RMC 178 9

MT-NRC 217 |l

NM-SWC 307 16

UT-GBC 618 32

Total 1941

(Continued on next page)
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Variable Mean s.d. Median Min Max
Past Fire Count %
No Past Fire 1729 89
Fire Within Past 10 Years 212 1
Total 1941

Within WUI Count %
Not WUI 1714 88
interface 31 2
intermix 196 10
Total 1941

Agency Count %
FS 221 1l
DOI 834 43
1A 664 34
ST 222 il
Total 1941

Cause Count %
Natural or Other 1194 62
Human 747 38
Total 1941

PL GACC High (4/5) Count %
0 1506 78
1 435 22
Total 1941

PL National High (4/5) Count %
0 143 59
1 798 41
Total 1941




