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ABSTRACT 

Background. As fire seasons in the Western US intensify and lengthen, fire managers have been 
grappling with increases in simultaneous, significant incidents that compete for response 
resources and strain capacity of the current system. Aims. To address this challenge, we explore 
a key research question: what precursors are associated with ignitions that evolve into incidents 
requiring high levels of response personnel? Methods. We develop statistical models linking 
human, fire weather and fuels related factors with cumulative and peak personnel deployed. Key 
results. Our analysis generates statistically significant models for personnel deployment based on 
precursors observable at the time and place of ignition. Conclusions. We find that significant 
precursors for fire suppression resource deployment are location, fire weather, canopy cover, 
Wildland–Urban Interface category, and history of past fire. These results align partially with, but 
are distinct from, results of earlier research modelling expenditures related to suppression which 
include precursors such as total burned area which become observable only after an incident. 
Implications. Understanding factors associated with both the natural system and the human 
system of decision-making that accompany high deployment fires supports holistic risk manage-
ment given increasing simultaneity of ignitions and competition for resources for both fuel 
treatment and wildfire response.  

Keywords: Firefighters, Linear regression, Simultaneous wildfire, Suppression personnel competition, 
Wildfire management, Wildfire response personnel deployment, Wildfire suppression resource. 

Introduction 

As fire seasons in the Western US intensify and lengthen, fire managers have been 

grappling with increases in the period during which simultaneous, significant incidents 

compete for wildfire response resources which in some cases outstrip preparedness and 

strain the capacity of the current system (Podschwit et al. 2019; Podschwit and Cullen 

2020; Abatzoglou et al. 2021; Shuman et al. 2022; Cullen et al. 2023; Thompson et al. 

2023). This management challenge leads us to explore a key research question: what 

precursors on the day of ignition are associated with wildland fires that evolve into 

incidents requiring high levels of response and suppression personnel? Answering this 

question is a pivotal step in supporting risk-informed decision making in the response to 

wildland fire. Our research seeks to establish the relationship between human, fire 

weather and fuels related factors that influence wildfire danger and their impact on 

the evolution of ignitions to become significant users of fire suppression response 

personnel. This analysis supports identification of the specific characteristics and scenar-

ios, which have led ignitions to evolve into resource intensive incidents, and thus 

provides the agencies with wildland fire responsibilities information about preparedness, 

as well as proactive and reactive risk mitigation (Cullen et al. 2021). Understanding both 

the natural system and the systems of decision-making that accompany fires which 

require substantial deployments of response personnel supports holistic risk management 

in an era of increasing simultaneity of ignitions and competition for resources for both 

fuel treatment and wildfire response (Thompson et al. 2023). 
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Wildland fire danger and incidence have intensified over 

the last half-century largely as a result of three categories of 

factors: (1) human presence and actions related to land use 

(Balch et al. 2017; Radeloff et al. 2018), (2) a changing 

climate (Abatzoglou and Williams 2016; Abatzoglou et al. 

2021), and (3) fuel buildup and composition due to long 

standing fire suppression policy and due to the influence of 

climate change on species and stand composition (Haugo 

et al. 2019). Our research is targeted to identify significant 

factors associated with elevated resource use and subse-

quent increases in competition to support decision making 

about resource planning, sharing and prioritisation. 

Background and literature review 

The interagency wildland fire response system in the United 

States is managed at four levels: the incident, the local 

dispatching area, the geographic area, and the national 

level (Belval et al. 2022). The initial response to wildland 

fires is typically managed at the incident and local levels. 

Local dispatch centres are equipped with a set of standard 

response protocols used when responding to initial fire 

reports under different weather conditions. The majority 

of fires in the US (about 97%) are controlled during the 

initial response phase, when the fire is smaller than 100 or 

300 acres depending on category, by personnel dispatched 

by the local centre (Calkin et al. 2005). The fires that escape 

initial attack require extended response, which includes 

additional personnel, and some grow into large fires (gener-

ally defined as over 100 acres in timber fuels, 300 acres in 

grass and brush fuels) (St. Denis et al. 2023). Fires that 

continue to grow and require additional resources are man-

aged by Incident Management Teams (IMTs). Historically, 

the most complex fires requiring the highest levels of per-

sonnel have been managed by Type 1 and Type 2 IMTs, with 

Type 1 teams managing the most complex fires. The man-

agement of these fires can require up to thousands of people 

per day, with IMTs managing the personnel, the heavy 

ground equipment (fire engines, bulldozers), overhead sup-

port (i.e. management personnel) and sometimes aerial 

equipment (airtankers and helicopters). Depending upon 

the agency managing the fire, fire management goals and 

strategies may vary substantially. However, because wild-

land fire response is an interagency system, large fires typi-

cally utilise personnel and equipment supplied by multiple 

agencies. Because these fires can have a substantial impact 

on the capacity of the wildfire response system (Thompson 

et al. 2023), the assignment of resources to these fires is 

overseen by Geographic Area Coordination Centers. During 

times of personnel and equipment scarcity, distribution of 

personnel and equipment between Geographic Areas is man-

aged by the National Interagency Coordination Center. 

Previous research related to this topic has been focused 

largely on characterising suppression costs and expenditures 

(Gebert et al. 2007; Yoder and Gebert 2012; Hand et al. 

2014, 2016; Belval et al. 2019 and others as detailed below). 

While expenditures are related to personnel counts and 

deployments, efforts to quantify the number of personnel 

are needed in order to link suppression costs to the associated 

workforce capacity (Bayham and Yoder 2020). Workforce 

capacity is particularly relevant as funds to cover suppression 

costs are fungible, while the pool of highly skilled personnel 

needed for wildland fire suppression is both limited and non- 

fungible in the short term. Fires that have a substantially high 

demand for personnel and equipment can have a substantial 

impact on the readiness of the entire wildland fire response 

system (Thompson et al. 2023). Additionally, because these 

earlier analyses aimed to examine suppression costs while 

considering management decisions during fire incidents, 

they typically take into account both factors that would be 

observable at the time and place of ignition and also those 

that are only observable after the fact (e.g. total burned area). 

Although total burned area is certainly associated with 

resource demand for an incident, it is not observable until 

the blaze is extinguished and, additionally, there is debate in 

the literature about whether including fire size in such models 

introduces endogeneity issues (Gebert et al. 2007; Hand et al. 

2017). For these reasons our analysis of key precursors of 

ignitions that use a significant amount of personnel focuses 

on information and characteristics that are observable at the 

time and place of ignition. 

Gebert et al. (2007) developed a model to estimate 

expenditures on large USFS (US Forest Service) managed 

fires 1995–2004 (>300 acres, or >121 ha) with a goal of 

detecting extremely high cost fires, i.e. those responsible for 

1–2 standard deviations above the expected expenditure 

given other characteristics. For these exceptional fires they 

identify the importance of factors which fall outside of the 

model, for example the decision to fight fires more or less 

aggressively as a result of political factors. Yoder and Gebert 

(2012) built upon this foundation, modelling total and per 

acre fire suppression costs for large fires (>300 acres, or 

>121 ha) managed by the USFS and DOI (US Department of 

the Interior). They conclude that it is possible to develop a 

predictive model for cost/acre in the absence of specific 

burned area data, with the inclusion of influential factors 

including time (year and month), fuel type, location and 

terrain characteristics (slope, elevation and aspect). 

Hand et al. (2014) developed the Stratified Cost Index 

(SCI) based on data drawn from large fires (not deemed 

complex and >300 acres, i.e. >121 ha) in the Western 

US managed by the USFS using a spatial model based on 

final fire perimeters. The SCI supports forecasting of sup-

pression expenditures, exploration of the role of fire manag-

ers in related decisions and allows comparison of realised 

costs relative to expected costs. These comparisons open an 

opportunity to delve into the causes for such differences. In 

further work based on the same dataset, the team considered 

expenditure projection to support future budget decisions 
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(Hand et al. 2016) by comparing a model which relies solely 

on ignition point data and a model that incorporates the 

final spatial and temporal extent of the fire. They found that 

the latter model performs better due to its ability to adjust 

based on post hoc information about spread and burned 

area. This result has the potential to better support national 

level budgeting. A final iteration of this model added the 

footprint of previous fires to the variables, finding that 

previous fires may provide opportunities for suppression 

that might not otherwise exist, and thus may increase sup-

pression cost due to deployment of additional resources to 

capitalize on these new opportunities (Belval et al. 2019). 

Bayham and Yoder (2020) went a step further in model-

ling expenditures and resource allocation retrospectively 

based on a dynamic model (Arellano–Bond systems estima-

tor) and pulling in information about wildfire growth, area 

burned and home damage. They found that daily expendi-

tures and resource allocation are dynamic, with increases in 

expenditures associated with extreme fire growth potential 

of a fire and the presence of threatened homes. Gude et al. 

(2013) found that the presence of homes within 6 miles of 

an active fire increases daily suppression cost when looking 

at fires in California’s Sierra Nevada. 

Beyond cost and expenditure as metrics of resource use,  

Hand et al. (2017) consider instead the impact of IMTs 

(Incident Management Teams) on suppression personnel 

deployment numbers relative to the impact of underlying 

fire conditions. Their work focuses on Type 1 and Type 2 

IMTs assigned to fires occurring between 2007 and 2011 in 

the US. Using ‘days’ as a unit of analysis they find that when 

checking for fire and landscape characteristics, IMT assign-

ments accounted for 14% of the variation in resource allo-

cation, while teams in California were observed to be 

associated with higher levels of resource. 

Bayham et al. (2020) carried out an exploration of 

resource deployment in the Western US from 2007 to 

2013, delving into the impact of weather over the course 

of a fire on resource orders on incidents. They found that 

IMT anticipation of fire growth is influenced by expected 

weather which in turn affects resource orders, making the 

weather a primary driver of orders. They also tested other 

risk metrics such as evacuations but found little associated 

effect. 

Our objective is to model the total personnel time 

required by individual large wildland fire incidents, as 

well as the number of personnel allocated on the peak day 

of usage. We estimate these quantities solely using charac-

teristics which are observable at the time and place of 

ignition – rather than information gathered in the duration 

or at the conclusion of the fire event. We aim to support 

decision makers assessing which ignitions evolve into inci-

dents with significant demand on suppression resources 

such as personnel, equipment and leadership. The identifi-

cation of significant precursors, particularly those related to 

human and fuels factors, may inform and instigate medium 

term change in policy and management areas such as land 

use and zoning, fuels reduction and management, or agency 

interactions and leadership. Finally, while precursors 

related to fire weather or climate are only alterable on 

substantially longer time scales than those related to 

human or landscape processes, knowledge of the relative 

significance and role of these in fire danger may have an 

important influence on longer term decision contexts. 

Methodology 

We develop a framework to integrate the human, fire 

weather and fuels factors and conditions that might impact 

resource use, compile a dataset that reflects those factors, 

and then fit statistical models to estimate total and peak 

resource use for ignitions in the Western US for fire seasons 

2017–2020. As outlined above, our analysis is restricted to 

precursors known at the time and place of ignition to ensure 

relevance in support of decision-making during fire response. 

Our approach is designed to identify the drivers of personnel 

use to better inform risk management. 

Framework 

We developed a conceptual framework of the drivers of per-

sonnel use that are observable at the time of ignition (Fig. 1). 

The framework categorises the precursor variables used in our 

analysis by indicating their relationship to human, fire 

weather and/or fuel factors. This framework is intended to 

Human or lightning caused
within WUI

Canopy cover
Anderson 13 fuel model

GACC
past fire

Fire weather index

Preparedness
level (GACC and
national)

Managing
agency

suppression
difficulty

HUMAN

FIRE WEATHER

FUELS

Fig. 1. Conceptual Venn diagram framework capturing the main 
drivers of personnel use. Each circle presents a thematic category: 
human (blue), fuels (green), and fire weather (red). Specific drivers 
which are included in this analysis are placed in the appropriate 
categories within the Venn diagram. Acronyms: Geographic Area 
Coordination Center (GACC), Wildland–Urban Interface (WUI).   
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support the interpretation and application of our results to 

decision making by reflecting the extent to which human, 

ecosystem and planetary systemic behaviours influence poten-

tial drivers of resource use. The variables in the framework 

were chosen to support our multivariate regression based on 

previous research which investigated the drivers of wildland 

fire suppression costs (see section 2) and thus were hypothe-

sised to have a relationship with personnel deployment. 

Data 

Our outcome variables reflect the level of personnel use and 

deployment in the Western US for fire seasons from 2017 to 

2020 and include (1) total personnel-days on an individual 

fire incident and (2) peak personnel deployed on an individ-

ual incident on the day of peak use. These data are gathered 

from assignments archived within dispatching software, 

specifically, the Resource Ordering and Status System 

(ROSS 2017–2019) and the Interagency Resource Ordering 

Capability (ROSS/IROC (Resource Ordering and Status 

System/Interagency Resource Ordering Capability) 2022). 

Assignments are archived for all crew, equipment, overhead, 

and aerial resources ordered to a fire. Both total and peak 

personnel deployment count distributions are characterised 

by long righthand tails and thus were log-transformed in 

order to meet the assumptions required to fit a traditional 

Gaussian regression model (Fig. 2). 

Data are leveraged from multiple sources. Data from the 

European Centre for Medium-Range Weather Forecasts 

Reanalysis version 5 (ERA5 2023) support characterisation 

of fire weather conditions using information drawn from the 

Canadian Fire Weather Index (FWI) System (Van Wagner 

1987) coincident with the ignition date and the three prior 

days (see Table 1 for details). Data related to the human and 

fuels themes are pulled from the Fire Occurrence Database 

Plus (FOD Plus; Pourmohamad et al. 2023), LANDFIRE, 

IMSR, and datasets from the US Geological Survey (USGS).  

Table 1 provides an overview of each specific factor name, a 

short description of the factor, and the source from which we 

obtained the data, while summary statistics are presented in 

the Appendix 1. Specifically, the human factors we identified 

as potential drivers of resource use include the fire cause, i.e. 

human or lightning (Short 2022), and whether the ignition 

occurs within an area classified as either interface or inter-

mix WUI (Radeloff et al. 2018). Managing agency for the fire 

and the suppression difficulty index (SDI) (Pourmohamad 

et al. 2023) are part of both the human and fuels themes. 

Similarly, preparedness level (PL) on day of ignition 

(Pourmohamad et al. 2023) is part of the human and fire 

weather themes. Fuel model (Landfire 2023a) and canopy 

cover (Landfire 2023b) are both solely in the fuels category. 

The Geographic Area Coordination Center (GACC, see Fig. 3) 

with which the ignition location, and whether there was a 

fire at the ignition location in the past 10 years, are associ-

ated with all three major thematic categories. 

The sample used to fit the statistical model is composed 

of fire incidents occurring in Western GACCs occurring 

during the period 2017–2020, for which at least one 

ICS209 record exists (St. Denis et al. 2023). ICS209 records 

are created for fires that exceed 100 acres (40 ha) in timber, 

300 acres (120 ha) in grass and brush, or has a Type 1 or 2 

incident management team assigned; thus, our data only 

includes fires that were not contained by an initial response 

effort. Western GACCs include the Pacific Northwest, 

Northern California, Southern California, Rocky Mountain, 

Northern Rockies, Southwest, and Great Basin (see Fig. 3 for 

spatial boundaries.) This time window is narrowed to allow a 

focus on recent fire seasons, acknowledging that personnel 

deployment and use has changed substantially over time. 

Only individual fire incidents were included, while complexes 

were filtered out. This step was taken because complexes 

merge multiple ignition points into a single management 

unit and thus it is not possible to attribute personnel use to 

each individual ignition point. The sample was restricted to 

fires for which ground personnel or overhead personnel were 

deployed, those with only aerial personnel assigned were 

excluded. The filtering process yielded a sample of 1941 

fires available for analysis (see Fig. 4). 

Spatial locations of ignition points are displayed by year 

between 2017 and 2020 in Fig. 4. Note that we do not use 

year as a precursor in the regression analysis because the 

intensity of a particular year/season and its influence on 

resource demand and deployment is not discernable until 

the fire season has concluded (and we restrict our analysis to 

factors that are observable on the day of ignition). We 

display the data by year to give a sense of the variability 

of the timing and intensity of fire seasons experienced in the 

Western US during the temporal scope of our analysis. 

Statistical modelling approach 

To model the impact of potential drivers on personnel use, we 

use a multivariate linear regression approach, specifically 

Ordinary Least Squares (OLS), to explore the association of 

personnel use with human, fire weather and fuels factors and 

conditions at the point and time of ignition. This facilitates 

comparison with existing literature on cost drivers (e.g.  

Gebert et al. 2007; Yoder and Gebert 2012; Gude et al. 

2013; Hand et al. 2014, 2016; Belval et al. 2019; Bayham 

and Yoder 2020). Like suppression costs, the distribution of 

resource use on large fires is strictly positive and not normally 

distributed, while being characterised by a long righthand tail 

(see Fig. 2). Thus, we transformed the response variables 

(total personnel and peak personnel) using the log function 

(Ives 2015; Knief and Forstmeier 2021). There were no zeros 

or negative values in the response data, so there was no need 

for any additional modification. We considered the use of a 

generalised linear mixed model to directly account for the 

non-normality of the data within the modelling framework, 

using both a negative binomial and a Poisson response 
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distribution (see O’Hara and Kotze 2010 and St-Pierre et al. 

2018). The regression analysis was carried out using the lm 

function in R core Team with model diagnostics completed 

using the DHARMa package (Hartig 2022). We found that the 

OLS model based on log transformed data resulted in a better 

fit as gauged by diagnostic residual analysis. For additional 

checks on model robustness, we reviewed AIC (Akaike 

Information Criterion) for analytic information about model 

selection and goodness of fit. Separately we carried out a 

stepwise regression to explore further whether the theoretical 

basis for inclusion of variables had implications for statistical 

efficiency. Finally, we partitioned our dataset into a training 

set and a testing set to check for outliers with undue influence 

through residual analysis. 

Total personnel days
Wildfires 2017–2020

Count of personnel
on day of peak use

Wildfires 2017–2020

Log count of personnel
on day of peak use
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Log of total personnel days
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Fig. 2. Histograms for count of Total and Peak Personnel on individual fire incidents (2017–2020) in the Western US. Lefthand panels 
display raw counts, righthand panels display log-transformed counts.    
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Table 1. Descriptions and source information for precursor variables.     

Variable Description Source   

Total Personnel The number of total personnel days assigned, including ground and 
overhead but excluding aerial personnel on a fire incident.  

ROSS/IROC (Resource Ordering and Status System/ 
Interagency Resource Ordering Capability) (2022) 

Peak Personnel The number of total personnel assigned, including ground and 
overhead but excluding aerial personnel, on the day of peak 
personnel use  

ROSS/IROC (Resource Ordering and Status System/ 
Interagency Resource Ordering Capability) (2022) 

Agency Managing agency  Pourmohamad et al. (2023) 

Reference category: 

FS = US Forest Service 

DOI = US Department of the Interior 

Interagency = Multiple agencies 

State = State level agency 

GACC Geographic Area Coordination Center encompassing the point of 
ignition  

ROSS/IROC (Resource Ordering and Status System/ 
Interagency Resource Ordering Capability) (2022) 

Reference category:  

NWCC = Pacific Northwest 

ONCC = Northern California 

OSCC = Southern California 

RMCC = Rocky Mountain 

NRCC = Northern Rockies 

SWCC = Southwest 

GBCC = Great Basin 

PL Preparedness Level assigned by NIFC on the day of ignition, related 
to planning, organisational readiness, burning conditions, fire 
activity, and resource availability.  

Pourmohamad et al. (2023) 

PLs range from 1 to 5, with PL at level 4 or 5 reflecting a high level 
of deployment and competition for resources 

PL GACC = 1 if the PL for the GACC encompassing the ignition is at 
4 or 5, and = 0 otherwise. 

National PL = 1 if the PL for the nation is 4 or 5 at the time of 
ignition, and = 0 otherwise. 

Cause Cause of Ignition  Pourmohamad et al. (2023) 

Reference category: Natural + Other = Fire started naturally 
(lightning), or cause is unknown. Human = Fire caused by human 
activity or behaviour 

SDI Suppression Difficulty Index (SDI) at the point of ignition 
integrating information about topography, fuels, expected fire 
behaviour with 15 mph upslope winds and fully cured fuels, 
firefighter line production rates given fuel conditions, and 
accessibility (distance from roads/trails).  

Pourmohamad et al. (2023) 

SDI is a static variable taking a continuous value between 1 and 10, 
with higher values reflecting higher suppression difficulty. 

Fire Weather Index (FWI) Percentile in the historic FWI distribution 2001–2020 corresponding 
to the average FWI at the ignition point during a 4 day window, 
including the 3 days prior to ignition and the day of ignition. In this 
analysis the FWI serves as a proxy for potential fireline intensity 
dictated by fire weather. Note: the FWI values used in this analysis  

ERA5 (2023), https://www.ecmwf.int/en/forecasts/ 
dataset/ecmwf-reanalysis-v5  

Hersbach et al. (2020) 

Canadian Fire Weather Index (FWI) System,  Van 
Wagner (1987) 

(Continued on next page) 
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Results 

We present results of two regression models to assess relation-

ships between total personnel and peak personnel assigned to 

fire incidents and key precursors related to human, fire 

weather or fuel factors as outlined below. Table 2 presents 

the coefficients (β), associated standard errors and P-values 

relating precursors to the log-transformed outcome variables 

(i.e. log(total personnel) and log(peak personnel), as well as 

the interpreted percentage differential in expected personnel 

assignments (i.e. 100 × (1 − exp(β))). Our models for 

total personnel (F-value = 27.8) and peak personnel 

(F-value = 28.2) both explain approximately 26% of the 

variance in resource use and are statistically significant 

(P < 0.001). A separate stepwise model excluded almost 

none of the statistically non-significant variables included in 

our full model. Specifically, the stepwise regression retained 

variables representing SDI, managing agency, human versus 

lightning caused fire, vegetation categories and preparedness 

level for at least one of our two outcome variables, regardless 

Table 1. (Continued)    

Variable Description Source   

are drawn from the Fire Weather Index indicator itself from within 
the Canadian FWI system. 

Past Fire Past fire at the ignition point  Welty and Jeffries (2021) 

Reference category: No past fire or past fire more than 10 years 
prior to ignition 

https://www.sciencebase.gov/catalog/item/ 
61aa537dd34eb622f699df81 

Past Fire within 0–10 years (Y = 1) 

USGS data establish most recent past fire perimeters at point of 
ignition including wildfire and prescribed burning. 

Canopy Cover Canopy cover is assigned given the average percent cover of the 
tree canopy in a 1 mile radius around ignition point, to the midpoint 
of binned values as follows: Bucket raster cells as 10–20%, 20–30%, 
etc. for percent cover, then assign canopy cover as the value of the 
midpoint of its corresponding bucket, i.e. 10–20% = 15. For 
consistency canopy cover data are taken at the point of ignition 
for the closest year (2014) that preceded our window.  

Landfire (2023b) 

https://www.landfire.gov/cc.php 

Anderson 13 Anderson 13 fuel models for fire behaviour reflect fuel type at 
ignition point. Values are extracted from LandFire. Fuel models are 
categorised into 4 main vegetation groups, plus 3 additional groups, 
according to  Anderson (1982).  

Anderson (1982) 

Reference category: Grass https://www.fs.usda.gov/rm/pubs_int/int_gtr122.pdf 

Slash (Y = 1)  Landfire (2023a) 

Timber (Y = 1) https://www.landfire.gov/fbfm13.php 

Shrub (Y = 1) 

Agriculture (Y = 1) 

Barren (Y = 1) 

Urban (Y = 1) 

Wildland–Urban 
Interface (WUI) 

The WUI variable reflects whether ignition occurs within the WUI, 
and in particular within an interface or intermix area.  

Carlson et al. (2022) 

0 = not within WUI https://www.sciencebase.gov/catalog/item/ 
617bfb43d34ea58c3c70038f 

1 = within interface WUI 

2 = within intermix WUI 

Intermix = at least 50% vegetation cover surrounding buildings 

Interface = buildings are within 2.4 km of a patch of vegetation at 
least 5 km2 in size that contains at least 75% vegetation 

USGS and GIS calculation of distance from ignition point to 
nearest WUI polygon, where distance = 0 implies ignition 
within WUI.   
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of P-value. Additionally, applying a stepwise approach did not 

improve observed explanatory power, i.e. R2 did not increase, 

and the AIC (Akaike Information Criterion) was approxi-

mately the same. For these reasons, and reasons of theoretical 

defensibility, we present the full models here rather than 

stepwise models or other models excluding non-significant 

variables more generally. Additionally, regression residuals 

were examined and found to be normally distributed, consist-

ent with the assumptions underlying linear regression. Finally, 

validation by partitioning the dataset into training (80%) and 

testing (20%) segments found nearly identical results to the 

full model fit we present in terms of R2, AIC, model coeffi-

cients and residuals. 

The GACC where the ignition occurred and the agency 

which manages the incident are both found to be significant 

predictors of personnel counts. Relative to the Pacific 

Northwest, ignitions in California are on average associated 

with statistically significantly higher total personnel counts 

(138% higher for Northern California and 387.9% higher for 

Southern California) while ignitions in other locations are 

associated with lower personnel counts (Rocky Mountain 

48.5% lower, Northern Rockies 65.7% lower, and Great 

Basin 31.1% lower). For peak personnel counts we see 

similar patterns with California ignitions associated with 

higher peak personnel assignments than in the Northwest 

(144.7% higher for Northern California and 340.6% higher 

for Southern California) while other locations are associated 

with lower counts on average (Rocky Mountain 35.3% lower 

and Northern Rockies 63.2% lower). Regarding managing 

agency relative to ignitions managed by the Forest Service, 

Interagency-managed ignitions are associated with on aver-

age 25.6% lower peak personnel counts. In contrast, fires 

managed by the Department of the Interior (DOI) are asso-

ciated with 34.9% higher total personnel counts and 32.5% 

higher peak personnel counts. 

We also observe statistically significant relationships 

between climatological precursors and assigned personnel 

counts. FWI observed for the 4-day window prior to, and 

including, the day of ignition as a percentile of the historic 

distribution at the point of ignition, is observed to be sig-

nificantly associated with personnel counts. Each additional 

percentile relative to the historic distribution of FWI 

(e.g. increase from 93rd percentile to 94th percentile), is 

20°N

120°W 110°W 100°W 90°W 80°W

25°N

30°N

35°N

40°N

45°N

Fig. 3. The spatial boundaries associated with 
the nine Geographic Area Coordination Centers 
(GACCs) that cover the continental United States. 
In this analysis, we did not consider fires that 
ignited within the Eastern or Southern GACCs.    

2017 2018

2019 2020

Total personnel used

Ignition day of year

1000

25,000

Jan Dec

10,000

90,000

Fig. 4. Fire incidents in the sample from years 2017 through 2020. 
Each panel represents 1 year of data, while each marker represents 
one fire incident. The size of the marker reflects the total personnel 
used in each incident while the colour of the marker represents the 
day of ignition recorded in the ROSS/IROC dataset.   
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associated with on average 1.1% higher counts in total 

personnel assignments, and 0.9% higher counts for peak 

personnel, holding all other variables at their means and 

categorical variables at their reference levels. 

With regard to fuels factors, we test both canopy cover 

and fuel category. Each percent increase in canopy cover 

averaged over a 1-mile radius around the ignition point is 

associated with a statistically significant increase of 4% in 

total personnel and 1.9% in peak personnel. Turning to 

Anderson 13 categories, compared with grass as the refer-

ence category, characterisation of the ignition point as 

Shrub is associated with 26.4% higher total personnel 

assignment and 19.5% higher peak personnel assignment, 

while categorisation as Slash is associated with 85.6% lower 

peak personnel assignment. 

Fire within the past 10 years at the point of ignition is 

associated with a statistically significant lower count in 

terms of total personnel assigned (23.6% lower) and peak 

personnel assigned (18.8% lower). Finally, a WUI designa-

tion at the point of ignition is associated with a statistically 

significant increase in personnel counts relative to non-WUI. 

WUI Interface categorisation is associated with 136.1% 

higher total personnel assignment and 81.5% higher peak 

personnel assignment, while WUI intermix categorisation is 

Table 2. Regression models for total personnel and peak personnel deployment.       

Input Variables Log(Total Personnel) Log(Peak Personnel) 

β (s.e.) % β (s.e.) %   

DOI (Ref = FS) 0.299 A** (0.152) B  34.9 C 0.281** (0.122) 32.5 

Interagency −0.125 (0.147)  −11.8 −0.295** (0.117)  −25.6 

State Agency 0.069 (0.181)  7.1 0.224 (0.145)  25.1 

GACC ONCC (Ref = NWCC) 0.867*** (0.191)  138.0 0.895*** (0.152)  144.7 

GACC OSCC 1.585*** (0.174)  387.9 1.483*** (0.139)  340.6 

GACC RMCC −0.485*** (0.169)  −38.4 −0.436*** (0.135)  −35.3 

GACC NRCC −1.071*** (0.160)  −65.7 −0.999*** (0.128)  −63.2 

GACC SWCC  0.004 (0.154) 0.4 −0.193 (0.123)  −17.6 

GACC GBCC −0.372*** (0.129)  −31.1 −0.228** (0.103)  −20.4 

PL GACC = 4/5 (Y = 1) −0.056 (0.110)  −5.5 −0.011 (0.088)  −1.1 

National PL = 4/5 (Y = 1)  0.014 (0.098) 1.4 −0.104 (0.078)  −9.9 

Human Caused (Ref = Natural + Unknown) 0.007 (0.087)  0.7 0.104 (0.069)  11.0 

Suppression Difficulty Index 0.145 (0.125)  15.6 0.035 (0.100)  3.6 

Ignition FWI Percentile 0.011*** (0.002)  1.1 0.009*** (0.002)  0.9 

A13 – Agriculture (Ref = Grass) 0.116 (0.389)  12.3 0.036 (0.311)  3.7 

A13 – Barren −0.045 (0.281)  −4.4 −0.115 (0.225)  −10.9 

A13 – Shrub 0.234** (0.103)  26.4 0.178** (0.082)  19.5 

A13 – Slash −1.179 (1.019)  −69.2 −1.936** (0.814)  −85.6 

A13 – Timber 0.239* (0.133)  27.0 0.114 (0.106)  12.1 

A13 – Urban 0.026 (0.168)  2.6 0.140 (0.135)  15.0 

Past Fire w/in 10 years (Y = 1) −0.269** (0.130)  −23.6 −0.208** (0.104)  −18.8 

Canopy Cover% w/in 1 Mile 0.039*** (0.003)  4.0 0.019*** (0.003)  1.9 

WUI-Interface (Ref = Not within WUI) 0.859** (0.337)  136.1 0.596** (0.269)  81.5 

WUI-Intermix 0.371*** (0.144) 44.9  0.489*** (0.115)  63.1 

(Intercept) 4.100*** (0.278)  3.056*** (0.222)  

R2, F-value, model signif. R2 = 0.26, F(24,1916) = 27.8*** R2 = 0.26, F(24,1916) = 28.2*** 

AIC = 7694.71, BIC = 7839.56 AIC = 6823.81, BIC = 6968.65 

***P < 0.01; **P < 0.05; * P < 0.1; N = 1941. 
Aβ relating input variable with log(outcome variable). 
B(s.e. or standard error) for β. 
C%, i.e. 100*(1 − exp(β)).  
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associated with 44.9% higher total personnel assignment 

and 63.1% higher peak personnel assignment. 

Discussion 

Our analysis yields statistically significant linear regression 

models for both total personnel use and peak personnel use 

related to fire response in the Western US explaining 26% of 

observed variance and relying solely on precursors that are 

observable at the time and place of ignition. The most signif-

icant and impactful precursors are geographic location (rep-

resented by GACC), FWI, canopy cover, WUI category and a 

history of recent fire on the landscape. These results align 

partially with, but are distinct from, prior studies which (as 

mentioned above) focus on modelling expenditures related 

to suppression and include precursors such as total burned 

area which becomes observable only after an incident. 

Fire weather has a pronounced effect on fire behaviour 

and resource demand in our results. Our model includes two 

precursors representing the influence of weather. We find 

that personnel use increased significantly with FWI percent-

ile. Locally, extreme fire weather conditions concurrent with 

the ignition date have been shown to be linked with a 

variety of fire impacts including eventual fire size (Riley 

et al. 2013; Jolly et al. 2019). This result also tracks with 

several regression models estimating suppression costs that 

include energy release component or growth potential as the 

fire weather indices in the model (i.e. Gebert et al. 2007;  

Yoder and Gebert 2012; Gude et al. 2013; Hand et al. 2016;  

Belval et al. 2019; Bayham et al. 2020), as well as the Hand 

et al. (2017) findings indicating that resource use is associ-

ated with fire evolution and also with fire weather. While not 

revealing a statistically significant association with peak 

personnel use, national and GACC PL do exhibit a negative 

sign on the fitted coefficient, suggesting a reduction in peak 

deployment for ignitions which occur during periods in 

which intense resource competition at the regional and 

national scale is already being experienced. The importance 

of fire weather aligns with the impact of simultaneous 

demand across the whole response system on specific days, 

a situation which is strongly influenced by larger scale 

climate/weather anomalies (Abatzoglou et al. 2021). 

Further, these results shed light on the potential impacts 

of increasing competition for resources over time. This com-

petition is driven in part by a relatively small number of 

large fires that commandeer significant resources (Thompson 

et al. 2023). Given that future climate projections suggest an 

increase in the number of simultaneous and significant fires 

that compete for finite response and management resources 

(Podschwit and Cullen 2020; McGinnis et al. 2023), this 

work supports decision making about resource sharing, plan-

ning and prioritisation. 

Location represented by GACC is observed to be a highly 

significant precursor in the resource use models presented 

here. Resource use is significantly higher for wildfire igni-

tions in California GACCs in this analysis, in alignment with 

results reported in related research (Wei et al. 2020). This 

finding may indicate that fire response is approached differ-

ently in the California geography given the presence of CAL 

FIRE (California Department of Forestry and Fire Protection) 

operations. A distinct signal for California was similarly 

reported by Hand et al. (2017) and Hand et al. (2016). 

Interestingly, several other regions are associated with 

reduced levels of resource assignment on average, including 

Northern Rockies, Rocky Mountain and Great Basin (for total 

personnel only), even though our models are controlled for 

fire weather and the presence or absence of people and 

property through WUI categories. The presence and influ-

ence of different agencies in these regions may be driving 

some of this difference. For example, CAL FIRE is the second 

largest wildland firefighter organisation in the world with a 

mission that aligns with aggressive suppression actions, 

which often require substantial personnel and equipment. 

Likewise, approximately half of the population living in the 

WUI in the Western US resides in the state of California 

(Radeloff et al. 2018) contributing to California’s overall 

elevated risk and resource demand. 

We find that resource use is positively associated with the 

extent of canopy cover while resource use is negatively 

associated with a history of past fire (which serves to reduce 

fuel load) on the landscape. This result suggests the impor-

tance of fuel abundance and availability in contributing to 

the evolution of an incident from an ignition to a heavy use 

of personnel. We further include Anderson 13 fuel category 

as a predictor (e.g. timber, slash, shrub) despite its lack of 

statistical significance when canopy cover is controlled. The 

inclusion of both precursors, even though some fuel types 

are consistent with canopy cover while others are not, rep-

resents an acknowledgement that there may be contexts 

where both fuel type and canopy cover are important pre-

cursors for resource use. Earlier work by Gude et al. (2013) 

also considered the role of fuels in explaining variance in 

resource use, and found that the percentage of forest in a 

final fire perimeter is associated with a decrease in daily 

suppression expenditures. Gebert et al. (2007), Yoder and 

Gebert (2012), Hand et al. (2016) and Belval et al. (2019) 

also found fuels to be important. We would note that these 

previous approaches included different model outcomes 

(suppression expenditure) and examined precursors such 

as final fire perimeter known only after the incident had 

concluded. In addition, some models used a different unit of 

analysis (day) and a different precursor representing fuel 

(percentage of forest/wildland rather than canopy cover). 

All of these represent substantial differences relative to our 

analysis. 

Turning to consideration of people and property we find 

that ignition within a WUI area is associated with an 

increase in both total and peak resource use when compared 

with ignition outside of a WUI area. The presence of people 
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and property in close proximity to ignitions has been estab-

lished previously as significantly associated with personnel 

deployment, which is in alignment with our findings. For 

example, Gebert et al. (2007), Hand et al. (2016), Gude et al. 

(2013), Belval et al. (2019) and Bayham and Yoder (2020) 

find that fire proximity to homes increases expenditures and 

changes resource allocation. Interestingly we do not find SDI 

and ignition cause (human vs lightning) to be statistically 

significantly associated with resource use, although this 

result may be due to the model controlling for location 

and WUI status, both of which represent the presence or 

absence of people and property. 

We acknowledge that our models leave substantial 

unexplained variance, a result which is also consistent 

with previous related work. One possible interpretation of 

this result is that it is difficult to account for the impact of 

temporal behaviour as fires evolve. This is true whether one 

focuses on individual fire incidents as we do, or daily out-

comes such as those examined by Hand et al. (2016). We 

acknowledge that while our model focuses on total person-

nel which are aggregated across a whole fire incident, and 

also peak personnel on the day of maximum use, the evolu-

tion of fire incidents over time plays an important role in 

resource demand and deployment. 

Finally, the role of the managing agency in resource 

demand is found to have several significant associations 

with personnel deployment. Fires managed by the US 

Department of Interior are found to be associated with 

higher levels of total and peak personnel use relative to 

those managed by the US Forest Service, a result which 

aligns with the impact of agency found in models of suppres-

sion costs. By contrast, we find that interagency managed 

fires are associated with lower peak personnel deployment 

relative to those managed by the Forest Service. Examining 

this result a bit further we compared the number of total and 

peak personnel on each fire in our sample (from archived 

dispatching records) to the number of personnel recorded in 

the ICS-209s. In the ICS-209 records we found additional 

resources recorded for interagency fires beyond those which 

were included in the archived dispatching records, while US 

Forest Service fires appear to have relatively complete dis-

patching records of personnel. This discrepancy aligns with 

findings in existing literature that interagency fires appear to 

use resources that are not archived or captured by the inter-

agency wildfire dispatching system (USDA (United States 

Department of Agriculture) 2023). 

The data used in this study open several avenues of future 

research that might be developed to examine additional ques-

tions regarding personnel use and deployment. For example, 

models might be developed to examine specific personnel 

types and compared with the presented model to see what 

precursors are associated with relatively higher use of equip-

ment (i.e. engines and bulldozers) or crews. Future work 

might also investigate daily use of personnel. While the data 

compiled did not include daily observations, other datasets do 

support such analyses. Finally, future research might investi-

gate the use of tools to model nonlinear relationships. We 

leave these areas as next steps for future studies. 

Conclusions 

This research identifies the key characteristics of ignitions 

that are likely to evolve into substantial uses of personnel 

both across the life of the incident and also on the day of 

peak deployment. The most significant and impactful pre-

cursors are found to be geographic location (with California 

associated with the most substantially elevated deploy-

ments), fire weather, canopy cover, the presence of people 

and property as indicated by WUI status, and a history of 

past fire on the landscape. All these precursors are observ-

able at the time and place of ignition and in advance of 

containment or extinction of the incident. The models were 

designed using only precursor variables in order to provide 

historical context and enhanced understanding of personnel 

use on individual fires to support a wide variety of policies 

and management decisions such as staffing levels, resource 

sharing agreements, land use and zoning, and fuels reduc-

tion and management. Combining the results of this 

research with other studies such as projections of climate 

change or fuels management effects on fire behaviour allows 

managers to explore the potential impacts of these changes 

on personnel use. Finally, for precursors for which policy 

and management levels may exert influence – for example 

WUI status through zoning or history of fire on the land-

scape through prescribed burning – these results provide 

support for taking proactive steps to reduce the long-term 

risk associated with wildfire and its impacts. 
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Appendix 1.   

Summary statistics for precursor input variables        

Variable Mean s.d. Median Min Max   

Total Personnel 1661 5284.56 277 1 90598 

Peak Personnel 180.9 363.07 65 1 4832 

FWI Percentile 82.54 13.27 86 12 99 

SDI 0.30 0.36 0.16 0 2.59 

Canopy Cover 12.24 16.52 3.06 0 74.88 

Anderson 13 Count %    

Grass 808 42    

Agriculture 21 1    

Barren 41 2    

Shrub 504 26    

Slash 3 0    

Timber 393 20    

Urban 171 9    

Total 1941     

GACC Count %    

OR-NWC 294 15    

CA-ONCC 134 7    

CA-OSCC 193 10    

CO-RMC 178 9    

MT-NRC 217 11    

NM-SWC 307 16    

UT-GBC 618 32    

Total 1941     

(Continued on next page) 
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Variable Mean s.d. Median Min Max   

Past Fire Count %    

No Past Fire 1729 89    

Fire Within Past 10 Years 212 11    

Total 1941     

Within WUI Count %    

Not WUI 1714 88    

interface 31 2    

intermix 196 10    

Total 1941     

Agency Count %    

FS 221 11    

DOI 834 43    

IA 664 34    

ST 222 11    

Total 1941     

Cause Count %    

Natural or Other 1194 62    

Human 747 38    

Total 1941     

PL GACC High (4/5) Count %    

0 1506 78    

1 435 22    

Total 1941     

PL National High (4/5) Count %    

0 1143 59    

1 798 41    

Total 1941          
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