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Byzantine Multiple Access Channels—Part I:
Reliable Communication
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Abstract— We study communication over a Multiple Access
Channel (MAC) where users can possibly be adversarial. The
receiver is unaware of the identity of the adversarial users (if
any). When all users are non-adversarial, we want their messages
to be decoded reliably. When a user behaves adversarially,
we require that the honest users’ messages be decoded reliably.
An adversarial user can mount an attack by sending any input
into the channel rather than following the protocol. It turns out
that the 2-user MAC capacity region follows from the point-
to-point Arbitrarily Varying Channel (AVC) capacity. For the
3-user MAC in which at most one user may be malicious,
we characterize the capacity region for deterministic codes
and randomized codes (where each user shares an independent
random secret key with the receiver). These results are then
generalized for the k-user MAC where the adversary may control
all users in one out of a collection of given subsets.

Index Terms— Multiple access channel (MAC), arbitrarily
varying channels (AVCs), byzantine adversary, symmetrizability,
channel capacity, multiuser channels, information theory, secu-
rity, channel models.

I. INTRODUCTION
A. Motivation and Setup

OMMUNICATION systems such as the wireless
Internet-of-Things (IoTs), which consist of devices of
varying security levels connected over a wireless network,
pose new security challenges [2], [3]. Since, the devices share
the same communication medium, a malicious' device may
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'We use ‘malicious’ and ‘adversarial’ interchangeably.

attempt to cause decoding errors for the honest device(s). This
motivates the present problem. We study the uplink of a com-
munication network in which users may behave maliciously.

Consider a Multiple Access Channel (MAC) with users who
are potentially adversarial. An adversarial user may not follow
the protocol and may choose its channel input maliciously to
disrupt the communication of the other users. The receiver
is unaware of whether any of the users is adversarial and the
identity of the adversarial user(s) (if any). We call such a chan-
nel a “byzantine-MAC”. If all users are non-adversarial (i.e.,
honest), we require that their messages be reliably decoded.
However, if some of the users are adversarial, the decoder
must correctly recover the messages of all the other (honest)
users. Adversarial users have no side information about the
messages of the honest users. We call this the problem of
reliable communication in a byzantine-MAC.

B. Related Works

The present model is different from other well-studied mod-
els involving non-byzantine users and adversaries, both passive
and active. In all such models, the adversary is different from
all the legitimate communicating parties and its identity is
known to all parties.

For example, a wiretap channel [4] has a passive eavesdrop-
per who gets a noisy version of the communication between
the sender and the receiver. The goal is to ensure reliable
and private (from the eavesdropper) communication from the
sender to the receiver. On the other hand, in Arbitrarily Varying
Channels (AVC) [5], [6] the adversary is active and controls
the channel. The adversary can change the channel law for
each channel use with the goal of jamming the communica-
tion between the sender and the receiver. Arbitrarily Varying
Multiple Access Channels (AV-MAC) [7], [8], [9], [10], [11],
[12], which consider a Multiple Access Channel (MAC) where
the channel law is controlled by an adversary, have also been
studied. Jahn [8] obtained the randomized coding capacity
region where each user has independent randomness shared
with the receiver. He also showed that this region is also the
deterministic coding capacity region under average probability
of error whenever the latter has a non-empty interior, a result
along the lines of Ahlswede’s dichotomy for the AVC [13].
Gubner [9] proved necessary conditions (non-symmetrizability
conditions) for the deterministic coding capacity region to
be non-empty. Ahlswede and Cai [10] showed that Gubner’s
necessary conditions are also sufficient for the deterministic
coding capacity region to have a non-empty interior. More
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(a) A two-user byzantine-MAC where user-2 is malicious.
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(b) A malicious user-2 can simulate an AVC from user-1 to the receiver
where the input of user-2 is treated as the adversarial state. Thus, user-1
cannot communicate reliably an any rate above the capacity of this AVC.
On the other hand, user-1 can achieve all the rates below the capacity
of this AVC by using an appropriate AVC code.

mi Ml

Fig. 1.
receiver as an AVC with the other user’s input as the AVC state sequence.

recently, Pereg and Steinberg [11] obtained the capacity region
for the AV-MAC with state constraints. Wiese and Boche [12]
considered the two-user AV-MAC with conferencing encoders.
In a recent work, Beemer, Graves, Kliewer, Kosut, and Yu [7]
considered an authentication like model in a two-user AV-
MAC, where all states, except one, are treated as adversarial
states. Under adversarial states, the decoder’s output can be
a declaration of the presence of an adversary while also
decoding at least one user’s message.

In contrast to these works, the current model has byzantine
users, i.e., one of the legitimate users is potentially adversarial.

There are other works on models with byzantine users in the
information theory literature, mostly in the setting of network
coding. Byzantine attacks on the nodes and edges of networks
have been studied under omniscient and weaker adversarial
models in [14], [15], and [16], respectively. He and Yener [17]
considered a Gaussian two-hop network with an eavesdropping
and byzantine adversarial relay where the requirement is
decoding the message with secrecy and byzantine attack detec-
tion. La and Anantharam [18] studied the MAC with strategic
users modeled as a cooperative game with the objective of
fairly allocating communication rate among the users.

For the byzantine-MAC, in a previous work [19], we looked
at a weaker decoding guarantee than the present model, called
authenticated communication. Under this weaker guarantee,
the decoder must still reliably recover the messages when
all the users are honest. However, if any user behaves adver-
sarially, the decoder may either output the correct messages
for the honest users or declare an error, i.e., an adversary
should not be able to cause an undetected erroneous output for
the honest users. In a similar model of communication with
adversary identification [20] in a byzantine-MAC with two
users, a slightly stronger decoding guarantee was considered.
Again, reliable decoding was required when all users are
honest. In the presence of a malicious user, the decoder may
either output a pair of messages out of which the message of
the honest user is correct, or declare an error together with the
identity of the malicious user. Both these models are different

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

Cave(Py | x4x,)

Ry
Cave(Py x4 x5)

(c) Capacity region of a two-user byzantine-MAC. Cayc (Py‘ x5 ) is the capacity
of AVC Py |x s with input X, state S and output Y.

Capacity region of a two-user byzantine-MAC is given by the rectangular capacity region obtained by treating the channel from each user to the

from the present model, where we always require reliable
decoding of the honest users’ messages and the decoder may

never declare an error?.

C. Two-User byzantine-MAC

For the 2-user byzantine-MAC, consider the problem of
reliable communication when any one of the users might be
adversarial (though the decoder does not know a priori which,
if any, of the users is adversarial). Clearly, each user can at
least achieve the capacity of the AVC where the other user’s
input is treated as the channel state. Further, it is also easy to
see that no higher rate is possible as, for the honest user’s per-
spective, the other user, when adversarial, can behave exactly
like an adversary in the AVC setup (see Figure 1(a) and (b)).
Thus, the capacity region is the rectangular region defined by
the AVC capacities of the two users’ channels (Figure 1(c)),
i.e., there is no trade-off between the rates.’ Thus, the simplest
non-trivial case is that of a 3-user byzantine-MAC with at most
one adversarial user.

D. Three-User byzantine-MACWith at Most One Adversary

It turns out that all the key ideas can be presented in
the relatively simpler setting of a 3-user byzantine-MAC
(Figure 2) with at most one adversarial user. The general
results then build on this. For this model, we characterize
the capacity region under randomized coding where each
user shares independent secret keys with the decoder, and
deterministic coding with an average probability of error
criterion.

2Journal versions of [19] and [20] are in preparation. Together with the
present paper these constitute our multi-part study of Byzantine MACs
encompassing various decoding requirements.

3This observation holds true under deterministic coding, stochastic encoding
(where the encoders have private randomness), and randomized coding
settings under both maximum and average probabilities of error. A similar
observation can be made for a k-user byzantine-MAC where up to k— 1 users
may adversarially collude.
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Fig. 2. Byzantine-MAC: At most one user may be adversarial. Reliable decoding of the messages of all honest users is required. Clearly, no decoding

guarantees are given for an adversarial user.

1) Randomized  Coding: Consider a  three-user
byzantine-MAC in which each user shares independent
randomness with the decoder which is unknown to the other
users. Notice that similar to the two-user byzantine-MAC
where a malicious user could induce an AVC from the
honest user to the receiver, in a three-user byzantine-MAC,
a malicious user-i, ¢ € {1,2,3} can induce a two-user
AV-MAC W) from the honest users {1,2,3}\ {i} to the
receiver, where the input of the malicious user is treated as
the adversarially chosen state sequence. For instance, if a rate
triple (Ry, Ro, R3) is achievable for the byzantine-MAC, then
the rate pair (R, R2) is also be achievable over the two-user
AV-MAC W) * We use this intuition to show the converse
of the randomized coding capacity region (Theorem 3).
We show the achievability by using a randomized code
(from [8])° for the two-user AV-MAC W i e {1,2,3}
and using random hashes for each message, generated using
the independent shared randomness. See Section III-B2 for a
sketch of achievability and Section IV-B for a detailed proof
of achievability and converse.

2) Deterministic Coding: For deterministic coding, before
discussing the capacity region, let us consider the follow-
ing question: in which channels can all users communicate
reliably?

In the AVC literature, the channels over which reliable
communication is infeasible are called symmetrizable channels
[21], [22]. In a symmetrizable AVC, the adversary can mount
an attack which introduces a spurious message that can be
confused with the actual message, resulting in a non-vanishing
probability of error.

To answer the question, we first recall that a malicious
user-i, ¢ € {1,2,3}, in a three-user byzantine-MAC, can
induce a two-user AV-MAC W) formed by treating user-
7’s input as an adversarially chosen state and the inputs
of other two users as the inputs of legitimate users in
the two-user AV-MAC. Thus, we inherit the symmetrizabil-
ity conditions [9, Definition 3.1-3.3] from the three AV-MAC
WO W2 and W®). We show that, in addition to the
symmetrizability conditions inherited from the AV-MAC, fully

“4In fact, a stronger necessary condition follows by noting that the encoder
of each user must not depend on the knowledge of which user, if any, is the
adversary. Thus, as in compound channels, the same code should work for
w® e {1,2,3}. We use this observation in our converse arguments.

5Note that similar to the current model, in the AV-MAC model of [8], users
share independent randomness with the decoder.

characterizing the feasibility of reliable communication of a
3-user byzantine-MAC requires three additional symmetriz-
ability conditions (Eq. (8)). Roughly speaking, each of these
conditions reflect whether or not an adversarial user at a node
k can attack in a manner that is also consistent with an
adversarial user at a node j # k while resulting in a decoding
ambiguity about the remaining user’s message (see Figure 7).
Example 1 (page 10) shows that the new symmetrizability
conditions are not redundant given the symmetrizability con-
ditions inherited from the two-user AV-MAC.

We characterize the deterministic coding capacity region
under the average error criterion for most channels.® There are
two different approaches towards showing the achievability for
the AVC using deterministic codes. We show achievability for
the 3-user byzantine-MAC using both approaches and show a
more general result for k-user byzantine-MAC using one of
them.

a) First approach: The first approach uses a randomness
reduction argument of Ahlswede [13] (and its extension for
AV-MAC by Jahn [8]). He showed that given a randomized
code of achievable rate R and block-length n, there exists
another randomized code of achievable rate R which requires
only O(log n) bits of randomness. This small amount of shared
randomness can be established using deterministic codes. This
shows the surprising fact that when the deterministic capacity
is positive (which is the case for non-symmetrizable channels),
it is in fact equal to the randomized coding capacity. Thus,
to show achievability under deterministic codes, it suffices to
show that all non-symmetrizable channels admit positive rates.
Ahlswede and Cai in [10] took this route for the achievability
proof of the two-user AV-MAC. For byzantine-MACs, we may
follow a similar recipe (in fact, we do this for the general
k-user byzantine-MAC). We show a randomness reduction
argument along the lines of Jahn [8] and Ahlswede [13] (see
Appendix V). With this and the randomized coding scheme
discussed above (Section I-D1), all that remains is to show
that in a non-symmetrizable byzantine-MAC, all users can
transmit at positive rates using deterministic coding. The main
difference from [10] in showing this, is that the code should

5Qur characterization for deterministic codes is incomplete for channels in
which some, but not all users are symmetrizable (for an appropriate notion of
symmetrizability for a 3-user byzantine-MAC). See remark 1. We only study
average probability of error under deterministic coding since the capacity
under maximum probability of error remains open for multiple access channels
(even with non-byzantine users) [23].
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Consider a k-user byzantine-MAC where the set containing users 1 and 2 belongs to the adversary structure. The figure depicts the case when users

1 and 2 deviate from the protocol under the control of an adversary. Then we require reliable decoding of the messages of all the honest users, i.e., users 3

to k.

be able to handle any user behaving maliciously. Please see
Section V for details.

b) Second approach: The second approach is a direct
argument based on the method of types which establishes
a deterministic code. The technique does not rely on the
achievability of the randomized coding capacity. For the
(point-to-point) AVC, Csiszar and Narayan [22] established
the deterministic coding capacity using such an approach.
Their achievability proof is based on a concentration result
[22, Lemma Al]. A similar approach for multi-user channels
(e.g. AV-MAC, byzantine-MAC etc.) requires extending this
concentration result. We specialize the concentration result in
[24, Theorem 2.1] to obtain just such an extension (Lemma 4
on page 13). This allows us to directly achieve all rate
triples in the capacity region of a non-symmetrizable three-
user byzantine-MAC (see Section IV-A). Our technique can
also be used to obtain the deterministic coding capacity region
of a two-user AV-MAC directly. We believe that this technique
may have applications in other multi-user deterministic coding
settings for adversarial channels and may be of independent
interest.

E. k-User byzantine-MAC

In Section V, we consider a general k-user byzantine-MAC
in which an adversary may control all users in any one of
a set of subsets of users, called an adversary structure’ (see
Fig. 3). The receiver is unaware which of these subsets the
adversary controls. We provide a general symmetrizability
condition for the k-user byzantine-MACs. On the achievabil-
ity side, we take the first achievability approach described
above (see Section I-D2.a) and show a randomness reduction
argument along the lines of Jahn [8] and Ahlswede [13].
We then show that as long as the given byzantine-MAC is non-
symmetrizable, i.e., none of the symmetrizability conditions
hold, the deterministic coding capacity region has a non-empty
interior, in other words, all users can communicate at positive
rates. Finally, we characterize the randomized coding capacity
region using the same ideas as that for the three-user case. For
the k-user byzantine-MAC, we do not pursue a direct proof

TThe term ‘adversary structure’ is borrowed from cryptography. An adver-
sary structure is a collection of subsets of users. The adversary may control
all the users in any one of these subsets and use them to mount an attack
(see, e.g., [25], [26], [27]).

using the second achievability approach described above (in
Section [-D2.b) as it appears to be cumbersome.

F. Summary of Contributions

« We introduce the model of reliable communication in a
byzantine-MAC, where malicious users may deviate from
the prescribed protocol. The model requires that decoded
messages should be correct for the honest users with high
probability.

« We completely characterize the capacity region under
both deterministic codes (with an average probability
of error criterion) and randomized codes for any k-user
byzantine-MAC.

« We also provide an alternate direct achievability for the
3-user byzantine-MAC, in the spirit of [22], where the
achievability is based on a recent concentration result.
This technique can be used to obtain a similar direct
achievability for the 2-user AV-MAC (see Section [-D2.b)
and may be of independent interest.

G. Outline

The system model and main results for the 3-user
byzantine-MAC are given in Section III (Page 5). This section
also contains the proof sketches. The main proofs of the results
in Section IIT are given in Section IV (page 12). Others are
deferred to the appendices. Section V presents the k-user
byzantine-MAC model and gives main results. All the proofs
of theorems in this section are given in the appendices.

II. NOTATION

Random variables are denoted by capital letters (possibly
indexed) like X1, Xo, X3,Y, etc. The corresponding alpha-
bets are denoted by calligraphic letters in the same format,
for example, the random variable X; has alphabet X7. Its
n-product set is denoted by X]'. We use bold faced letters
to denote n-length vectors, for example,  denotes a vector in
X" and X denotes a random vector taking values in X™. For
a random variable X, we denote its distribution by Px and
use the notation X ~ Px to indicate this. For an alphabet
X, let P} denote the set of all empirical distributions of
n length strings from X”. For a random variable X ~ Px
such that Px € P%, let T} be the set of all n-length strings
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with empirical distribution Px. For x € X", the statement
x € T% defines Px as the empirical distribution of = and
a random variable X ~ Px. We denote a k-user multiple
access channel by Wy x, x,...x, (or W for short) and its n-
fold memoryless version by W{}‘ X1 X,...x,, (or W for short).
For a set S, 25 denotes it power set, S¢ denotes its compliment
and int(S) denotes its interior. A uniform distribution on any
set S is denoted by Unif(S). For any n, the set {1,2,...,n}
will be denoted by [1 : n]. We will use the acronyms ‘w.h.p.” to
mean ‘with high probability’. For any real number A, we use
|A|T to mean A if A > 0. Otherwise, |A|T = 0.

The following notation will be used in Section V. For any
sets S;, @ € [1: k] and for B C [1 : k], Sg denotes the product
set X;e5S;. The tuple (s; € S; 1 ¢ € [1: k]) will be denoted
by s[1:x) € S[1:x) and when restricted to B, we write sg € Sp.
The notation gg(sg) denotes (g;(s;) : 7 € B) for function g;
defined on S;, i € [1: k].

III. THE THREE USER BYZANTINE-MACWITH AT MOST
ONE ADVERSARY

A. System Model

Consider the 3-user byzantine-MAC setup shown in Fig. 2.
The memoryless channel Wy x x,x, has input alphabets
Xy, Xy, X3, and output alphabet ).

Definition 1 (Deterministic Code): An (Ni,No,N3,n)
deterministic code for the byzantine-MAC Wy x, x,x, con-
sists of the following:

(i) three message sets, M; ={1,...,N,;},i=1,2,3,
(ii) three encoders, f; : M; — X', i =1,2,3, and
(iii) a decoder, ¢ : Y™ — M1 x My x Ms.

We define the average probability of error P, as the
maximum of average error probabilities under four different
scenarios, one corresponding to all users being honest and
three corresponding to exactly one user being adversarial. Let
(My, Ma, M3) = ¢(Y™).

Pu(f1, f2. f3,¢) = max{Pe g, Pe 1, P. 2, Pe 3},

where the terms on the right-hand side are defined below. Note
that our notation suppresses their dependence on the code. P, o
is the average probability of error when none of the users are
adversarial,

2

def 1
60(77117 ma, m3)7
(m1,ma,m3)EM1 X Max Ms

P __ -
07 N, N,yN;

where

60(m1,m2,m3) =

P((M17M2,M3) 7& (ml,mg,mg)’X1 = fl(ml),

X2 = fa(mg), X35 = f3(m3))-

P.;, 1 = 1,2,3 is the average error probability under worst
case deterministic attacks when user-¢ is adversarial. P, ; is
as below. P, o, P, 5 are defined similarly.

>

(ma,m3)EMaxMs

el(mla m27m3)7

2313

where
e1(x1,me, m3) = P((Mz,Ms) # (m27m3)’X1 =x,
Xz = f2(m2) X = fa(ma)). (M

We emphasize that

a) the decoder is unaware of whether any of the users
is adversarial and the identity of the adversarial user
(if any).

b) the adversary knows the encoders and the decoder, but is
unaware of the messages transmitted by the other (non-
adversarial) users.?

Note that it is sufficient to define P, ; under deterministic
attacks by the adversarial user. To see this, consider the setting
where user-1 is adversarial. Then, under any randomized attack
X, ~ Q for any distribution ) on A7,

1
E
@ {NQNS

" B((NIa, 313) # (ma, ms) | X1 = X,

mz,ms3

X = fa(ma), X3 = fs(ms))}
= > Q(ml)NleS > P((M%Ms)?é(m%m:a)‘

@1 EX] ma,ms

X =z, X2 = fa(ma), X3 = f3(m3))
S Z Q(ml)Pe,l

mleXI”
=P 2

In other words, the probability of error is maximized when
the adversarial user selects a deterministic attack vector (that
depends only on the channel and the deterministic code used).
We also note that

PE,O S Pe,l +Pe,2+Pe73- (3)

This is because

1 ~ N .
Pe’o:m Z P((MlaMQ,MB)#(mbm%m:s)‘

mi,ma,ms

X1 = filmy), X2 = fa(ma), X3 = fs(m3))

1 N
—_ P( { (M, M- U
N1N2N3 77L1.?’VL2277L3 ({( h 2) 7& (mth)}

(¥, NIs) # (ma, ma)} U {(Ny, M1a) # (ma,ms)}|

X1 = film1), X2 = fa(ma), X3 = fs(ms))

< m Z {]P<{(M1aM2) # (m17m2)}‘

mi,ma,ms

X1 = film1), Xo = fa(ma), X3 = f3(m3))
+P({(M27M3) # (m27m3)}‘X1 = fi(my),

X3 = fa(ma), X3 = fs(m3)>

8Recall that at most one user is adversarial.
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+P({(V, NEs) # (ma, ma)}| X1 = fu(ma),

X2 = fa(ma), X3 = fs(m3))
S Pe71 +Pe,2+Pe,3-

Definition 2 (Achievable Rate Triple and the Deter-
ministic Coding Capacity Region): We say a rate triple
(R1,Ra, R3) is achievable if there is a sequence of
(27T, 2772 |, 277 | n) codes (f1™, f3™), 5™, ¢(™) for
n =1,2,... such that lim, e P.(£f™, £, i o) —
0. The deterministic coding capacity region Rdeterministic 15
the closure of the set of all achievable rate triples.

Definition 3 (Randomized Code): An (N1, No, N3, n) ran-
domized code for the byzantine-MAC Wy |x, x, x, consists of
the following:

(i) three message sets, M; ={1,...,N;},i=1,2,3,
(ii) three independent randomized encoders, F; : M; — X

where F; ~ Pp, takes values in 7; C {g : M; —
A}, i=1,2,3 and

(iii) a decoder, ¢ Y x F1 X Fo x Fy3 —
Ml X MQ X M3 where ¢(y7F1,F2,F3) =

(01(y, F1, Fa, F3), 92y, I, I, F3), ¢3(y, F1, Fa, F))
for some functions ¢; : Y"* x F1 X Fa X F3 — M;, i =
1,2,3.

In other words, a randomized code consists of independent
random encoding maps Fi, F5, F3 and a decoder ¢ (which
takes Fi, Fo, F3 also as inputs), i.e., the encoders randomize
independently of each other and their randomization is avail-
able to the decoder. This is similar to the randomized code
of Jahn [8] for 2-user AV-MACs. Notice that the decoder is a
randomized decoder since the decoding function ¢ takes the
random encoding maps F, F», F3 as inputs.” We emphasize
that each byzantine user is unaware of the encoding maps
of the other users. We also assume that the (byzantine) user-
1 samples its encoder F; which is then made available to
the decoder. Notice that the decoder ¢ is a function which
maps the channel output as well as the random encoding
maps to the decoded messages. This allows the adversarial
user to adversarially choose its encoding map (in addition to
its channel input) as part of its attack and thus attempt to
influence the decoding. This means that an adversarial user
1 may choose x; € X as input to the channel and any
fi € F; as the encoding map. This is shown in Fig. 4a.
We denote the randomized coding capacity region by Riandom-
We also consider another adversarial model, called the weak
adversary. An adversary is a weak adversary if it does not
have access to its own random encoding map when choosing
its input vector, that is, the random encoding map F; is
sampled according to P, and the adversarial input to the

Any additional private randomness at the decoder can be subsumed as
part of the randomness shared with each encoder in a slightly more general
definition of randomized code (i.e., a slight generalization of Definition 3) for
which our converse in Section IV-B continues to hold. In this generalization,
the users first sample (F;, B;);4 = 1,2, 3 where B; are uniform bit strings,
independent of F;. Now, any additional private randomness at the decoder
may be thought of as a bit string D which is XOR of B1, B2 and Bs.
Even, when one of the users, say user 4, maliciously chooses B;, note that
D remains uniform and unknown to user s.
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weak o
adv.

— X1

adv.
model

(a) An adversarial user-1
chooses an encoder map
f1i € F1 and an input
vector &1 € X7 together.

(b) User-1 as a weak adver-
sary sends a malicious in-
put &1 independent and un-
aware of the choice of ran-
dom encoder Iy ~ Pr, .

Fig. 4. A figure depicting various adversary models for randomized coding
when user-1 is malicious.

channel z; is chosen independent of F; (see Fig. 4b)."0 We
denote the corresponding randomized coding capacity region
by RWeak . We show converse for the weak adversary.
Clearly, Riandom < Rg‘ﬁ‘om. Thus, a converse bound on
weak s also a converse bound on Ryandom-
Analogous to the deterministic case, the average probability
of error P is defined as

rand def rand rand rand rand
P (PF1’PF27PF3’¢)):maX{Pe,O7Pe,1 7Pe,2’ e,3 I
where

Prand def 1 § 6rand
e,0 Nl N2 N3 0

mi,mz2,ms3

(m17m23m3)7

with
el(')and(ml’m%mB) = ]P’(QS(Y”’Fl,FQ,Fg) 7é (mlamZ;mS)‘
X, = Fl(ml),X2 = FQ(m2)7X3 = F3(m3))

The probability is over independent F; ~ Pr,, i =1,2,3 and
the randomness in the channel. P/ is as below, Pr¢, pPrgd
are defined similarly.

: 1
def
Prand = max e r1,Mmo,Ms (4)
e,1 ziexm . ier NoNj E fl( ’ ; )7
ma2,ms
where

efl(wlam27m3) :P<(¢2(YaflaF27FS)a¢3(Y7f1aF27F3))
# (m27m3)‘X1 =z, X2 = Fy(mg), X3 = Fs(m:s))

The probability is over independent F; ~ Pp,, ¢ = 2,3 and
the channel. Restricting the attacks to deterministic attacks is
without loss of generality along the lines of (2).

We define achievable rate triples and capacity region for
randomized codes in a similar manner as the deterministic
case.!!

10An intermediate model is the one where the adversary knows the random
encoding map but does not have control over it. That is, for a malicious user ¢,
F; ~ Pp, and the input to the channel x; can be chosen as a function of F;.
In the proof of Theorem 3, the achievability is proved for the default adversary
(who is stronger) while the converse is proved for the weak adversary. Hence,
the capacity region for this intermediate model is the same as in Theorem 3.

TAlong the lines of [28, Problem 12.6 (b)], one can show that for
randomized codes, the capacity region will remain unchanged for maximum
and average probabilities of error criteria. Hence we only consider the average
error criterion here.
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To

T3

€2

18
Lié

T3
(a) (b)

Fig. SN We say Wy|X1X?X3 is Ao X X;—symrr'letringle by A7 if, for each
(z2,Z2,3,Z3), the conditional output distributions in the two cases above
are the same. Thus the receiver is unable to tell whether users 2 and 3 are
sending (z2,x3) or (&2, E3).

E_Ll x3
J

— W By T2

T3

L

Fig. 6. ~We say Wy|'X.1X2X3 is Xg.\Xgl—sy'mme.trizable by A1 if, for each
(z2,x3,Z3), the conditional output distributions in the two cases above are
the same. The receiver is unable to tell whether user-3 is sending x3 or Z3.

Definition 4 (Achievable Rate Triple and Randomized
Coding Capacity Regions): We say a rate triple
(Ry,Ro, R3) is achievable, if there is a sequence
of  ([2nB1] |27B2], 278 | n)  codes  {F\™ F{"™,

F{™ ¢} | such that lim,,_ PE(Ppn, Py, P,

¢(”)) — 0. The randomized coding capacity region Riandom
is the closure of the set of all achievable rate triples.

The probability of error P¥ and the capacity region
Rweak  for randomized codes with a weak adversary are
defined by replacing P“‘“CI with Pweak . = 1,2,3 in the

definition of Pcfa"d(PFI,PFQ,PFg, ¢), where

1 w
a:rlnea)}((n NyN3 Z eleak(ml’m2’m3)’ )

ma,m3

Pweak def

where

weak

€1 (CEl,m27m3):P((¢2(Y,Fl,F27F3)7¢3(Y,F1,F2,F3))

7é (mg,m3)‘X1 = :1:1,X2 = Fg(mg),Xg = Fg(mg,)).

The probability is over independent F; ~ Pr,, 1 = 1,2,3 and
the channel. nggak and Pe"fgak are defined similarly.

B. Main Results

1) Deterministic Coding Capacity Region: We first present
our results for the three user byzantine-MAC with at most
one adversary under deterministic coding. Analogous to the
notion of symmetrizability [10], [22] in the AVC and AV-
MAC literature, we give conditions under which at least one
user cannot communicate with positive rate.

a) Symmetrizability conditions:

Definition 5: Let (i, j, k) be some permutation of (1,2,3).
We define three symmetrizability conditions for Wy x, x, x,
(See Fig. 5-7).

1) We say that Wy |x, x, x, 18 Xj X Xy-symmetrizable by X;

if for some distribution g(x;|z;, zx)

> a(wilzy, 3) Wy x, x, x, (Yl z5, )

T

2315

T2 Whkry 3

@1 x 5
T3 E_Ll 1 —‘
X2 i‘g

€3

Fi~g. 7. We say WY‘XIXQ.X3 is Xg—syn?me.:triz.able Py X1/ X, if, for each
(%1, 2,3, Z3), the conditional output distributions in the two cases above
are the same. The receiver is unable to tell whether user-3 is sending x3 (and
user-1 being malicious) or user-3 is sending Z3 (and user-2 being malicious).

= a(@ilzg, o) Wy x, x, x, (0|3, &, ),

Va;,2; € Xj, ok, Tk € Xy, y€ Y. (6)

2) We say that Wy | x, x,x, is Xi|X;-symmetrizable by X;
if for some distribution ¢(x;|xy)

> a(@ilE) Wy x, x, x,, (Wi, 25, )
T
= a(@ilzR) Wy x, x, x, (U]&i, 25, ),
T;

VI]' EXj, Tg, Tk € X, y €Y. (7)

3) We say that Wy |x, x, x, is Xx-symmetrizable by X; /X
if for some pair of distributions ¢(x;|%;,Z;) and
¢ (Zj]z, )

Z (3| %, T) Wy x, x; 5, (Y] @i, T, k)
= qu(*%ju%‘xk)WY\XinXk (Yli, Tj, k),
z;

V'%lGX’L? T EX]? xk?w%k EXk? yey (8)

We say that user-k is symmetrizable if any of the above three
symmetrizability conditions (6)-(8) holds for some distinct
i,7 € {1,2,3}\ {k}.We say that the channel is not symmetriz-
able if user-k is not symmetrizable for every k € {1,2,3}. In
Section V-C, we generalize the symmetrizability conditions to
more than three users and provide a unified way of looking at
them.

The first two symmetrizability conditions arise from the
possibility that the decoder cannot tell apart different messages
of honest user(s) when a particular user behaves adversarially.
These symmetrizability conditions are thus inherited from
those for the AV-MAC model. Specifically, symmetrizability
conditions for the two-user AV-MAC with X, as the state
and X;, X; as the inputs are also symmetrizability condi-
tions for our problem. Thus, the first two conditions (6)-(7)
(Figures 5 and 6) follow from two-user AV-MAC symmetriz-
ability conditions given by Gubner [9]. Notice that (6) involves
a distribution ¢(z;|x;, xx) whereas (7) involves g(x;|z). The
third condition (8)(Figure 7) is new (see Section III-Ble) and
arises from the byzantine nature of the users in this problem.
In a byzantine-MAC, the decoder may not be able to tell
apart two messages since while one message is explained by
the possibility of another user (say j) behaving adversarially,
the other message may be explained by the possibility of
a third user (say k) behaving adversarially. We discuss the
implications of the third condition in Section III-B1b where we
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argue that a symmetrizable user cannot communicate reliably
using deterministic codes.

b) Symmetrizability implies non-feasibility of communi-
cation: Suppose that (8) holds for (i, j, k) = (1,2,3). Thus,
user-3 is symmetrizable. In the following, we show that user-3
cannot communicate reliably at positive rates. For fixed vectors
(&1, 2,3, &3), Eq. (8) with (¢,7,k) = (1,2, 3) implies that
the output is same under the following two cases:

(i) User 1 sends X1 ~ ¢"(.|€1,&3), i.e., a vector distributed
as the output of the memoryless channel ¢ on input
(Z1,23) (see Figure 7 which depicts single use of the
channel), user-2 and user-3 send x5 and a3 respectively,
and

(ii) User 2 sends X o ~ (¢")"(.|x2, x3), and user-1 and user-
3 send ; and &3 respectively.

Hence, for a given (M17 MQa MSa TL) code (f17 f27 f37 (b)
and independent M; ~ Unif(M;), My ~ Unif(Ms), Mz ~
Unif(Ms) and Mz ~ Unif(Ms), the output distributions are
identical in the following two cases:

(i) User 1 sends X, ~ ¢"(.|f1(My), f3(Ms3)), user-2 and
user-3 send fo(Ms2) and f3(Ms3) respectively, and
(i) User 2 sends X o ~ (¢')"(.|f2(M2z), f3(M3)), and user-1

and user-3 send f1 (M) and f3(Ms3) respectively.

Thus, the receiver is unable to tell apart the two possibilities,
i.e., whether user-1 is malicious with user-3 sending M3 or
user-2 is malicious with user-3 sending Ms. We can argue
along the similar lines to show that the symmetrized user(s)
in (6) or (7) cannot communicate reliably. On the other hand,
we can show that when no user is symmetrizable, we can work
at positive rates. This brings us to our main result.

c) Deterministic capacity region: Let R be the set
of all rate triples (R, Rz, R3) such that for some
p(u)p(x1 |u)p(za]u)p(zs|u), the following conditions hold for
all permutations (¢, j, k) of (1,2, 3):

R; < (mi‘n)l(Xi;Y|Xj,U), and 9)
q(zr|u
q(zr|u)

where the mutual information terms above are evalu-
ated using the joint distribution p(u)p(z;|u)p(x;|u)q(zs|u)
Wy |x, x, x5 (|71, 22, 23). Here, U is an auxiliary random
variable distributed over some alphabet &/ with |[{{| < 6. The
bound on the cardinality of ¢/ can be shown using the convex
cover method [29, Appendix C].

Theorem 1: Raeterministic = R if Wy |x,x,x, is not
symmetrizable. Furthermore, int(Rgeterministic) 7 & only if
Wy |x,x,x, is not symmetrizable.

Remark 1: As argued, we prove the converse part of
Theorem 1 by showing that if user-k is symmetrizable, then
any achievable rate triple (Rj, Ra, R3) must be such that
Ry, = 0. Our capacity region characterization does not cover
the case where some (but not all) users are symmetrizable.
In this case, by Theorem 3 (which shows that R;andom = R),
R restricted to rates of non-symmetrizable users is clearly
an outer bound on Rgeterministic- 1t 1S tempting to conjecture
that these regions are equal. A similar result for the two-user
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AV-MAC was recently studied by Pereg and Steinberg [11]
for the case where the users can privately randomize.

d) Overview of the proof of Theorem 1: The detailed
proof of Theorem 1 is given in Section IV-A. Here,
we describe the main ideas behind the achievability. The
codebooks used in the achievability are obtained by a random
coding argument (see Lemma 4). We will briefly describe the
decoder here and also point out its connection to the non-
symmetrizability of the channel. A high-level proof-idea is
also given in the flowchart in Figure 12 in Section IV-A (on
page 17).

Upon receiving the channel output, the decoder works
by separately collecting potential candidates for each user’s
input message and subjecting them to further checks. Finally,
we will show that there will be at most one potential candidate
for each user (see Lemma 2) which the decoder outputs. In
the following, we describe these steps for decoding user-3’s
message. Similar procedures are also employed for user-1 and
user-2’s decoding.

Let C;, ¢ = 1,2,3 denote the codebook of user-i. Given a
received vector y € V", we say that the message mgz € M3 of
user-3 is a “candidate” with an “explanation” (x1,z2) €
(A7 x C2) U (Cy x XF) if the tuple (@1, 2, f3(ms),y) is
jointly typical with respect to a joint distribution that corre-
sponds to independent channel inputs and the channel output
following the channel conditional distribution given the inputs.
The choice of the set of explanations is motivated by the fact
that at most one user can be malicious. Note that, in general,
a candidate message may have multiple explanations.

1) The decoder first forms a list of all candidate messages

of user-3 along with their explanations.

2) The list of such candidate messages is then pruned by
only keeping those messages that “account” for every
other candidate message in the sense described below.
Suppose that the candidate message mgs has an expla-
nation of the form (1, fo(ms2)) for some x; € A
and mo € Ms. Similar procedures are followed if the
explanation for mg is of the form (f1(m1),x2) by inter-
changing the roles of user-1 and user-2 below. Let m} be
another candidate message. We say that ms accounts for
mj if one of the following three conditions is satisfied.

a) my has an explanation (], fa(mj)) for
some m), # m2, such that the collection
(mlva(m2)7f2(ml2)af3(m3)af3(m{3)7y) may be
interpreted as typical instances drawn from a
distribution  Px, x,x;x,x;v that specifies that
X)X, and X3X3Y are (roughly) conditionally

independent given X.

The condition 2a may be interpreted as follows: x1,
fa(mg), and f3(mg) as inputs to the channel are
a more plausible explanation of the channel output
than the alternative input (f2(mj), f3(mj)), which
is part of (adversarial) user-1’s attack strategy (see
Fig 5a and Fig. 8a). It can be shown that for a non-
symmetrizable channel, an analogue of Fig. 5b (see
Fig. 8b), which (roughly) corresponds to the Markov
chain Xy X35 — X; — X, XY, cannot simultaneously
hold (also see proof of Lemma 2).
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Falm}) X3 —
B q X1z
fa(my) X5 —
fa(mz) X9 —— o W |— Yy

fa(ms) X3 4‘—

(a) X, X% — X1 — X2X3Y Markov
chain holds approximately.

Fig. 8.

and (b) cannot hold simultaneously (see Fig 5).

j';;(m:/;) Xé — q X1 x

fa(ma) Xo —— > W

fa(ms) X3 J

(a) X} — X1 — X2 X3Y Markov chain
holds approximately.

H— Y vy
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fa(ma) Xo —

’ q — Xl

fa(ms) X3 —

fam) Xp ————— W vy

fa(my) X J

(b) X2X3 — X{ — X, XY Markov
chain holds approximately.

The subfigure (a) above describes the decoding condition 2a. The quantities in blue describe it operationally while the random variables describe
the single-letter joint distribution. Non-symmetrizability implies that, for (1, !, fo(mz2), f2(m}), fa(ms), fa(m}),y) € T

X1 X{ XX} X5x,y> PO (a)

fa(mz) Xz — @

’ ’
X) x)

fa(m2) Xog ———— 1 W

fs(my) X J

(b) X3 — X{ — X2 XY Markov chain
holds approximately.

— Y y

Fig. 9. The subfigure (a) above describes the decoding condition 2b. The quantities in blue describe it operationally while the random variables describe the

single-letter joint distribution. Non-symmetrizability implies that, for (@1, 2}, fa(m2), f3(m3), f3(m}),y) € Ty

hold simultaneously (see Fig 6).

fiimh) X1 —
,I 3 q X1 @1
fa(my) X5 ——
fa(me) Xo —————— W — Y y

fa(ms) X3 4‘—

(a) X] X} — X1 — X2X3Y Markov
chain holds approximately.

X Xa X5 X4y both (a) and (b) cannot

Ji(my) X3
fa(mz2) Xo — T2 W
Y y
fa(msz) X3 —y 4 Xé
fa(my) X3

(b) X2X3 — X} — X[ XY Markov
chain holds approximately.

Fig. 10. The subfigure (a) above describes the decoding condition 2¢. The quantities in blue describe it operationally while the random variables describe

the single-letter joint distribution. Non-symmetrizability implies that, for (x1, f1(m}), f2(m2), 5, f3(ms), f3(m3),y) € T%

and (b) cannot hold simultaneously (see Fig 7).

b) m% has an explanation (], f2(m2)) such that the
collection (z1, fa(ma), fs(ms), fs(mj),y) may be
interpreted as typical instances drawn from a distribu-
tion Px, x,x,x;y that specifies that X3 and X»X3Y
are (roughly) conditionally independent given X; (see
Fig. 9).

¢) mj has an explanation (f1(m/),x5) such that the col-
lection (wlv fl (m/l)a f2(m2)7 f3(m3)7 fd(m/S)a y) may
be interpreted as typical instances drawn from a dis-
tribution Px, x/x,x,x;y that specifies that X 1 X4 and
X5 X3Y are (roughly) conditionally independent given
X (see Fig. 10).

See the decoder definition below for a complete description,
which accounts for all candidates.

Items (a) and (b) in the decoder definition are similar to
the decoding conditions in [10] where user-¢ is the adversary
and x; is the state. Item (c) is associated with our new

L X] X2 X} X5 x4y PO (a)

non-symmetrizability criterion (see Fig. 7) and handles the
situation in which an adversarial user tries to make another
user appear adversarial while pretending to act honestly.

i) Decoder: Let n > 0. For a received vector y € Y", the
decoder outputs ¢(y) = (m1, ma,m3) € My X My x My if
RS DSLZ N DSSQ N fo;’; where DSZ)“ 1 =1,2,3 is defined as
below.

Yy € fo;’g if there exists some permutation (i,j) of
(1,2), m; € M;,x; € A, and random variables
Xi’Xj7X3 with (wiafj(mj>7f3(m3)>y) € T)’r}inXgY and
D(Px,x;x;v||Px, X Px; x Px, x W) < n such that the
following hold:

(a) Disambiguating (m;, m3) from (m/, m3):  For every
(mj,ms) € M; x Mz, mj # my, my # ms,
x; € A, and random variables X7, X7, X3 such
(:I:uw;af](m])7f](m_/7)7f3(m3)af3(mg)7y) €

that
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T;}L'X,ZXJ'XJ/-XIiX{;Y and D(Pngyl'XllcYHPX{ XPXJ" ><]3)(;c X
W) < n, we require that I(X;X3Y; X X3|X;) <

(b) Disambiguating m3 from mj: For every mf € Ms,
my  # mg, x, € X, and random variables
X:,Xé such that (zi,wg,fj(mj)jg(mg),fg(mé),y) S
T;}ZX:XJXSX‘;Y and D(PXZX]X;Y|‘PX.: X PXj X PXé X
W) < n, we require that I(X;X3Y; X5|X;) <n

(¢c) Disambiguating (m;, m3) from (m;, mj): If there
exist (m;,m4) € M; x Mz, mh # ms,
x; € X', and random variables X}, X7, X3 such
that  (z;, fi(mi), fj(my), xj, fa(ma), fs(mz),y) €
T)’éixngx_;xgxgy and D(Px;x:x;v || Px; % Px;, XPXQ X
W) < n, we require that I(X; X3Y; X/ X5|X;) <

The decoding sets D} 2 and D,(nl are defined similarly. If y ¢
DY) NDE) D) for all (my,ma, ms) € My x My x Ms,
the decoder outputs (1,1, 1).

Note that the decoder is not well defined if y € D,(éz N
DE NDE) and y € D(” D<2) D) for (m1,my, mz) #
(mf, mb, m}). This is ruled out by ?he following lemma
(proved in Appendix I) which guarantees that, for sufficiently
small > 0, there is at most one triple (m1, ma, m3) such that
RS Dﬁii N Dgnl ﬂD( ) . This is analogous to [22, Lemma 4].

Lemma 2 (Dzsambzguzty of Decoding): Suppose the channel
Wy |x,x,x, is not symmetrizable. Let Py, € Py ,Px, €
P%, and Px, € P, be distributions such that for some o >
0, ming, Px, (z1), ming, Px,(x2), ming, Px,(z3) > «. Let
i My =Ty, fo: Mo — Tg, and f3: My — T, be
any encoding maps. There exists a choice of n > 0 such that
if (1701, 12, 7003) # (M1, ma,my), then (DS NDL) D))
(Dia) N D4, N D)) = 0.

Notice that the decoder definition does not require consis-
tency of the 1n;;ut message for the same user. For example,
when y € D,(,%g N Dmg, in which case the decoder
outputs (myq, mg,mg), the message mo plays no special role
in D,(,Q or DS’; That is, an “explanation” for the candidate
my may be (fa(ma),x3) € X3 x X3 which passes checks
(a), (b) and (c) in the definition of Dgi where 72 need
not be same as mo or even be unique (for instance, there
might be another simultaneous “explanation” (f2(m}), x5)).
At the same time, an “explanation” for the candidate m3 which
passes checks (a), (b) and (c) of D) may be (1, fa(ihg)) €
X' x A" where mo need not be same as 1hg or ma.

e) “Xy-symmetrizable by X;/X;” is new: The following
example shows that the third symmetrizability condition (8)
does not imply the others. The channel below is neither
X;j x Xj-symmetrizable by X; nor X}|X;-symmetrizable by X;
for any permutation (,j, k) of (1,2,3). However, it is A5-
symmetrizable by X /X>.

Example 1: Let Xy = X =Y = {0,1}® and &3 = {0,1}.
Consider the channel Wy x, x,x, (where the output is ¥ =
(Y1,Y2,Y3)) defined by

(Y1,Y3) = (C1, Ca),
v B1® (A1 © X3) wp. 1/2
3 =
By @ (A ® X3) w.p. 1/2
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where ® denotes multiplication and & denotes addition
modulo 2.

To see that this channel is X3-symmetrizable by X /X5,
consider the “deterministic” ¢((a1, b1, c1)|(a, bi,¢1 ), ¥3) and
q/(<d2, b27 52)|(a2, bz, Cg), .’53), for (al, bl, Cl), (561, bl, 61) S
X, (&2,[)2,52), (CLQ,bQ,CQ) € Xy and 3,23 € Ajs, defined
as follows: let g, ¢' : {0,1}* — {0,1}? be defined as

g((dlj’la &1)7j3) -
g ((az, b, c2),23) =

(0,01 ® (@) ® F3), &),
(O, by ® (CLQ ® $3), CQ).

Then

q((a1,b1,c1)|(@r,b1,61),23) = 1
q' (a2, b, )|(az, ba, c2),23) =

{(a1,b1,c1)=g((a1,b1,é1),@3)}>
1{(&2,52,52)29'((112,172,Cz),ﬂi3)}'
Consider the two cases shown in Figure 7 with Z; =
(a1,b1,¢1), x2 = (az,ba,¢2), and ¢ and ¢’ defined as above.

It follows that, in both the cases, the channel output Y has the
same conditional distribution given each input. In particular,

(lea}é) = (01702)7
by @ (a1 © &) wp. 1/2
Y; =
by @ (a2 ® x3) w.p. 1/2.

This shows that the symmetrizability condition (8) holds for
<i7j’ k) = (]" 2’ 3)'

Since (Y1,Y3) = (C1,C%), it is clear that neither user-1
nor user-2 is symmetrizable. It only remains to be shown
that the channel is neither X3|X5-symmetrizable by X3 nor
X3|X;-symmetrizable by X. Suppose the channel is X3|Xs-
symmetrizable by X;. Then, to satisfy (7) for o = (0,0, c2)
and (z3,Z3) = (0,1), it must hold that

q(0,0,0[1) 4+ ¢(0,0,1]1) 4 ¢(1,0,0[1) + ¢(1,0, 1[1)
=¢(1,1,0[0) + ¢(1,1,1]0) + ¢(0,0,0]0) + ¢(0,0,1]0).

However, to satisfy (7) for xo = (1,0,¢2) and (x3,%3) =
(0,1), we must also satisfy

14 ¢(0,0,0[1) +¢(0,0, 1]1) + ¢(1,0,0[1) + ¢(1,0, 1[1)
= q(1,1,0[0) + ¢(1,1, 1]0) + ¢(0,0,0[0) + ¢(0, 0, 1]0),

which is a contradiction. Hence, the channel is not X3|Xs-
symmetrizable by X). By symmetry, it is also not AX5|X;-
symmetrizable by X.

Next, the following examples also show that none of the
three types of symmetrizability conditions given in Defini-
tion 5 are redundant given the others. Example 2 gives a
channel that is A} |X;-symmetrizable by X; for every per-
mutation (i, 7, k) of (1,2,3) but does not satisfy other any
other symmetrizability condition from Definition 5. Example 3
gives a channel that is X} X Xy-symmetrizable by X5 but does
not satisfy other forms of symmetrizability conditions (i.e.,
conditions of the form 2 and 3 in Definition 5). We skip
the detailed proofs here as these properties can be verified
following similar arguments as the AVMAC examples from [9]
and [10].
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Example 2: [9, Example on pg. 264] Let X} = X5 = X3 =
{0,1} and Y = {0, 1,2, 3}. Consider the channel Wy |x, x,x,
defined by

Y =X+ X2+ X3,

where + denotes addition over integers. This channel
is Xy |X;-symmetrizable by X; but is neither X; x Xj-
symmetrizable by X; nor Xj,-symmetrizable by X;/X; for any
permutation (i, 7, k) of (1,2,3).

Example 3: [10, Example 1] Let X1 = X = X3 =) =
{0,1}. Consider the channel Wy | x, x, x, defined by

v
Y =
Z ~ Ber(1/2)

The channel is X} x Xs-symmetrizable by X3 but is neither
Xy | Xj-symmetrizable by X; nor Xj-symmetrizable by X;/X;
for any permutation (3, j, k) of (1,2,3).

2) Randomized Coding Capacity Region:

Theorem 3: The randomized coding capacity region of the
3-user byzantine-MAC with at most one adversarial user is
given by

X106 Xo® X3=0,
X160 Xod X3 =1.

weak
Rrandom = Rrandom =R.

Remark  2: The  statement  Rgeterministic =
R, if int(Rdeterministic) 7 2 can also be shown directly
using the extension, provided in [8], of the elimination
technique [13] to first show that n2-valued randomness
at each encoder is sufficient to achieve any rate-triple in
R‘r";fé‘om (see Lemma 14). A deterministic code of small rate
can be used to send 2log, n bits out of each message. These
message bits are then used as the encoder randomness in the
next phase to communicate the rest of the message bits using
a randomized code.

Below, we sketch the proof of achievability. A detailed
achievability proof and a converse proof for the weak adver-
sary case are available in Section IV-B.

Proof Sketch (Achievability of Theorem 3):

The scheme is depicted in Figure 11. The achievability uses
the two-user AV-MAC randomized code used in the proof of
[8, Theorem 1]. Let (R;, Ro, R3) be a rate triple such that, for
some p(u)p(xi|u)p(xa|u)p(xs|u), the following conditions
hold for all permutations (i, j, k) of (1,2,3):

R; < min I(XZ,Y|U,X]), and
q(zp|u)
R; + Rj < min I(XZ7X], Y|U),

a(zk|u)
with the mutual information terms evaluated using the joint
distribution p(u)p(z;|u)p(z;|w)g(zk|w)W (y|z1, z2, 23). We
show the achievability of these rate triplets. Note that for
the AV-MAC W), the rate pair (R;, R;) is achievable by
the first part of the direct result of [8, Theorem 1] (see
[8, Section II-C]).'? Here, W) is the two-user AV-MAC
formed by the channel inputs from user-k as the state and

12Note that Jahn’s proof does not involve the auxiliary random variable U.
However, it can be easily incorporated along the lines of [30].
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the remaining channel inputs as the inputs of the legitimate
users of the AV-MAC.

In order to design a code for the byzantine-MAC, for
each user-i € {1,2,3}, we consider the randomized encoder
F; which maps each message independently to a codeword
generated i.i.d. according to p;. The realization of each user’s
codebook is shared with the decoder as independent shared
randomness, i.e., F, F» and F3 are independent. We note that
the encoders F; and F} are identical to the ones in the proof of
[8, Theorem 1, Section III-C] for the two user AV-MAC
W), The decoder for the byzantine-MAC will be imple-
mented using the decoders ¢V (Fy, F3), ¢*)(Fy, F3) and
¢(3)(F1, F) (from the proof of [8, Theorem 1, Section III-C])
of AV-MACs W, W) and W) corresponding to the
encoder pairs (Fy, F3), (F1, F3) and (F, Fy) respectively. It is
clear that if, say, user-3 is malicious, and honest users-1 and
(mgz’,)’ mézz)
of the decoder ¢ (Fy, Fy) will match (my,msy) with high
probability. However, since the decoder does not know the
identity of the malicious user, there is an additional decoded
message mﬁz) from decoder ¢ (Fy, F3) for user-1 (and
similarly there is an additional decoded message for user-
2 from ¢V (F,, F3)). The message rhf) can potentially be
different from m§3>. This is because the decoder ¢?)(F}, F3)
assumes that user-3 is honest and no decoding guarantees are
available for its output when user-3 is in fact malicious. When
mt® # m'? it is not clear what the receiver should output as

1 15
the decoded message for user-1. This is where we can leverage
the independent shared randomness shared by each user with
the receiver.

We use a form of random hashing in order to add a
further post-processing step which filters the outputs of the
decoders of the AV-MACs as follows. Using the randomness
they share with the receiver, each user randomly selects a
subset of the original message set which is of nearly the
same rate but is only a small fraction of original message
set in size. These randomly selected subsets will be the valid
message sets for communication in the byzantine-MAC. If the
decoders of AV-MACs decode to messages which are not in
these randomly selected subsets, they will be rejected in the
post-processing step. Since these subsets are chosen using
the independent shared randomness between each user and
the receiver, their identity is hidden from the malicious user.
For a malicious user-3, the output of ¢ (F|, Fy) will be
correct with high probability and will be accepted in the post-
processing step as honest users-1 and 2 will only send valid
messages. On the other hand, the outputs of ¢(!)(Fy, F3) and
#?) (Fy, F3) will be rejected with high probability if they are
different from the output of ¢(3)(F, F). This is because the
size of valid message set is only a very small fraction of the
original message set, so an arbitrary decoded message will fall
outside the set of valid messages with high probability. This
crucially uses the fact that these sets are constructed using
independent shared randomness which protects the identity
of the set of valid messages (and thus the set of valid
codewords) and prevents the malicious user from correlating

2 send m; and my respectively, then the output
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Message sets

0= 000

@ User 3

(a) The figure shows the message sets for each user. For each message set, a subset (shown in color) is picked
randomly using the independent randomness shared with the decoder. Only the messages in the colored
subset are valid messages and used for communication in the byzantine-MAC.

I!I

User 1 L w® T a® ] sw®e@run® e

User 2 Is s €() 2 1s M e ()2

User3 [ mg’ || [ m | s 0 m® e 02
o) (Fs, Fy) ¢® (F1, Fs) P (F1, Fy) Post-processing

(b) The decoder works in two steps. Suppose the encoders are F1, Fp and F3. To decode user-1’s message,
the decoder uses the decoder ¢(2) (Fy, F3) of AV-MAC W () and ¢() (F1, F») of AV-MAC W), to get
candidates mf’ and fngs) respectively. These candidates pass through a further post-processing step where
a candidate which does not belong to the set of valid messages is rejected. If user-1 is honest, at least one of
the the decoders among ¢(2) (Fy, F3) and ¢(3) (Fy, Fy) will output correctly with high probability. Since
a small set of valid messages was chosen using independent shared randomness, a malicious user cannot
correlate their attack with messages of honest user(s) with high probability. This ensures that erroneous

messages are rejected in the post-processing step. The decoder for other users proceeds similarly.

Fig. 11. A figure depicting the decoder for the randomized code of a 3-user byzantine-MAC.

the attack with those messages. These ideas are formalized in
Section IV-B. (]

IV. PROOFS

In this section, we present proofs of the results presented in
the previous section for the three user byzantine-MAC with at
most one adversary.

A. Deterministic Coding Capacity Region (Theorem 1)

Proof (Converse of Theorem 1) The outer bound on the
rate region, when non-empty, follows from Theorem 3. Below,
we show that a symmetrizable user cannot communicate.

Clearly, symmetrizability conditions for the two-user AV-
MAC with X; as the state alphabet and &, X3 as the input
alphabets are also symmetrizability conditions for our prob-
lem. Conditions 1 and 2 follow from Gubner [9].

To analyze the rate region when condition 3 holds, consider
(1,7,k) = (1,2,3), the other cases follow similarly. Suppose
q(Z1|x1, z3) and ¢’ (Z;|z;, xx) satisfy (8), ie.,

> q(@|wr, E3) Wy x, xax, (y]E1, 22, 23)

z1
= Zq/(52|$2,I3)WY|X1XZX3 (ylz1, T2, T3),
To
VIle.Xl, To € Xy, 3,23 € X3, y € V. (11D
Let mg,m3 € Mgy be distinct, and let &3 = f3(ms3) and

&3 = f3(ms). We consider two different settings in which
user-3 sends 3 and &3 respectively:

(1) In the first setting, user-1 is adversarial. It chooses an
M; ~ Unif(M;). Let X1 = f1(M7). To produce its
input X 1,75 to the channel, it passes (X1, &3) through
q", the n-fold product of the channel ¢(Z1 |21, x3). user-2,
being non-adversarial, sends as its input to the channel
Xy = fo(Ms), where My ~ Unif(Ms). user-3 sends
x3 corresponding to message ms. The distribution of the
received vector in this case is

1 s -
NN, Z H Z q(T1,mg ¢

my,mo t=1 %1 gt

fie(ma),Z3¢)

X Wy x, x5 x5 (Ut Z1,ms.t5 fo,e(Ma2), 23.1).

(ii) In the second setting, user-2 is adversarial. It chooses an
M2 ~ UIllf(Mg) Let X2 = fg(Mg) To produce its
input Xg,mS to the channel, it passes (X3, x3) through
q'", the n-fold product of the channel ¢’ (Z2|x2, x3). user-
1, being non-adversarial now, sends as its input to the
channel X, = f;(M;), where M; ~ Unif(M;). user-3
here sends &3 corresponding to message mgs. Here, the
distribution of the received vector is

1 - ;
NN, Z H Z 4 (Z2,my 4] f2,6(m2), T3.4)

my1,ma t=1 T2 mqt

X Wy x, x5 x5 (el f1,6 (M), T2,ms 6, T3,t)-

By (11), the above two distributions are identical. Hence,
for any decoder, the sum of probabilities of decoding error
for messages mgs and s must be at least 1, i.e., if we
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define €3(ms, &) = ]\%2 Zmlz e1(&1,my, m3) and similarly

eg(mg,i‘g) e ﬁl Zmll 62(777//1,532,7”713), then
ma [6%(’/713,5(2 ms)]

Z HZ (Z1,e]fre(ma), Z3,0)

mi,ma t=1 21 4

EX1,7;13 [elf(m& Xl 77!3)] + E X

= . (NN2

y:9(y)#ms

Wy 1 x, x2 x5 (Ye|T1,e, f2,6(m2), 23 t))

+ (N N, > qu (Zo,t f2,e(m2), 3,4

TR y);,pérn3 mi,ma t=1 T ¢

Wy 1x, x5 x5 Wel f1,e(ma), Za e, 333,t))
(a)
>1,

where (a) follows from (11).

Note that the distribution of X (resp. X ») does not depend
on mg (resp. m3). Arguing along the lines of [22, (3.29) in
page 187],

2Pe(f17f27f3a¢)
Z Pe,l +Pe,2

1 3 < 1 3
2 ;EX €3 (ma, X)) + 5~ %‘Ex?[el(mg,xzn

for any attack vectors X1 and X 5. In particular, for the attack
vectors - > X1, and - N Do Xo.ms»

2P8(f11f27f37¢)
= Nig 2.0 (Exm [e3 (3, X1,m5)]

+Ex,,, le3(ms, XQ,WS)]) :

For ms # mgs, the term in brackets on the right is upper
bounded by 1, otherwise it is upper bounded by zero. Thus,
N3(N3 —1)/2

Pe(f17f25f37¢)2 2N§

Y

1
g
]

Next, we turn to achievability of Theorem 1. It uses
[24, Theorem 2.1] which provides a concentration result for
dependent random variables. We use it to obtain the codebook
given below. This codebook is a generalization of the code-
book for the point-to-point AVC (Lemma 3) studied in [22].
In particular, (12), shown at the bottom of the next page, is
similar to [22, Lemma 3, (3.1)]. (13) and (14), shown at the
bottom of the next page, respectively are generalizations of
[22, Lemma 3, (3.1)] to a pair of messages. Similarly, (15),
shown at the bottom of the next page is a generalization of [22,
Lemma 3, (3.2)], and (16), (17) and (18), shown at the bottom
of the next page, respectively are generalizations of [22,
Lemma 3, (3.3)]. As we mentioned in Section [-D2, proving
these generalizations requires establishing an analogue of the
concentration result [22, Lemma A1] for multi-user channels.

2321

We specialize the concentration result in [24, Theorem 2.1]
to obtain such an extension. We illustrate the proof idea by
proving (13) immediately following the lemma statement. For
the complete proof, please refer to Appendix II.

Lemma 4 (Codebook Lemma): For any ¢ > 0O,n >
no(e), N1, No, N3 > exp(ne) and types P, € Py, P €
77}@2, P; € P}B, there exists codebooks xii,...,T1n, €
Xl o1, ..., aN, € XS, T31,..., %3N, € X3 whose code-
words are of type P, P», Ps respectively such that for every
permutation (4, j,k) of (1,2,3); for every (x;,xj, &) €
A x XY x Xy for every joint type Py, XIX; XX Xx) €
PX X X X Xj X Xj X Xjy X X ; and for R (1/77’) 10g2 NmR
(1/n)logy Nj, and R, = (1/n)logy Nj; the statements
(12)—(18), shown at the bottom of the next page.

Proof Idea: The existence of a codebook satisfying
properties (12)-(18) is shown by a random coding argument.
For fixed (x;,xj,zx) € A" x A x Aj'and joint type
PX@'X{XjXJ’-XkX,; € ,P;éixXiijijxkaXk’ we will show
that the probability that each of the statements (12)-(18) does
not hold, falls doubly exponentially in n. Since |A]"|,
| X0 | and [P v, x ¥, x x; x v x x| &row only exponentially
in n, a union bound will imply the existence of a codebook
satisfying (12)-(18). We first restate [24, Theorem 2.1] for
ready reference.

Lemma 5: [24, Theorem 2.1] Suppose that V,,a € 7,
is a finite family of non-negative random variables and that
~ is a symmetric relation on the index set J such that each
Vg is independent of {Vj3 : 3 ~ a}; in other words, the pairs
(a, B) with @ ~ (3 define the edge set of a (weak) dependency
graph for the variables V,,. Let U := "V, and p:= EU =
> o EVa. Let further, for o € J, Uy = Y5, Va. If t >
> 0, then for every real r > 0,

<U > ) .

—r/3 + Z
acJ

We will now show the analysis of (13) using Lemma 5.
Let 7,1 € {1, 2, 3} denote the type class of P,. We generate
independent random codebooks for each user. The codebook
for user | € {1,2,3}, denoted by (X;1,X2,...,Xin,),
consists of independent random vectors each distributed uni-
formly on T}". Fix (i, z;, @)) € X" x X' x Xj'and a joint
type Px;x/x;x:1x.X], € PR, xx,xx;x x; x 2, x x, Such that for
l€{123} PX’ le Pl and (w“a::J?wk)ETXXXk

In order to apply Lemma 5, let J =
{(ir,5s) : (r,s) € [1: N;] x [1: N,]}. For every
(ir,js) € J, we define binary random variable V(;, ;)
as

1,
‘/(ir,js) = 0

and

def def

P(U > p+1t) < (19)

if (Xirans) S T;;X;\XlXJXk (mk),

otherwise

D Viirgs)

(ir,js)eT

Hrs F N x[1

CNG (X, X s, a ) €Ty

{X;X,-Xij}'
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Note that (ir,js) ~ (iu,jv) if and only (ir,js) N = Z P (Viirjs) = 1)
(Z"U,,j’U) 7& 0. Thus, for (iT’,jS) e J, U(ir,js) = (r,s)€[1: N3] x [1:N;]
Z(ﬂj YeT :(iu,jv)N(ir,j5)#0 V(iu Ju)* { /.
iu,jv ((Gu,jv)N(ir,js ) < —
Next, we will compute p(= E[U]). Note that <oxp (i + Ry = I(XG XGXXGX)
— I(X;;XinXk))}
P (Viirso) =1)
\ Xox01xx, x, (@i 5, )| <exp {n‘ R — (X0 X X; X)) |
T3, 17%,
3 +
_ exp {nH (X]X}|X; X;Xy) } + ij—J(X]’.;XinX,c)y+ - I(X;;X;|XinXk)’ }
~ (n+ D)%% exp {n(H X’)—|—H(X’)} s
= (n+ 1)~ (XI+1% \)exp{ X!) o ' '
Let v = exp (ne/2). We are interested in P(U > vE).
(XIX1|X,X; X
P(U > vE) = P(U — E[U] > vE — E[U])
(X X))+ H(X]) + H(X ))} gP(U—E[U]zu E)
exp {—n ([(X]X}; X; X; Xp) + [(X]; X})) } =PU>p+(v— 1)E)
vl v Y 13!
<exp{-n (T(Xi X5 X X X5,) + I(Xi’Xj))} Let ¢t = (v — 1)E and r = exp(ne/8). We will use (19) now.
—exp {—n (I(X); X, X, Xp) + (X! X, X, X3 | X!
exp { n(/( 5 i Xk) +I1(X; i Xk X})) P(U > 4+ (v — 1)E)
+ I(XZ’X])} 1 (ne/8) g (V_ 1)E
Zexp{—n (I(X‘;,XlX]Xk)+I(X;,X;XZXka))} Se 3 expine + Z ]P’(U(”n’jg) > Zexp(ne/S)) .
(ir,js)eT
Thus, (20)
~ (v—1)E
u =E[U] We need to analyze P (U(im-s) > W)'
= E |Viir,js 7 (V_ 1)E
Z N [ (ir,j )] P(Uirjs) > s
(r,8)E€[1:N;]x [1:N;] 2 exp(ne/8)
€ [1: N (@i, w5, 1) € T, x, o, H < exp (0 (IR0 = T(XE X0 X0 X0) [T 4+ ¢/2) ) (12)
{(uv) € L Ni] x [L: Ny« (@iu, Tjo, i 25, k) € Tioxox,x, x|
< exp (n (|1 = TOX XX X0+ Ry = T(X); X X5 X — (X XXX X0) |+ ¢/2) ) (13)
|{(u7w) S [1 : Nz] X [1 : Nk] : (iL‘Z‘u7£Bkw7wi,£Bj7£L'k) S T;{XJ'-XszXkH
< exp (n (|1 = TOX XX X0+ [ Ry = H(X XiX5 X0 = TOX XEIXGXX0) [T+ ¢/2) ); (14)

n
N ) € 1 N (12 NG (i ) € T x, < exp (-5 ) I X) + 1 XiXe) 26 (19)

NN, H(r,s) € [1:N;] x [1:N;]:3(u,v) € [1:N;] x [1:N;], u#rv+#Ss, (Tir, Tjs, Tin, Tju, Ti) € T)?inX,{X;XkH
i1V

ne
< exp (—?) R

+
if T(Xi; X; X[ X5 X,) + I(X;; X[ X[ X)) > ‘|R — I(X5 X0+ | Ry — 1 X | —I(XQ;X]"le-)‘ +6 (16

NN, H(r,s) € [1:N;] x [1:Nj]:3(u,w) € [1:N;] x [1: Nil, w#r, (Tig, Tjs, Tins, Thow, Th) € T)TéinX;X;CXkH
idVj

ne
< exp (7?) ,

+
if 1(X;; X, X1 X5 X3) + 1(X;; XIX[ Xy) > ‘|R — I(X) X))+ | Rk — I(X4: X3)| T — I(Xg;X,;|Xk)‘ +e (A7)

ne
H(r,s) € 1:N;] x [1:Nj]: Jue[1:N;], u#r, (Tir, Tjs, Tin, Tk) € T)%X;XkaH < exp (——) ,
N,’Nj I 2

if T(X5 X, XIX0) + 1(X;: X0Xg) > |R — (X5 X)) + e (18)
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(v—1)E
=P ) Viewgn > 5ot
’ 2 8
(tu,jv) €T :(tu,jv)N(ir,js)#0 exp(ne/ )
(v—1)FE
(irgs) + %ﬁ (ir.5) +u§#: (.39 > 5 oo ne /)
(v—1)E
-p |3V Y Vi Al VS '
(ir,jv) + (tu,js) 2 eXp(nG/S) (ir,js)
v#S uFEr
~1E
<P E Vi E Vi —_—
(ir.gv) T (tw,59) 2exp(ne/8)
V#S uFEr
v—-1FE
<P g Vi — -1
(ir.gv) > <2exp(ne/8)

v#S

+P | D Viiugos) >
u#r

The last inequality uses a union bound. Note that

1 ( (v-1E 1) 1 ((exp(ne/2) —1)E _1>

2 \ 2exp(ne/8) 2 2 exp(ne/8)
> ; <(exp (ne/2) —1)E E>
exp (3ne/8)
= (( (eleZ)LG/S) )E> for large n
= exp (ne/4).
<P (Y Virjo > exp (ne/4)E
v#s

Thus,

D Viirn) >

v#S

+P Z Vv(zu j?}‘?)
uFr

2 2exp(ne/3)
- )7
3 (et )

+P [ Viugs) > exp (ne/4)E
uFET

Let us first analyze P (Z#S Wiirjv) > €Xp (ne/4)E)

Z Viir,ju) > exp (ne/4)E
v#S

- T

mJSGTX XX X},

]P)(st = a:js)x

(z,5,2)

Z Viir,jv) > exp (ne/4)E| X
v#S

js = Ljs

We will
P (Zv;ﬁs ‘/(i”'vjv) > exp (n6/8)

J" = A{(ir,jv) :vell:
we define binary random variable V(W oy @S

/ _
Viirgo) = {

and U’ =
if and only if v =

Lemma 5 on
Xjs = a:js) for
}. For every (ir,jv) € J’,

apply

NiJ\ {s

L if (Xj0) € T xx,x, x, (Tirs @i, 25, T),
0, otherwise

Z(Mv)e 71 Viirjs)- Note that (ir, jv) ~ (iu, jv')
v'. Next, we will compute E[U’].

> Vi

(ir,jv)eJ’

<ZIP>( Girjo) = )

v#ES

= ZP (va € T)?HX{XinXk (Tir Li, Ly, 1:79))
vES

=2

< exp{nR;}

E[U'] =E

|T§}|X;Xixjxk($m:Bi,wj7:ck)|
%]

exp {nH(XJ’-|XZ(XinXk)}

(n+1)1%Texp {nH (X))}

< exp {n (|Rj — I(X' X!X; X, Xk)|+)}

< FE.

Now,

Z‘/(ir,jv) > exp (ne/4)E‘XjS =
vFES
=P D, Vi >exp(ne/4E
(ir,jv)eTg’
=P (U’ > E(U’) +exp (ne/4)E —E(U"))

P > EWU) + (exp (ne/d) — 1)E)

(2) e —1 exp(ne/8)

S (i

(ir,jv)eJ’
c)

< e~ 3 exp(ne/8) | Z P (V(’MU) > E) for large n
(ir,jv)eT’

(exp(ne/4) — 1)E>
2 exp(ne/8)

—

(i) e~ 3 exp(ne/8)

where (a) holds because E[U’] < E, (b) uses (19) for
r = exp(ne/8), (c) is true for large n and (d) holds because
Vs ju € {0,1} while E > 1. Thus,

Z Viirjv) > exp (ne/H)E | < e~ 3 exp(ne/8)
vF#S
Similarly,
Z Viiu,js) > exp (ne/4)E | < e~ 3 exp(ne/8)
u#Er
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This implies that

P (0(ir,js) >
Thus, from (20),

P(U > i+ (v — 1)E)
< e—%exp(ne/8) + |L7|2e—l exp(ne/8)

v—1)FE

1
< 9”3 cxp(ne/8).
2exp(ne/8)) =

= e~ P(e/E) | |N||Ny[2e 5 xp(ne/S),

which falls doubly exponentially. (I

Proof (Achievability of Theorem 1): For an input distribution
p(x1)p(x2)p(zs), we first show the achievability of the set of
rate triples (R;, Ro, R3) which, for all permutations (i, j, k)
of (1,2,3), satisfy the following conditions:

R; < n(ain) I(X;;Y|X;), and (21)
94Tk

where the mutual information terms are evaluated using the
joint distribution p(z;)p(z;)q(xk)W (y|21, x2, x3). Fix distri-
butions P, € Py , P» € Py, and P35 € Py, (which approach
p(z1),p(z2),p(x3) as n — o0). For these distributions,
consider the codebook given by Lemma 4 and the decoder as
given in Definition 6 for some 7 > 0 satisfying the condition
in Lemma 2. Choose € > 0 such that > 6e. Below, we repeat
the decoder from section III-B1d for the sake of completeness.
Definition 6 (Decoder): For areceived vector y € Y, some
n >0, ¢(y) = (ml,mg,mg) € My x My x Mg, if Yy <
DY) DG NDE) where DY), i = 1,2, 3 is defined as below.
y € DSZ if there exists some permutation (j,k) of
(2,3), mj € M, ,x, € A, and random variables
X1, X, X, Yowith (fi(ma), fi(m;), @e,y) € T%, x, x,v
and D(Px, x;x,v||Px, X Px, X Px, x W) < n such that the
following hold:
(a) Disambiguating (m1,m;) from (m}, m}): For every
(m’l,m;-) € My x M; mi # my, m;- # mj,
x; € X&), and random variables X7, X}, X; such
that (fl(ml)afl(mll)7fj(mj)vfj(m;)vmkaw;g»y) €

mn
T, x;x;xix,xy - and D(Px;x:xyv||[Px; %

Px: x Px; X W) < mn, we require that
I(X1 XY X[ X X5) < .
(b) Disambiguating m; from m/: For every m} € My,

my £ m, wﬁc € A&}, and random variables
X1, X}, such that (fi(m1), fi(m}), fj(m;), xx, ), y) €
T)’élX{XijXLY and D(Px; x, x;v|[Px; x Px; x Px; X
W) < n, we require that I(X, X;Y; X{|Xx) <.

(c) Disambiguating (mq,m;) from (mf}, my): If there
exist (mj,mi) € Mi x Mg, mi # my,
x; € A, and random variables X7, X}, X; such
that  (fi(ma), fi(mh), fi(my), zj, @y, fu(me),y) €
T)?lX{XjX}XkX,;Y and D(PX{X_;X,QY||PX{ X
Pxi x Px; x W) < mn, we require that
(X1 XY X X0 X) <.

The decoding sets D,(,%g and D,({z’g are defined similarly. If y ¢

D,(,lbz HD% ﬂD,(fg for any (mq, ma, m3) € M1 x Mg x Ms,

the decoder outputs (1,1,1).

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

Next, we give some standard properties of joint types as
given in [22] (as Fact 1, Fact 2 and Fact 3). As mentioned
in [22], these bounds can be found in [28]. For finite alphabets
X, Y, the type class P%, any channel V from & to ) and
random variables X and Y on X and ) respectively with joint
distribution Pxy, the following holds:

[PR| < (n+ 1)1
(n+ 1) exp (H(X)) < |T3(2)] < exp (nH (X))

(23)

if T3 (2)] 0 24)

(n+ 1) Wlexp (nH (Y |X)) < [T x ()|
<expH(YIX)) i [T (@) £0 ©5)
Z V™ (ylx) < exp(—nD(Pxy||Px xV)) (26)

yGT;‘X (x)

We first analyze the case when user 3 is adversarial. The
probability of error when user 3 is adversarial (see (1)) is
given by

P673 déf max Pe73(.’133),
x3

where P, 3(x3) is the average probability of error for users
1 and 2 when a malicious user 3 sends x3 as input. That is,

Pae) =y Y B(lyiow) £ (s

reMi,seMs

for some t € Mg} ’Xl =X, Xo = Xos, X3 = $3)
27

We will argue that for every x3 € A3, P.3(xs) — 0 as
n — oo. The analysis of P, 3(x3) follows the flowchart shown
in Figure 12.

From the decoder definition, we know that for (r,s) €
My x Mo, if ¢(y) # (r,s,t) for some t € Ms, then
y ¢ Dﬁl) N fo). In other words, y € (Dﬁ”)c U (D@)C.
Thus,

P, 5 (x3)

- N11N2 > Wn({y ye (Dp))cu (Dgz))c

reM;
sEMo

$1r,$2s,$3)

|
= NllN2 > Wn<{y ye (D’("l))c}

reM;
SEMo

2 X W (e () ) ovnn)
NS

v 3w (e (08 o)
SEMo

where (a) uses the union bound. Thus, for

1
P =y, 2 W ({yew @ P oo ma).
SEM;
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P, 5(x3)

Union bound | €q. (28)

(myf,{g?gcm) Union bound | eq. (36)
small
(atypical event)
Py B, P
/ N\

continued in Figure 13.

Fig. 12.

2325

P, 3(x3) | the average probability of error when malicious user
3 sends x3

Py (x3) the average probability of error for user 1

Py (x3) the average probability of error for user 2

Py, the probability that channel inputs are atypical

Pg, . the probability that the channel output is atypical

Pp, Dy is such that AZ N B} . C Dy

Py condition (a) in Definition 6 does not hold

B condition (b) in Definition 6 does not hold

P condition (c) in Definition 6 does not hold

Flowchart depicting the flow of analysis of P, 3(x3), the average probability of error when malicious user 3 sends @3. In the flowchart, only

Py (x3) is further broken down and shown. The flowchart is continued in Figure 13.

and
1
Rien = g 3 w({u:0 0} o s,
SEM;

we have the following upper bound on P, 3 (x3).

P53 (x3) < Pi(x3) + Pa(xs3) (28)

We will first analyze P (x3). Let

Ac Z {Px,x: %57 € PRy w s x s xy
: D(PX1X2X3HPX1PX2PX3) > 6}7 (29)

Bie = {Px,x:XsY € PRy s xaxdaxy
s D(Px, x,x5v || Pxy x,x W) > m — €}, (30)

ﬁ n
and Dy = {Px, x5 %37 € PRy xxy x5y

: D(Px, x,x5v || Px, Px, Px,W) < n}. (31)

In defining B,, ., recall that > 6e. We will use A¢, 8276 and
Dy to denote Py v, x 5%y \ Aes P, xxyxxsxy \ Bn.e and
PR s xyxxsxy \ Dy respectively.

We first note that A7 N By, C Dy, This
is because D(PX1X2X3Y I |PX1 PX2 PX3 W) =
D(Px, x,x:v [|1Px,x,x: W)+ D(Px,x, %3] [Px, Px, Px)
and for Px, x,x,v € AEOB;,@ D(PX1X2X3y||PX1X2X3W)—|—
D(Px, x.x,||Px, Px,Px,) < €+ n — € = 1. Thus,
P swxyxasxy = Ae U By UD, We focus on the first
term on the RHS of (28) and split the set of joint types
PR x xyxxsxy 0o A, By o and D,;. Further, we use loose

upper bounds on each of these terms, for example, in the first
terms in (32) below, we upper bound the summand by 1.

Pilas) = 5 W ({ww # D0} anr @)

(r,s)
2

1
- NN, Z (rys):

fxlxzxsy
EPRy x x5 x x5 xy (T1r @as,@3)

€Tx x5,

yeT{/L‘xlxzxg (T1r,®25,23),
ygDLY

1
= N1 Ny Z

Pxxyx53v €A

1
NN, >

Px, x5x3v €8y e

>

yeT{}\Xlxgxg (T1r,T25,23)

1
* N1 Ny Z

Px,x5x3v €Dy

>

yeT]"/L‘X1X2X3 (w1T7w237w3)7
yQD(l)
+ Pp

Wn(y|w1’l“7 T2s, :ES)

> 1
(r,s):

n
(®1r,@25,23)ETY | x, x4

>

(Tas):(w1r7w2sm3)ET;1X2X3

W”(y|whﬂ,w25,w3)

b

(r,8): (@17 ,®25,®3) €ETR, v, x4

Wn<y|$lra T2s, m?))

=: Py, + Pg, . s (32)
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where we define the Py, Pg, . and Pp, as the three sum-
mation terms. We will analyze each term on the RHS of (32)
separately. We start with the first term.

Py,

1
~ NN, >

Px,x,x3v €Ae

1
~ NN, >

Px,x,x3v €A
. {(r, ) : (@1, 225, T3) € TR, x, x, |
B N1Ny
Px,xo,x5v €A
(a)
= X
Px,x,x3v €A

S |Pz\lf'1 ><X2><X3><y| €xp (—ne/?)

—_

>

(r;s):

(w1r7w25,m3 )ET;1X2X3

‘{(Ta S) . ($1T7$285w3) € T)TéngXg}‘

exp (—ne/2)

(b)

< (n 4 1)IF XX XXV oy (_ne/2)

— 0 as n — oo.

Here, (a) follows from (15) (as I(X7; X3) + [(Xo; X1 X3) =
D(PX1X2X3HPX1PX2PX3) > ¢ for every PX1X2X3Y € A as
defined in (29)). The inequality (b) uses (23). We now analyze
the second term. For fixed r € [1: Ny] and s € [1 : N3]

Pg, .

-z

Pxx5x3v €By et
n
(37317“7‘13237503)6Txlx2x3

YETE x, x5 x5 (T1r:T25,T3)
(a)
< >
Px, xox3v €8y et
(mlr»m257w3)€T;1X2x3

(b)
< >
Px, xox3v €8y et
(m17‘7m2sam3)€T;1X2X3
< |,P/’7\161><Xg><X3><)i| exp (—n(n —€))
()
< (n+1)1Mx XXV exp (—n(n — €))

— 0 asn — oo as n > GBe.

W"(ylz1,, T2s, x3)

exp (—nD(Px, x,x5v || Px, x, x,W))

exp (—n(n - ¢€))

Here, the inequality (a) uses (26), (b) follows by not-
ing that Px x,x,vy € Bj. (see (30)) and thus,
D(Px, x,x,v||Px,x,x;W) > 1 — e. The inequality (c)
follows because Pk y v, xx,xy (1 + 1)|FxXexXsx V| py
using (23). This shows that the second term on the RHS of (32)
also goes to zero as n goes to infinity.

It remains to analyze the third term of (32), that is, Pp, .
This only involves joint distributions Px, x, x,y Which satisfy
D(PX1X2X3YHPX1 x Px, X Px, xW) <m,ie., Px . x,x,y €
D, (see (31)). When Px x,x,v € D,, we notice from
Definition 6 that y ¢ pY only if for each of (j,k) = (2,3)
and (j,k) = (3,2), at least one of the conditions among (a),
(b) and (c) in Definition 6 fails. Thus, to upper bound Pp,,
it is sufficient to analyze the probability that at least one of

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

(a)-(c) in Definition 6 fails under (j, k) = (2,3). This implies

that at least one of the following holds:

(a) There exists u € My, u # r, v € My, v # s,
xfy, € AP, and random variables X7, X}, X}
such  that (fl(r)’f2(8)7w37f1(u)7f2(v)?wé’y) €
T%XQXsX{XéXéY’ D(Px;xyx;v||Px; Pxy PxyW) < n
an

(b) There exists u € My, u # r, &5 € X3, and random vari-
ables X1, X4 such that (f1(r), fa(s), 3, f1(u), x5, y) €
TX, x,x,x] X451 D(Px;x,xgv | Pxy P Pxy W) <
and I(XlXQY,XHXg) Z n.

(¢c) There exists u € My, u # r, xa € X,
w € Ms, and random variables X, X5, X}
such that (fi(r), fa(s), @3, f1(u), 2, f3(w),y) €

T, x,xsx)xx5v P(Pxixpxyv || Px; Pxy Px,W) <1
and I( X1 XoY; X1 X4 | X35) > .
To analyze these,
distributions:

we define the following sets of

Q1 ={Px, X, X3 X[ X5Y € Py s dtyx Xy x Xy x Xa x Y -
Px, x,x;v € Dy N A,
Px;x; x4y € Dy for some X3,
PX1 — PX{ — Pl, PX2 = PXé = Pz,and
I(X1 XY X1 X5|X3) > n}

Q2 ={Px,x,X:X]Y € P¥, 52, x s x 1 x Xs x Y °
Px, x,x;v € Dy N A,
Px:x,x;y € Dy for some X3,
PXl :PX{ :P17PX2 :P27 and
(X, X,Y; X1 X3) > n}

Q3 ={Px, X, X3 X[ X5Y € Py s 2ty x Xy x Xy x Xy x Y -
Px, x,x;v € Dy N A,
Px;x; x4y € Dy for some X,
Px, = Px; = P\, Px, = P, Px; = P3, and
I(X1 XY X1 X5]X3) > 1} (35)

(33)

(34)

For r,s € My X Mo, Px,x,x,x;x;v € Q1, Px, x,x;x]y €
Qs and Py, x,x;x/ xiy € Qj3, define the following sets:

Ers1(Px, X0 X3 X X5Y)
={y:3I(u,v) € M1 x My, u#r,v+# s,
(T1r, 25, T3, Tru, T20,Y) € T§1X2X3X1X§Y}
Ers.2(Px, X, x5 X1Y)
={y:JueMju#r,
(1, T2, T3, X104, Y) € T)’réngX;;XiY}
Ers,3(Px, Xo XX X,Y)
={y:3(u,t) € M1 x M3, u#r,
(T1r, T2s, T3, T1u, T3¢, Y) € T;}lxzxgxgxgy}
Thus,
Pp,

- 1\7111\f2 2 2

r,$ Px,x,x3v€Dy:
n
(317‘73257%3)67}(1){2}(3
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W"(ylx1,, T2s, T3)

b))

YETY | x, xx4 (T1r,@2s,23)
y¢ DY

1
< 4

T,

by

P
X1 XX x| x4y €Q1

LY

PX1X2X3X1YGQQ

+ > W (Ers,3(Px, x5 x5 X1 x4 )| T 17, T2s, fvs)}

PX1X2X3X{X%Y6Q3

::Pa+Pb+PC7

W™ (Er 51 (Px, X x5 X X457 ) [T 17, T2s, T3)

W™ (Ers,2(Px, X, X5 x1Y) | T1r, Tas, T3)

(36)

where

1
P, = NN, Z

r,s

lex2x3xixéyegl

W™ (Er o1 (Px, X0 x5 X7 x5 ) [® 17, T2s, T3),

(37)
1
B =
A Z
Z Wn(“:r,s,Q(PXleXgX{Y)|w1T7 T2s, T3),
Pxy xyx3x]y€Q2
(33)
S 3
° N1N2 r,8

by

Px) Xy xa x| x,y €93

Wn(gr,s,:%(PXleXgX{Xéy)|901r, Ts, T3)-

(39)

We have three terms in the summation on the RHS of (36).
We will analyze them one after the other. We will start with
the first term. The analysis follows the flowchart given in
Figure 13.

Analysis of Py: We will follow the flowchart given in
Figure 13. Let

1
PT,S(PX1X2X3X{X§Y)

= W& s 1 (Px, x,X5 X, X5y )| T1r, T2s, T3)-

Note that P&S(le X»X3X/Xx4y) is upper bounded by the
probability of error when r and s are sent by user 1 and
user 2 respectively. So, P (Px,x,x,x;x;y) < 1. Thus,
from (37), we see that it is sufficient to show that
PT{ s(Px,x,x5x; x4y ) falls exponentially. Let P, aypical be the

set of joint types satisfying
I(X1; X2 X1 X5X3) + 1(Xa; X{X5X3)

> ||Ry — I(X{;X3)|+ +|Ry — I(Xé;X3)|+
+

- I(X}; X5|X3)| +e (40)

2327

From (16), note that when Px, x, x, x; x;v € Q1 satisfies (40)

1
NNy

1
~ NN, >

(r,s):3(u,v) satisfying
(@1r @2s,23,@10,220) €T X X5 X] X}

Z Pl (Px,x,xsx1x57) 41)

v (v

mn
TY|X1X2X3XiXé (mlra TL2s, L3, Lly, in))} ‘m17’7 T2s, .'133)

(42)
< NN, {(r,s) € [1: N1} x [1: No] :
Ju,we[l: Ny x[1: No|,us#r,v#r,
(T1r, @25, T1u, T2v, ®3) € T, x,x7x5%5 1
< exp (7%) . 43)
Otherwise, when
I(X1; Xo X[ X5X3) + 1(Xo; X] X5 X3)
< | IRy = I(X5 Xa) [T | Ra = (X35 Xo) [
14 x| e (44)
depending on the evaluation ofr

1By = (X1 Xa)[* 4 | Rz = 1(Xg3 Xa)|* = 1(X]; X3l X)]|
we consider four cases:

+
IRy — I(X]: X3)| " +|Ro — I(XY: X3)| T —I1(X]; X}/ X3)

=0, 45)
+

[Ry — I(X1; X3)| " +| Ry — I(X}; X3)| " —I(X]; X5|X5)
= Ry — I(X1; X3) — I(X1; X9| X3), (46)

+

|Ry — I(X1; X3)| "+ |Ro — I(Xg: X3)| " —I(X{; X5|X3)
= Ry — I(X3; X3) — I(X]; X5| X3), (47)
+

|Ry — I(X{; X3)| "+ |Ro — I(Xg: X3)| " —I(X{; X5|X3)
= Rl — I(X{,Xg) —|— R2 — I(Xé,Xg) — I(X{,X“Xg,),

(48)

Before proceeding  further, we first argue that
(45)-(48) are the only possible evaluations of
+

1By = T(X{5 Xa) ¥+ Rz — I(X33 Xa)|* = I(X{; X3| Xs)
To see this, first suppose R; < I(X{; X3).
If Ry < I(X};Xs3), we get (45) as mutual information
is always non-negative. When Ry >  I(X};Xj3),
if Ro > I(X};X3) + I(X{;X5Xs), we get (47).

Otherwise, we get (45). Next, suppose R; > I(X];X3).
In this case, if Ry < I(X}; X3), depending on whether
Ry > I(X{;Xs) + I(X{; X}|X3) or not, we get (40)
or (45) respectively. When Ry > I(X%; X3), we get (48)
if Ry + Ry > I(X[;X3) + I(X5; X3) + I(X1; X5 X3).
Otherwise, we get (45).

Analysing each of the cases (45)-(48) separately, we will
show that P (Px, x,x,x:x;vy) — 0 exponentially for each
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continued from Figure 12

Py

Union bound

joint type
satisfies(40)

joint type

joint type does satisfies(61)

not satisfy(40)

small small

(by codebook
property(16))

case:(46) case:(48)

holds

small
(by bound on Rs2)

small
(by bound on R7)

small

Fig. 13.

Px,x,x;x;x;v € Q1. We will show this by using the
following upper bound.
P’r‘l,s(PXlX2X3X{XéY)

= W"(&r 1 (Px, x,X5 X7 X4 )|T1r, T2s, T3)

< >

(u,0):(®17,T25,23,F10,T20) €Ty

>

T1r,X25,T3,L1u,T20)

1 X2 X3X1 X}
n
w (y|x1’r‘7 T2s, -’.US)
yeT;\X1X2X3X{Xé(

< >

. n
(w,v):(®1r 225 ’m3’m17"’m27’)€Tx1X2X3xixé

exp (—n(I(Y; X1 X5|X1 X5 X3) — €))

(@)
< exp (n(||R1 (X X X Xs) [

+ | Ry — I(Xh; X1 Xo X3)|" — I(X1; X5 X1 X2 X3) |

— (Y X, XL X1 X X5) + 36/2)) (49)

where (a) follows from (13).
Case 1 ((45) Holds): We first note that when

+
|Ry—I(X{; X3)| " +|Re — I(X3: X3)| " — I(X]; X5|X35)
=0 (50)

holds, (44) implies that I(X1;XoX(X5X5) +
I(X2; X1 X5 X3) < e. This further implies the following:

(a)
> I(X1; X1 X5|X2X3) + I(X2; X] X5|Xs3)

= I(X1Xa; X1 X5|X5) (51)

where (a) holds because [(X7;X2X(X5X3) =
I(Xl,X{X5|X2X3)+I(X1,X2X3) and I(Xl,X2X3> Z 0 as

Union bound

(by codebook
property(18))

P, P

Union bound

o joint type
joint type does satisfies(69)

not satisfy(61) joint type does

not satisfy(69)

small
(by codebook

property(17))

small small
(by bounds on R; and R3)

(by bound on R;)

small (by bounds on
Ry and R53)

Flowchart, continued from Figure 12, depicting the flow of analysis of P, F, and F.

mutual information is always non-negative. Next, we will
argue that when (50) holds, the condition

|Ry — I(X7; X1 X2 X3)| " + |Ra — [(X3; X1 X0 X3)[*
— I(X] X5 X0 X X5) | =0
also holds and thus (49)

exp (n (0 — I(Y; X] X5 X1 X2X3) + 3¢/2)).
this by contradiction. Suppose

|Ry — I(X7; X1 X2 X3)| " + |Ra — I(X3; X1 X0 X3)[*
— I(X]; X351 X1 X2 X3)| T > 0.

evaluates to
We show

This implies that at least one of the conditions out of (¢) — (¢i%)
below hold.
(i) Ry >I(X1;X1X2X3)+ I(X7; X5 X1 X2X3), (52)
(i1) Ro > I(X5; X1X2X3) + I(X7; X5]X1X2X3), (53)
(#id) Ry > I(X7; X1X2X3), Ry > I(X}; X1X5X3) and
Ri+ Ry > [(Xi, X1X2X3) + [(Xé, X1X2X3)
+I(X£,XQ|X1X2X3)
If (52) holds, then
Ry > I(Xi,XlXQXg) + I(X{,X5|X1X2X3)
= I(X1; X3) + I(X1; X5 X3) + I(X1; X1 Xo| X5 X5)

(54)

(a)
> I(X71; X3) + I(X1; X5|X3)

where (a) follows from non-negativity of mutual information.
Note that the inequality (a) contradicts (50). The condi-
tion (53) is symmetric and hence leads to a contradiction again.
If (54) holds, then Ry > I(X{; X;X2X3) > I(X{; X3) and
Ry > I(X}; X1X2X3) > I(X4; X3). Furthermore, we have

Ri + Ro
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I(X1; X5 X1 X0 X3) + 1(X5; X1 X0 X3)
> I(X1; X5) + I(X1; X5]X35) + I(X5; X1 X2X3)
> I(X1; X3) + T(X1; Xo| X3) + 1(X3; X3).

These conditions together contradict (50). Thus,

Pl (Px, x,x,x1x5v)

<exp (n (—I(Y; X1 X5 X1 X2X3) + 3¢/2))

< exp (n(I(XlXQ; X{Xé‘Xg) — (X1 X:Y; X{Xé|X3)
+ 3¢/2))

(%) exp (n (e —n + 3¢/2))

= exp (n (5¢/2 — 1))

— 0 as n > 6e.
where (a) uses the fact that I(X;Xs; X{X5|X3) < e
(see (51)) and I(X 1 X,Y; X X}|X3) > n (follows from the

definition of Q;. See (33).).
Case 2 ((46) Holds): We consider the case when

|Ry —I(X1; X3)| " +|Re — I(Xh; X3)| " —I(X{; X5] X3)
=Ry — I(X]; X, X3).

In this case (44) evaluates to I(Xp;XoX1X5X3) +
I(X9; X1 X5X3) < Ry — I(X]; X5X3) + €. This implies the
following:

‘ +

€
> I(X1; Xo X X5X3) + I(Xo; X1 X5X3)
+I(X1; X5X3) — Ra
> I(X1; X1 X5 X0 X3) + I(Xo; X[ X5X3)
+I(X1; X5X3) — Ry
= I(X{, XlXQXgXé) - Rl.
Thus,
R1 - I(Xi,XlXQXg,Xé) 2 —E€.
This implies that
|R1 - I(X{, X1X2X3)‘+ S R1 - I(X{, X1X2X3) + €
and we get the following upper bound on (49):
exp (n(HRl (X X Xa X[
+ Ry — I(Xh; X1 Xo X3) |7 — I(X}; X5| X1 Xo X3)|
(Y X XL X Xa X)) + 36/2))
<exp (n(Ry — I(X]; X1 X2 X3X)) +€e+0
—I(YV; X1 X5| X1 X2 X3) + 36/2))
S exXp (n (Rl - I(Xi, XlXQXgXéY) + 56/2))
<exp(n(Ry — I(X]; X5Y) + 5¢/2))
< exp (n (Rl —I(X;Y|Xp) +v+ 56/2)),

(55)

def .
where PX1)~(25{3§, = Px; X Px, X Px; x W and 7 is chosen to

satisfy I(X{; X3Y) > I(X1;Y|X3) —. Note that Py, x;x;y
is such that D(PXngXéYHPX{ X PX2 X PXé X W) <n
where 7 can be chosen arbitrarily small. Thus, Py, x,x;y 18

2329

arbitrarily close to Px ¢, %,y and y can be chosen arbitrarily
small. Thus, P} (Px, x,x,x/x;y) — 0 exponentially, if

R < I(Xl,Y|X2) i 56/2
Minimizing this in the limit of n — oo and €, — 0 over all
Px, x,x,x7x,y € Q1 is same as minimizing I(X1;Y|X>)
over PXl X, %7 € ‘Ps where Ps is defined as

def
Ps = {Px,x,x5v : Px1x,x5y = Px; X Px, X Qx, x W

for some Qx, }.
Using definition of Ps3, we obtain the following bound on 12y

Ry < I(X1; Y| Xs). (56)

min
Px,x,x3v€P3

Case 3 ((47) Holds): Suppose

Ry =X X) [+ R — T3 Xo)| "= 1(X0: X41X)|
= Ry — I(X3; X{X3).
In this case (44) evaluates to I(X1;XoX|X5X3) +
I(X9; X1 X5X3) < Ry — I(X}; X1 X3) + €. Thus,
€ > I(X1; Xo X1 X5X3) + I(Xo; X1 X5X3) + I(X4; X1 X3)
— Ry
> I(X1; X5 | X1 X2 X3) + 1(X2; X5| X7 X3) + I(X5; X1 X3)
— Ry
=I(X%; X1 X2 X3X]) — Rs.
This implies that
Ry — I(X5; X1 X2 X3X7) > —e.
Thus,
|Ry — I(X%; X1 Xo X3 X))t < Ro—I(X5; X1 X0 X3X])+e.
Substituting this in (49), we get the following upper bound:
exp (n(0+ Ry — I(X5; X1 XoX3X1]) + €
—I(Y; X{ X5| X1 X2 X3) + 3¢/2)).
This is same as the upper bound in (55) with X and
X/, interchanged, and R; replaced by Ry. Thus, we can do

a symmetric analysis as in the previous case to obtain the
following bound on Rs:

I(X2;Y|X1) (57)

min
Px,x,x3v€Ps3

Case 4 ((48) Holds): Suppose

Ry <

+
[ 1By = T(XE3 Xa)| T+ Ra—1(Xg3 X[ = 1(X[; X51X5)
In this case, (44) evaluates to I(X3;XoX[X5X3) +
(X9 X1X5X5) < Ri+Ro — I(X71; X3) +1(X3; X1 X5) +e
Thus,
e > I(Xy; XQX{XéXi;) + I(Xo; X{XéX:},) + I(X{; Xg)
+1(X3; X1 X3) — R1 — Ro
> I(X1; X7| Xo X3)+1(X1; X5| X1 Xo X3)+1(Xa; X1|X3)
+ I(Xo; X5| X1 X3) +1(X7; X3) +1(X5; X1 X3)
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—Ri—Ry
= I(X{,XlXQXg) + I(Xé,X1X2X3X{) - R1 - Rg.

This implies that

R1 — [(Xi, X1X2X3) —|— R2 — I(Xé, X1X2X3)
- I(X{,X£|X1X2X3) 2 —E€.
Note that
||R1 — I(Xi;X1X2X3)|+ + |R2 — I(Xé,X1X2X3)|+
— I(X]; X3 X1 Xo X) [
ZRl - I(X{,X1X2X3) + R2 - I(Xé,XlXQXz;)
—I(X1; X3 X1 X2 X3)
> — €.
So,
HRl - I(X{,X1X2X3)|+ + |R2 - I(Xé;X1X2X3)|+
—I(X{;X§|X1X2X3)f+
S Rl — I(X{,XlXQXg) + R2 — I(Xé,X1X2X3>
—I(X{,XéleXng) + €.
Thus,

P} (Px, x,Xax{ XY )
< exp (n(Ry — I(X]; X1 X2X3)+Ro—1(X5; X1 X2 X3X7)
+e— I(Y; X1 X5| X1 X2 X3) + 3¢/2)) (58)
= exp (n(Ry — I(X1; X1 XoX3)+ Ry — I(X3; X1 X2 X3X7)
—I(YV; X1 X5 X1 X2X3) + 56/2))
< exp (n(Ry + Ry — (X1 X5; X1 X2X3)
— I(Y; X{ X5| X1 X5 X3) + 5e/2))
<exp(n(Ry + Ry — I(X] X%; X1 X2 X3Y) + 5¢/2))
<exp(n(Ry+ Re — I[(X{X35;Y) + 5¢/2)).
Following similar steps as earlier, we obtain the following sum
rate bound

I(X1 X3 Y). (59)

min
Px,x,x3v€P3

Ri+ Ry <

Analysis of Pp: Now, we will look at the second term in (36),
which is (see (38)),

1
Z N1 Ny

Px,x,x5 x|y €Q2

Z W™ (& s,2(Px, X, X5 X1 ) | T1r, Tas, T3).
8

B =

(60)

Let

P2 (Px,x,x,x17) =W (Ers 2(Px, X, X, X1 v ) [ @17, Tos,3).

From (18), we see that when Px, x,x;xy satisfies

I(X5; X, X[X3) + I(X5; XIXg) > R — (X5 X3) [T +e,
(61)

1
N1 Ny

Z PTZ,S(PX1X2X3X{Y)
r,s

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

1
~ NN, 2

(7r,8):Ju satisfying
(Z1r,@25,®3,210)ETy

X1X2X3X:,l

yeT;\XlszgX{ (®1r,T2s,23,T10)
wn (y

< N11N2 |{(r,5) €[l: N x[l:Nsg]:

(62)

L1r, L2s, (Eg)

Ju e [l: NiJu #r, (X1, Tas, T3, X1y) € T;leXSX{}
< exp (—E) . (63)
2
Otherwise, when

I(Xi; X; X0 X5) + I(X53 X1 X3) < |Ri — I(X0; Xe)| " +e,
(64)
we will show that P?_(Px, x,x, x;v) falls doubly exponen-

tially for each Px, x, x,x;y € Q2. We will show this by using
the following upper bound.

P2 (Px, X, x2x]v) (65)

= W"(& s2(Px, x,x5x7Y) |17, T2s, T3)

< ¥

ui(®1,,®25,23,L10)
mn
GTx1x2x3xi
n
yeTY|X1X2X3Xi (®1r,T25,23,T10)

< > exp (—n(I(Y; X|| X1 X2 X3) — €))

U:(ml'rymls 7m31m1’u.)
GT’I‘L

Wn(y|ml'f'a T2s, m3)

X1X2X3X]
@ exp (n( |Ry — I(X}; X1 Xo X3)| T — I(Y; X1 | X1 X2 X3)
+ 36/2)) (66)
where (a) follows from (12).

Suppose R; < I(X{;Xs), then (64) evaluates
to I(Xl,XQX{Xg) + I(XQ,X{X:J,) < €. Thus,
I(X1X2; X1]|X3) < e. We analyze (66) for this case.
PT?,S(PX1X2X3X{Y)

< exp (n( 1By — T(X]; X1 X2 X5)[ = 1(Y3 X{|X1 X0 Xa)
+3¢/2))

=exp (n(0—I(Y; X1| X1 X2X3) + 3¢/2))
— exp (n(I(XlXQ; X!|X5) — (X1 X0; X|Xs)
(Y XL X1 Xo X3) + 36/2))

(%) exp (n (e —n + 3¢/2))

— 0 as n > Ge.

where (a) follows by using I(X;X»;X{|X3) < ¢ and
I(X1X2Y; X{|X3) > n (see the definition of Q).
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Now, we consider the case when Ry > I(X]; X3). In this Z W™ (y|@1,, 25, 3)
case, (64) evaluates to YETY o xyxeqxct xt (B1r®26,83, 810,50
13
I(X1; Xo X1 X3) + [(Xo; X1X3) < Ry — I(X1; X3) +e (71)
This implies that —e < Ry — I(X}; X1XpX3) < < |{ rs) €[1: Ny x [1: Nyl
|Ry — I(X}; X1 X2 X3)|". Thus, N1

Elu,we [I:Nl] [1:Nsl,u#r,

IRy — I(X}: X1 X2 X3)| T = I(Y; X! X1 X5 X3) .
1 ! (mlrvavafiawluawa) € TX1X2X3X{X§}

<Ry —I(X1; X1 X0 X3) — I(V; X1 | X1X2X3) + €

n
g it = (*7)' 72
Plugging it into the upper bound on st( Py, x, %5 x1¥)s exp 5 72)
e obtain Otherwise, when
2
Pr,s(PX1X2X3X1Y) , , I(XlaXX/X;CXk) +I(XJ7XZ/X]/€X]€>
Ty R ’|R — I(X: X))+ | Ry — T(XG: X))
+5e/2)) A . X,
+
= exp (n (R — I(X; X1 X2 X3Y') + 5¢/2)) — I(X]: Xil Xe)| +e (73)

=exp (n (R — I[(X]; XoY) + 5¢/2))
) ) we will show that P2 (Px, x,x, x;x4y) falls doubly expo-
Since Py x,x;y is such that D(Px;x,x;v ||[Px; X Px, % nentially for each PX1X2X3X x;y € Qs. We upper bound

Px, x W) < n where n can be chosen zgtbitrarily small, P, o(Px, XX X X /y) by the followmg set of equations.

Pxix,x;y 1s arbitrarily close to Pg ¢ <.y = Px; X Px, X
PXé x W. So, for small positive number -5, I(Xl,XgY) > Pf,S(le)(QXBX{Xéy)
I(Xl; Y|X2) — Y2 Z IIlilleé I(Xl; Y|X2) — V2. ThllS, if = Wn(gr’s73(PX1X2X3X1xéy)‘CCM, L2s, 583)
Ry <min[()~(1;}7\)22)—56/2—’yg, < Z
Py, (U;w):(m17;~aw255m37w1u7w3w)
then, Ry < min/(X[; Y| Xa) - 5¢/2, €T xax5x( x4
X3

>

yET\T/L‘XIX2X';X/XI (17, T25,23,T10,T3w)
3X] X3

and therefore, P,

Cx) X XgXgy 0 as n — 0. In the limit of

e — 0, we get
R; < min I(X,;Y|X5) (67)

T PPty < > exp (~n(I(Y; X7 X5/ X1 X2X3) —€))
:PXiXPXZXPX’ xW

Wn(y|w1r7 T2s, -’103)

(u,w):(T1r,@25,L3,L10,L3w)

"
This is same as the upper bound on R; given in (56). S X xaxa x| x4

Analysis of Pe: We are left with the analysis of the third &) o\ (n<|| R — I(X): X1 X0 X3)[*
term in (36), which is given by (see (39))

+
1 +|Rs — I(X3; X1 X5 X3)| " — I(X]; X3/ X1 X0 X3)|
P =
¢ 2 NiN, 2. — I(Y; X X}| X1 X2 X3) + 36/2)). (74)
PX1X2X3X1X:’3YEQ3 T8
W™ (Er s 3(Px, X X5 X X4y ) |17, T2s, T3). (68)  where (a) follows from (14). Now, we need to show that (74)
Let goes to zero under the condition given in (73). This is same
as the previous analysis of (44) under the condition (49)
PE,S(PXleXgX{XéY) with Rp and X/ replaced by Rs and Xj. Note that with
= W& s3(Px, xux: X XY )| T1r, T2s, X3) these replacements, the entire analysis follows through and we
s 1X5 ) ED) .

) - obtain the analogues of (56), (57) and (59) as given in (75),
When Px, x,x,x;x;y satisfies the condition (see (17)), (76) and (77) respectively. For

I(X3; XX X0 X)) + 1(X5; X[ X[ X))
> ||Rs = 1CX5 X[+ [Re = 10X X)|

det
P2 = {Px,x,Xsv : Px,x,xsy = Px; X Qx, X Pxy; x W

for some Qx,}

i in I(Xy;Y|X3); 75
— IXG XX+ 69) Bo<, min o 1(X5Y]X): (75)
! Ry<  min __ I(XsY|Xy); (76)
NN, > P (Px,xpxaxix4y) (70) Py <P
e Ry + Rs < min I(X1X3;Y). (77)
_ 1 Z Px,x,x3v€P2
N1N2 (r,):3(u,w) satisfying Similarly, we will obtain rate bounds while analyzing the cases
(@172, ®3,@10,830) €T | x) x5 x4 x4 when user 1 and 2 are adversarial.
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Thus, for any input distribution p(z1)p(z2)p(zs), we have
shown the achievability of the set of rate triples (Ry, Rz, R3)
which, for all permutations (¢, j,k) of (1,2,3), satisfy the
following conditions:

R; < I?in) I(X;;Y|X;), and (78)
4Tk

R; +Rj < I‘.Elln) I(Xi,Xj;Y), (79)
9Tk

where the mutual information terms are evaluated using the
joint distribution p(z;)p(z;)q(zk)W (y|x1, T2, z3).

It remains to argue that the rate region R given by (9)
and (10) is achievable. To this end, consider a distribution'
PUPX,|UPX.|UPXs|U- Without loss of generality, take U =
{1,2,...,|U|}. It suffices to show the achievability for py (u)
whose elements are rational numbers. Let [ be such that Ipy (u)
are integers for all u € Y. For u € U, let m,, = Ipy(u) and
Ny =, My, and let ng = 0.

Consider the [-fold product W®! of the channel W.
For this product channel, consider the input distribution
p(@1)p(x2)p(xs) defined by

=11 1I

UEU t=nqy—1+1

p(xi) = p((wa, ... px; (v (wit|w).
By (78) and (79) applied to the product channel W®!, we may
conclude that the rate triple (Ry, Ra, R3) is achievable for W
if, for all permutations (i, j, k) of (1,2,3),

IR; < I?ln) I(X;;Y|X;), and (80)
a( Tk
a(zk)

The achievability of the theorem follows from the following
observation (for concreteness we take (i,7,k) = (1,2,3)
below):

l
min I(X1:Y|X5) = min > I(X1;Y|Xo, X1
min I(X2; Y1) q<m3>; (K1 ¥ X2, X7)

!
@ nin (X1 Y, X{ VX))
a(ms) s —
!

> min I(X14; 3| X 9)

(@) 1=

l
> min I(Xq4; Y| X
=3 min T 1%

l

b .

ST min 1(Xy4; Vi Xar)
t=1

— q(z3t)

Ny

=2 >

uEU t=n,_1+1

min I(X1t§Y;S|X2t)7

q(x3t)

(82)
where (a) follows from the independence of
X11, X492, ..., X1, X2, (b) follows from the memorylessness
of the product channel across its components and

3For clarity, in the rest of this proof we introduce subscripts to denote the
p.m.f.s involved in (9) and (10).
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valid inner messages for L;

Gi
n; =Li(my
. g =Li(my) | o
e il P O ;z I‘EM LA
T » 2 OGi(Li()) - o
® o
»
M, -
O

M, = [Z,LR,] Ry pn

(a) Encoder F; : L; o G; (b) Pre-decoder ¢{*) : T™ o A,

Fig. 14. The encoders and pre-decoders for Theorem 3.

the Xo1, Xoo, ..., Xo. Notice
that in (82), the n, — n,—1 = Ipy(u) terms in
the inner sum corresponding to each uw € U are
identical. For uw € U, let (X1 4, Xou, X3u,Yu) ~
pxy v Clw)px, v (lw)ax, o (u)WE ). Then,
rewriting (82),

independence of

min I(X ;Y [X2) =) (Ipy(w)) min  T(X1.u; Yl X20)

q(x3) =y axgu(-|u)

=1 min Y pu(w)I(X14; Yl X2.0)

=1 min I(X1;Y|X20).

adx3|U

Similarly,

min [(X1X9;Y) > min I(X; Xo;Y|U).

q(x3) dx3|U
Thus, any rate triple satisfying the conditions in (9)-(10) also
satisfies (80)-(81) and hence is achievable. O

B. Randomized Coding Capacity Region

Proof (Achievability of Theorem 3): For each k = 1,2, 3,
let W) be the 2-user AV-MAC formed by channel inputs
from node £ as the state and the remaining channel inputs
as legitimate inputs. Let (R, R2, R3) be a rate triple such
that, for some p(u)p(x1|u)p(xa|u)p(xs|u), the following con-
ditions hold for all permutations (4, j, k) of (1,2, 3):

R; < I(IllI‘l M (X;Y|\UX;), and (83)
q(z|u

R, + Rj < (rni‘n)I(Xi,Xj;Y\U), (84)
q(zk|u

with the mutual information terms evaluated using the joint
distribution p(u)p(z;|u)p(z;|uw)g(zk|u)W (y|z1, z2, 23). Note
that, by the first part of the direct result of [8, Theorem 1] (see
[8, Section III-C]), the rate pair (R;, R;) is achievable for the
AV-MAC W %) (see the footnote on page 11). Let € > 0. For
eachi € {1,2,3},let M; = [1: 2"F] and M; = [1 : 2" /o]
for the largest integer v < 3/e. In the following, we show
the existence of a randomized (271 /v, 272 [y 2nfis /) )
code (Fy, Fy, F3, ¢) with P no larger than e, for sufficiently
large n.
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1) Code Design: We will first describe some randomized
maps which will be used in the code design (see Figure 14).
For each i € {1,2,3}, let G; : M; — X be a randomized
map such that it maps m; € M; to an n-length 1.i.d.
sequence G;(m;) generated according to the distribution p;.
The sequences G;(m) are independent across 7 € {1, 2,3} and
m € M,. The realization of G;(m;) for all ¢ € {1,2,3} and
m; € M, is shared with the decoder. For any permutation
(i,7,k) of (1,2,3), consider the AV-MAC W) which cor-
responds to user-k as the adversary. If we consider M; and
.A;lj as the message sets and G; and G as the corresponding
encoders, then this construction ensures that the randomness
of the encoders G; and G is private from each other and also
private from the adversarial user-k. This joint distribution of
G; and G; (and the corresponding codewords) is the same as
that of the encoders of AV-MAC W (%) in the direct part of [8,
Theorem 1, Section III-C]. For G; and G; as encoders, let )
denote the decoder corresponding to the decoding sets defined
in proof of the direct part of [8, Theorem 1, Section III-C]
for the AV-MAC W(¥). Suppose (ng),rgk)) := I'*) where
ng) N UALRE /\;ll For all € > 0, by [8, Theorem 1], there
exists a large enough n such that for all permutations (i, j, k)
of (1,2,3), the code (G;,G;,T¥)) has error probability no
larger than ¢/3. We consider that n.

For each ¢ € {1,2,3}, the message set M, is randomly
embedded into the set /\;ll as follows: We choose an arbi-
trary partition of M; into |M;| many disjoint equal-sized
subsets (each subset size is v). Let us denote the partition by
SWLN m; € Mi where Unu E./\/l,iSmi = Mz and Smi mSm; =0
for all m;,m, € M, where m; # m]. The size of each
Sy, mi € M; is v (< 3/e). The maps L; : M; — M;
and A; : /\;ll — M, are the forward and reverse maps
for an injection from M; to M, where, independently for
each m; € M,, L;(m;) is chosen uniformly at random from
Sy, - Both the encoder maps G; and L; are independent for
i = 1,2, 3 and are made available to the decoder as the shared
secret between user-¢ and the decoder, unknown to other users.

For each i € {1,2,3}, the encoder map F; : M; — X[
is defined as F;(m;) = G;(L;(m;)) for every m; € M,. For
i€{1,2,3} and k € {1,2,3} \ {i}, we define pre-decoder'*

w AP () i T () € LiMy),
¢i (y) = .
1 otherwise.

The decoder ¢ : V" — My x My x M3 outputs ¢(y) =
(1, e, 13), where, for each ¢ € {1,2,3} and (j,k) a
permutation of {1,2,3}\ {i},

o (y) i o (y) = oM () # L
Lol e () # Land 0P (y) = L
" ey it ¢ (y) # Loand 6P (y) = L
1 otherwise.

2) Error Analysis: We first show that as long as the rate
triple (R1, Ro, R3) satisfy the constraints (83) and (84), i.e.,

14In this notation ¢>Ek) (y), we are suppressing the dependence of the pre-
decoder (and later the decoder) on the randomness of the encoders.
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each pair of rates lie in the corresponding AV-MAC random-

ized coding capacity region, the following hold simultaneously

for every honest user ¢ which sends message m; € M;

and potentially adversarial user k # i: (i) qﬁgk)(Y) is m;

w.h.p. (with probability at least 1 — ¢/3) if user-k is indeed

adversarial and (ii) ¢\ (Y') is, w.h.p. (with probability at least

1 — €/3), either L or m; if user-k is not adversarial. To this

end, consider any permutation (i, j, k) of (1,2,3) and assume

that the adversarial user (if any) is user-k£ which sends X, as
its potentially adversarial input to the channel. Suppose, for

(ms,m;) € M; x M;, user-i and user-j send F;j(m;) and

F;(m;) respectively. Let Y denote the channel output.

(4) First, consider the AV-MAC W (¥), Recall that ng)(Y) =
L;(m;) with probability at least 1 — ¢/3. Thus, with
probability at least 1 — €/3, ¢Ek)(Y) equals m;.

(ii) Next, consider the AV-MAC W ). In this case, I'")(Y)
may not equal L;(m;) as X may not be a valid code-
word. We would like to compute P <¢§j) (Y) ¢ {mi, L}?
where the probability is over G;(L;(m;)), G;(L;(m;)),
X and the channel. Note that G; and L, are indepen-

dent of (potentially jointly distributed and adversarially
chosen) G, Ly and X . Thus,

P (6 (Y) ¢ {mi, L})
=P <F§j)(Y) € Li(M; \ {mi}))
= Y P (ng)(Y) = 1, m; € Li(M; \ {mi}))

M €EM\Sm,

> (TP =)
M €EM\Sm,

P (ml € LM \ {m: )T (v) = mi)

QY eV =)

77L116M\Smi

P (11 € Li(M; \ {m;}))

QY rVy)=m)

M EM\Sm, ‘
<1l/v
<¢/3.

Here, (a) holds as I‘Ej)(Y)iLLi(Mi \ {m;}). This is
because L;(m;) 1L L;(M;\{m;}) and ng) A L; as I‘Ej)
is a function of AV-MAC encoders GG; and (G}, which are
independent of L;. The equality (b) holds because for
i € M\ S,

P (m; € Li(M; \ {m}))
= ) P(Li(m)) =)
=1/v.

1
Yoes,y 5
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Thus, with probability 1 —e, for each non-adversarial user
1, at least one of the decoders qbl(-j ) or ¢§k> outputs the
true message while the other decoder outputs either the
true message or L. O
Proof (Converse of Theorem 3): We show the converse for
the weak adversary. Since, Riandom < Rﬁfﬁé‘om, a converse
bound on Rg‘?é‘om is also a converse bound on R, andom-
Suppose (F, Fy, Fy, ¢) is a (27F1 272 2nFs ) random-
ized code such that P;Veak < ¢ for some ¢ > 0. Recall
that Fy, F», F3 are independent. Let M; ~ Unif(M;), i =
1,2,3 be independent. Let M; = oi(Y, F1,Fy F5), 1 =
1,2, 3. Then, € is an upper bound on (5) which is given by

P
= max Pr,. ry ((M27M3) # (MQ,MB))Xl =x,
Xy =Fy(Ms), X35 = F3(M3))

= maxPp, g, ((MmMB) i (M2,M3)‘X2 = F»(M>),

DX,
X5 = Fy(My)).

For a vector x; € Xj", j = 1,2,3, we use z;; to denote

its 4™ index. That is ®; = (2;1,2j2,...,%;,). Similarly,

arandom vector X ; distributed on X’ jn can be written as X ; =
(Xj1,Xj2,...,Xjn). For i € [1 : n], let gx,, be some
distribution on X;. We consider the following px,.

n
px, (@1) = [ [ ax. . (x1.)-
=1

By Fano’s inequality, under this px, and when X; = F;(M;),
1=2,3,
H(My, Ms|Y , Fy, F5) <1+ ne(Ry + Rs).
Ignoring small terms, we have
n(Ra + R3) < H(My, Ms3)
< H(Ma, M3|Fy, F3)

(a)
~ I(My, M3; Y |Fy, F3)

n
> I(My, Ms; Y[V, F, Fy)
=1

I(M2aM37F27F3aYi_1;}/;)

-

h
Il
_

I(May, M3, Fo, F3, Y™ X4, X33 Y3)

|

@
Il
—

®)

I(X2,i,X3,i;Yé)7

v

i=1

where (a) follows from Fano’s inequality (ignoring an O(ne)
term), (b) follows from the memorylessness of the channel and

the independence of X, ; over ¢ = 1,...,n for the particular
px, under consideration.
Let U ~ Unif{1,2,...,n} independent of

(My, My, M3, Fy, F5, F3,Y). We have (where we ignore an
additive O(e) term)

Ry + R3 < I(Xa,u, Xs.u; Yu|U).

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

Since, the above bound holds for all px,(x1) =

[T7 1 ax,.(z1:), and noticing that conditioned on
X1,u,Xou,X3u the channel law Wy x x,x, gives
the conditional probability of Y7y, we may write

R2 +R3 S min I(X27X3,Y|U) (85)

q(@1u)

for some g¢(z1|u). We note that the distribution of
U, X1,X2,X3,Y is p(u)q(zi|u)p(za|u)p(zs|u) Wy x, x,x,
(y|x1, 2, x3) where p(z2|u) is determined by the distribution
of Fy and p(x3|u) is determined by the distribution of F.
Proceeding similarly, for px, (1) = H?zl ax,, (T1,)s

TLRQ S H(MQ)
< H(M;|Ms, F>, F3)
~ I(M3;Y | M3, Fy, F3)

n
= (M Yi|Y'™", My, F, Fy)
=1
> (M, X5 Y| X34, Y !, My, Fy, Fy)
1

o
Il

I(X2,;, Y™ My, My, Fy, F3;Yi| X3,)

-

h
Il
—

I(X2,;Yi| X3,).

|

N
Il
s

Hence, we have

Ry < min I(X5;Y|X3,U),

9(wq|u)

(86)

where the joint distribution of the random variables
is  pu)g(@i]u)p(@z|u)p(s|u)Wy | x, x, x; (y]@1, 32, 3).
We note that p(u)p(z2|u)p(zs|u) are the same as in (85).
Similarly,

Rs < qgljﬁ)I(Xs;Yle, U). 87)

Similarly, ~considering PY§™  with px, (%) =
[17, ax,,(x2;) (and X; = F;(W;), i = 1,3), we get

Rs < qglil‘fi)f(X3;Y|X17U)7 (88)

R, < q(rilziﬁ)I(Xl;Yng,U), (89)

Rs + Ry ngliﬁ)f(xs,XnY\U)v (90)

where the joint distribution of the random variables
is p(u)p(@1|u)q(w2|u)p(ws|u) Wy | x, x,x, (Y71, T2, 73)  for
some ¢, |,. We note that p(u) and p(xs3|u) here are the
same as in (85)-(87). Considering Pe“’g“k with px,(z%) =
[T 1 ax..(x3:) (and X; = F;(W;), @ = 1,2), we similarly
arrive at

q(z3|u

Ry < min 1(Xa:Y]X1.U), ©2)
q(x3|u

Ri+ Ry < zfnil‘fl)I(Xl,X%Y\U)v (93)
q(z3|u
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where the joint distribution of the random variables
is p(u)p(z1|u)p(zz|u)q(zs|u)Wy | x, x, x, (Y71, 22, 23). The
p(u), p(z1|u), and p(z2|u) are the same as in (85)-(93). This
completes the proof of converse. (]

V. THE k-USER BYZANTINE-MAC

In this section, we generalize our model to a k-user
byzantine-MAC for any positive integer k. We allow for a
set of users to be controlled by an adversary simultaneously.

We study the problem under both randomized and deter-
ministic codes. The techniques for the 3-user byzantine-MAC
are extended to show the characterization of the randomized
capacity region. For the deterministic part, we take the first
approach (Section I-D2) as mentioned in the introduction.
We first show that for any randomized code with vanishing
probability of error, there exists another randomized code, also
with a vanishing probability of error, which requires only n2-
valued randomness at each encoder for a code of blocklength
n. This argument is along the lines of the extension of the
elimination technique [13] provided in [8]. Next, we generalize
the symmetrizability conditions to show that the deterministic
coding capacity region has non-empty interior if and only if the
byzantine-MAC is not symmetrizable. This allows us to use
a small rate positive code to share the random bits with the
decoder whenever the channel is not symmetrizable and then
use the randomized scheme to achieve the entire randomized
capacity region under deterministic codes (also see Remark 2).

We give the system model in Section V-A and discuss
the randomized and deterministic coding capacity regions
in Sections V-B and V-C respectively. We only give proof
sketches in these sections and defer the complete proofs to
the appendices.

A. System Model

A memoryless k-user byzantine-MAC (W, A) consists
of a k-user memoryless MAC W with input alphabets
Xy, Xs, ..., Xy, and output alphabet ) along with an adver-
sary who can control a set of users simultaneously. The set
of users the adversary controls may be any one of the sets
in A C 201k where 2114 denotes the power set of [1 : k].
The other users and the decoder are unaware of the identity
of the set Q of users, Q@ € A, that the adversary controls.
In the sequel, we refer to the users in this set @ € A which
the adversary controls as the malicious users and the other
users as honest. If ) € A, then it corresponds to the case
when all users are honest. For the 3-user byzantine-MAC
(Section III) which considers the case when at most one
user is malicious, the adversary structure is given by A =
{0,{1},{2},{3}}. Along the lines of Definition 3 for the three
user byzantine-MAC, we define randomized codes for k-user
byzantine-MAC (W, A) below.

Definition 7 (Randomized Code): An (N1,Na,...,Ni,n)
randomized code for the byzantine-MAC (W, A) consists of
the following:

(i) k message sets, M; ={1,...,N;},i=1,2,... k,

(ii) k£ independent randomized encoders, F; : M; — X,
where F; ~ Pp, takes values in 7; C {g : M; —
XM}, i=1,2,...,k and

2335

(iii) a decoder, ¢ : Y™ X Fi X ... X Fp — M1 X ... x My
where

¢(y7F17"'aFk7):
(¢1(y7F17"'aFk)a"'7¢]€(y7F1)"'aFk)>

for some deterministic functions ¢; : Y x Fy; X ... X
Fr oMy x...x My, i=1,... k.

Next, we define the probability of error, achievable rate
region and the capacity region. As mentioned in Section III-A,
the decoder is a function which maps the channel output
as well as the random encoding maps to decoded messages.
Hence, the adversary can mount an attack by selecting the
random encoding maps of the users it controls. Note that
while doing this, the adversary does not have access to the
random encoding maps of the other (honest) users. Simi-
lar to the 3-user case, the adversary selects the encoding
maps and chooses the inputs of all malicious users jointly.
Note that while doing this, the adversary is unaware of
the realizations of the other users’ encoding maps. If the
adversary controls the users in Q € A4, then it may choose
the encoding maps fo (i.e., (fi)ico) in addition to the input
vectors xg.

Let Pcff"éd denote the average probability of error when the
adversary controls the set Q of users.

1
P — max —
e,Q zo, H'GQC N;
fo€Fg =7

> P({8(Y,fo,Foc)o: # ch}’
mgc EMQC
XQc :Fgc(mgc),XQ::BQ), (94)
where ¢(y, fo, foc)oc denotes 1ge for 1.y € My
such that ¢(y, fo, foe) = 71.4). The probability is over
independent F; ~ Pr,, i € Q° and the channel.
The average probability of error P is given by

Perand = max Pcfa"gd.

QeA 7
Note that though the users controlled by the adversary do
not use fo for encoding, the decoder uses it and hence
its choice gives the adversary additional power. We also
emphasize that the decoder is unaware of the identity
of the set Q@ € A of users controlled by the adver-
sary (i.e., in (94), the decoding map ¢ may not depend
of Q).

We say a rate tuple (Ry,Rs,...,Rx) is achievable,
if there is a sequence of (}Q”le, |27tz | L |20 Fx | n)
codes (Fl("), FQ(n), e Fk"), pM)oe such that
limy o0 PPy, Ponyy -+ Pon, #™)  — 0. The
randomized codinjg capaQCity region kRmndom is the closure of
the set of all achievable rate triples.

We also study the weak adversary model for the converse
where the adversary does not have any knowledge of the any
of the random encoding maps while choosing the inputs of
the malicious users. Probability of error and capacity region
for randomized codes with weak adversary can be defined by
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replacing PRyl with P)%* for Q € A in the above definition,
where

weak
Pe, Q

= max ZP({qs(Y,FQ,FQC)QC #moe}|

To HiEQC NimgcéMQc
X ge = Foe(mge), Xo = wg),

The probability is over independent F; ~ Pp,, i € [1: k] and
the channel.

We denote the randomized coding capacity region for the
weak adversary by RWeak  As was the case in 3-user

byzantine-MAC, R andom C RYEK .
We define determinsitic codes for k-user byzantine-MAC
(W, A) along the lines of Definition 1.
Definition 8 (Deterministic code): An (N1,Na,...,Ng,n)
deterministic code for the byzantine-MAC (W, A) consists of:
(i) k message sets, M; ={1,...,N;}, i€ {1,2,...,k},
(i) k encoders, f; : M; — X", i€ {1,2,...,k}, and
(iii) a decoder, ¢ : Y" — M1 X Mg X ... X M.

Let P, o denote the average probability of error when the
adversary controls the set Q € A of users.

(95)

1
Pe = — - - P Y c c
Q Igzxﬂiechi sz: ({¢( )oe # mge} |
eMoe

XQC = ch(ch),XQ :wg). (96)
The average probability of error P, is given by
P, = P.o.
ges e

Similar to the randomized coding case, the decoder is unaware
of which set of users from .4 are controlled by the adversary.
We say a rate tuple (Rq,Ra,...,Ry) is achievable if

there is a sequence of (L)Q”le, |2nBz | ... |20k | n)
codes (P 5 gndyee such that
hmn—>oo Pe( 1(”)7 f2(n)7 ey fkn)a ¢(n)) - 0. The

deterministic coding capacity region Rdeterministic 1S
the set of all achievable rate tuples.

Recall that for the three user byzantine-MAC (Section III,
where the adversary structure is A = {0, {1}, {2}, {3}},
we could show that P, o < P, + Pe o + Pe 3 (see (3)). Gen-
eralizing this to the k-user byzantine-MAC (W, A), we can
show the following lemma whose proof is in Appendix III.

Lemma 6: For any Q;,...,Q; € A, teNand Q C [1: k]
such that Q =N!_,Q;, P. o < Zle P, o,.

This lemma implies that even if a set Q@ = Ni{_,Q; as
in Lemma 6 is removed from A, the capacity region of a
byzantine-MAC remains unchanged.

B. Randomized Coding Capacity Region

Let R be the closure of the set of all rate
tuples (R1, Ry, ..., Ry) such  that for  some
p(u)p(zy|u)p(xalu) ... p(zk|u), the following conditions
hold for all Q@ € A and J C Q°,

Rj < min I(XJ;Y|X(QUJ)C,U)

o7
= a(wu)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

where the mutual information above is evaluated using the
joint distribution p(u)g(zolu) [[;c - P(z; W)W (y|To, Toe).
Here, an upper bound of 2% on |U/| can be shown using the
convex cover method [29, Appendix C].

Remark 3: As discussed after Lemma 6, the capacity region
of a byzantine-MAC remains unchanged even if a set Q =
N!_,Q; is removed from A. It is easy to verify that the
rate region R shares this property. For instance, for the three
user case, let A = {0, {1}, {2}, {3}}. Consider the constraint
corresponding to @ = () and J = {1,2,3} in (97)

Ry + R+ R3 < I(X1X2X3;Y‘U).

This is implied by the following constraints which correspond

to Q= {3}, J ={1,2} and Q = {1}, J = {3} respectively

)

Rit By < min 10X Y|U) < I(X1X2;Y|U)‘ .
p(x3|u

a(z3|u
and R3 < min I(Xg,Y|X2U) < I(X3,Y|X2U) .
q(z1u) p(w1|u)

Now, the implication follows from

I(X1 X X3 Y|U) = [(X1 X0, Y|U) + I(X3; Y[ X1 XoU)

@ I(X0 Xy YIU) + I(X5 Y X XoU)

> I(X1 Xo; YU) + [(X3; Y[ X2U),

where (a) follows from the conditional independence of
X1, X9, X3 given U. Hence, the sum rate constraint (corre-
sponding to () is redundant in the three user case.

Theorem 7: For a k-user byzantine-MAC,

R _ chak
random — Vrandom

=R.

Similar to the three user case (Section III-B2), we prove
Theorem 7 by showing an achievability in the standard model
and a converse for the weak adversary. The converse can be
proved by a simple extension of the proof of the converse
of Theorem 3 (three-user randomized coding capacity region)
and is skipped. The achievability uses arguments similar to
the proof of achievability of Theorem 3. It is shown in
Appendix IV.

C. Deterministic Coding Capacity Region

Similar to the 3-user case (Section III-B1), we first give
a general symmetrizability condition which characterizes the
class of channels under which all users cannot communicate
reliably in a byzantine-MAC (W, A) using deterministic codes.
For the 3-user byzantine-MAC case, this condition (given
below) specializes to the three conditions (6)-(8).

Definition 9  (Symmetrizability and  symmetrizable
byzantine-MAC): For a non-empty set 7 C |1 K],
we say that a byzantine-MAC (W, A) is 7 -symmetrizable if
there exist sets Q, Q" € A, not necessarily distinct, satisfying
ONT =9 NT =1, and a pair of conditional distributions

and P such that

P
XolXrye\en) XorlXruene)

’
Z PXQ\XTU(Q\Q’) (xQ|mT’ ‘TQ\Q’)
! eXg
]

W (ylrg, T1,20n 0, T(TUQUQ)")
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Fig. 15.
unable to tell whether the users in set 7 are sending Z7 or z7.

- ¥

:fgl GXQ/

PX /1 Xroiono (e T7, 200 0)

(98)

for all x7,27 € X, To\Q/ S XQ\Q/, ToNQ S XQ/\Q,
T(ruouoe € Xiuougye and y € V. We say that
a byzantine-MAC (W, A) is symmetrizable if it is 7-
symmetrizable for any 7~ # 0.

Fig. 15 illustrates the symmetrizability condition in (98).
The set 7 of users are being symmetrized by the users in sets
Q, Q' € A. The users notin 7 U Q U Q' are not symmetrized.
Definition 9 extends the notion of symmetrizability for the
three users case (Definition 5) to the k-user byzantine-MAC
with adversary structure A. It generalizes the three condi-
tions (6)-(8) to a single condition given by (98). In particular,
T = {j,k} and Q = Q" = {i} recovers (6), T = {k} and
Q = Q = {i} recovers (7), and T = {k}, Q@ = {i} and
Q' = {j} recovers (8). Now, we are ready to state our main
result.

Theorem 8: For a k user byzantine-MAC (W, A),
the interior of the deterministic coding capacity region,
iNt(Rdeterministic) 18 empty if and only if it is sym-
metrizable. Furthermore, when (W, .A) is not symmetrizable,

W(ylZor, 21, 20\0/s Z(TUQUO")")

Rdeterministic = Rrandom-

Proof Sketch: For the converse, similar to the 3-user
case, we show in Appendix VIII that if the channel is
symmetrizable then int(R goterministic) = @. When the channel
is not symmetrizable, the outer bound on the rate region
follows from Theorem 7. To show the achievability direction
of the theorem, i.e., Rdcterministic = Rrandom if (W;.A) is
not symmetrizable, we take the first approach discussed in
the introduction (Section [-D2). We first show the following
lemma (proved in Appendix VII) which states that all users
can communicate at positive rates if a byzantine-MAC is not
symmetrizable.

Lemma 9: If a k-user byzantine-MAC (W, A) is not sym-
metrizable, then there exists (R, Ra, . .., Ri) € Rdeterministic
where R; > 0 for all ¢ € [1: k.

Next, we show that for every randomized code achieving
a small probability of error, there exists another randomized
code which also achieves a small probability of error, but
requires only n2-valued randomness at each encoder for a
code of blocklength n. This randomness reduction argu-
ment is along the lines of the extension of the elimination
technique [13] given in Jahn [8, Theorem 1]. The formal
statement and its proof is given in Appendix V.

S

le——— “(Tucuo’)°

e 7T

For each (5[:7,a:T,mQ\Q/,mQ/\Q,mTUQUQm), the conditional output distributions in the two cases above are the same. Thus, the receiver is

The achievability of Theorem 8 is done in two phases.
In the first phase, each user communicates a small number of
their uniformly distributed message bits using the positive rate
deterministic codes given by Lemma 9. These will serve as the
shared random bits between the user and the receiver in the
second phase. The first phase is short compared to the second
phase and only needs to communicate log n? bits for a second
phase of blocklength n. In the second phase, this small amount
of randomness will be used by the new code obtained from the
randomness reduction argument to communicate the remaining
message bits. Note that the first phase allows the adversary to
maliciously choose inputs of the users they control and thus
the shared randomness between the malicious users and the
decoder. This is why in our model, we allow the adversary to
select the encoding maps for all users in Q.

The above argument is formalized in Lemma 10 below and
is proved in Appendix VI. Its proof is along the lines of the
proof of [28, Theorem 12.11].

Lemma 10: For a byzantine-MAC, if there exists
(Rl, Ro, ..., Rk) € Rdeterministic Where R; > 0 for all
1€ [1 : kL then Rdeterministic 2 Rrandom-

O

Similar to the 3-user case, the proof of Lemma 9 (formally
given in Appendix VII) employs a codebook generated using
a random coding argument (see Lemma 15 in Appendix VII)
and is along the lines of [10, Lemma 2] and [22, Lemma 3].
The decoder is a generalization of 3-user decoder given in
Definition 6 and is defined below.

Definition 10 (Decoder): For n > 0, and encoding

maps, f; M, — A for i € |1 k], the
decoding set Duyyms,,...om, S Y™ of the message tuple
(m1,ma,...,mg) € My X My x ... x My is defined as the
intersection of the sets Dfﬁ)i, i €1k, ie, Dmymsg,...ms o
ﬂf:ngfl)i, where the sets Dg,i,,)i,z' € [1 : k] are defined as
follows: )
A sequence y € Dgﬁ)ﬂi € [1 : k], if there exists Q € A,
i ¢ Q xg € X5, mge € Mge where m; = m; and
random variables X g¢, Xg and Y with (fge(moge), g, y) €
T;chgy, satisfying the following:

1) D(PXQcXQYH(HieQ“ PXi)PXQW) <.

2) Suppose there exist @ € A, not necessarily dis-
tinct from Q, a non-empty set 7 C (Q U Q)¢ with
1 € T, (B/Q, S Xg/, m’Q\Q/ S MQ\Q/, m,T c
M such that m; # my for all t € T such that

for the joint distribution P rxr / fin
or the joint distributio Xae Xo X4 X0, o/ X0, Y defined
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2338

by (fQC(mQC)7mQ7fT(m/T)?fQ\Q'(mIQ\Q/)amIQHy) €
T;QcXQX/ X!

o\ XY’

II Px)
JEQ\Q!
99)

D(PX’TX’Q\Q,XQC\(TUQ/)X’Q,Y||(H Px)(

teT
(11

PXZ)PX’Q,W) <.
leQe\(TUQ)

Then,
I(XQCY;X’TX’Q\Q,\XQ) <. (100)

In the definition of D,(,’J above, condition 1 checks for
typicality with respect to channel inputs (f;(1h;), j € Q°) and
xo. Under condition (99), where an alternative input to the
channel (fi(my), t € T), (f;(mj), j € Q\ Q), (filmu), I €
Q°\(TUQ’)) and x,, looks typical, condition (100) implies
that the input (f;(m;), j € Q°) and g is a more plausible
explanation for the channel output than the alternative input
(see Fig. 15).

As mentioned earlier, Definition 10 is a generalization of
3-user decoder in Definition 6. In particular, check (a) can
be obtained by setting Q = Q' = {3} and 7 = {1,2}, (b)
by setting @ = Q' = {3} and 7 = {1} and (c) by setting
Q={3}, 9 ={2} and T = {1}.

Similar to Lemma 2, we can show that for small enough
n > 0, Doymarm O Dy ing,.me. = O for every
(my,ma,...,my) # (M1,Ma,...,Mg). See Lemma 17 in
Appendix VII for the formal statement and proof.

APPENDIX I
PROOF OF LEMMA 2

Proof: Suppose y € Y™ is such that y € DS&Z ﬂDng for
m1,m1 € My where my # m;. Then there exist permutations
(i,7) and (7,7) of (2,3) such that one of the following cases
holds.

Case I: (i,) = (i, j) There exist m;,7; € M, sequences
xz;,; € X, and random variables Xl,Xl,Xj,Xj,Xi,Xi
with (fi(ma), fr(ma), fi(my), fi(my), @i, ;) €
T;1X1XijXiXi such that D(PXlXinY”PXl X PXj X
Px, x W), D( XlXinY”PXl X Pf(j X Pf(i X W) < n and
Case 1(a) if m; # m;j, then

I(X0 XY X0 X501 X0), LG XY X0 X1 XG) <
Case 1(b) if mj = my, then X =

I(XlXJY,X1|XZ), (XlX Y: XllX)

Case 2: (i,7) = (j,1)

There exist m; € M;, m; € M;, sequences T; €
Xj", x; € A& and random variables Xj, Xl, X, f(j,
Xv, X; with (fi(m1), fi(ma), fi(my), &5, i, fi(mg)) €

X1X1X %% such that D( x Px,; x Px, X
W), D<PX1XXY||PX X PX x Pg. X W) < n and
I(X: XY, X1 X; | X5), (XlXY X1X; |X)

We first analyze Case 1(a). Let Wy |x, x;x; be denoted
by W.

X; and

D(PXlXinY”PXl X PXj X PXi X W)
+ D(Pg, %,l1Pg, x Pg))

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

+I(X1 XY X1 X1 X;)

9>

XT1,T5,Tq,Y

—~
=

XlX XY 5617953,%,2!)

Px,x;x;v (w1, 25,24, y)
& Py, (z1) Px; (75) Px, (z:)W (y| 71, 75, 7;)

PXX(xlvjj)
P log —=1%9 -~ 77
2 Prn @ m)ls UGN

Il,wj
+ E : leXlx,-XjX,-y(xlv9317933‘,%,561‘,3/)
T1,%1,25,T5,%i,Y

log

leXIXjX]-Y\Xi (x1,T1, xj,i’j?yll“i)
lexjy|x7~, (xlvxjvymi)Pf(lX”Xj (1, i"]|xl)

= 2

T1,21,L5,Lj5,Li,Y

log

PXleXjf(inY(xlaxlvxj; mjaxiay)

o leglxjgjxiy(xhil79517561'7961'»2!)
8Px, (@1) Px (@1) Px; (25) Px (2) Px, %, x; (@3] 21,8) W (yler,z;5,24)

= D(leXIXJXinY||PX1PX1PXJ'PXJP 1|X1XJ W)

(b) ¥
2 D(PXIXIXijY|‘PX1PX1PXJ'PXJ‘ V1)
where ﬂ(y\thlﬂj,iﬁj)

=2 P

where (b) follows from the log sum inequality. From
the given conditions, we know that the term on the
LHS of (a) is no greater than 37. Thus, D(PX1 XX, R, Y
|| Px, Pg, Px; Py, V1) < 3n. Using Pinsker’s inequality, it fol-
lows that

>

Il,fl,@]‘,ij,y
Px, (21)Pg, (21)Px, (2;)Px, (@)‘71(3/@175517%,@)‘
< e/3, (101)

where c is some positive constant. Following a similar line of
argument, we can show that

‘TZ|:E17:EJ) (y|x1,xj,xi),

’P)(l)"(lxj)%jy(xla T1,25,%5,Y)—

3n 2 D(Pg, g, %,vIPg, X Pg, x Py, x W)
+ D(Py, x,||Px, % Px,)
+ (X1 X;Y; X1 X, X))
> D(PXI;(IXJ_ F % | |PX1P)~(1 Px, ij V1) where
Vilyles, 31,25, 2,) =) Py,x,x, @il 2)W ()1, 55, 7).

Using Pinsker’s inequality, it follows that

1,31 737.7‘712.7'79
Px, (1)Pg, (#1)Px, () Px, ()V(ylo1, 31,25, 35)|

< ¢y/3n. (102)

’PXI)E*lxjfcjy(ml;xlaxjaxj,y)_

From (101) and (102),

Y. Px(1)Pg, (#1)Px, (=

T1,21,25,T5,Y

i) Px, (Z;)
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“71(3}‘.131,5317Ij,i‘j)—‘/l(y|$1,3~j17l'j,.i‘j)’ < 2C\/ 377
This implies that

max

. ~ ’vl(y|xlvjl7zjv‘ij)7V1(y|xlai'13xj75:j)‘
X1,T1,%;5,%5,Y

< 20\/377.

= 044

(103)

Similar to [10, (A.15) on page 748], since Wy x,x,x, is
not X x X;-symmetrizable by X; (i.e., (6) does not hold for
(i,7,k) = (i,7,1)), we can show that for any pair of channels
Pgix,x, and Py % . there exists ¢; > 0 such that

max_
T1,T1,T5,T5,Y

Vi(ylz1, &1, 25, %5) — Vi(ylor, £1, 25, %) | > G

. . . <2a8
This contradicts (103) if n < 5.

We now analyze Case 1(b).
D(PXlXinYHPXI X PXj X PXi X W)
+ (X1 X,Y; X1|X5)

w Z Py, x; x,v (21,25, i, Y)

X1,Tj5,T5,Y
log Px,x;x;v(x1, 25,74, 9)
PXI (xl)PXj (xj)PXq (%)W(ykﬁ,%‘,xi)

>

Z1,T1,T5,%4,Y

lei(lxjxiy(xlv T1, 25, T4, Y)

log PX1X1X_7‘Y|X7‘,(m1’j1’xj7y|wi)
Px, x;vix: (@1, 5, y|ws) P, |, (1] 23)

- ¥

21,T1,%5,%i,Y

leklxjx,iy(xlaxl,fj, T, Y)

log leXIXinY(Ilvflazj’xz',y)
Px, (21)Px, (21)Px, (;) Py, %, (@i 21)W (y|z1, 25, 27)
= D(le)”(lxjx,-y||PX1P)"(1PXJ-PX,3|X1 W)

(b) -
> D(Py, %, x,v|IPx, Pg, Px, V)

where Va(ylz1, &1,2;) = Y Py, %, (@il #)W (ylz1, 25, 25),
T;

where (b) follows from the log sum inequality. From the given
conditions, we know that the term on the LHS of (a) is no
greater than 2. Thus, D(Py, ¢, v,y ||Px, Pg, Px;V2) < 2.
Using Pinsker’s inequality, it follows that
Z ‘PXleXjY(zlﬁ‘%lvxjay)_
T1,21,T;5,Y
Py, (1) Pg, (81) Px, () Va(yl, 1, 25)|
<c

2n, (104)

where c is some positive constant. Following a similar line of
argument, we can show that

20 = D(ijlXjffiYHP)?l X Px; x Pg x W)
+ (X XY X | X))
> D(Py, %, x,v||Px, Pg, Px,V2) where

2339

Va(ylar, &1, 25) =) Pg x, @le)W (yl&1, ;,5).

T
Using Pinsker’s inequality, it follows that

Z ‘lef(lxjy(xlafhxjay)—
z1,T1,T;5,Y
Px,(z1)Pg, (21)Px; (xj)‘/é(yla?hiuxj)‘
< /3.

(105)
From (104) and (105),

Z Px, (z1)Px (%1)Px; (%)

1,%1,%;5,Y

< 20\/%.

"72(3/|7317§717$j) — Va(ylwy, Z1, 25)

This implies that

< 2(:\/27).

‘72(y|z1,j1,xj)f‘/g(y|z1,5:1,xj)‘ = !

(106)

max
L1,21,Lj,Y

Similar to [10, (A.5) on page 747], since Wy |x, x,x, is
not X;|X;-symmetrizable by X; (i.e., (7) does not hold for
(i,4,k) = (1,7,1)), we can show that for any pair for channels
Pf(il x, and PXi| %,» there exists (2 > 0 such that

max
Z1,21,T5,Y

Vo(ylar, &1, 25) — Valylzr, &1, 25) | > G

28
G
8c2 *

This contradicts (106) if n <

We now analyse Case 2.

D(PXlXinYHPXl X PXj X PXi X W)
+ D(Pg, x,|[Pg, x Px,)
+I(X1XJY,X1X1|XZ)

2 Z Px,x;x,v (71,25, 74, y)

T1,T5,Tq,Y
log Px,x;x;v(T1, 2,74, y)
Py, (x1)Px; () Px, (i)W (yl|21, 25, 2:)
+ ) Py g, (@1, 8)

1,

leiclxjxi)?iy(xlafl,fﬂj’xz‘,iﬂi,y)

1,21,25,T4,%4,Y

PXleXJXiY\Xi (x175317$jaj’i’ y|x1)

log —
Py x: (&1, i) Px, x, v x, (21, 25, Y] @)

L1,T1,L5,Li,Ti,Y

PX1X1X]‘XiXiY('r17x1?$j7 mi7 mi7 y)

lo Pxyxyx,x, %,y (81,81,25,20,80,y)
& P, (@1)Px, G1)Px, (2;) Px, (F0) Px, %, x, (@i 51,200 W (y[21,2;,2:)

= D(Px, %, x,x, %:v|1Px, Py, Px; Py Px, 3, 5,W)

(b) -
Z D(PXleXinY|IPXIPleijf(iVé) where
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Va(ylar, &1, 5, %) =) Py, x, %, (@il#1,8)W (yle1, 25, 2:),
where (b) follows from
From the given conditions, we know that the term
on the LHS of (a) is no greater than 37. Thus,
D(PXleX-fQYHPXlPf(lpxjp)zi%) < 37. Using Pinsker’s
inequality, it follows that

>

T1,F1,T5,Fi,y
Px, (z1)Pg, (1) Px, (z;) Px, () Va(ylar, 31, 25, 1)
< cy/3m (107)
for some constant ¢ > 0. Following a similar line of argument,
D(Pg ¢, %,v|IPg, x Pz, x Pg x W)
+ D(Px, x;||Px, x Px,)
+ I(X1 X:Y; X1X5]X;)

2 5

T1,%5,%4,Y

the log sum inequality.

lpxlflxj)}iy(xlvl'laxjaxiay)_

—
=

PXlXiny(jl»fj,fi,y)

log Pg %, %y (81,35, %4, y)

PXlXj (x17xj)

Py, x, (1, 2;) log — 20X WL 13)
+ Z X1XJ(x17xj) 0og PXl(xl)PX](IJ)

xl,zj

>

L1,21,L5,L;5,%i,Y

PXIXIXijXiY(xlvxlvxjvxjvxivy)
PXleijiY\Xj (z1,x1,$j7xi7y|xj)

Pg xvix, (@1, %0, 91%5) Py, x %, (21, 25]25)

- ¥

z1,21,25,T5,Z:,Y

log

Py %, x, %, %y (@1, 81,25, 85, Tis y)

Py %y x, %, %, v (@1,81,25,8,8i,y)

o8 P o P 1P, (20 P, (50 P ey, (s o e W T 5,70)
= D(PXIXIXijX,-Y||PX1P)”(1PX]-P)2,-PXJ |X1XjW)

> D(PXl)?lXj)?qu || Px, Py Px; Pf(i V3) where
Valylen, 31,25, 50) =) Py, x, (&5l20, 2) W (9]31.35,3:).
From the given conditions, the term on the left of (a) is no
larger than 31. Thus, D(Py, . v, %,y ||Px: Px, Px; Pz, V3) <

3n.
Using Pinsker’s inequality, it follows that

>

x1,&81,%5,Ti,Y

Py, (21) Py, (21) Px; (%) Px, (Z:) V3 (ylz1, 21, 25, Z;)

’PX1)_(1XJ')~(¢Y($17$1’$]'3 Lis y)f

< ¢y/3n. (108)
From (107) and (108),
> Px,(x1)Pg (#1)Px, (z;)Pg, ()
@1,F1,35,3 5,y
’Vg(y|x1,i'1,xj,ii) — Va(ylze, &1, 5, Z4)
<2¢y/3n.  (109)
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This implies that

-~ - - - - 2¢/3n
max V3(y|l‘1,$1,$j,$i)—V3(y|l'1,l‘1,.73j,$i) < 1
1,21, «
Tj,Tj5,Y

(110)
Since Wy | x, x, x, is not Xi-symmetrizable by X;/X; (i.e., (8)
does not hold for (7, j, k) = (7,7, 1)), for any pair of channels
Py, %, %, and Pg |y y, . there exists ¢3 > 0, such that

max_ (Va(ylzr, 1,25, 8) — Valylzr, 31,25, 3)| > G-

X1,L1,L5,T5,Y

This contradicts (110) if n < CEQZS Let ¢ = min {¢1, (o, G},
any n satisfying 0 < n < 412% ensures disjoint decoding
regions.

|

APPENDIX II
PROOF OF LEMMA 4 (CODEBOOK LEMMA)

To prove Lemma 4, we will first define some terminology
and prove a concentration result in Lemma 11. This will be
used to prove Lemma 4 (Codebook Lemma) as a corollary.

A. A Concentration Result

In this subsection, we restate [24, Theorem 2.1] in a form
that can be directly used for proving the properties of the
codebook.

For a positive integer b, let S, denote the symmetric group
of degree b, i.e., it contains the permutations of {1,2,...,b}.
For a permutation o € Sp, let (i), i € {1,2,...,b} denote
the image of ¢ under o. Let A be a set. For a b—length tuple
(a1,...,ap) consisting of distinct elements of A4, let

s,y = {2 € (o, a0} U L) s 30 €5,
such that for all j € [1: 0] if a; #x then a; = oz,,(j)},

where a; represents the j™ element of the tuple a. For a €
Hiar,....ap)> let |a| = [{i : a; # *} |. For a tuple (y1,...,7)
consisting of distinct elements of A, we say that a €
Hiay,.na) and (71,...,7) are (ag,...,qp) —compatible

(denoted by (71,...,7) ~|[a, (a1,...,ap))), if for all I €
{1,...,b},
" = a, if a; # *,
v € A\ {aq,...,ap}, otherwise.
For example, let A = {1,2,...,9}, b =05, (a1,...,) =

(1,2,3,4,5) and a = (1,2,%,%,4). Then, a € H(a,,....a)
with |a| = 3. Suppose (y1,...,7) = (1,2,6,8,4). Then,
(Y155 m) ~ a, (@, - o).

Lemma 11: For an index set Z, let {Y; : i € T} be a set
of independent random variables. Let 3 be a positive integer.
Let 7 C ZP be a set of 3 length tuples consisting of distinct
elements from Z. For (iy,...,ig) € J, let Vi;, . i, be a
binary random variable which is a function of Y;,,...,Y;,.
Suppose U = > ;e Vi, ig)- Let E be defined as
given in (111), shown at the bottom of the next page.
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Fory>0,v>1 if there exists 01,2, ...,dg > 1 such that
foralli e [1: /], 2B)ﬁ ( ii—lp 5|) > §,F for 8y := v,

then
P(U > vE) < (|8 +1)" e/, (112)
Proof: For (i1,...,i5) € J, let
Utr,yip) = > Vir,is)-
(J1,--08)ET H{d1,-- 3 0 {i1,...,ig } £0
To show (112), we will first show that
P(U > vE) <e /34
~ (v—1)E
Z P (U(il,m,iﬁ) > Ty (113)

Jig)ET

(i1,

using [24, Theorem 2.1], which is restated below.

Lemma 1: [24, Theorem 2.1] Suppose that Y,,a € A,
is a finite family of non-negative random variables and that
~ is a symmetric relation on the index set A such that each
Y, is independent of {Y}3 : § » a}; in other words, the pairs
(a, B) with @ ~ (3 define the edge set of a (weak) dependency
graph for the variables Y,,. Let X := Z Y, and p:=EX =
S, EY. Let further, for o € A, X, =D g Yo It > >
0, then for every real r > 0,

(55)

r/d + Z
acA

In order to obtain (113) from [24, Theorem 2.1], we use

J in place of A and V;, ;. in place of Y,. We note that

every (i1,...,48),(j1,...,48) € J such that {i1,...,ig} N

{jq1,---.dst # 0, (i1,...,i8) ~ (J1,...,J3) as per the

symmetric relation given in [24, Theorem 2.1]. Thus, the

definitions of U(7 _____ iy) and X, are consistent. We upper
bound the LHS of (1 13) as follows:

P(X >p+t) <

P(X > vE) = P(X — E[X] > vE — E[X])
<P(X —E[X] > vE — E)
= P(X —E[X] > (v — 1)E)

Theorem [24, Theorem 2.1] is applied on P(X > E[X]|+ (v —
1)E) with (v — 1)E as t and ~ as r.

Now, we will show (112). We will use strong induction
on 3. When § = 1, (113) implies P(U > vE) < e~ /3,
This is because for any 1—length tuple (i) € 7, U(i) = Vi,
which, being a binary random variable, is at most 1. However,

(Qé)g (%E—ﬁ!) > 6 E > 0 implies that for § = 1,
3 (”T;lE -1 “5-E > 1 and the second

term on the RHS of (113) is zero. Thus, (112) holds for 5 = 1.

2341

Now, for the induction hypothesis, consider any 5’ < k for
some positive integer k. For an index set 7', let {Y, : i € 7'}
be a set of independent random variables. Let J' C 7% be
a set of 3'—length tuples consisting of distinct elements from
T'. For (i1,...,ig) € J', let V(’l_ » be a binary random

Lyeen

variable which is a function of Y,V ,... }/i/[,/' Suppose
r_
U’ = Z(ih )EJ/ V(h, Lig)"
Let
E’' > max { max max
i1,y..yigr JET'! ’ ’
( 1 B ) (?/111*" ’y’g/>’
€M
CH (i)
1<|a|<p’ —1
E

7E[U/}}v

53 > 1 such
— ﬁ’!) > 0/ E' for

For o' > 0, v/ > 1, if there exists 67,85, ...,
. , 1 8,1
that for all i € [1: 3], b (27}/,}3’
§f := v/, then
’2 ’
PU' > VE) < (T8 +1)7 e/
Now, for 5 = k + 1 and any +, v, and F and random
variables satisfying the conditions in Lemma 11, (113) gives

)

P(U > VE)§€77/3+ Z P <0(i17---,ik+1) > 2y

(41, ik41)ET

For (i1,...,ik4+1) € J, and any realization (y;,, ..., %)
of (Yil, e Y,;,Hl), consider the steps in (114)—(116), shown
at the next page. There, (a) holds because D s Vo(iy,....in 1)
being a sum of binary random variables, takes the maxi-
mum value |S| which is (k + 1)!. The equality (b) holds
because P (Zl<i<tAi > c) < P(Ur<i<e {Ai > ¢/t}) for
any integer ¢, real number ¢ and random variables Ay, ..., Ay.
The inequality (c) uses union bound and the fact that
[ Hir,sinsn)| < (# of subsets of {i1,...,i541}) X Syl
Thus, [He,, il < 287k + 1)1 < (2(k + 1))F
Inequality (d) holds because F > 1 and (e) follows from the
conditions on v,y and § = k+1 in the statement of Lemma 11.

Fix (il,...,ik+1) S J, (Y;U...?Yvik_*_l) =
(Yirs - Yiry,) and @ € H, . i,,) such that |a| = I
where [ € [1 : k]. We will use induction hypothesis at this

stage. To use induction hypothesis, choose v/ = 1, v = 7,

E >max{ max max [E Z Viii,ois) (Y}U...,Yiﬁ) = (yil,...,yw) ,E[U] (111)
(i1,-vig)€T (yHly/,) (o)
acH . ) T /
(i118) | Greed)~as(in,enip)]
1<]a|<p~1
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v—1)FE
(2'7) 1""’Yik+1):(yi17"'7yik+1)>

- 1)E
< P( Z Vo(iryoosings) T Z Z Vit sdngn) > u

2y
0ESk+1 A€M (i1, i) (315 ik 41) €T
1<la|l<k  Utrodkt1)~[a, (i1, iky1)]

P (U(ilx-wikJrl) > (Yz

(Yz-l,...,YW)=(yz-1,...,yik+1)> (114)

- 1HE
= P( Z Z Vv(jly---yjk+1) > (UQ,}/) - Z VU(il,--.,ik+1)

€M (i vigy1) (412 ik 41)€T: 0ESk41
1<la|<k  (1s-odkr)~la,(in, . ikg1)]

(Yil,...,YikH):(yil,...,yik+1)> (115)

(@) (v—1)E
<P Z Z V(J'17»~~’jk+1) > T - ‘Sk+1| (Yiw"'aYikH) = (yi17-~-ayik+1)
a€H ;i (41+-dp41)ET:
1(gl\a\g;2+l) (jl,...,jk+1)~)fa+,2i1,...,i,c+1)]
© 1 (v—1)E
<P V. ) (k4 1)
a U Z i) = |H(i1--~~ ik+1)| —1—(k+1)! ( 2y (k+1) ) |
€M (i igy1) (41 vdk41)€ET: e
1<|a|<k (J15e- k1) ~[a, (i1, ik41)]

(v;

17...,)/ik.+1) = (yil,-~-7yik+1)>

€M (i (15 dk+1) €T (1)

----- 1) | \ ) ,
(J1se-dkg1)~la, (@1, ik41)]

1<|a|<k

<P U ( > Viiiian) > 7 1 <(1/ -)E kit 1>!> ’

(Yvi17"'aYék+1) = (yi1a~'~7yik+1)>

© 1 (v—1)E
= Z P Z V(jl ----- Jrt1) = 2k + 1))k+1 ( 2y — (k + 1)') ‘
aEH(z‘l,...,ik+1) (CIT ik+1)€J:
1<|a|<k (15 dwt1)~la,(ia,ipg1)]
(Yi17""Yik+1) = (yi17---7yik+1)>
@ 1 (v—1)E
€M (i igy1) (410 i1 ) €T
1<|a|<k (F1sdrr)~[a,(inseikg1)]
(Yilv"'inkJrl) = (yi1a-~-7yik+1)>
(e)
< Z P Z V(J'17---7jk+1) >0 E (Yila"'ink“) = (yi17"'5yik+1) . (116)
ST CPI (J1+-vdga1)€T:
1(Sl\a\éliﬂ) (j1,---,jkil)Nfﬂz‘l,...,z‘kﬂ)]
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F =E 3 =k+1-landZ' = Z\{i1,...,ix+1}. The set of For (j1,...,jkr1-1) € T, a' € Hjy . jurroy) With [a| =
random variables {Y; :i € 7'} is given by Y/ = Y;, Vi € Z'. I’ for 1 <1' < k — 1, define a (k + 1)—length tuple a”
Foric[l:k+1]let|ai™|=[{jel:i—1]:a; #x}|

The set J’ consists of (k + 1 — [)—length tuples " a, if ai # *,
.- " a; = .
of distinct elements from Z° such that for every a; a1 if a; = *.
—la

(J1y- -+ Jkt1—1) € J', there exists (my,...,miy1) € J
such that m; = a; if a; # *. Else, m; = jHazl_ll. For forall I € [1: k+ 1]. Let (my,...,mgy1) € J be such
such (mla'“akarl) € J and (jlv’~’7jk+1fl)’ we will that (jl,...,jkle,l) +a= (m17...,mk+1). Then, for fixed
say that (j1,...,Jk+1-1) + @ = (m1,...,mg41). Thus, for (yjlw--,yij,L ,

every (my,...,mgy1) € J such that (mq,...,mp41) ~

[a, (i1, ..., ik+1)], there exists a unique (j1,. .., jk+1-1) € T’ E
with (jl,...,jk+1_l)+a: (ml,...,mk_,_l). l

/
Z ‘/(917-~»79k+1—l)

(91 9p41-1)€T":

For (ji,...,jk41-1) € J’, the binary random variable (1ot Yl (oo )]
Viisoiniry is the random variable Vi, . m,,,) where

my,...,Mk+1) = (J1,-.+,Jk+1—1) + a and the random (Yju-~-7ij+1,l) — (yju-~-7yjk+1,l)
variables (Yz‘1,~~ Yi,.,) are fixed to (yi,,... i, ). For

U =3 v/ we will use induction
(J15eesdibt1— L)GJ/ ( J1sesdbr1-1)° _
hypothes1s on ]P’(U’ nE ’ =E Z Vina, st n)
(h1yeshpt1 ) €T
P(U' > 6, F) (h1yeshega)~[a’ (masme )]
, (le""’Y}kﬁ»l—l)z(yjl""’yjk+1—l)’
=P > Vi ey > 01 (Vg oo Yig 12 )= Wiy st 1)
(G5 sdkt1-1)ET’
(a)
=F Z Vin,.on
=P V onE [ (hiseeshigr)
< Z (m1,eymp1) = 01 (hpoips1) €
(m1,mpq1)€T: (h1,..c;hpg1)~[a” ,(ma,...,mp41)]
(ma,eco;mpgr)~[a, (i1, 50k41))
}/’rna--w}/nu = mis -y Ym
(Yiu"-’Yikﬂ):(yi17~-~>yik+1)>- (117) ( 1 k+1) (y 1 Y k+1)]
<E=F.
We know that
In the above, (a) follows from definition of Z* and [J'.
E > max { max max Now, we need to show that for v/ = §), = 41, 7' =+, there
YirseYingr) PG i) exists 01,05, ...,0 such that for all i € [1: 4], 6; > 1 and
('Ll ..... lk+1)€J 1<lal <k 5 1
W ( LB — B") > §/F'. First note that as [ € [1
El Z Vigiseeingn) k], B € [1 : k]. We know that there exists d1,0a,...,0kt1
' (10 ig41) €T such that for all s € [1: k+1], 5 > 1 and for & = v,
Orede) i) (2(k+11))k+1 Cl‘_g;ilE — (k+ 1)? > §;E. Let 0, = §;41 for
Yirse o Vi) = Wi+ o+ Vi) ,E[U]}, all ¢ € [1: 3] Then, for all i € [1: f], §; > 1 and

1 5; 1 1E/ \1
and for v > 0, v > 1 there exists d1,62,...,0,41 such (287 / - (8!

2y
that for all ¢ € [1 : K+ 1], §; > 1 and for &g = v, 1 5 —1
@RI\~ 2y : ol (287 \ 2y
We will use this to show that the choices of v/, v/, E', 3 1 5i—1
. ... . . . . > ? E — (k 1)
satisfy the conditions in the induction hypothesis. = 2k 1 1))+ ( 2 (k+1) )
>0 kE
!/ !/
E[U']=E Z ‘/(jlv---vjk+l—l) = (%El'
(J1seedkr1-1)€T’
With this, all the conditions in the induction hypothesis are
=FE Z Vi eomis) satisfied and we are ready to apply induction hypothesis. Thus,
(M1 mk+1)ej ‘
(ma,..;mpqa)~[a, (i1, 5ik41)] =P Z V(ml,...,mH]) >0nFE
(m1,...,mp11)€ET:
(}/;13 ceey }/ik+l) = (yilv s 7yik+1) ‘| (ma,...y mk+1)~T¢:(i1 ..... iht+1)]
<E=F

v;

Zl,...,Y;'kJrl) = (yi17~-~ayik+1)>
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W >sE)

= (1Z|(k +1 = 1) + 1) B0 =73, (118)

where (a) uses (117). Continuing the analysis of (116),

IP’( >
(11 ~~~~~ jk+1)€5:

1<|a|<k (G1y-sdbr1)~la,(in,..

Vi, i) > 01 E

Jikt1)]

(}/il?"‘?}/;k+1) = (yila-“ayikJrl))

k
D U D S L
=1 aerg T (41 dpg1)ET
(\11|:l b) (F15e-sdkt1)~[a, (@1, ik41)]

(}/7;17"'7}/ik+1) = (yila"'7yik+l)>

) &
<SS (k- ) ED e
=1 ac (i1,~-~-ik+1)
lal=1

=> (k | 1) (k . 1)“<|z|<k +1-1) 4 I

=1
k
= 1—m)!
;<k+1—m)(k+l—m>(k+ m)
(1Z|m +1)™ /3
k
s, F Y EED 7yt
— k+1—m m!
k
k+1 mo_
SZ( m )((kH)!)(IIkH)’“ v/
m=1
k+1
k+1 _—
< ( . )((k+1)!)(1|k+1)k e/
m=0

k+1

=(k+1)le™/3 Z (k+1> ( |I|I~c+1)k)m

X k+1
<(k + 1)le=/3 ((|I|k +1)% + 1)
<(k+ DD (Tl + 1) + 1)
Inequality (b) uses (118). The equality (c) is obtained by

substituting [ with k +1 —m
Thus, using this analysis, we see that for § =k + 1,

P(U > vE) < e /3

+ 2
(i1, int1)ET
< e—’Y/?’

D>
(31, sipt1)E€ET
= 041Nk + D)EDE (T) (k4 1) + 1)
4 |I|k+1(]€ + 1)(k+1)6—'y/3 (|I‘ (k + 1) + 1>k(k+1)

LY

P (U(il,...,ik+1) > 27

(k+ 1)FHDe=/3 (7] (k + 1) + 1)FEFD

< e /3
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< e (IZ)(k + 1)F e 3 (|Z] (k + 1) + 1)FEHY
< (1] (k + 1) 4+ D)D) g=/3
+ (1Z)(k + 1) e B (T (k+ 1) + 1
< ((Z1(k + D))+ De 2 (] (k + 1) + )Y
< (IZ|(k + 1) + 1) e "/3 (|Z|(k + 1) + 1)F*+D
< e 3 (T|(k + 1) + 1) FHDEHD

)k(k+1)

B. Preliminary Codebook Lemma

We use the concentration result from Section II-A
(Lemma 11) to prove the existence of a codebook with
properties as given in Lemma 12. Roughly speaking, each
property counts the number of codewords which are typical
with fixed vectors. The codebook lemma (Lemma 4) follows
from Lemma 12 as a corollary. We first state and prove
Lemma 12 and give a proof of Lemma 4 in the next subsection.
We need to define the terminology of Total Correlation to state
the properties of the codebook in Lemma 12. For random
variables 71, Za, ..., Zm, let C(Zy; Za;...; Zy,) denote the

total correlation of the random variables Zy,Zs,...,Z,
which is given by
C(Zy;Za;. .. Zm) = ZH(Zz) —H(Z1,Z2y ..., Zp).
i=1
(119)

Note that C(Z1; Zs;...; Zy,) can also be written as

S 1(ZiZz7).
1=2

Suppose R, denotes the set of positive real numbers. Let k& €
{1,2...}. Consider random variables Uy, Us, ..., U,V and
aset S C[1:k] given by S = {al,ag,...,a|s|}. Let §¢ =
[1 k]\S be denoted by S¢ = {[31, B2y -5 Bre—is) } We define
I Uaroo ey P RE = Ry as

(R1,Ra,...,Rg) = <ZR’> _

i€S
C(Ual; Uoc2§ ce Ua|3|; (UBI’ UB27 R

S
90, ,Us,....Ux,V

Uﬁk—\s\ ) V))
(120)

Note that the tuple (Ug,,Ug,,...,Ug,_ 5, V) is treated as a
single random variable. Thus, when |S| = 0,
gg],UQ,...,Uk,V(R17 RQ, ceey Rk) = 0.

Lemma 12: For any € > 0, n >

no(€), N1, Na, N3 > exp(ne) and types P, € Pk,
P, € Py, Ps € Pk, there exists codebooks
{acn,...,mlNl € Xln},{ivgh...,mQNQ S X2n},

{Z31,..., 23N, € X} whose codewords are of type Py, P,

P; respectively such that for every permutation (i,7,k)
of (1,2,3); for every (z;,z;,xx) € A" x &' x Al for
every joint type PXiX,ngX;XkX,; € P;L(ixXiij ><X]~><Xk><Xk;
and for R, = (1/n)logy, N;,R; = (1/n)logy N;, and

Ry = (1/n)logy Ni; the statements (121)—(133), shown at
the bottom of the next page.
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Proof: We will generate the codebooks by a ran-
dom experiment. For fixed (zi,zj,xy) € A x A" x
X}'and joint type PXiX,{Xij/-XkX;/C € P;LQ XX X XX Xj X X X X ?
we will show that the probability that each of the state-
ments (121) - (133) does not hold, falls doubly exponentially
in n. Since |in|’ |Xjn|7 |Xl?| and |P/TYLixX,-><ijijkaXk|
grow only exponentially in 7n, a union bound will imply
that the probability that any of the statements (121) -
(133) fail for some x;,x;,T; and PXingj)quX,; also
falls doubly exponentially. This will show the existence
of a codebook satisfying (121) - (133). The proof will

2345

employ Lemma 11 which we have restated below for quick
reference.

Lemma 2: For an index set Z, let {Y; : i € Z} be a set
of independent random variables. Let 3 be a positive integer.
Let J C Z” be a set of 3 length tuples consisting of distinct
elements from Z. For (i,...,ig) € J, let V(;, . ;,) be a
binary random variable which is a function of Yzl, e Y

ig*
Suppose U =3 ;. i e Viir,...ip)- FoOr

Z V(Jl »9B)

(J1 »»»»» J,B)EJ
(F15e-dp)~la,(ins..hig)]

Ex :=E

(i) Joint typicality of a codeword

{re[L:Ni]: (ir, ) € T, x, }| < exp{n (R — [(Xi; Xi)| " +¢/2) } (121)
s € [1: Nj]: (@i, 255, @) € TR, x, x, } < exp {n (|Ry — I(Xj; Xi, Xp)| T +€/2) } 5 (122)
{u € [1:Ni] : (@i, s, 5, ) € TXox, x,x, | < exp (n <|R1 - I(X;;XinXk)ﬁ + 6/2)); (123)
(ii) Joint typicality of a pair of codewords
{(r,s) € [1: Ni] X [1: Nj] 2 (®ir, @5, k) € T, x; x,. |
< exp {n ( |R; — I(Xu; Xp) |7+ Ry — I(X; Xp)| " — 1(X5; Xj|Xk)‘ + e/2) } (124)
{(r,u) € [1: N;] x [1: N;]: (@ir, Tiu, Tf) € T;éinXk’ r# u}
< exp {n ( |R; — I(Xi;Xk)|+ +|R; — I(X;;Xk)|+ — I(Xz-;XﬂXk)‘ + 6/2) } (125)
{(s,v) € [1: Nj] > [1: NjJ = (@5, g0, 28) € TX x1 x5 8 7 0}
+
< exp {n ( Ry — (X5 Xe)| ™+ [ Ry — (X5 X)| " — I(Xj;X§|Xk)) n e/2> } : (126)
K(r,w) € [1: Ni] x [1: Ni] : (ir, Brw, k) € Tx, x1 x, ]
+
< exp {n ( |R; — I(‘X—i;){k”Jr +|Rk — I(AX;C;X}@”+ - I(Xi;X,IC|Xk)’ + 6/2> } ; (127)
[{(ss) € [1: N3] % [1: o)+ (@0, @ @) € T ;.
+
< exp {n ( |R; — I(X;; Xp)|" + | R — I(X,;;Xk)|+ — I(Xj;X,;|Xk)’ + e/2> } ; (128)
|{(U,’U) € [1 : Nl] X [1 : NJ] : ("Biuvmﬂ)vmi?mjvmk) € T)?;X;X,X7Xk}|
< exp (n ([1R: = TOX XX, X0)I T+ Ry = T(XG XX Xe)|* = HXG X1 XX0) [T+ ¢/2) ) (129)
() € [1: N X 12 N 5 (@ @ @25, 2) € T, x|
< exp (n ([1Rs = TOXG XX X0+ [Ry — 10X XX X0 = I(XG XXX X[ +6/2))i - (130)
(iii) Joint typicality of three codewords
{(r,s,u) € [1:N;] x [1:N;] x[1:N;]: (@i, Tjs, T Tk;) € T)TéinX;ka r # u}|
< Jdmax exp {n (g)'s(hXMX;_’Xk(Ri,Rj, R;) + e/z)} : (131)
(iv) Joint typicality of four codewords
{(r,s,u,v) € [1: N3] x [1:N;] x [L:N;] x [1:N;]: (@ir, Tjs, Tis Tjo, Tk) € T)Téixjxgxgxk» r#u,sF# v}
< S ’ ! . y . 1 N
< g e {n (gXi7Xj,Xi7Xj)Xk(R“ R;, R, R;) + e/z)} . and (132)
{(r,s,u,w) € [1: N;] x [1:N;] x [1:N;] x[1:Ngl: (ir, Tjs, Tins, Tjo, T) € T)?inXQX,;ka r# u}|
S
< gmax | exp {n (gX“XwX;’X;’Xk (Ri, Rj, R, Ry) + e/z)} . (133)
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(nla"'a}/ig) = (yi17"'7yi5)‘|7

let
E > max max max  Ex | ,E[U] p, (134)
(i1,.vig)eT (yi17---7yig)7
CER (i)
1<[al<B-1

For v > 0, v > 1 if there exists d7, s, ..
for all i € [1: ], ks (‘*;fE _ ﬁ!)
then

.,63 > 1 such that
> ), F for 69 := v,

P(U > vE) < (IZ|8 + 1) e™/3. (135)

Let T;*,1 € {1, 2,3} denote the type class of P;. We gener-
ate independent random codebooks for each user. The code-
book for user I € {1, 2,3}, denoted by (X1, Xi2,..., Xin,),
consists of independent random vectors each distributed uni-
formly on T}". Fix (z;, z;,®)) € & x X' x AJ'and a joint
type PXin{XjX]‘XkX;; € ,Pg(ixXi X Xj X Xj X X X X, such that for
1e€{1,2,3},Px, = Py; = P, and (xi,zj,z)) € TR, X, X,

In order to obtain (121) - (133), we will use v = exp (ne/2)
and v = exp(ne/46) in Lemma 11. For ¢ € [1 : f], let
5; = exp (%). Note that §; > 1 for all i € [1 : 3],
do = exp (ne/2) = v and there exists ng s.t. for all n > ny,

5; = exp ((45—32)”6>

86
o3
i
o
~ (2;)/3 <5121fy_1 — g) for large n.

The choice of 3, Z, J and the random variables will depend
on the specific statement among (121) - (133). Though, 8 will
only range in {1,2,3,4}.

(i) Analysis of (121), (122) and (123) (Joint typicality of a
codeword): To obtain (121), choose Z = {il,42,...,iN;} and
the set {X;1, X2,...,X;n, } corresponding to {Y; : i € T}.
We choose 8 =1 and J = {(i1),(i2),...,(iN;)}. For all
rec [1 : Nz}’

‘/(ir) = {

P(Virny =1) =

1, if X, € T)’;ilxk(mk),

0, otherwise.

Note that

‘T)?JXk ()]

1%,
exp {nH (X;|Xk)}

(n+ )%l exp {nH(X;)}

= (n+ 1) il exp {—nI(X;; Xi)}

(@)

< exp{—nl(X;; Xx)}

<

where (a) follows because (n + 1)~1%l < 1.
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Note that U = > v Vi =
N;]

Hr € [1

o (Xir,xp) € T% x,}|. Note that for the case of
8 = 1, condition (134) reduces to E > E[U]. Thus,
EU] = YoeuniEVan] = Zrcpng B (Vin = 1)<
exp {n (R; — I(Xi; X))} < exp {n IR; — I(Xi;Xk)|+} =
E. Thus, (135) gives us

]P’<|{r €l:N]: (Xir,zr) € T, x, }

> exp {n (|R; — I(Xs; Xp)|T + 6/2)}>

< (Ni + 1)6_ exp(ne/4)/3' (136)

Replacing xj, with (x;, x;, 1), Xi with (X;, X;, X3), and
X, with X/ in the above argument, one can show that

P(HU €1 N+ (X, i j, i) € T)?;Xixjxk}\

> exp {n (|R; — I(X[; X X; X X)) " + 6/2)}>

< (N; + 1)e™ pne/D/3, (137)
Similarly, choosing 7 = {j1,j2,...,jN,;}, {Yi: i € I} =
(X1, X2, XNy b T = {(1),(42),...,(GN;)} and

replacing x, with (xz;, ), X with (X;, Xx), and R; with
R; in the proof of (136), we can show that

P([{s € [1: Nyl : (@i, X s i) € T x,x,}
exp {n (|R; — I(X;; X, Xp)|* + 6/2)})

< (Nj 4 1)e™ xp(ne/4)/3, (138)

(ii) Analysis of (124) - (130) (Joint Typicality of a Pair
of Codewords): We will only analyse (124) and (125).
The analysis of other statements is similar. To show (124),
choose 7 = {i1,42,...,iN;} U {j1,42,...,iN;}, {Yi:i €
I} = {Xi17Xi27-~7XiNi} @] {le,ng,...7Xij}. For
B=21et J ={(ir,js): (r,s) € [1: N;] x [1: N;]}. For all
(r,s) € [1: N;] x [1:N;

ils
Viirjs) = {

This implies that U = Z(T,S)E[l:Ni]X[l:Nj] ‘/(ir,js) =
{(/9) € [1s N [15 N3]+ (X, X s i) € TR, }.
Note that

1, if (Xirans) € T;éinle (wk)v

0, otherwise.

TR x, 1, (20)]
TR ITR|
exp {nH(X;X;|X%)}
(n+1)X+Xl exp {n(H(X;) + H(X;)}
= (n+ 1)~ UXIHYD exp { —n(H(X,X;) — H(X:X;|X»)
—H(X;X;) + H(X;) + H(X;)) }
=(n+ 1)~ XD exp {—n (I(X: Xj; Xp)+1(Xi; X5))}
<exp {—n ([(XiX;; Xi) + [(Xi; X))}
=exp {—n ([(X;; Xx) + L(Xi; Xi|X;) + 1(Xi; X))}

<
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zexp{—n (I(XJ,Xk) + I(X%X]Xk))} .
Thus,
E[U]

>

(r,s)€[1:N;] x [1:N;]

>

(r,s)€[1:N;] x [1:N;]

E [Viir.js))

P (Viir,js) =

1)

2347

J = {(iryiu) : (r,u) € [1: Ny] x [1: V;] such that r # u}.
For all (r,u) such that r € [1: N;] and w € [1: N;]\ {r},

v {1, if (X, Xiu) € T, x11x, (k)5
(iryiu) =
0,

otherwise.
By replacing X; with X/ in the proof of (141) and following
similar arguments, we can show that

<exp{n (R + Rj — I(X; X; Xi) — I(X;; Xi)) }
]P’(‘{(T’, u) S [1 : N7] X [1 : Nz] : (mirymiuvmk) € T)%X;Xk?
< exp {n I(Xi;Xk)|++|Rj*I(Xj;Xk)|+
. r#u}‘zexp{n( - 1% Xl
+
/. + v
We need to show that for any (ir, js) € 7, and (X, X 5) = B — I(X; X )| I3 X51Xe) | + 6/2> })
(:Eir, a:js), < (2Nz + 1)46_ cxp(ne/S)/B. (142)
E>max [ E Z Viir i) (X ir, X o) = (@i, x50) | (iii) Analysts. 0f(]31) (.!017.zt Typt.cal{ty of Th.ree-Codewor-ds)
e Choose Z = {il,42,...,iNi} U{j1,52,...,jNj}, {Y;: i €
I} = {Xi17Xi2, { . 7X1N1} U {le,XjQ, e 7Xij}' For
B B =3, let J = {(ir,js,iu) : (r,s,u) € [1 : N;] x [1 :
%; Viiw,jo) | (Xiirs Xjo) = (@ir, @) ) Nj] % [1: Ni], v # u}. For all (ir, js, iu) € J,
Note that Vi Lo if (X, X, Xiw) € TR x x11x, (20),
(irge.mu) 0, otherwise.
V’Lr jv XimX jis) = iryLjs
UZ#S (i) ( is) = (@ir, Tj5) Therefore, U = 3, . ey Viir,js,iu) [{(r,s,u) €
[1 : Nz] X [1 : NJ] X []. : Ni] : (XW,XJS,X“L,Q?]C) S
= DB Vi) (Xir, X o) = (wir, )] T x,xix,0 7 #
v£s Note that
<SP (Vo) = U(Xir, Xjo) = (@ir, 25) T2 oy, (@)
- P (Viirgsim = 1) = T
T3, T3 1T
= P (X0 € T 1x,x, (@ir20) 3 exp {nH (X: X, X/ X0)}
v T (n+ 12N exp {n(H(X;) + H(X;) + H(X])}
-y 175, 13, x, (irs k)| (n + 1)~ CIAIHND exp {n (H (X X; X[ Xe) — H(X;)
v#£S ‘ Xj | ( ) ( z) _H(Xk))}
H(X;|X; X a . .
< exp (i} ARG X)) © (4 1) 08D exp {—n (C(X2: X5 X X))

(n+1)!%lexp {nH(
<exp{n(|R; — I(X;; X; X))}
<E.

X;)}

Similarly, we can show

E Zu;ﬁr ‘/(iu,js)|(Xir7st) = (wir7mjs>:| < E.
hus, (135) implies that

IP’(H(T, s)E[L: Ni]x[1: Nyj| + (Xip, X js, 1) € Tﬁéixjxk}

<exp{—n(C(Xs; X;; X}; X))}

(140)
where (a) follows from (119).
Note that
that
(ir,js,iu)€T
= Z P (‘/(ir,js,iu) = 1) (144)

(ir,js,iv)eT
<exp{n(2R; + R; — C(X;; X;; X/; Xi)))}

> exp {n<| R — I(X3; Xp)| "+ |Rj — 1(X;; Xi) " (145)
S

+ = sciizs P {m (9%, (B Ry ) )

= I(X5; X| X)) +e/2>} (146)

< ((N; + Nj)2 + 1)4e™ explne/8)/3, (141) This is because for S = {1,2,3}, exp{n(g)‘s( X X1, X
To show (125), let T = {il,i2,..,iN;} and {v; : (BB R))}= eXp{”(ZR'+R' O(Xi: X5 X[ X)) ).
i €I} = {Xin,Xi,...,X;n,}. We choose = 2 and Let F := maxscy1,2,3) €Xp N QX X, X/ Xk(R’LijaR)
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Using similar arguments as the ones used to obtain (139) that

and (140), we can show that for any (ir,js,iu) € J, and

(Xir, Xjs, Xiu) = (Tir, s, Tiy), the lower bound (147) ]P(H(r,s,u,w) EML: N x[1:N;]Ix[1:N;] x[1:Ng]:
on F, shown at the bottom of the next page.

Thus, we can use (135) to obtain (Xirs X js, Xius X kw, Tpp) € TQinX,fX,’CXw r# u}|
P<|{(r,s,u) €1 Ny x [1:Nj] % [1:Ny]: 7 sciaen P {”(9337:7&,)(;7)(;7& (Ri, Rj; R, Ri)

(Xirijs,Xiu7$k;)GT;inX;Xk,T#U}l > +e/2>})
55{1{%}%{3} exp {n <9§(1,X‘7,X;,Xk (Ri,Rj,R;) + e/2> } ) < (4(N; + Nj + Ng) + 1)1%~ exp(ne/16)/3 (149)

9 exp(ne/12)/3 The analysis of (132) is very similar to that
< (3(N; + N;) + 1) : (148)  of (133). For (132), we choose T = {il,i2,...,iN;} U

(iv) Analysis of (132) and (133) (Joint Typicality of gX’-j :X »J jg’({ } Iéoer 5}_4{ iz Nt U
Four) Codewords): We will start with analysis of (133). J g2 e AN T D ) ) .
. . o ) let 7 = { (ir, js,iu, jv) : (r,s,u,v) € [1: N;]x[1 : Nj]x[1 :
Choose Z = {il,i2,...,iN;} U {j1,52,...,7N;} U N x [1: NjJ, 7 # 0, & # . For all (ir, js, iu, jv) € J
(K12, .. kNG, {Yici €Ty = {Xi, Xz o s Xan,JU 0 il ) 8,1, ’
{ X1, Xjo, 0o, XN, F U{X k1, Xpo, ..o, Xy ) For 8= Vi js iug)
1, if (Xir7XjS7Xiu7va) ET)%lX]X;X;\Xk(wk)’

4,
let J = {(ir,js,iu,kw) = (r,s,u,w) € [1 : N;] x [1 : = { .
Nj]x [1: N;]x[L: Ny], v # u}. For all (ir, js, iu, kw) € J, 0, otherwise.

v We follow the same analysis as done for (133) to obtain
(ir,js,iu,kw)

{]—7 if (XiijsaXiU7ka) € T)?lX,X:X“Xk(wk)’ ]P(H(T,S,U,U) S [1 : Nz] X [1 : N]] X [1 : Nz] X [1 : NJ] :

0, otherwise. .
(Xir7Xj57XiU7XjU7wk)ETXinxng’_ka r;«éu”s#vﬂ >

Therefore, U = Z(ir,js,iu,kw)ej ‘/(iijsaiuvkw) =
H(r,s,u,w) € [1 + Nj] x[1 : Nj] x[1 : N;] x[L: max _ exp {n (gf(i,yX]ﬁX{X{»Xk (Ri, R, Ry, Rj)+€/2)}
Nk:} : (Xirijs;Xiu7Xj'uzwk:) ET;inX{X,;Xk’ T#UH SC{1,2,3,4} J

Note that ' < (4(N; + Nj) + 1)10¢ cxp(ne/16)/3, (150)
P (‘/(ir,js,iu,kw) = 1) =

Lemma 12 gives Lemma 4 as a corollary, which we prove

TTL
| X X5 X[ X5 | X ()] in the next subsection.

T T3 T3 17|

< exp {nH (X, X, X! X X3} C. Codebook '
9 | — |5 = | | We restate Lemma 4 below and show how it follows from
. (n+1) ’ Lemma 12.
exp {n(H(X;) + H(X;) + H(X]) + H(X})} Lemma 3: For any ¢ > 0,n > ng(e), N1, No, N3 >
= (n+ 1)~ CIBHND exp {n(H(X; X; X/ X[ X)) — H(X;)  exp(ne) and types Py € Ph, P, € Py, Py € P, there
— H(X;) — H(X]) — H(X}) — H(X}))} exists codebooks {x11,...,x1n, € X7}, {®21,...,@2n, €
(a) I . XQ”}, {mgl, ..., L3N, € X3"} whose codewords are of type
= (n+1) (25D exp {=n (C(X3; X5; X5 Xps Xi)) Py, Py, Ps respectively such that for every permutation (4, j, k)
<exp{—n(C(X;; X;; X5 X1 X))} of (1,2,3); for every (x;,zj,xr) € X X AT x A for
every joint type PXiX,EXjX]/'XkX;; € P;éixXiij X Xj X Xy, XXy
where (a) follows from (119). and for B, < (1/n)logy Ni,R; < (1/n)log, N, and
Note that E[U] = 3., jiukuwjes B (Visrgsim o] = Ry = (1/n)log, Ny; the statements (151)—(157), shown at
Z(i'r',js,iu,kw)ej P (V(ir,js,iu,kw) = 1)§ exp {"(QRi 1+ the bottom of the next page.
R; + Ry, - C(Xi; X5 X5 X3 Xk))) }S Proof: We will use the following identity, which follows
maxscq{i,2,3,4} €Xp {n(gf(i’xj’xg’xéka(Ri,Rj,Ri,Rk))}. from the chain rule of mutual information, throughout the
This is  because for S = {1,2,3,4}, proof. For random variables U, V and W, the following holds,

exp {n(9%, x x/.x: x.(Ri, Rj, Ri, Ri)) }= exp {n(2R; +
DEpE ek u;,w IV, w U, viw)=1u;vw
R; + R, — C(&i;Xj;X,Z;X]/c;Xk)))}. Using similar (UsW) + I(V; W) + 1(U; VW) G )

arguments as used on (139), (140) and (146), one can show + (VW) = (U W) + I(V; UW). (158)
that £ :=maxsc{1,234} €Xp {”(gf(i,xj,xg,x;c,xk (Ri,Rj, Below we use this identity without an explicit mention.
R;, Rk))} satisfies condition (134). Using (135), we obtain  Statements (151)-(153) are statements (123), (129) and (130),
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restated directly from Lemma 12. To show (154), we divide the =~ where (a) holds because R; > e. Similarly, we can show the
LHS and RHS of (124) by N,; N, and substitute the expression  same upper bound of exp {n (—e/2)} when R; < I(X;; Xk).
for the notation given by (120) to obtain When R, + R; < I(X;; Xw) + I(X;; Xi) + I(Xs; X5 X)),
. ) ) n the RHS is upper bounded by exp(n(e/2 — R; — R;)) <

s GlNZX].N irs Ljs, eT? «. J
{(rs) € [L: N X [ s No: (@i @yv @) € Ty 3 (0000 When By > (X2 X)) R; > I(X;; X)) and
NiN; Ri+R; > I(Xi; Xp) + I(X;; X)) + I(X;; X;| Xy ), the RHS

evaluates to (using (158))
< exp {n(‘ |Ri — I(X3; Xi)| " + [R; — T(X;; Xp)[ ¢

. exp{n (—1(Xy; Xy) = I(X;; XiXy) +€/2)}
+6/2RZR]>} §exp{—ne/2}, ifI(Xi;Xk)_"I(Xj;XiXk)ze

Next, we will prove (157). For this, we will first show that

— I(X“XJ|X]€)

We will evaluate the RHS for different values of R; and R;.
We see that when R; < I(X;; Xj), the RHS is

L {rs) e[ N x [1:N;] s Fue [1: NiJ, w#r,
exp{n <|R-—I(X-'X-Xk)\Jr—R-—i—e/?—R-)} Nl
J Jr“* 9 2 (wir Tis, Tin wk) ET)T(L'XX’X } < exp (_E)
<exp{n(e/2—R;)} s PRIk 2/’

(a) (159)
< exp{—ne/2},

if any one of the following hold:

XLT'aX]97X ) (xiraxjaxiu) E Z V(irﬂjs,iu)
r'¢{ru}

eraXJSaX ) (mirawj&miu) )

E > max <E > Viirgwiw

vF#S

E Z ‘/(ir,js,iu’)

W {ru)

E Z ‘/(ir’,jv,iu)

eraX]97X ) (miraijamiu) aE Z ‘/(ir',js,iu’)
L g{ru}

(XM"vXj%X ) (miTvijvmiu)

(XlT’?XJS?X ) ($ir,$j37miu) 7E Z ‘/(ir,jv,i'u) eransaX ) (wiraszawiu) )

L7 &{rul,v#s u' ¢{ru},v#s ]
(147)
{u e [1:Ni] « (o i@, @) € TRy x,x, }| < exD (n <|R1 (X X0 X Xs) [T 6/2)); (151)
{(u,v) € [1: Ni] x [L: NyJ 2 (@i T, Ty T4, @) € T;;X;Xixjxkﬂ
< exp <n (|| CI(XL XXX+ | Ry — T(X0: XX X[t — X XX X5 X0 | + 6/2)); (152)
H{(u,w) € [1:N;] x [1: Ng]: (mlu7wkw7wl,wj7wk) S TX XXX, X,
< exp (n (|1 = TOX XX X0+ [ Ry — H(X XX, X0 T = IOXG XXX [T +e/2))s (53)
) € [1: N [L: N 2 (@i @) € T x, x, } < exp (—%) i T(X5 X)) + 1(X;: X, X) > 6 (154)
i4Vj
1 n
NN, (r,s) € [1:N;] x [1:N;]:3(w,v) € [1: N;] x [1:N;], us#r,v#s, (@ir, Tjs, Ti, Tjo, L) € TX,-,X]'X;XJ’.X,QH
i
< e (—E)
p (-5 )
+
i T(X5; X, XX X) + I(X55 XXX ‘|R — (X} X))+ Ry — I(X s X)| T — I(X{;X§|Xk)‘ te (155)

(rys) € 1:N;] x [1:N;]:3(u,w) € [1:N;] x [1:Ng|, w7, (ir, Tjs, Ty Thow, Tk) € TQinX;X;CXkH

ne
< exp (73) ,

+
i (XG5 XXX XR) + T(X55 XIXEX) = (| Rs = 10X X0)[* 4 [Ri = T(XG X[ = HXG XEIX)| 46 (156)

NiN;

1
N;N;
if T(X5 X, X0X8) + 1(X;: XIXg) > |R — (X5 X)) + e (157)

(r,s) €[ 1:N;] x [1:Nj]:3ue[1:N;], uwr, (Tir, Tjs, Tin, Tk) € T)TéinXéxk}‘ < exp (—%) ,
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R, + Rj — max gX XX, Xk(Ri7Rj7Ri)Z€7

SC{1,2,3}

Ri+ Ry = [|Ri = T(Xi Xi) [+ Ry = (X5 Xl

(160)

+
—I(Xi;Xj|Xk)‘ > e (161)
We now show that (160) implies (159):

1
NoN, H(r,s) €l: N x[1:Nj]:Juel:N|,u#r,
(Tir, Tjs, Tiu, T) € T)%ijgxk}‘
(a)

< exp(—n(Ri—FRj

- ’ R17R7R’L -
Scr?lagg}gx x;.x7,% s Ri)
ne
<o (~75)
(RzaR]7R7,> Z €,

if R + Rj — maxsc(1,2,3} 9%, ,x,,x/,xx
where (a) follows from (131). Next, we show that (161)
implies (159).

1
N;N;

)

{(r,s) €l:Nj]x[1:N;l:3uel: N, u#r,

mn
(wi’r‘7sz7wiu7wk> € TX1XJX1/Xk}‘

! {ns)emsng <D

N;N;

IN

i Ny

n
(wir,mjmwk) € TXiXJ'XkH

(@)

< exp(—n(R,- + R — ’|Rz — I(X3; X))t

+R; — I(

ne
= exp (‘3)

if Ri+ Ry — ||R: -

X5 Xe)|t = I(Xs; leXM -<2))

I( X Xi)| T+ Ry — I(Xj; Xe)| T
+
- I(Xi;Xj\Xk)‘ > e,

where (a) follows from (124). Now, we will show that the
condition in (157) implies at least one of (160) or (161).
We restate the condition in (157) below for quick reference.

I(X3 X XIX0) + I(X55 X[ Xk) > Ry — I(X[; X[

(162)
To show that (162) implies at least one of (160) or (161)

we will do case analysis based on the value of S &
argmaxsgf(i X;,X0 X, (Ri,R;j,R;), the set of maximizers of
the expression gf(l_ x;.xtx, (Bi» By, R;) in (160). Evalua-
tions of g%, X X! X (Ri, Rj, Ri, R;) under different values
of S are provided in Table I. The table also gives the
implications when S € argmangX X, X! X, (Ri,R;,R;) in

the fourth column. For example the @ row considers the
case of {1,3} € argmaxng XX x, (B, Rj, R;). Under
this case, we have, for instance, g;{(’ ) (Ri,R;,R;) >

X, X1, Xy,
1,2,3
§(i,Xj%X£)Xk(Ri,Rj,Ri), ie. Ry — I(X3; X; X)) + Ri —

I(X{, XinXk) > Rj—I(Xj; X]C)—FRi—I(Xi;Xij)-FRi—
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I(X]; X;X;X}y). Hence, R; < I(X,;X}). This implication
is given in the fifth column of the table against the “reason”
(6) > (8 where (8) is the row corresponding to S = {1,2, 3}.
The other implications are also easy to see from the table.
Instead of providing all the implications, the table only provide
the ones which we will use in the proof of (157).

Case 1 (S € S Such That |<§| < 1): In this case, (160) holds
as Ri, Rj Z €.

Case 2 (S € S Such That |S| = 2): If {1,2} € S, then it

can be seen from the expression of g;l 2; X1 X (Ri,Rj, R;)

from Table I that (162) implies (160). If {1 3} € S, then
R; < I(X,;X}). This implies that the LHS of (161) evaluates
to

R, + Rj — |Rz . I(Xl,XJXk)‘Jr

which is at least ¢ because R; > e. Thus, (161) holds.
Similarly, when {2,3} € S, one can use the fact that R; <
I(X;; X)) and R; > € to show that (161) holds.

Case 3 (S € S Such That |S| = 3): In this case, R; >
I(X/; X})). Thus, conditions (162) and (160) are same. Thus,
(162) implies (160).

Now, we will now show (155). Its proof is very similar to
the proof of (157). To show (155), we will first show that

s)el:N;]x[1:N,]:
N, u#r,v#s,
n ne
(wir7$js,33iuamjv>wk) € TXinX,fX;Xk}‘ < exp (*3)

(163)

N:N; {(’"
J(u,v) € [1:N;] x [1

if any one of the following inequalities hold:

Ri+ Ry~ max g 9%,.x,.x0.x0 x, (Biy B Ri, Ry) > €,
(164)
Ry — | IRy = 10X Xp)|* + Ry — (X5 Xp) [

+
— I XIX0)| 2 e, (165)
+
Ry = || = 10X %)+ Ry — 10X X0)|

+
— I(X5 X)1X0)| = €, (166)

Ry — | 1Ry = 10X Xe)| ™ + |Ri = 1(X; X)[*

+
— I(Xi; X[|X) (167)

R, — ’ R, — I(X3 X[t + | Ry — T(X}; X))

— I(X0; X)X (168)

Ri+R; — ’ |Ri — I(X3; Xp)| "+ [R; — (X

+

The fact that (164) implies (163) can be shown as follows:

€[1:N;]x[1:N;]3(u,v) € [1:N;]x[1:Nj],

e

3
uF v # S, (Tir, Tjs, Tiw, T, Tk) € Txixjxgx;xk}’
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TABLE I

TABLE SHOWING DIFFERENT EVALUATIONS OF maxsc{1,2,3} g‘)g( X X!
c{1.2, X

X, (R;, Rj, R;) AND THEIR IMPLICATIONS
X1

Implications of

Index S 9% x( (P Ry 1) S € aramaxso, x, oy, (Bio B i) reasons
@ ] o
@ {1} — (X5 X, X! Xy,)
® {2} R] I(X; X, X[ Xr)
@ (8} | Ri—I(X;XiX,;Xy)
© {1,2} RZ I(XZ,XZ{Xk)+Rj — (X} X X/ Xy,)
(® {1,3} —I(X:; X;Xp) + R — I(X]; X5 X Xy,) R; < I(Xj; Xy) ®>0®
@ [ {23} — I(X;; X Xg) + Ri — I(X[; XX, Xp) Ri <1(Xi; Xy) D>
IXl-;X R —I(X;; X, X R; — ,
SN {(r,s,u,v)e[l s NGIx (1 Ny x[1:Ng] x [1: Ny - (u,v) € [1: Ng] x [L: Nj|, u#m0#s,
14V
Tir, Tjss Tin, Tju, Tk) € T, x. x1x7 H
UFr,v#S, (Tir, Tjs, Tin, Tjuv, L) € T;z‘XjX,?X_;XkH : ( J jus Tk) X X5 X[ X)Xy,
(@ < H(r,s,v)e[I:Ni]><[1:N~]><[1:N~]:
< exp(—n(Ri—i—Rj NiN; ! !
S 5#”7(‘7}487‘7}4}7‘7}]6)611”‘ 4 }‘
_Se{nlla)é 4 Xi,Xj,X;X]’.,Xk(Ri?RJ"Ri7Rj)_6/2)) . J Jt XXXk
< exp (—ne/2) = ﬁj({(s’“) € [ Nyl [Le Ny
lf R +R gX X X/ X' Xk (R“R],RZ7R ) > 6 Where (CL) S 7& 'U, (sz’wj”’$k) € T)?]X;Xk}‘

uses (132) Next we show that (165) implies (163).

NiNj {(’/‘ s)el: N x[l:Nj]:
J(u,v) € [1: N;] x [1:Nj], u#r,v#s,
(wiramjsawiuaxjmmk) S T)TéinX;X;.Xk}’
1
< HH(T,S,U)E [N % [1:Nj] % [1:Ni] :

NiN;

n
(Tjs, Tiu, Tr) € ijxgxk}

v {1 My (s € s s 4
(Tjss Tin, T) € T}gjxéxk}
1

N;

{|{(s,u) €N x[1:N)]:

(Tjs: Tius Th) € T)T(L'leka}
(%) exp(fn( XJ-;Xk)|Jr
IR = 100 X0l = 100 XX = 2))
< exp (—ne/2)
if Ry — [ 1Ry = 10X X[+ R — 1(X)5 X0l

RJ*"RJ'*I(

+
~ I(X5 X[1X0)| 2 e,

where (a) uses (125) with X, replaced with X/. The remaining
conditions can also be obtained similarly. We can show
that (166) implies (163) by using (126) on the following upper
bound.

e (PR P

To show that (167) implies (163), we use the following upper
bound and (125).

{(r,s) €[N x[1:N]:

Njl, u#r,v#s,

mn
(wirijsvwi’U,7 Lju, mk) S TXinXéX]‘XkH

F(u,v) €1: Nyl x [1

gNileH(r,s,u) E1: N % [1:N;] x [L: Ny
T # U, (T, Ty, Th) € T)?ixgxk}’
:% {(ru) et Ny x[1: Ny

T # U, (Tiy, Tin, Ti) € T}éingka.

The condition (168) can be obtained similarly by using (125)
(with X; replaced with X ;/‘) on the following upper bound:

{(T,s) €[N x[1:N]:

N, u#rv#s,

n
(wimwjaa:iua Ljv, wk) € TX,inXQX;Xk})

NTNJ
I(u,v) € [1:N;] x[1

1
S {r0s,0) € LN x [15 Ny x [12 )
(xi’l‘7xjvvmk) € T§1XJ/X)€}‘
1
N, {(r,v) €[1:N;]x[1:N;]:

mn
(Tir, Tjo, Tk) € Txixj'.xk } ‘
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For (169), we use (124) on the following upper bound:

]\QINJ‘{(T’S) E[1:N] x[1:

J(u,v) € [1:N;] x [1:Nj], u#rv#s,

Nj]t

n
(T4, Ljs, LTius Tjus xr) € TXiX7X;XJ',Xk. H
1

<
NN,

H(r,s) e[l: N x[1:N]:

mn
(Tir, Tjs, Tk) € qu,xjxk}’-

Now to show (155), we will show that the condition in (155)
implies at least one of (164)-(168). We restate the condition
in (155) below for quick reference.

I(X5; X5 X[ X0 X0) + 1(X55 X[ X X)
> | |R; — I(X]; Xi)| " + | Ry — I(X[; X30) |

+
—I(X;;X;|Xk)’ fe  (170)

To show that (170) implies at least one of (164)-(168),
we do a case analysis similar to the one in proof
of (157). The case analysis will be based on the value
of § = argmaxsgf(i,Xj’XLX}Xk (Ri,R;, Ri, R;), the set of
maximizers of the expression gf( X, X1 X)X (Ri, Rj, Ri, R;)
in (164). For ease of reference, evaluations of the
expression gf(i,Xj X1X1 Xy (Ri, Rj, R;, R)) under
different values of S are given in Table II. Table II is
similar to Table I. It also gives the implications when
Se argmax‘sg{1,2’3’4}9‘)9(1_’XJ_’X;’X,’X,c (Ri, Rj, R, R;) in the
fourth column. For example, the @—th row considers the case

of {2,3} ¢ argmaxsg§i7Xj7X£,X;7Xk(R,-,Rj,Ri,Rj).
Under this case, g?’?ﬁj X/ X/ Xk(Ri7Rj,R7;,Rj) >
LRGN EEAF REAY R

gi(li’i’(i}’xg’x;xk (Ri, Rj. Ry, Ry), ie, Rj—I(Xj; X, X/ Xy,) +
Rj—I(X;; X;X/X}) + R; — I(X/;X;X;X/Xy). This
implies that R; < I(Xi;XJ’-Xk). It is given in the fifth
column of the table against the “reason” (9) > (15) where
(15 is the row corresponding to S = {1,2,3}. The other
implications can also be seen easily from the table.

Case 1 (S € S Such That |5’| < 1): For this case,
substituting the expression of QBSQ,XJ- xr.x.x, (Bi, Rj, Ri, Rj)
from Table II and noting R;, R; > «, we see that (164) holds.

Case 2 (S € S Such That |S| = 2): We start with
{1,2} € S. For this case, (164) evaluates to I(X;; XXXy )+
I(Xi;Xi’XJ’-Xij) > ¢ which is directly implied by (170).
If {1,3} € S, we see from Table II that R; < I(Xj; X X),
Rj < I(Xj/, Xij) and Rj —I(Xj; Xk) +Rj —I(X]/,Xk) -
I(X;; X/ Xx) < 0. This implies that ’ IRy — I(X;; Xi)| " +
|R; — I(X;;Xk)\+ - I(Xj;)(j',\)(k)‘+ = 0. Thus, by noting
that R; > ¢, (166) holds. Similarly; if {1,4} € S, (165) holds;
if {2,3} € &, (168) holds; if {2,4} € S, (167) holds; and if
{3,4} € 8, (169) holds.

Case 3 (S € S Such That |S| = 3): If {2,3,4} € &,
from Table II, R; < I(X;; Xj). This implies that the LHS

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

of (169) is R; + R; — |R; — I(X;; X;Xy)|* which is at
least € becauAse R; > €. Thus, (169) holds. Similarly, for
{1,3,4} € S, R; < I(X;; X)), which implies that (169)
holds. If {1,2,4} € S, from Table II, R; < I(X/; X}) and
Rj > I(X}; X/ Xj). These imply that (170) evaluates to
I(X3 X X0XG X)) + 1(X 55 X{ X Xx)
>R — I(X;;Xi’Xk) + e

Moreover, since {1,2,4} € S,(164) evaluates to
R, +R; — (Ri — I(X;; X;Xk) + R; — I(X;; XiXJ{Xk)
+ Ry — I(X; XZ-X]-X;X;C)) > e
It can be seen upon rearranging that (170) and (164) are the
same. Thus, (170) implies (164). Similarly, for S = {1, 2,3},
(170) evaluates to
I(X3 X, XIX 0 Xy) + 1(X; X[ X)X
>R; — I(X;;X;Xk) + ¢,
which implies (164).
For § = {1,2,3}, R; < I(Xj;Xy) and R; >
I(X; X} Xy). This implies that (170) evaluates to
I(X3; XX X5 Xk) + (X5 XX X)
> Ry — I(X}; X Xy) + e
and for S = {1, 2,3},(164) evaluates to
R +R; — (Ri — I(X5; X1X,) + Ry — I(X;; X, X Xy,)
+ Ry — I(X; Xinxgxk)) > e

It can be seen upon rearranging that the above two inequalities
are the same. Thus, (170) implies (164) if {1,2,4} € S.
Similarly, for S = {1, 2,4}, (170) evaluates to

> Ry — (X} X[ Xy) + ¢,
which implies (164).

Case 4 (S € S Such That |S| = 4): For {1,2,3,4} € S,
(170) evaluates to

I(Xi;XjX{XJ‘Xk) +I(Xj;Xi’XJ’.Xk.)
> Ry — I(X}; Xy) + Ry — T(X{3 X Xk) +e,
and (164) evaluates to

+ I(Xy; X{XGXp) + (X XX X[ Xy) > e,

which is same as (170). Thus, (170) implies (164).
Statement (156) can be proved similarly by using (124),
(125), (127), (128) and (133), the equivalent statements
of (124)-(126) and (132) on replacing xj,, X; and the
corresponding rate R; with x,, X, and the corresponding
rate Ry, respectively. In fact, by making these replacements in
the proof of (155), we obtain the proof of (156). Note that the
proof of (155) only depended on (124)-(126) and (132).
]
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TABLE I

TABLE SHOWING DIFFERENT EVALUATIONS OF maxsc{1,2,3,4} gf(‘ X, X! (R;, Rj, R;, Rj) AND THEIR IMPLICATIONS
= i, X5, X]

XX

~ 5 Implications of
S . . . . I~
Index S X0 X5, X X)X, (Ri, Ry, R;, Rj) Sc argmaxsg)s(i,xj,xg,X;,Xk (Ri, R;, R, R;) reasons
©) ] 0
[©) {1} Ry — I1(X5; X, X X[ Xy)
©) {2} Rj — I(X;; Xi X[ X Xx)
@ {3} Ry — I(X[; X3 X; X7 X))
©) {4} Rj — I(X7; X3 X; X[ Xy)
® {1,2} R — I(Xy; X[ X[ Xy) + By — I(X; Xy X[ X[ Xy,)
R; < I(X;; X[ Xy) @>01
@) {13} | Ri— I(Xa; X5 XGXp) + Ry — I(XE Xa X X0Xg) TRy < T(X7; X5 X5) OEI®)
Ry —I(X;; X)) + Bj — I(X7; X;X,) <0 M>06
- < N
(1,4} | Ri— I(Xi; X;X!X0) + Ry — (X' XiX; X! Xp,) B zf(iﬁ?.’?f’“) ®=ap
s i iy NG J jr i gAGAEk Ri_(iajk) 2@
R; — I(X;i Xp.) + Ri — I(X[; X; X)) <0 ®=>06
R <I Xy X' X
(X XXX C— I(X XX XX LS M ) ORI
@ {2,3} R] ( Jr iy k)+Rz ( 3 MGG k) RjSI(Xj;X,'Xk) @2@
Ri —I(X3; Xg) + R — I(X}5 X Xy) <0 ©>006
Ry < I(X3; X/X,) 10> 04
{2,4} Ry — I(X;3 Xi X[ X)) + Ry — I(X; Xa X; X( X)) [R; SI(Xé;Xsz) >0a2
R; — I(Xi; Xp) + Ri — I(X]; X Xx) <0 Z
Ri < I(X:; X5 Xk) >
ap {3,4} Ri — I(X[5 XiX; Xi) + Ry — I(X}5 X X X[ X) R; <I1(Xj;X:Xy) 1> 012
Ry — I(X5; Xp) + Ry — I(X;; X3 X) <0 an>ae
Rj — I(X;; Xi Xp) + Ri — I(X[; X; X Xi) + Rj — )
@ | {234 (X} XX, X[ Xi) ' Ri < I(Xi;Xy) 12>
R — I(Xs; X;X5) + Ri — I(X}; XiX; X) + R; —
B | {1,3,4} I(ZX]’.;)(Q)Z(J'XQZ{X]Z)) IS TR R <10 x) a3 >
a4y | Mo IO XX+l G XXX B S TOXX5) >
o +RJ_I(Xj§XinXiXk) Rj ZI(Xj§XiXk) @2@
R — I(X; X[ Xy) + Ry — I(X;; X; X[ X) R; <I(X7; Xy) 5> (16
@ | .23 | 5 — I(X; X; X X X)) R, > I(X,; X/ Xp) >
7 i XA GA k 1 = R k @ ,@
Ri — I1(Xs; Xi) + Ry — 1(X;5 X Xp) Ri > I(X}; Xy,) 10>09
{1,2,3,4} | +R; — I(X[; X X Xp) + Ry — I(X}; X[ XX Xy) [ Ry > 1(X]; Xy) > (15
Ri —I(X}; Xp) + R — I(X}; X5 Xy) 20 ©>®
t
APPENDIX III ®) 1
< max ———— P Y)oe # moe
PROOF OF LEMMA 6 T =, (HjEQC N;) ;A ({¢( )Qf 7 Qi}‘
1= mogce Qc
This appendix gives the proof of Lemma 6. We restate it Xge = foe (mgf,)vXQi = sz)
here for completeness. t 1
Lemma 4: For any Ql,...7Qt€A,teNandQ§[l:k] :ZmaX7N Z P({¢(Y)q: # moe} |
such that @ =N!_1Q;, Poo <> ._, P o,. o T (Hjegg i) Moe EM o

Proof of Lemma 6:
Xo: = fos(mge), X o, = xg,)

1 t

Peg = max =—~ P({¢(Y)ge #moe}|  _

To (HjEQC NJ) mgcez./\/lgc = ZPQ7Q“
=1

Xoo = for(mo), X o =
o = for(moe), Xo = z0) where (a) follows from a union bound. To see (b) note that

= max ﬁ Z P(Uj—y {0(Y)ge # moe}| QC Q; forany i € [1:¢] and thus, the maximization is over
< J€Q° ) e eMage a larger set. O
X g = foe(mg:), X g = ®o)
t APPENDIX IV
(a) 1
< max M) S D P({6(Y)g: #moe}| PROOF OF ACHIEVABILITY OF THEOREM 7
° JeQ° T moeeMoe i=1 For the achievability, we will require the following theorem
Xoe = foe(moe), X g =xg) which gives the randomized coding capacity region of a t-user
t 1 AV-MAC Wy x, .. x,s Where X, i € [1 : k] are the input
= Zmax (A Z P({¢(Y)g: # mo:} | alphabets and ) and S are the output and the state alphabets
i=1 "° (HJ eo: Ni) mgecEMge respectively. The theorem can be proved along the lines of the
Xge = foe(moge), Xo = wg) two user result given in [8] and [30]( see [8, Remark I1A3]).
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valid inner messages for L;

’ﬁli :L,(m)
L [ ’.
o« ' * A
;@
8 » 2 DG Li(mi))
(] O
e
v, -
O

M, = [2nR,,] xr yn

M

(a) Encoder F; : L; o G (b) Pre-decoder ¢ : T2 o A;

Fig. 16. The encoders and pre-decoders for Theorem 7.

Theorem 13 (AV-MAC Randomized Capacity Region for
t-Users): The randomized capacity region of the AV-MAC

Wy x,,...,x,,s 18 the set of rate tuples such that
Z R; < I(n}n) I(X7;Y|X 7,8 U) for every J C [1:1]
£ q(slu
JjeT

(171)

for some joint distribution p(u)g(s|u) Hlep(xl\u) with
|U| <t.

Proof (Achievability of Theorem 7): This proof is along
the lines of the proof of Theorem 3. For each @ € A, let
W< be the |Q¢|-user AV-MAC which corresponds to users
in the set Q as adversary and the users in the set Q° as
the legitimate users. For users in Q, their combined input
xo and the product input alphabet x;coX; correspond to
the adversarial state input and the state alphabet respectively.
Let (Ry, Ra,...,Rx) be a rate tuple such that for some
p(u) - p(x1|u) - p(aslu) - ... p(xk|u), the following conditions
hold for all Q@ € A and J C Q°,

R; < min I(X7;Y[X(ug)e,U)

(172)
icr q(zolu)

where the mutual information above is evaluated using the
joint distribution p(u)q(xglu) [[;c 7 p(z;[W)W (y|lzo, Toe).
Here |U| < k. Let € > 0 be arbitrary and let n be large enough.
Note that, by Theorem 13, the rate tuple Rgo- is an achievable
rate pair for the AVMAC W <. For each i € [1 : k], let M; =

[1:27F] and M; = [1 : 2"%i/y] for the largest integer
v < (k|A])/e. In the following, we show the existence of
a randomized (271 /v, ... 278 [y n) code (F1,...,Fy, o)

with Prad no larger than e, for sufficiently large n.

A. Code Design

Before describing the code, we describe the following maps
which will help in describing the encoders and the decoder
(see Figure 16). For each user i, let G; : J\;li — X" be a
randomized map such that it maps m; € M; to an n-length
i.i.d. sequence G;(m;) generated according to the distribution
p;. The sequences G;(m) are independent across i € [1 : k]
and m € M;. The realization of G;(m;) for all i € [1 : k]
and m; € M, is shared with the decoder. For any Q € A,
consider the |Q¢|-user AV-MAC W< as described above. For
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each i € Q°, if we consider /\;lz- as the message set and G; as
the corresponding encoder, then this construction ensures that
the random encoders G;, i € Q° are independent and their
randomness is also private from the adversarial users in the
set Q. Thus, the joint distribution of the encoders G;,i € Q¢
(and the corresponding codewords) is the same as that of the
encoders of AV-MAC W € in the direct part of [8, Theorem 1,
Section III-C] (and its extension to a t-user AV-MAC as in
Theorem 13). For G;,i € Q¢ as encoders, let 'S denote the
corresponding decoder for the AV-MAC W€ in Theorem 13.
Suppose (I'P,j € Q°) := I' where I'? : Y — M. For
all € > 0, by Theorem 13, there exists a large enough n such
that for all @ € A, the code ((G;,i € Q°),T'?) has error
probability no larger than €/(k|.A|). We consider that n.

For each ¢ € [1 : k], the message set M; is randomly
embedded into the set ./\;t,» as follows: We choose an arbi-
trary partition of M, into |M;| many disjoint equal-sized
subsets (each subset size is v). Let us denote the partition by
Smi, mi € M where U, e, Sm, = M, and 8p,, NS,y = ]
for all m; # m/, m;, m; € M,. The size of each S,,,, m; €
M; is v (< k|A|/e). The maps L; : M; — M, and A; :
/\;li — M, are the forward and reverse maps for an injection
from M; to /\;l7 where, independently for each m; € M;,
L;(m;) is chosen uniformly at random from S,,,. Both the
encoder maps G, and L; are independent for ¢ = 1,2,... k
and are made available to the decoder as the shared secret
between user-7 and the decoder, unknown to other users.

For the code of the byzantine-MAC, for each i € [1 : k],
the encoder map F; : M; — X[ is defined as F;(m;) =
G;(L;(m;)) for every m; € M,. For each Q € Aand i € Q°,
we define pre-decoder'’

o Ai(T2(y)) if T2 (y) € Li(My),

o (y) = .
L otherwise.

The decoder ¢ V' = XienM; outputs ¢(y) =

(mq,...,my), where, for each i € [1: k] and Q € A,

m;
62(y) i |[{¢2(y): O € A} =1 and $2(y) # L
_JoRy) i {o2(y): Qe A} = {22(y). L}
where ¢2(y) # L
1 otherwise.

B. Error Analysis

We first show that as long as the rate tuple (Ry, Ro, ..., Ry)
satisfy the rate constraints (172), the following hold simultane-
ously for every honest user ¢ which sends message m; € M,,
potentially adversarial set of users Q@ € A with ¢ ¢ Q and
for channel output Y: (i) $2(Y") equals m; with probability
at least 1 — €/(k|.A|) if users Q are indeed adversarial and
(ii) $2(Y') either equals L or m;, with probability at least
1 — ¢/(k|A|), if users Q are not adversarial. To this end,
consider @ € A and assume that the adversarial users (if

5In this notation (j)ZQ (y), we are suppressing the dependence of the pre-
decoder (and later the decoder) on the randomness of the encoders.
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any) are users in set @ which send X o as their potentially

adversarial input to the channel. Suppose, for ¢+ € Q° and

m; € M,, user-i sends F;(m;). Let Y denote the channel

output.

(i) First, consider the AV-MAC W <. Recall that T2(Y) =
L;(m;) with probability at least 1 —e/(k|.A|). Thus, with
probability at least 1 —¢/(k|.A]), $2(Y) equals ;. This
also holds for any Q C Q, as we can think of this as
adversarial users Q where users in Q \ Q send valid
codewords. )

(i4) Next, consider the AV-MAC W2, for @ € A
where O \ @ # 0. We would like to compute
P ((b?(Y) ¢ {m, J_}) where for ¢ € Q°, the probability

is over G;(L;(m;)), X ¢ and the channel.

P (62(Y) ¢ {mi, 1})
=P (T2(Y) € LilM; \ {mi}))
’ﬁ‘LiGM\Smi
= Y r(rey)=m)
ﬁLiE/\;l\Smi
P (m € LM\ {m:})|[TE(Y) = m)
QS P(P2(Y) = i) P (s € Li(Mi \ {mi})
7hi€/\;l\5m,i
2y p(rée) =)
ﬁuE./\;l\Smi
< /v <€/ (k| Al).
Here, (a) holds as F?(Y)JI_Li(Mi \ {m;}). This is
because G(L;(m;)) which produces Y is independent
of Ly(M;\ {m;}) and T2 1L L;(M; \ {m;}) as e is
a function of AV-MAC encoders G;,7 € Q° which are
independent of L;. The equality (b) holds because for
m; € M \ Smi’
P (mi € Li(Mi \ {m}))
= > P(Li(m)) =)
mieM;\{m;}
mjeEM;\{m;}
=1/v.

SE

Limies,, }

By taking union bound over all users and all Q € A,
with probability 1 — ¢, for each non-adversarial user ¢,
at least one of the decoders gb?, Q € A outputs the true
message while the other decoder outputs either the true
message or L.

O

APPENDIX V
RANDOMNESS REDUCTION LEMMA

Lemma 14 (Randomness Reduction): Suppose € > 0. For
large enough n, given any (Ni, ..., N, n) randomized code

2355

)) satisfying

PF[I:k]ad)) <

there exist n? deterministic encoding maps f;;,i € [1 : n?|
for each user j € [1 : k] such that for every Q € A, jo € [1:
n2]|9|, g € X§ and the decoder ¢,

(Fl1:k), (Fl1:k

Péand( 26/2 ~1

1 1
(n2)1Q° Z oo Tlicge Ni)

Jjoc€[l:n?]

3 P{(¢(Y7fg,jg,fgc7jgg) = 11,4 such that
mgecEMge
moe #ch> . :ch}jQC(ch),XQZCBQ} < €.

Here, fo j, denotes (f;j, :i € Q).

Remark 4: Lemma 14 states that given a randomized code
with a small probability of error (2¢/2—1), there exists another
randomized code of the same rate for all users which uses only
2logn random bits at each user such that the new code also
has a small probability of error ().

Proof: The proof follows along the lines of Jahn [8,
Theorem 1], though there are significant differences because
of the byzantine nature of users. In particular, our result
needs to incorporate the fact that a malicious user can mali-
ciously choose their encoding map to influence decoding. For
each i € [l : K], let {F;;}7_, be independent samples
of codebook F; (also independent across 7). This gives the
set of codes {(Fij, ¢(Fi;)),i € [1: K], j€[l:n%,¢:=0¢}.
For every Q € A, define eg(fo, fo-, o) to be the error
probability for fixed encoding maps fo for the adversarial
users and fo. for the non-adversarial users and the channel
inputs chosen by the adversarial users as xg € g, i.e.,

1
(ILieg- Ni) 2

Y mgeeMage

eo(fa, foe, ®o) =

>

y:0(y,fa,fac)=m[1.1],
where Mmgec#mge

Wy xoexo (Ylfoc(mge),zg).

Note that for jo € [I : n?]l9, jo. € [1 : n?]l<,
eo(Fo,jo, Foc joe» To), as a function of Fg ;, and Fg.
is a random variable. We wish to show that

>

joe€[lin2]1RCl

Jjoe

. 1
nler;OE”(W)ch co(Fojo Forjoe @) 2 €
for some Q € A,jg € [1: n2]|g| and xg € Xg) =0

Using a union bound over Q € A, jgo € [1: nZ]‘Q‘, and
Tg € XS, we have

1
P((nz)lgc Z €Q
joe€llm2]ie|

for some Q € A, jo € [1: 1% and zg € Xg)

(Fo,jos Foc joe, o) > €
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1
< & Tlee

Y eolFojos Forjor, ma) 2 €

QEA, Jjoc€[1:n2]1L€l
je€lL:n?)9l,
o €EXS
Note that the summands in ) joe€[lin2)lec]

eo(Fo,jo, Foe joe,Tg) are mot necessarily independent.
Hence, an exponential concentration inequality cannot be
directly argued. However, using a similar procedure as
Jahn [8, Theorem 1], we decompose this sum into parts that
consist of summands that are conditionally independent given
the adversary’s choices.

To this end, let 3,2 := {7; : i € [0 : n? — 1]} be a set of
permutations of {1,2,...,n?} with

7:(j) = (i +7) modn? for all j € [1: n?].

Suppose |Q| = [ for some [ € [1 : k]. For ease of notation, let
Q=1{1,2,...,1}. Then,

1
e 2

Jjoc€[1n2]1e€l

1
I

(Jr415-0508) €[Lin2] k=1

1 1
= 2yt > <n2

k—1l—1
,O'k)EEn2

ea(Fo o, Foc joe, T0)

ea(Fojo, Foc joe, T0)

>

(014+2,0143,--- j€[n?]

eQ(FQ,jgu (‘Fl+1,j7 E+2,UL+2(j)7 C) Fk,a’k(j))7 wQ)) .

Now, we have (173)-(175), shown at the top of the next

page. We note that eg(Fo jo,(Fit1,js Fiy2,0p0() -+
Fiouj))s®g) is  identically  distributed  for  all
(0142, 0143, -, 0) € ZF 171 Thus, we have (176)—(188),
shown at the bottom of the next page, where (a)
follows from Markov’s inequality. (b),(c) and (d)
hold because for each j € |1 n?], conditioned on
Fojo.  eo(Fojo, (Fit1j: Fity,- -1 Frj),xg)  are
ii.d. random variables taking values between 0 and 1

(recall that 28 < 1+ ¢ for t € [0

()

1]). The inequality
follows from the definition of Pe‘a“d(PF[lzk],gb))
by noting that for every realization fo € Fg of
Fo o,  Eleo(fo, (Fiy1,1: Fito, -5 Fr1), o)) <
P™9(Ppg,,,»¢)). This implies that the random variable

E leo(Fojo, (Fit11, Fita 1, -,

upper bounded by P (Pr, ., #)). Thus,

1
P(ml@ 2

joe€[lm2]19¢]
for some Q € A, jo € [1:1%/9 and g € XS)

Fy1),20)|Fojo is

eg(Fg jo, Foc joe o) > €

(a)
< 2F(n?)k H |Xi|"exp{ —n? (e
1€[1:k]

k1
—log (1+ Péand(PF[lrk]ﬁ))) - Tl IOg(HQ)) }

— 0 for enough n,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

where (a) follows by recalling that Pera“d(PF[M] L)) < 2¢/2—
1 and thus, € > 2log (1 + Pera“d(PF[lrk] , (Z)))) a

APPENDIX VI
PROOF OF LEMMA 10
Proof of Lemma 10: This can be shown along the lines of
the proof of [28, Theorem 12.11]. For € > 0 and large enough
n, let (Fp.x), #(Fji:ry)) be an (Ny, ..., Ni,n) randomized
code satisfying

P;and(PF[l:k]7¢) < 26/2 ~1

Applying Lemma 14 on this code, for each user j € [1 : k],
we obtain n? deterministic encoding maps f;;,i € [1 : n?]
such that for every Q € A,lg € [1 : n?]I9l, g € XY and
the decoder ¢,

1 1
(n2)l°l lgceuzzn:ﬂwl (ITicoe Ni)

Z P({¢(Y? fQJQ»fQC,ch) = m[lzk] such that

mgecEMge

ch 75 ch}‘XQC = fQC,ch (mgc),XQ = iL‘Q) < €.

(189)

Further, since R; > 0 is achievable for all i € 1 : k],

there exists an (n?,...,n? ky) code (fj1.4], ¢) where ky, /n —
0 and

wax g (flr, 0) < € (190)

for large enough n. We choose sufficiently large n such that
both (189) and (190) hold. For a vector sequence s € Sntkn
for any alphabet S, we write 3 = (8,s), where § denotes
the first k,-length part of § and s denotes the last n-length
part of the 8. Let (f[l:k],i)) be a new (Ny,..., Ny, 7) code
where n := k, + n, message set for user-i, /\;lz =1 :
N = {1 2,...,n%} x [1 : N;]. Further, for [ € [1 :
n*l,m € | ] let 1 := (I,m). We define f;(m) =
Film) = (D). fism). For § = (5.9). let o(@) =
(k) 2(Ys f1a iy, ) Where L = ¢(9). Then, for Q € A,
we have (191), shown at the bottom of the page 2358, where
(a) follows from (189) and (190). This completes the proof
of the lemma. U

APPENDIX VII
PROOF OF LEMMA 9

We first give the codebook which is given by Lemma 15
below. Its proof is along the lines of [10, Lemma 2] and [22,
Lemma 3] and is given later.

Lemma 15: For any € > 0, large enough n, N > exp(ne)
and types P; € Py : i € [l : k|, there exist codebooks
Ci, i € [1 : k] for message sets M; = [1: N], i € [1: k],
whose codewords are of type P;, i € [1 : k] respectively such
that for every Q € A such that |Q| < k,'6 xg € X5, T C Q°,
J € Q, and joint type Px,.xox x,, € PXQLX)(QX)(, XX
the following holds:

16Note that there are no decoding guarantees when all users are malicious,
so we only consider the case when at least one user is honest.
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1
e Z €o(Fg,jo, For joc . Tg) 2 €
joc€[1:n2]2¢l
1 i
- P( Z (7’L2 Z 6Q(FQ7an (E+l,j7 F‘l+2,al+2(j)7 ey Fk,ak,(j))vwg)> > (nQ)k : 16) (173)
(O’l+2,0‘1+3 ..... G‘k)GEinil je[nQ]
1
<P U(a'[+2,01+3,...,0k)6225171 n2 Z eQ(FQ,jQ7(E+1,jaFl+2,0l+2(j)v"'aFk,a'k(j))va:Q) >€ (174)
j€[n?]
< > Z 0(Fojor (Fis1y: Fitz,oia() - - Froon() @) > € (175)
(ol+2,al+3,...,ak)EZ:’;l 1 ]6 n?]
1
> P~ > colFojo (Freny Firzonal) - Frou)) @) > €
(o’l+2,ol+3,...,ok)621:15171 Jj€[n?]
< (nQ)k—l—lp Z FQ ,Joo E+1 ]7Fl+2 To(j)?"'7Fk7,T()(j))7xQ) > € (176)
IS
. 1
= ()P e Z o(Fojo: (Fiy1: Fiyag, - Fry) xo) > € (177)
JE
= (n*)F 1P Z 0(Fojo, (Fis g, Firag, .. Frj),xg) > ne (178)
[n?]
= @) expd Y eo(Fojor (Firny Fivag,- - Frj) @) ¢ > exp {n’c} (179)
j€ln?]
(a)
< (n?)F"lexp {fnze} E |exp Z eo(Fojo, (Fiy1,j, Fiyajs .- Frj), o) (180)
J€n?]
= () lexp {—n26} E H exp{eo(Fo,jo, (Fit1,j, Fir2,j: -5 Frj) xa)} (181)
J€n?]
= ()" exp {—n’e} Erg,, |E | [] explea(Fo o, (Firiys Fryag, - Fry) @)} [Fajo (182)
J€[n?] .
(b) -
= (n2)k l 1exp{—n26} IEFQ,jQ H E [exp{eQ(FQ’jQ7(F‘l+1,j7Fl+2’j,...,Fk’j),wg)} FQ,J‘Q (183)
Li€[n?] _
- n2
D (n2)E=1=1 exp {—n®¢} Erg,, || E |exp{ea(Fajo: (Fivt1, Firan, - Fin) o)} [Fa o (184)
(4) [ "
< (n2)k—l—1 exp{—n26} ]EFQ,jQ <1+E eQ(FQ,jgv(F‘l+1,17F‘l+2,17"'7Fk,1)7wQ) FQ,jQ ) (185)
() ] 2
< (n?)F " exp {—ne} Erg,q [(1 + prnd (PR @) } (186)
n2
= ()" exp {—n’e} (14 P (Pry,,,. ) (187)
k—1-1
= exp {—n2 (e —log (1+ Péand(PF[lik] ,9))) — W log(n2)> } . (188)
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(a) If for any 7 € Q°, I(XZ‘;XQc\{i}XQ) > ¢, then,

NI1Q°|

{moe € Mg : (fae(mo:), Q) € T¥ . xo }|

< exp{—ne/2}.

(b) If for any i € Q°, I(Xy; Xoe\ (i X7 X} Xo) > (IT] +
|71)(1/n) logy N + ¢, then,

Nlesl

{ch c MQC :

Imly € Mg, my € Mg, mj#m;, VieT,
(foe(mae), fr(m), f7(mly), xq) € T)?QCX’TX&XQH
< exp{—ne/2}.

Proof of Lemma 9: For € > 0 (fixed later), large enough
n, N > exp(ne) and types P; € Py, i€ [1: k], such that
min;e(i.4) Ming, e, P > 0, consider the codebooks C;, i €
[1: k] for message sets M; = [1: NJ|, ¢ € [1: k] as given by
Lemma 15. The rates of the codebooks R; = R = log,(N)/n
for some R > e. The decoder is given by Definition 10 for n
satisfying Lemma 17. We will choose € such that n > (2k +
Dk + 1)e.
Let Q € A be the set of adversarial users who attack with
input vector xg € X5. The probability of error is given by

ﬁ Z P({y: ¢(y) # (mg:,mo) for some mo}

moe

| X ge = foe(mge), X g =xg). (192)

From the decoder definition (Definition 10), we know that if
#(y) = M1k Where mge # Mmge, then y ¢ ﬂieQCDS,?Z., that

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

is, y € Uiege(D},, )¢ Thus, (192) can be written as

1 .
1o Z P({y:y ¢ ﬂ’iEQCD?(’:L),j}

moc

| X ge = foe(moe), Xo =z0)

Y P({y:y¢D)}

mogce

1
<D N

1€Q°

| X ge = foe(mae), X o =x0). (193)

We will show that each term in (193) falls exponentially.

It holds when for joint distribution Px,.x, defined by

(foe(moe), @) € Tk xo» 1(Xi; Xoe\(13 X @) = € for any
i € Q°. This is because for any j € QF,

: >

mgei(fge(mge),zQ)ETY

Nieel P<yy¢D$rJ7,3|XQC

QcXo’
I(Xi;X gey (i3 X g)>e for some i€ Q¢

= fge(mg:), X o = z9)

DS
Pxgexg:
I(Xi;X ge\ i} X o) >e
for some €Q°

1
WHmQC € Mge : (foe(moe), xq)

€T%,.xo )

(@)
< Z exp {—ne/2} — 0,
Pxgexg
where (a) follows from Lemma 15(a). Thus, we can assume

that I(X;; Xge\(i3Xo) < € for all i € Q°. This implies that

1Q%e > > I(Xi; Xoe\ (3 X o)
i€Qe

PES (fum, 0)

1 oo
= max 3 P({¢(Y):m,[1:k]
PO coe Ni) .
eXg"xQXg € moeEMoe
1
< e SIS

T &0, 2 ch - )
ng ° <n )‘ (HZGQC Nz) lge€[1:n?]1Q° mocEMge

P({&

such that m/Qc ;’é Thgc} ‘ch = ch(?”i’LQc),XQ = (iQ,iBQ))

Y') = I[1.4) such that [ge # ch}

U {(b(Y, fQ,lganC,ch) = m[lzk] such that moe 75 ch}

(X oo, X or) = (foe(lae), far e (Mae)), (X o =20, X o = wQ))

o
lgc€[lin?

1
T aeite ()19 ([Tegr No) 2 2

loc 6[1:7L2]‘Qc| mgecEMge

1 S T - . 5 . X
< max tOE > IP({(;S(Y) = I[1.4) such that [ge # zgc} ’XQC = fo(lo:), Xo = iL'Q)
jlecl

P( {¢(Y, fQ,lech,ch) = m[lzk] such that mge 75 mgc} ’

Xoe = foe e (Mmge), Xg = 339)

(191)
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>D <PXQCXQ

(H PXi)PXQ> °

i€Q°
Under this case, for any j € Q°,

NIIQC\ > P({y:y ¢ DY)}

mQC:(ch(mgc),mQ)ETSéQCXQ ’
I(Xi;XQc\{i}XQ)<6VZ-€QC

| X ge = foe(moe), Xo =20) (194)

= > N|1Qc\ >

PXQ(,XQ IYIQCZ
(XX ge\ (i) X@)<eVicQe (foe(mge),xo)eTy

2

yeT}’}\XQCXQ (fQC (ch)va)

1
= > NIl

Pxgexg®
I(Xi;XQc\{i}XQ)<€Vi€QC

>

mQC:(fQC(mQC)@Q)ETSFQCXQ

exp {=nD (Pxoe xov || Pxocxa W) }
< Z exp {—nD (PXQCXQY

Pxgexg¥i€Qe,
I(Xi;X ge\ (i} Xo)<e

DS

PXgeXgiVi€QC,
I(Xi5X ge\ iy Xo)<e

exp{ - n(D (PXQCXQYH( H PXz‘)PXQW>

i€Q°

1))}
i€Qe

(195)

QcXo

W"(yl|fge(mge), xg)

rnat)

- D (PXQCXQ

We will break (195) into two terms, first corresponding to joint
distributions Px,.x,y for which

D (PXQCXQYH( H PXi)PXQW> >
1€Q°
and second corresponding to joint distributions for which

D <PXQCXQYH( H PXi)PXQW> <.
i€Qe
Let us start by considering the former.

2.

Pxgexg:
I(Xi;XQC\{i}XQ)<€,ViEQC7

D (PXQCXQY ‘ ‘(Hiegc PXi)PXQW> 21

exp{ - n(D <PXQCXQYH( H PXi)PXQW>

i€Qe

mron))]
i€Q¢

-D (PXQCXQ

2359

exp{—n(n—|Q%€)}

< >
Pxgexg?

I(Xj;XQC\{i}XQ)<EViEQC

— 0 for n > ke.

Now, we need to evaluate (195) for joint distributions
PXQCXQY for which D (PXQCXQY ’ ’(HiEQC PXi)PXQ W) <
n. In this case, since decoding condition 1 holds,
y ¢ D,(%j if decoding condition 2 fails. That is, there
exist @ € A, not necessarily distinct from Q, a non-empty
set 7 C (QUQ')“withj € T, gy € X5/, my, o € Mo\ors
m'r € My such that m; # m; for all ¢ € T such that
for the joint distribution /PXQcXQX%ff/Q\Q/X’Q;Y defined
by (fQC<mQC)?wQ7fT(mT)7fQ\Q’(mQ\Q/)axQHy) €

T?’L
XoeXo X7 X}, 5 X0, Y

D <PX1[X’Q\Q,XQC\(TUQ/)X’Q,Y

(e I (1]

jeQ\e’ l€Qe\(TUQ)
and I(XoeV; X7 X5 o[ X0) > 1.

PXl)PX’Q, W) <n

Let H = Q°\(7UQ') and P)lcchgX’T

the set of distributions Px,.xox/ X) o

D (PXQCXQYH(HEQC Px,)Px, W) <,

be
’ ’

Xo 0 XoY
XL, Y satisfying

D (PX/T,X’Q\Q/,XH,X’Q,,Y H
([T I P (11 sz)PX/Q,W) <,
teT JjEQ\Q/ leH

and I(Xq-Y; X7X4 o/|Xg) = 1. Using these definitions
we see that, in this case, (194) is upper bounded by

>

QuXQX,/TX/Q\Q,X’Q,Y

€P;
XgeXo XX

Px

! 7
o\vorXorY

Nl
mZ € Mz where m} # m; for all i € T such that

{mgc € MQC : Hm/Q\Q/ € MQ\Q/,

(fae(mae), fr(m7),foro (Mg or),TQ) GTﬁgcx;x'Q\Q/xg}

< 3 exp{—ne/2}

P ! ’
Xge XXX X,y

’
o\Q’ e

€P
Xge XQX’TX’Q\Q,X’Q,

Y

— 0

if for any ¢ € Q° I(Xi;XQc\{i}Xé—X/Q\Q,XQ) >
(I7] + (@ \ Q)))R + €. This follows from the codebook
property Lemma 15(b). Thus, we only need to consider
joint distributions for which I(Xi; Xge\ (13 X7 X5\ o X0) <
(7] + (@ \ Q))R + € for all i € Q¢ This
implies that 1(Xoe; Xl o/ Xy |Xa) < |Q°I(1T] + 1(Q\
Q))R + €). This is because I(Xge; X5 o X7[Xo) <
Ziegc I(Xi;XIQ\Q,X!TXQc\{i}lXQ).
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= {Pxgexoxs X0 o X0 Y €
PXQCXQX X0 o0 XY I(Xge; X5\ 0 X7 Xo) <
(7] + (G \ Q)R + o)}. So. for any j € Q-
it is sufficient to analyze the upper bound in (196), shown
at the bottom of the next page. From the definitions

2
Let 73XQCXQX' X o XoY T

2
of 7)XQCXQX’TX’ o X5 Y and 7)XQLXQX’ X/

e oo XY
we note that IEXQCY XowoX7rlXe) > 1 and
I(Xge; Xg\ o X7|X0) < |QC\ (7T + L\ QDR + ).
This implies that

2 2

exp {n(|Q\ Q| +IT|)R

QeA PXQCXQX,/TX/Q\Q,X/ Y &
?(QCXQX’ XQ\Q,X Y
— I(Xo:Y; X\ o X7 Xo)
+1(Xor X\ X7|Xo) + )}

<y

Q'eAr

> exp {n((1Q\ Q|+ TR~

XQeXQXpXp\ 01X R

P2
XQLXQXTXQ\Q, )Y

+1QN(T+ [(Q\ QIR +¢) +€)}
< ok > exp{n(kR —n+k(kR+¢)+¢€)}

P ’x! ’ €:
XoeXQXI X[\ 0/ XY

2
’ ’ ’
XgeXg XX XY

Q\Q/
exp {n((k + k*)R—n+(k+1)e)}

€:
,Y

XQCXQXT Q\Q,

2

XgeXgXh XY

Q\Q’
— (k+ 1)
k+ k2
n—(k+1)e

Since n > (2k + 1)(k + 1)e, e~ > 2e. Thus, we can
choose R between € and 2e. |

Proof of Lemma 15: This proof is along the lines of [10,
Lemma 2] and [22, Lemma 3]. We will generate the codebooks
by a random experiment. For any Q € A, zg € XJ and joint
type PXQCX/ X Xq € XQcXXq—xX’ xxgr Ve will show that
the probability that statement (b) does not hold, falls doubly
exponentially in n. We will only analyze statement (b) as
choosing 7 = J = () in (b)will also imply that the probability
that (a) does not hold also falls doubly exponentially. Since
5e| and |’P;}QC WX XXX Xo | grow at most exponentially

—>Of0rR<

in n, a union bound will imply the existence of codebooks
satisfying (a) and (b). The proof will use [22, Lemma Al]
which we restate here for a quick reference.

Lemma 16: [22, Lemma Al] Let Z4,..., Z N be arbitrary
random variables, and let f;(Z1,...,Z;) be arbitrary with
0<f; <1,5€1,...,N. Then the condition

Elfi(Z,...,Z})|Z4,...,Z;_

implies that for any real number £,

N
1
Nij(zl,...,zj)n
j=1

1] <a, jel:N],

<exp{—N (t—aloge)}.
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Let T, ¢ € [1 : k] denote the type class of P;. We generate
independent random codebooks for each user. The codebook
for user ¢ € [1: k], denoted by C; = (X;1,Xi2,..., XiN),
consists of independent random vectors each distributed uni-
formly on 7T7'. Fix @ € A, zg € Xj and a joint type
Pxgexix: " Xo such that for every ¢ € Q°, Px, = P;, for
tGTPX/ P, and for j € 7, PXI Pjand g € Ty .
We will analyze the probability that (b) does not hold under
the randomness of codebook generation process. Note that the
bound in (b) is non-trivial only when Q¢ # (. For any [ € Q°¢,

(7

{mQ(‘EMQC HmjeMj7
my € Mz, m} # m; for all i € T such that
(XQC,mQC)XT,m[;—7Xj,mf75wQ)ETQQcX%X‘IjXQ}|
> exp{—ne/Q})

1

N’{ml e M;: 3mf7 € Mj,

>

mgey\ (13 EMaoe\ (1}
m4 € Mz m) # m; for all i € T such that

(XQC,mQC’XT,m’TvXJ,m’jva) € T)?QCX,/TX&XQ}|
> N‘ch_lexp{—ne/2})

:IP’(

]P’(%Hml e M;:3Im; e Mg,

< X
mae\ (1} EMae\ (1}
m4 € Mz m) # m; for all i € T such that

(XQC,mgcaXT,m’TvXJ,m’JamQ)GT;QcX’TX3XQ}|
> exp{—ne/2}>
<y (¥

TX/?C\{Z} Toe\{i}
e T'VL
Qe\{1} € Xge\(1}1Xe

P(X oo\ (1}, mgey 1y = TQe\{1})

(zq)
1 /
]P’(NHml e M;:3Iml; e My,
my € Mz, m} # m; for all i € T such that
(X 1m0, 0o\ (13 X Tt - X 7, 2Q) €TX oo x1 x7) X o

> exp{—ne/2})>. (197)

To analyze this, we first consider the case when 7 # (). Recall
that 7 C Q°. Without loss of generality, suppose 1 € Q°N7.
Then for [ = 1, we have (198)—(200), shown at the bottom of
the next page.

We will now analyze (199) using Lemma 16. For j € [1 :
N, let Z; = (X1 4,Cpa: k]) where the codewords for mge\ (3}
are fixed to e\ (13. Let f; 2" (Zy,..., Z;) be defined as

7902y, ..., 2y)
= f;QC\{l} ((X1,17C[2:k])7 ey (Xl,ja C[Qk]))
1, ifJdi<y, (m’T\{l},mb) € MT\{l} X Mg
such that Vt € 7 \ {1}, m} # mq,
= (X1, ge\(1}), (Xl,hX(T\{l},m’T\{l})):

X (g.mi)®0) € TR o x1 x1, x>0

0, otherwise.
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For ¢ = 1 exp {—ne/2}, (199) can be written as < > P(((X1: @0\ (1)):
1EM1,i<]
(me\{l},mly)EMT\(l)XMg
mi#mteT\(1}

N
1 Toe\ (1) n
szj (Z1,...,2Z;) >t (X1 X\ 1y.my 1)) X (7)) €T o xs x1 %0
i=1
’(X1,1,C[2:k]), e (X1,(j—1),C[2:k])>

We will compute @ in Lemma 16. < N(\T|+\j|)exp {nH (X1|Xge\(1y X7 X5 X0)}
- (n+1)~Mlexp {nH(X1)}
E{f;@cm} (X11,Ct))s - (X1, Cpouk) = (n+1)%lexp {”((|T| +1TJ1)(1/n)logy N
. !y
’(X1,17C[2:k])a ceey (Xl,(j—l)vc[Z:k]):| B I(Xl’ XQC\{l}XTXJXQ))}

> > ﬁ > > W (ylfoe(mae), zo)

Q'eAP ! €: mQe: YETY (fge(mge)@g)
XoeXoXTXg 01 ¥grY (foe(mge),x0)eTy YIXgeXg 1QEIHRENTR
P2 ’ XgeXg yg¢ D)
XguXQX,’TX’Q\Q,X/Q,Y gy

=5 > o ) >

Q'cAP 7 el ’ €: mge: m’ ,EM 7y
XZQCXQXTXQ\Q/XQ/Y (fQC(mQU)y‘EQ)GT}éQCXQ Q’r\nQ,TeeMQT\Q
Xge XXX\ 5/ X0, (fQ\Q/(m/Q\Q’)’fT(m{T))ET;'Q\Q,X,’IJXQcXQ(fQC(mQC)’mQ)
> W"(ylfa:(mae), xo)
yeT}%ngXgX’Q\Q,X%(fQC(mgc)’mg’fg\gl(m/Q\Q’)’fT(m/T))
<y exp {n(1Q\ Q|+ |TR — I(Y; X{, 0 X7|Xo-Xo) + )}
QIGAPXQCXQX/TX/Q\Q,X’Q,YG:
iggxgx%x’g\g,x’g,y
=3 > exp {n(|Q\ Q[+ ITHR - I(Xo:Y; X5\ o X7 X0) + [(Xoe; X\ 0 X7 | X0) —i—e)}
QeA PXQCXQX%X’Q\Q,X/Q,YE‘
?(QCXQX’TX’Q\Q,X’Q,Y
(196)
1
P(ﬁ\{ml € My : Im € Mz, m} #m; forall t € T,m:7 e My,
(X1mi, oo\ 1} X7 my s X gmr, TQ) € T)%QCX’T)%XQH > exp {—ne/2} ))
1. .
= ]P’(Nb € My :3i < j,i € My, mip 1y € M1y, my # my forall t € T\ {1},m; € My,
(X1 zovi1y), (X X iy, o)) Xgmt,» Q) € Tx oo xp x7, x0
1
+ N'j e My :3i> 7,1 € Mhm'T\{l} S MT\{1}7 mi 7& my; for all ¢t € T\ {1}7mf7 € Mj7
(X1 2ovi1y), (X Xmpiymyy, o)) Xamt Q) € Tx o xp x7 x0 H > exp {—ne/2} )) (198)

1
< IP’(NU € My 3i < ji € My,mip 1y € My, my # my forall t € T\ {1}, m); € My,
" 1
(X105 ®oe\f1y)s (X X\ (1y.my ) ) X7 mly» Q) € Txgoxy x xo M > zeXp{ne/Q})> (199)
1
—HPJ(NU eMy:Fi>jie M1,m/7\{1} € Mm\(13, my # my for all t € T\ {1},m; € Mz,

” 1
(X1,5,ge\{1})5 (Xl.,ivXT\{l},m’T\{l})vXJ,m&awQ) € TXQCX/TX&XQH > Qexp{—ﬂe/Z})) (200)
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Suppose  I(X1; Xge\ (13 X7 X X0) > (7] +
|7)(1/n)logy N + €. Then, a = (n + 1)I*tlexp {—ne}.
Thus,

Zj) >t

1 N
T oc
SN ez,
j=1

<exp{—N (t —alogye)}
—exp {7 (S {ne/2) - (0 + ) exp (e} ) |

<o (Lm0 %)

because N < exp {ne}.

Thus, (199) falls doubly exponentially. Since (200) is symmet-
ric to (199), we can obtain the same upper bound for (200) as
well. This implies that (197) falls doubly exponentially when
T # (). Now, we consider the case when 7 = (). In this case,
in order to show that (197) falls doubly exponentially, we need
to show that

1
]P’(N‘{mz eM;:3ml; € Mg (Xtmys Boer 1y X 7,m’, Q)

€ T;QCX&XQ}’ > exp{ne/?}) (201)
falls doubly exponentially. This can be shown in a similar
manner as the previous case. Again, without loss of generality,
suppose [ = 1. Let Z; = (X1;,Cja.47), § € [1 : N], where
the codewords 39 \{1} corresponding to messages Mmge\{1}
are fixed. Let g; > (Z1,..., Z;) be defined as

g;zgn\{l}(zl, ey Z])

=g; 9" (X 1,1, Clany) - - -

; (X1,5,Cla:x7))

1 if 3m!; € Mz such that
= (X1, o)) X(g.my) Ta) € TRy x1 x o0
0  otherwise.

For t = exp {—ne/2}, (201) is

1 zoe

P(szlgj (Z., ..,Zj)>t).
Computing a,
E[g7% " ((X1,1,Cog) -+ (X 1,5, Cpn))

[(X1,1,Cla:k)) - -5 (X1 (5-1)5 C[2:k])}
< > P(((Xl,j»ﬂﬂgc\{l})vX(J,mg)’“’Q)
mi,,EMJ
€Tx cxy x XQ‘(Xl 1 Caing) -
171 XD {nH(X1|Xge\ (13 X7 Xo)}
(n+ 1)~ 1%lexp {nH(X;)}
= (n+ )%l exp {n((|j|)(1/n) log, N

~ I(X1; Xgo\ X Xo)) }

(Xl,(j71)7c[2;k]))

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

Suppose I(X1; Xoe\;13 X7 Xa) > (|TJ])(1/n)logy N + €.
Then, a = (n + 1)!*l exp {—ne}. Thus,
| X
Toc
N gJQ \{1}(Z17...
j=1
<exp{—N(t—alogye)}

B Y P |

< exp {_ (eXp {ne/2} + (n+ 1)|X1|)}

which falls doubly exponentially. ]

Lemma 17: Suppose the Byzantine MAC (W, .A) is not
symmetrizable. Let P; € Px,, ¢ € [1 : k] be distributions
such that P;(z;) > 0,2, € X;, 4 € [1 : k]. Let f; : M; —
T}, 1€ [1: k] be some encoding maps. There exists a choice
of n > 0 such that if (m1,ma,...,mg) # (M1, Ma, ..., Mg),

Zj) >t

Dml ma,..., mp m’l)ml ma,..., my, — VY-
Proof: Suppose for (1, g, ..., My) # (M1, M, ...,
my), there exists Yy € Dy sng,...ine 1 Prny g,y THiS
implies that there exists v € [1 : k] such that y € D) 7 OD( ")
for m, # m,. Then, by the decoder deﬁmtlon there
exist Q, Q € A, not necessarily distinct, with v ¢ Q,Q
xg € X5, T5 € XL mge € Moe;mg. € Mg

with m, =, and m, = m, such that for
T = €(QU Q)C smy; £y p (note that v € 7),
anj for the joint distributions PXTXQ\ oX(ruouaeXeY
an

Ps defined
XX\ QX(TUQUQ)CXQY

Yy
(fT(mT)an\Q(mQ\Q) f(Tuqu)C(m(Tugug) ), To,Yy) )6

i Xéngu@)cXgY and  (fr(m7), fo\6(Ma\6

m e ), B5,Y) € T /
(TuQuQ)< ) ®5 Y X1Xo\0X(71008)0

(IL7)( 1T )

€T jGQ\Q

Qe
f (TUQUQ)e
respectively, the following holds.

XY

D <PXTXQ\QX’(TUQUQ-)cXQY

(11

1e(TuQuUQ)”

PZ)PXQW> <, (202)

o|[(TLR)( 1T 7)

€T jeQ\Q

p( Py
XX\ 6 X (Tuoug)"

11 Pl)PXQW> < (203)
le(TuQUQ)”
Then, the decoding condition 2 implies that
I(X7X 50X (10006): Y XTXQ\Q|XQ) <n, (204)
I(XTXQ\QX/(TUQUQ)CY; XTXQ\Q|XQ) <n. (205
For ease of notation, let H := (7 U Q U Q)C

From (203), by the chain rule of relative entropy, we get

D(Pg, 5, MTLer P)(ILequa F) < - Using this,
(202) and (204), we get
3n >
D(Pxyx g gxmexer T POC T PO POPxoW
i€T jed\Q leH
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IT 2)»
JEQ\Q
+I(XTXQ~\QX/HY;XTXQ\Q|XQ)
=D(Pxr x4 oxxov ([T POCTT P)
€T jEQ\Q

+D(Pg, 5, JATPICTT P)

€T jeQ\Q

+D(Pg, s, T P
€T

I P)Pxow)

leH

+ D(PXTXQ-\QX/HXQXTXQ\QYH

PXTXQ\QPXQ\XTXQ\ PXTXQ\QX'HY|XQ)

= D<PXTXQ\QX/HXQ>ZTXQ\QY|| Hpi H

€T jEQ\Q
(HP 11 P)Px, P WY|XTXQ\QX’HXQ)
i€T jeQ\o

P (117

leH

leH

(®)
Z D(PXTXQ\QX/HXTXQ\QY|(];—Pi)( H
v JjeQ\Q

(sz)( H ~Pj)VY‘X7—XQ\QX’HX7‘XQ\Q)
€T jeQ\O
where Vy|XTX X'y X X (y‘xTaxQ\gamlH7iT’jQ\Q~)

o\Q o\ g

= Z XQ|XTX

and (b) follows from the chain rule of relative entropy. Using
Pinsker’s inequality, it follows that

L (@oliT, Tg\6)W (YlrT, 25 0,71 Q)

’ ~ ~
‘ XX X'y XX Y(xTxQ\vaHvxTva\va)_

. o\ o\ o

TYT%\Q

f;‘\’”;,i;
(TP @] P[] PE)C ] PiE)
€T jEQ\Q leH €T jEQ\Q

VWX X0 X' nXr X0 0 (Ylor, 25\ 0: ', 21, iQ\Q)‘
< e/ 3, (206)

where c is some positive constant. By a symmetric analysis,
we can show that

Z FXTXQ\QX'HXTXQ\QY(xT’xQ\Q’le’jT’ti\Q’y)
TT TS\ Q>
a4, B,
ToroY
— (TP IT Pty
€T ]EQ\Q
( II P&
JEQ\Q

!
Y| X7 X

[T A

leH

[126)

€T

/ ~ ~
Q\QX/HXTXQ\Q( |‘TTaxQ\Q7x HaxTvg:Q\Q)‘

3n, (207)

for

/
VX7 X5 o X' nX1Xg\

ZP~
){~
QIXT X5
iQ \Q

Q(y‘x77l‘g~\g7$/H7i‘T7£Q\Q) =

(@l xQ\Q)W(y"iTv Tg\o ', o)

P 7
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By (206) and (207),

> (TP
TTTo\gi€T
20;1,5677
To\ay

( II B

jeQ\Q

1T Pita)

jeEO\Q

[T2E)(]PE)

len i€l

;s s
’Vy\XTXQ\QX/HXTXQ\Q(y|55’1'7xQ\Qa«'U H7ITa$Q\Q)

/
VY\XTXQ\QX HXTXQ\Q(y|xT’xQ\Q’ x H,xTaIQ\Q)
< 2¢4/ 3.

This implies that for o := min;ey.4) ming, P;(z;) (note that
a > 0),

max

TTTS\Q»
f%;ﬁm
Tovoy

/o~ -
VY|XTXQ\QX'H)E'TXQ\Q(y‘xTVxQ\Qvx Hax’[va\Q)

/
VY\XTXQ\QX HXTXQ\Q(?AJ;T’J;Q\Q’ z H?xTaxg\Q)

2¢4/3n

< -
o’

(208)

for some integer j. Since (W, .A) is not symmetrizable, there
exist ¢ > 0 such that

max
T,

’
ARG
TTTo\ &Y

’ > Pxoi%r %o, 5 (@lTT: Z0\ o)W (yl27, 25,0, "1, T0)
zo
_Z Py oixrxs0 (ZglrT.28, )W WYIZTZ0\ 5,2 1:5)
)
> ¢,
That is

max
TT,TS\ 0
zh &1,
To\oY

;o =
Vy|XTXQ\QX'HX7—XQ\Q(y|IT@Q\Q@ 7‘(7:1773‘TQ\Q)

! _ / -~ ~ _
- VY|XTXQ\QX’HXTXQ\Q(y‘mT’xQ\Q’x H I, T\ 5)
> ¢

This contradicts (208) for choice of 7 and « satisfying
2evEn < ¢. 0

APPENDIX VIII
PROOF OF THE CONVERSE OF THEOREM 8§

Proof:  Suppose the given byzantine-MAC (W, A) is
symmetrizable. Then, there exist 7 C [1 : k], Q, Q" € A,
not necessarily distinct, satisfying QN7 = Q' N7 = (),
z;l/d a pair of con(.h;lolnal (ziz)sgtnll))uilons Pxg1x,, (@\e and

Xor | Xrui0n satisfying (209) below:

/
Z PXQ|XTU(Q\Q’) (xQ|xTV fQ\Q/)
! cXo
o

W(ylrg, 1, 2on0: T(TuQUQ))
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- ¥

{f/’Ql EXQ/

Py o X om0 (BT, 701\ 0)

W(ylZor, x1,70\0, T(TUQUQ")") (209)

for every y,l‘T,LCQ\Q/,I'(TUQUQ/)u?{iT and Tono- Let
my,mr € Ms be such that m; # m; for all ¢+ € 7.
We consider two different scenarios in which users in set 7°
send fr(m7) and fr(m7) respectively:

®

(i)

In the first setting, users in the set Q are adversarial.
They choose a message tuple Mo\ or ~ Unif(Mg\ o).
Let Xo\o = fo\o/(Mg\g). To produce their input
X'gmy to the channel, they pass (fr(mz), Xo\0')

through P}gg‘ Xroonan’ the n-fold product of the chan-

nel PXQ|XTU(Q\Q’)' Users in the set (7 U Q)¢ being
non-adversarial, send as their input to the channel
X(TUQ)C = f(TUQ)C(M(TUQ)C)’ Where M(TUQ)C ~
Unif(M 7yug)e). Users in the set 7 send fr (7).
The probability of any vector y under this scenario is
given by (210), shown at the bottom of the page, where
eo.7(y,mr,xg) denotes
1 _ _
W Z W"(?J ‘m@f?' (m1),
TV 700y eEM(u0)e

fruey: (mervey) )

for y, mr € Mg and g € XZ. The notation y,
represents the ¢ component of the vector y and for any
set S and message tuple mgs € Mg, fsi(ms) and z s,
represents the |S|-length tuple containing the ¢ compo-
nents of the vectors in fs(ms) and s respectively.
In the second setting, users in the set Q' are adversarial.
They choose a message tuple Mon g ~ Unif(Mgn o).
Let Xgno = fona(Mgng). To produce their input
X o/, to the channel, they pass (fr(m7), Xg\or)
through Py X .., the n-fold product of the chan-
f o/ X1u(e\Q) . e .
nel PXQ/\XN(Q/\Q)' Users in the set (7 U Q')¢, being
non-adversarial, send X (7ugne = firuoe(Mrugr)e)

Exo

~ IM(zU(ene)-

IM(zueng))e]

=Exy, . leo,7(y, M7, X'g 0. )]
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as their input to the channel, where Mgy ~
Unif(M (7ugr)e). Users in the set 7 send f7(m7). The
probability of any vector y under this scenario is given
by (211), shown at the top of the next page, where
eo,7(Y, M7, xo ) denotes
1
>

e i)
(TR 7 0nye €EM(zuane

firvan: (meruan-) )

fory € V", mr € Mt and o € X5,

Note that

. |:6Q/,T(ya mr, XQ’,T?LT):|

- )

mryene’ e EMruanoryye t=1

> PX o 1Xroion o e tlfT20007), forg,t(man )

n

ig/,teXQ/

W™ (y,|Zo 1, fre (m1), firugrye s (MTuone))

n

- > 11

mruane’)yc EMru(anary)e t=1

Y PxolXruoen @ ailfri(mr), forei(maro)

z'g,1€Xo

W™ (y,l’ o, fre (1), firugyes (MmTuo):))
212)

where (a) follows from (209).
Arguing along the lines of [22, (3.29) in page 187],

1
2P62Wz >

Exy, [eo.7(y, 71, X0)]
mr y:p(y)r#FmT

1 ~
+ WZ Z EXQ/ [eg',T(yamTva’)}

mT y:p(y)r#mT

1
2 Moo/ 2

! n
THEXS

mQ\Q/
EMo\or

: >

|IMzu)el

~ Movor| X IM(zuo)|

 IMizuiene)-

m(rue)yc €EM(Tug)e

: > > I

Mo\ o €EMoyor M(TUQ)e EM(TUQ)e =1

PR o 1Xro0n0n (ol fr(mT), foro (mayo))

W™ (yleg, fr (M), frug) (MmTuo):))

Y PxoiXrooon @oulfri(mr), forori(mayor))

Ty EXo

W (y,leg ;. fr.e (1), firug)es (Mizuo)e))

n

- > 11

m(ru(ene’)c EM(ru(enarye =1

E/Q,tGXQ

Y PxalXrooion @il fri(mr), forori(mare)

W (y,lxg . fr.e (1), firug)es (mizuo)e))

=Ex,, ,leor(y. 7. Xg )]

(210)
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1 . . i
Z m z P)/(Q/‘XTMQ’\Q) (@ |fr(m7), forna(mono))

EorEXE, mgngEMan g

1 -
[Mzuoel Z W™ (ylzor, fr (m7), firuane (mrug)e))

m(TUQ’)CEM(TUQ’)C
1 n
= E E I | E P (:i ’
X /‘X ’ Q 7t
|IManal X IMzugel e ~, Pt B o'l XTuene)
Qe Q’\e M(Tug’)e (TuQ’)e Lol tEtol

W (yilZor e, fre (m7), frruone: (mzugr):))

fri(mr), fono.t(mono))

n

1 - -
B IMzuienon)e| Z H Z P*;(Q"XTU(Q/\Q) (Zg el fre(m7), forno(mono))
(Tu(eNQ)) Mmru(anary)c EMzu(anarye t=1Fgr EXg/
W (ylZor e, fre (mT), frugyes (mruane))
=Ex,, . |eer(ymr, Xg/,m)] : @11)

for any attack vectors X ,Q and X Qo In particular, for the [5]1 D. Blackwell, L. Breiman, and A. J. Thomasian, “The capacities of

attack vectors 1 ~ X , - and 1 ! , certain channel classes under random coding,” Ann. Math. Statist.,
M| ZmT Q' smr (M| me Qmr vol. 31, no. 3, pp. 558-567, Sep. 1960.

2P [6] A. Lapidoth and P. Narayan, “Reliable communication under channel
€ uncertainty,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2148-2177,
1 Oct. 1998.
> — Z Z Z EX’ [GQ T(y, ﬁm—’ X/Q m )] [71 A. Beemer, E. Graves, J. Kliewer, O. Kosut, and P. Yu, “Authentication
|MT |2 ™ . - < 7 T and partial message correction over adversarial multiple-access chan-
mT T YY) Fmr nels,” in Proc. IEEE Conf. Commun. Netw. Secur. (CNS), Jun. 2020,
~ pp. 1-6.

+ Z EXQ, [GQ’,T(ya mr, XQ’,rhT )] [8] J.-H. Jahn, “Coding of arbitrarily varying multiuser channels,” IEEE

yid(y)rEmr Trans. Inf. Theory, vol. IT-27, no. 2, pp. 212-226, Mar. 1981.

1 [9] J. A. Gubner, “On the deterministic-code capacity of the multiple-access
(@) - ’ arbitrarily varying channel,” IEEE Trans. Inf. Theory, vol. 36, no. 2,
= ZZ Z Ex, leo,7(y, 1T, Xg,my)] pp. 262-275, Mar. 1990.

Mr|? £
| | mr M1 \y:$(y)r#AmT [10] R. Ahlswede and N. Cai, “Arbitrarily varying multiple-access channels.
I. Ericson’s symmetrizability is adequate, Gubner’s conjecture is true,”
5 / IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 742-749, Mar. 1999.
+ Z EX’Q [BQ,T(ya mr, XQ,mT)] ) rans. Inf. reory, vo 1o- = bp- ar .
[11] U. Pereg and Y. Steinberg, “The capacity region of the arbitrarily varying
y:¢(y)T#Fmr MAC: With and without constraints,” in Proc. IEEE Int. Symp. Inf.

~ . Theory (ISIT), Jul. 2019, pp. 445-449.
where (a) follows from (212). For m m7, the term in
( ) ( ) H 7& 7 [12] M. Wiese and H. Boche, “The arbitrarily varying multiple-access chan-

brackets on the I‘ight is upper bounded by 1, otherwise it is nel with conferencing encoders,” IEEE Trans. Inf. Theory, vol. 59, no. 3,
upper bounded by zero. Thus, pp. 1405-1416, Mar. 2013.
[13] R. Ahlswede, “Elimination of correlation in random codes for arbitrarily

P> |MT|(|MT| — 1)/2 > 1 varying channels,” Zeitschrift Wahrscheinlichkeitstheorie und Verwandte
¢ = 2|MT|2 -8 Gebiete, vol. 44, no. 2, pp. 159-175, 1978.
. [14] O. Kosut, L. Tong, and D. N. C. Tse, “Polytope codes against adversaries
This completes the proof of the converse. O in networks,” IEEE Trans. Inf. Theory, vol. 60, no. 6, pp. 3308-3344,
Jun. 2014.
[15] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard,
ACKNOWLEDGMENT

“Resilient network coding in the presence of Byzantine adversaries,” in

The authors would like to thank Sidharth Jaggi, the anony- Pr o% 266té’ I4EEE Int. Conf. Comput. Commun. (INFOCOM), May 2007,
. . . . pp. 616-624.

mous reviewers, and the associate editor for their thoughtful [16] D. Wang, D. Silva, and F. R. Kschischang, “Robust network coding in

comments which helped greatly improve the presentation. the presence of untrusted nodes,” IEEE Trans. Inf. Theory, vol. 56, no. 9,
pp. 45324538, Sep. 2010.

[17] X. He and A. Yener, “Strong secrecy and reliable Byzantine detection

REFERENCES in the presence of an untrusted relay,” IEEE Trans. Inf. Theory, vol. 59,

[1] N. Sangwan, M. Bakshi, B. K. Dey, and V. M. Prabhakaran, “Multiple no. 1, pp. 177-192, Jan. 2013.

access channels with Byzantine users,” in Proc. IEEE Inf Theory [18] R. La and V. Anantharam, “A game-theoretic look at the Gaussian

Workshop (ITW), Aug. 2019, pp. 1-5. multiaccess channel,” Discrete Math. Theor. Comput. Sci., vol. 66,
[2] A. Burg, A. Chattopadhyay, and K.-Y. Lam, “Wireless communication pp. 87-106, Mar. 2004.

and security issues for cyber—physical systems and the Internet-of- [19] N. Sangwan, M. Bakshi, B. K. Dey, and V. M. Prabhakaran, “Multiple

Things,” Proc. IEEE, vol. 106, no. 1, pp. 38-60, Jan. 2018. access channels with adversarial users,” in Proc. IEEE Int. Symp. Inf.
[3] M. Ammar, G. Russello, and B. Crispo, “Internet of Things: A survey on Theory (ISIT), Jul. 2019, pp. 435-439.

the security of IoT frameworks,” J. Inf. Secur. Appl., vol. 38, pp. 827,  [20] N. Sangwan, M. Bakshi, B. K. Dey, and V. M. Prabhakaran, “Com-

Feb. 2018. munication with adversary identification in Byzantine multiple access
[4] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8, channels,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,

pp. 1355-1387, Oct. 1975. pp. 688-693.

Authorized licensed use limited to: Arizona State University. Downloaded on July 30,2024 at 16:30:40 UTC from IEEE Xplore. Restrictions apply.



2366

[21] T. Ericson, “Exponential error bounds for random codes in the arbitrarily
varying channel,” IEEE Trans. Inf. Theory, vol. IT-31, no. 1, pp. 42-48,
Jan. 1985.

I. Csiszar and P. Narayan, “The capacity of the arbitrarily varying
channel revisited: Positivity, constraints,” IEEE Trans. Inf. Theory,
vol. 34, no. 2, pp. 181-193, Mar. 1988.

G. Dueck, “Maximal error capacity regions are smaller than average
error capacity regions for multi-user channels,” Problems Control Inf.
Theory, vol. 7, pp. 11-19, 1978. [Online]. Available: https://pascal-
francis.inist.fr/vibad/index.php?action=getRecordDetail&lang=en&idt=

PASCAL7930024509

S. Janson and A. Rucifiski, “The deletion method for upper tail esti-
mates,” Combinatorica, vol. 24, no. 4, pp. 615-640, Sep. 2004.

M. Fitzi, M. Hirt, and U. Maurer, “General adversaries in unconditional
multi-party computation,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf.
Secur. (ASIACRYPT). Singapore: Springer, 1999, pp. 232-246. [Online].
Available: https://link.springer.com/book/10.1007/b72231

M. Hirt and U. Maurer, “Player simulation and general adversary
structures in perfect multiparty computation,” J. Cryptol., vol. 13, no. 1,
pp. 31-60, Jan. 2000.

T. Wu, S. Zhu, F. Li, and L. Liu, “Two quantum secret sharing schemes
with adversary structure,” Int. J. Theor. Phys., vol. 61, no. 7, pp. 1-21,
Jul. 2022.

1. Csiszar and J. Korner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. Cambridge, U.K.: Cambridge Univ. Press,
2011.

A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2011.

J. A. Gubner and B. L. Hughes, “Nonconvexity of the capacity region
of the multiple-access arbitrarily varying channel subject to constraints,”
IEEE Trans. Inf. Theory, vol. 41, no. 1, pp. 3-13, Jan. 1995.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Neha Sangwan received the B.E. degree from the Delhi College of Engi-
neering, University of Delhi, in 2013, the M.Sc. degree from the Chennai
Mathematical Institute, Chennai, Tamil Nadu, in 2017, and the Ph.D. degree
from the Tata Institute of Fundamental Research, Mumbai, in 2023.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

Mayank Bakshi (Member, IEEE) received the B.Tech. and M.Tech. degrees
from the Indian Institute of Technology Kanpur, India, in 2003 and 2005,
respectively, and the Ph.D. degree from the California Institute of Technology
in 2011. He was a Post-Doctoral Scholar and a Research Assistant Professor
with The Chinese University of Hong Kong, from 2012 to 2019, and a
Principal Researcher with the Theory Laboratory, Huawei, Hong Kong,
from 2019 to 2021. He is currently a Research Scientist at Arizona State Uni-
versity. His research interests include physical layer security, adversarial robust
communications and learning, and sparse recovery.

Bikash Kumar Dey (Member, IEEE) received the M.E. degree in signal
processing and the Ph.D. degree in electrical communication engineering
from the Indian Institute of Science, Bengaluru, India, in 1999 and 2003,
respectively.

In 2003, he joined the International Institute of Information Technology,
Hyderabad, India, as an Assistant Professor. In 2005, he joined the Department
of Electrical Engineering, Indian Institute of Technology Bombay, as an
Assistant Professor, where he is currently a Professor. His research interests
include information theory, coding theory, and wireless communications.
He was awarded the Prof. I. S. N. Murthy Medal from IISc as the Best
M.E. Student with the Department of Electrical Communication Engineering
and the Department of Electrical Engineering from 1998 to 1999 and the
Alumni Medal for Best Ph.D. Thesis from the Division of Electrical Sciences
from 2003 to 2004. He was an Associate Editor of IEEE TRANSACTIONS
ON INFORMATION THEORY from 2018 to 2020.

Vinod M. Prabhakaran (Member, IEEE) received the M.E. degree from the
Indian Institute of Science in 2001 and the Ph.D. degree from the University
of California at Berkeley in 2007. He was a Post-Doctoral Researcher with
the University of Illinois at Urbana—Champaign and Ecole Polytechnique
Fédérale de Lausanne, Switzerland. Since 2011, he has been with the School
of Technology and Computer Science, Tata Institute of Fundamental Research,
Mumbai. His research interests include information theory, cryptography, and
communication. He is an Associate Editor of the IEEE TRANSACTIONS ON
INFORMATION THEORY.

Authorized licensed use limited to: Arizona State University. Downloaded on July 30,2024 at 16:30:40 UTC from IEEE Xplore. Restrictions apply.



