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Abstract—We study the Chernoff-Stein exponent of the fol-
lowing binary hypothesis testing problem: Associated with each
hypothesis is a set of channels. A transmitter, without knowledge
of the hypothesis, chooses the vector of inputs to the channel.
Given the hypothesis, from the set associated with the hypothesis,
an adversary chooses channels, one for each element of the input
vector. Based on the channel outputs, a detector attempts to
distinguish between the hypotheses. We study the Chernoff-Stein
exponent for the cases where the transmitter (i) is deterministic,
(ii) may privately randomize, and (iii) shares randomness with
the detector that is unavailable to the adversary. It turns out that
while a memoryless transmission strategy is optimal under shared
randomness, it may be strictly suboptimal when the transmitter
only has private randomness.

1. INTRODUCTION

In binary hypothesis testing the goal is to distinguish between
two distributions (sources) [1], [2]. When n independent and
identically distributed (i.i.d.) observations from the source are
available, the Chernoff-Stein lemma [3, Theorem 11.8.3] states
that for a fixed false alarm (type-1 error) probability, the optimal
missed detection (type-2 error) probability decays exponentially
in n with the exponent given by the relative entropy between
the distributions.

A variation on this problem is where each observation is from
an arbitrarily varying source [4]. There is a set of distributions
associated with each hypothesis. Given a hypothesis, the
observations are independent, but each observation could be
arbitrarily distributed according to any one of the distributions
belonging to the set of distributions corresponding to the
hypothesis. We may view the choice of distribution as being
made by an adversary who is aware of the detection scheme
used. Fangwei and Shiyi [5] studied this problem where
the adversary’s choice may be stochastic. Recently, Brandão,
Harrow, Lee, and Peres [6] considered the case with an adaptive
adversary who has feedback of the past observations and may
use this to choose the distribution of the next observation.

In another variation on the binary hypothesis testing problem,
instead of distinguishing between sources, the objective is to
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distinguish between two channels with the same input and
output alphabets [7], [8]. Here, a transmitter, which is unaware
of the hypothesis, may choose the inputs to the channels. It can
be shown that the optimal Chernoff-Stein error exponent may
be attained using a deterministic transmission strategy which
sends the input letter for which the relative entropy between
the channel output distributions under the two hypotheses is
maximized [7]. Hayashi [8] studied the adaptive case where
the transmitter has feedback of the channel output when the
block length is fixed and showed that feedback does not
improve the optimal error exponent. Polyanskiy and Verdú [9]
considered the same problem with variable-length transmissions
and showed that feedback may improve the error exponent in
general.

In this work we study the Chernoff-Stein exponent of
the binary hypothesis testing problem for arbitrarily varying
channels [10]. Associated with each hypothesis is a set of
channels. All channels have the same input and output alphabets.
The transmitter, without knowledge of the hypothesis, chooses
the vector of inputs to the channel. Given the hypothesis, the
adversary chooses a vector of channels where each element
belongs to the set of channels associated with the hypothesis.
The adversary is aware of the strategy of the transmitter and
detector, but not necessarily the choice of channel inputs. The
detector observes the outputs resulting from applying the inputs
chosen by the transmitter element-wise independently to the
channels selected by the adversary. We consider three different
settings depending on the nature of randomness unknown to the
adversary which is available to the transmitter and detector1:
(i) deterministic schemes (Section 4), (ii) randomness shared
between transmitter and detector (Section 3), and (iii) private
randomness at the transmitter (Section 5). We also comment on
the role of adaptivity both of the transmitter (under a fixed block
length) and of the adversary (Section 6). Wherever omitted,
the proofs can be found in the extended version [11].

When the channels are not arbitrarily varying, randomization
(and adaptivity in the fixed length case) do not change
the optimal Chernoff-Stein exponent which is achieved by
the deterministic transmitter strategy of repeating the input
symbol for which the channel output distributions under the

1We allow the adversary to randomize in all cases. The optimal exponent
is unaffected by the availability of common randomness known also to the
adversary, nor by additional private randomness at the detector.
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Chernoff-Stein exponent Condition for the exponent to be non-zero

Shared randomness sup
PX

min
W∈conv(W),W∈conv(W)

D(W‖W |PX) conv(W) ∩ conv(W) = ∅

Deterministic transmitter max
x

min
Wx∈conv(Wx),Wx∈conv(Wx)

D(Wx‖Wx) conv(Wx) ∩ conv(Wx) = ∅ for some x

Private randomness Open (see Theorem 5) conv(W) ∩ conv(W) = ∅ and (W,W) is not trans-symmetrizable

two hypotheses have the largest relative entropy [7], [8].
With arbitrarily varying channels, we see that randomization
improves the exponent in general (Remark 1 and Example 2).
This is analogous to the usefulness of randomization in
communication over arbitrarily varying channels [12]. We
also demonstrate that the optimal exponents under the three
different settings are different in general. Our results also show
the following interesting phenomenon: When the transmitter
has private randomness which is unknown to the adversary,
but shares no randomness with the detector, it turns out that
a memoryless transmission strategy is strictly sub-optimal in
general (Section 5). This is in contrast to the optimality of
a memoryless transmission scheme when the transmitter and
detector share randomness. Another related work, especially to
Section 5 on the private randomness case, is [13] as we discuss
there. It considered communication and testing in a similar
model though error exponents for testing were not considered
there. While the present paper was under review, a work by
Bergh, Datta and Salzmann [14] which studies binary composite
classical and quantum channel discrimination appeared. The
results there on classical composite convex sets are closely
related to those of Section 3 on the shared randomness case.

2. PRELIMINARIES

Adversarial Hypothesis Testing. Our achievability proofs
use the adversarial Chernoff-Stein lemma from [6] which
we briefly describe here. Let Z be a finite set. Let P,Q ⊆
RZ be closed, convex sets of probability distributions. The
adaptive adversary is specified by p̂i : Zi−1 → P and
q̂i : Zi−1 → Q for i ∈ [1 : n]. For any zn ∈ Zn, let
p̂(zn) :=

∏n
i=1 p̂i(z

i−1)(zi) and q̂(zn) :=
∏n
i=1 q̂i(z

i−1)(zi).
Let An ⊆ Zn be an acceptance region for P . For ε > 0, the
type-I and type-II errors are defined to be

αn
def
= sup

(p̂i)
n
i=1

p̂(Acn), βεn
def
= min
An:αn≤ε

sup
(q̂i)

n
i=1

q̂(An),

and the adversarial Chernoff-Stein exponent is given by

Eεadv(P ,Q)
def
= lim
n→∞

− 1

n
log βεn.

For any pair p ∈ P, q ∈ Q, since the adversary may (non-
adaptively) choose p̂i = p and q̂i = q for all i ∈ [1 : n], by
the Chernoff-Stein lemma [3, Theorem 11.8.3] it is clear that
Eεadv(P ,Q) ≤ min

p∈P,q∈Q
D(p‖q). In [5] it was shown that this

upper bound is achievable if the adversary is non-adaptive. The
following theorem states that this remains true even when the
adversary is adaptive.

Theorem 1 (Adversarial Chernoff-Stein Lemma [6]). Let Z
be a finite domain. For any pair of closed, convex sets of
probability distributions P,Q ⊆ RZ ,

Eεadv(P ,Q) = min
p∈P,q∈Q

D(p‖q). (1)

Problem Setup. Let X and Y be finite sets. A discrete
memoryless channel W (.|.) takes an input symbol x ∈ X and
outputs a symbol y ∈ Y with probability W (y|x). Consider
two finite sets of channels W = {W (.|., s) : s ∈ S}, W =
{W (.|., s̄) : s̄ ∈ S̄}. The goal is to distinguish between the
two sets of channels. In particular, we study the asymmetric
hypothesis test between the null hypothesis H0 : W and the
alternative hypothesis H1 :W . There are three entities involved:
(a) the transmitter, (b) the adversary, and (c) the detector. The
transmitter is unaware of which hypothesis has been realized
and chooses the input symbols. The adversary, depending on
which hypothesis is realized, chooses the state symbols (from
S under H0 and S̄ under H1). The detector decides between
H0 and H1 based on everything it knows. We will elaborate
this in the coming sections.

3. SHARED RANDOMNESS

In this setting, the transmitter and detector share randomness
which is unknown to the adversary. The input Xn to the
channel, which is a function of this randomness, is known
to the detector. For a transmitter strategy PXn and a pair of
adversary strategies PSn and PS̄n , the distribution induced on
Xn × Yn under H0 is given by

Qnsh(xn, yn) =
∑
sn∈Sn

PXn(xn)PSn(sn)
n∏
i=1

W (yi|xi, si).

(2)
A similar expression is obtained for Q̄nsh under H1 where
instead of PSn and W we have PS̄ and W respectively. The
detector uses a (possibly privately randomized) decision rule
fsh : Xn × Yn → {0, 1}. Let An be the (possibly random)
acceptance region for H0, i.e., An = {(xn, yn) ∈ Xn × Yn :
fsh(xn, yn) = 0}. For a given transmitter and detector strategy,
the type-I error is given by

αsh
n = sup

PSn

E [Qnsh(Acn)] ,

where the expectation is over the random choice of An. For
ε > 0, when the type-I error αsh

n is at most ε, the optimal
type-II error is given by

βε,sh
n

def
= inf
PXn

inf
An:αsh

n≤ε
sup
PS̄n

E
[
Q̄nsh(An)

]
,
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where the expectation is over the random An set by the inner
inf . The Chernoff-Stein exponent is then defined to be

Eεsh(W ,W)
def
= lim inf

n→∞
− 1

n
log βε,sh

n , ε > 0.

Let conv(W) and conv(W) be the convex hulls of the
channel sets W and W respectively. i.e.,

conv(W)
def
=

{∑
s∈S

PS(s)W (.|., s) : PS ∈ ∆S

}
,

where ∆S is the set of all probability distributions over S.
conv(W) is defined similarly with S̄,W instead of S,W . Let

D∗sh
def
= sup

PX

min
W∈conv(W)

W∈conv(W)

D(W‖W |PX). (3)

Since conv(W), conv(W) are closed, convex sets and D(.‖.)
is lower semi-continuous, the minimum exists.

Theorem 2. LetW andW be two sets of discrete memoryless
channels which map X to Y . For any ε ∈ (0, 1), we have

D∗sh ≤ Eεsh(W ,W) ≤ D∗sh

1− ε
. (4)

Proof. Achievability (Eεsh(W ,W) ≥ D∗sh): We argue the achiev-
ability for the (stronger) adaptive adversary who has access to
previous channel inputs and outputs. The transmitter transmits
Xn chosen i.i.d. according to PX using the shared randomness.
This reduces the problem to the adversarial hypothesis testing
problem studied in [6]. For any fixed choice of PX , invoking
Theorem 1 with P = {PXW : W ∈ conv(W)} and
Q = {PXW : W ∈ conv(W)},

Eεsh(W ,W) ≥ min
W∈conv(W)

W∈conv(W)

D(W‖W |PX).

Optimizing over PX completes the proof of achievability.
Weak Converse (Eεsh(W ,W) ≤ D∗sh

1−ε ): We show this converse
result for an adaptive transmitter who has feedback of the out-
puts. Given an adaptive transmitter, we construct an adversarial
strategy to show the upper bound on the exponent. Specifically,
we consider a memoryless strategy (not necessarily i.i.d.) for
the adversary, i.e. PSn =

∏n
i=1 PSi and PS̄n =

∏n
i=1 PS̄i

where PSi and PS̄i
will be specified in course of the proof.

Let Qn and Q̄n denote the joint distributions on Xn × Yn
under H0 and H1 respectively. They are given by

Qn(xn, yn) =
n∏
i=1

~Qi(xi|xi−1, yi−1)

(∑
si∈S

PSi
(si)W (yi|xi, si)

)
(5)

and

Q̄n(xn, yn) =

n∏
i=1

~Qi(xi|xi−1, yi−1)

∑
s̄i∈S̄

PS̄i
(s̄i)W (yi|xi, s̄i)

 . (6)

Here, ~Qi(xi|xi−1, yi−1) denotes the transmitter strategy at the
ith timestep. We now try to get an upper bound on D(Qn‖Q̄n).

D(Qn‖Q̄n) =
n∑
i=1

D(QXi,Yi|(X,Y )i−1‖Q̄Xi,Yi|(X,Y )i−1 |Qi−1)

=
n∑
i=1

(
D( ~Qi‖ ~Qi|Qi−1)

+D(QYi|Xi,Y i−1‖Q̄Yi|Xi,Y i−1 |Qi−1 ~Qi)
)

Observe that all the D( ~Qi‖ ~Qi|Qi−1) terms are zero. Further-
more, from (5), (6), we can see that QYi|Xi,Y i−1 = QYi|Xi

,
Q̄Yi|Xi,Y i−1 = Q̄Yi|Xi

. Thus,

D(Qn‖Q̄n) =
n∑
i=1

D(QYi|Xi
‖Q̄Yi|Xi

|Qi−1 ~Qi)

=
n∑
i=1

D(QYi|Xi
‖Q̄Yi|Xi

|QXi
) (7)

It is easy to see that (PS1
, PS̄1

) can be chosen such that
D(QY1|X1

‖Q̄Y1|X1
| ~Q1) ≤ D∗sh. We then recursively specify

(PSi
, PS̄i

) such that each term in (7) is upper bounded by D∗sh.
Thus,

D(Qn‖Q̄n) ≤ nD∗sh. (8)

With this upper bound in place, we may follow a standard
approach via the data processing inequality to complete the
proof (e.g., see [8, Section VI]). See Appendix A, [11] where
we complete these steps.

The following theorem characterizes the pairs of (W ,W)
for which Eεsh > 0.

Theorem 3. Eεsh(W ,W) > 0 ⇐⇒ conv(W)∩ conv(W) = ∅.

Proof. The if (⇐) part follows from Theorem 2. To see the
(contrapositive of the) only if (⇒) direction, notice that under
hypothesis H0 (resp., H1), the adversary may induce any
channel from conv(W) (resp., conv(W)) from the transmitter
to the detector. Hence, when the intersection is non-empty, the
adversary may induce the same channel under both hypotheses
so that no transmission strategy (including an adaptive one)
can distinguish between the hypotheses.

4. DETERMINISTIC TRANSMITTER

In this setting, the transmitter strategy is completely deter-
ministic and is defined by a fixed tuple (x1, x2, . . . , xn). The
distribution on Yn under H0 and H1 are similar to (2) with
PXn as a point mass on (x1, x2, . . . , xn). The definitions of
decision rule fdet and acceptance region An are similar to those
in Section 3 except that the observation space is Yn instead
of Xn × Yn. The definitions of αdet

n , β
ε,det
n and Eεdet are also

similar except that the inf is over the input symbols in the
expression for βε,det

n .
For x ∈ X , let conv(Wx) and conv(Wx) be the convex

hulls of the conditional distributions W (.|x, s) and W (.|x, s̄).

conv(Wx)
def
=

{∑
s∈S

PS(s)W (.|x, s) : PS ∈ ∆S

}
,
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Fig. 1. An example in which, for a privately randomized transmitter, the
hypotheses cannot be distribguished using memoryless transmission schemes,
but a scheme with 2-step memory yields a positive Chernoff-Stein exponent.

conv(Wx) is defined similarly with S̄,W instead of S,W .
Define D∗det to be

D∗det := max
x

min
Wx∈conv(Wx)

Wx∈conv(Wx)

D(Wx‖W x) (9)

Theorem 4. LetW andW be two sets of discrete memoryless
channels which map X to Y . For any ε ∈ (0, 1), we have

D∗det ≤ Eεdet(W ,W) ≤ D∗det

1− ε
. (10)

The proof is on similar lines as Theorem 2. We also show
that (10) holds when both the transmitter and the adversary are
adaptive. A characterization theorem analogous to Theorem 3
can also be shown. We omit these in the interest of space.

5. PRIVATE RANDOMNESS

We now consider the case where the transmitter may choose
the channel input Xn randomly, but the realization of Xn is
unavailable to the detector and the adversary. We may define
the optimal Chernoff-Stein exponent Eεpvt(W ,W) along the
same lines as earlier sections. Note that the decision function
is now a (possibly random) partition of Yn. By the discussion
leading up to Theorem 1, if the transmitter adopts an i.i.d. PX
strategy, the best possible exponent (irrespective of whether
the adversary is adaptive or not) is

Dpvt,iid = sup
PX

min
QY ∈Q(PX)
Q̄Y ∈Q̄(PX)

D(QY ‖Q̄Y ),

whereQ(PX) (resp. Q̄(PX)) is the set of (single-letter) channel
output distributions that can be induced by the adversary when
the input is distributed as PX under hypothesis H0 (resp.
H1), i.e., Q def

=
{∑

x,s PS(s)PX(x)W (.|x, s) : PS ∈ ∆S

}
. It

turns out that in general the optimal exponent Eεpvt(W ,W)
could be strictly larger that Dpvt,iid. In the following example,
Eεpvt(W ,W) > 0 for all ε > 0 even though Dpvt,iid = 0.

Example 1. H0 : W = {W (.|.)} consists of a binary
erasure channel (BEC) with parameter p < 1 and H1 :
W = {W (.|., 0),W (.|., 1)} consists of two modified BEC(p)
channels where one of the symbols flips with probability

(1− p)r, r > 0 as shown in Figure 1. Here, X = {0, 1},Y =
{0, 1, e},S = {0}, S̄ = {0, 1}. Note that Q is a singleton.
It is easy to verify that, under H1, if the adversary sets
PS̄(0) = 1− PX(0), the induced channel output distribution
will be the same as the one under H0. Hence, Q ⊂ Q̄ and
therefore Dpvt,iid = 0.

Now to see that Eεpvt(W ,W) > 0, consider a transmission
scheme with 2-step memory: n/2 i.i.d. pairs are sent where
each pair is distributed as PX1,X2

(0, 0) = PX1,X2
(1, 1) = 0.5.

The effective channel is now a random map from X 2 to Y2. The
new state space for the (non-adaptive) adversary under H0 is
S2 (which is still a singleton), and S̄2 under H1. Let Q2 (resp.
Q̄2) be the set of (two-letter) channel output distributions that
can be induced by the adversary when the input is distributed
according to PX1,X2

under H0 (resp. H1). Since Q2 is a
singleton, let the member be denoted by QY1,Y2

. If we show
that QY1,Y2

/∈ Q̄2, we may conclude that Eεpvt(W ,W) > 0.
Assume for contradiction that this is not the case, i.e., suppose
there exists PS̄1,S̄2

such that the resulting Q̄Y1,Y2 is the same
as QY1,Y2

. Since the marginals also have to be equal, we have
QY1

= Q̄Y1
. This forces PS1

to be uniform. Now, observe
that QY1,Y2

(0, 1) = 0 while, irrespective of PS2|S1
, we have

Q̄Y1,Y2
(0, 1) > 0 since r > 0. This is a contradiction and hence

QY1,Y2 /∈ Q̄2. Therefore, Eεpvt(W ,W) > 0 by Theorem 1.
The above argument does not account for an adaptive

adversary. In Appendix E, [11] we show that even with an
adaptive adversary the above transmission scheme leads to a
positive exponent.

Remark 1. For the above example, Eεdet

(
W,W

)
<

Eεpvt(W ,W). This follows from D∗det ≤ Dpvt,iid which is a
consequence of the fact that for PX such that PX(x) = 1
for some x ∈ X , the corresponding Q(PX) and Q̄(PX) are
conv(Wx) and conv(Wx) respectively.

In the rest of this section, we give an achievable lower
bound on the error exponent Eεpvt(W ,W) and characterize
the pairs

(
W,W

)
for which it is positive2. If conv(W) ∩

conv(W) 6= ∅, then Eεpvt(W ,W) = 0 (by Theorem 3). This
follows from the fact that the adversary can choose Sn and
S̄n i.i.d. so that a channel in the intersection may be induced
which renders the hypotheses indistinguishable irrespective of
the transmission scheme. It turns out that when the transmitter
only has private randomness, a more carefully chosen adversary
strategy which now depends on the transmission scheme may
render Eεpvt(W ,W) = 0 for a larger class of

(
W,W

)
pairs.

Definition 1 ([13, eq. (2)]). The pair
(
W,W

)
is

trans-symmetrizable if there exist conditional distributions
PS|X , PS̄|X such that, for every x, x̃ ∈ X and y ∈ Y ,∑
s∈S

PS|X(s|x)W (y|x̃, s) =
∑
s̄∈S̄

PS̄|X(s̄|x̃)W (y|x, s̄). (11)

2This characterization is implicit in [15, Corollary 1]. Note that the
“deterministic coding” transmitter there has access to the message which
serves as a source of private randomness for the testing problem.
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Consider a trans-symmetrizable pair
(
W,W

)
and a (non-

adaptive3) transmission scheme P̂ . We will demonstrate (non-
adaptive) adversary strategies under which the detector is unable
to distinguish between the hypotheses. Under hypothesis H1,
the adversary, independent of the transmitter, samples a X̃n

according to P̂ and passes it through the (memoryless) channel
PS̄|X of Definition 1 to produce its S̄n. This induces the
following distribution on the channel output vector:∑
xn,s̄n

P̂ (xn)

[∑
x̃n

P̂ (x̃n)
n∏
i=1

(
PS̄|X(s̄i|x̃i)

)]
Wn(yn|xn, s̄n)

=
∑
xn,x̃n

P̂ (xn)P̂ (x̃n)
n∏
i=1

∑
s̄i∈S̄

PS̄|X(s̄i|x̃i)W (yi|xi, s̄i)


(a)
=
∑
x̃n,xn

P̂ (x̃n)P̂ (xn)
n∏
i=1

[∑
si∈S

PS|X(si|xi)W (yi|x̃i, si)

]

=
∑
x̃n,sn

P̂ (x̃n)

[∑
xn

P̂ (xn)
n∏
i=1

(
PS|X(si|xi)

)]
Wn(yn|x̃n, sn)

where (a) follows from (11). This is identical to the channel
output distribution under hypothesis H0 if the adversary
samples from P̂ (independent of the transmitter) and passes
through the channel PS|X of Definition 1 to produce its Sn.
Thus, Eεpvt(W ,W) = 0 if

(
W,W

)
is trans-symmetrizable. The

example below establishes a separation between shared and
private randomness.

Example 2 ([13, Example 1]). Let X = S = S̄ = {0, 1} and
Y = {0, 1}2. Suppose W deterministically outputs Y = (X,S)
while W̄ outputs Y = (S̄,X). Clearly, conv(W)∩conv(W) =
∅. Hence, by Theorem 3, Eεsh > 0. However,

(
W,W

)
is trans-

symmetrizable since PS|X(x|x) = PS̄|X(x|x) = 1 for all
x ∈ X satisfies (11). Hence Eεpvt(W ,W) = 0.

Our lower bound on Eεpvt(W ,W) is in terms of the following
quantitative measure of how far the pair

(
W,W

)
is from being

trans-symmetrizable and/or having a non-empty intersection
of their convex hulls; Lemma 1 and its proof in Appendix F,
[11] makes this connection concrete.

Definition 2. For a distribution P over X , we define η(P ) as
the set of triples (η1, η2, η3) for which there exists δ > 0 such
that there is no joint distribution PXX′S̄SY with PX = PX′ =
P satisfying

1) I(X; S̄) < η1, I(X ′;S) < δ,
2) D(PXS̄Y ||PXS̄W ) < η2,
3) D(PX′SY ||PX′SW ) < δ, and
4) if PXX′(X ′ 6= X) > 0,

(i) I(X ′;XY |S̄) < η3, and (ii) I(X;X ′Y |S) < δ.

Our main theorem for this section is the following:

Theorem 5. Let ε > 0.

Eεpvt(W ,W) = 0 if
(
W,W

)
is trans-symmetrizable or

3This discussion can be modified to handle an adaptive transmission scheme
if the adversary is also adaptive. This is omitted in the interest of space.

conv(W) ∩ conv(W) 6= ∅
Eεpvt(W ,W) ≥

max

{
max

P,(η1,η2,η3)∈η(P )
min

{
η1, η2,

η3

3

}
, D∗det

}
Lemma 1. If

(
W,W

)
is not trans-symmetrizable and

conv(W) ∩ conv(W) = ∅, there exists an input distribution P
with (η1, η2, η3) ∈ η(P ) such that η1, η2, η3 > 0.

Corollary 1. Eεpvt(W ,W) > 0 if and only if
(
W,W

)
is not

trans-symmetrizable and conv(W) ∩ conv(W) = ∅.

This recovers [15, Corollary 1] which gave the same
characterization for

(
W,W

)
which allow hypothesis testing

with vanishing probability of error when the transmitter has
private randomness (in the form a random message). Our proof
(in Appendix F, [11]) of the lower bound to Eεpvt(W ,W) in
Theorem 5, which is inspired by [15], entails significant careful
modifications to the detector and the error analysis there.

6. ON THE ROLE OF ADAPTIVITY

1) With shared randomness: It turns out that our results
hold even if the transmitter and/or adversary is adaptive. We
proved the achievability part of Theorem 2 assuming that the
adversary is adaptive and the converse assuming the transmitter
is adaptive.

2) Deterministic schemes: Here the optimal exponent re-
mains unchanged even if the adversary is adaptive (irrespective
of whether the transmitter is adaptive or not). This is also the
case if both the adversary and the transmitter are adaptive.
These follow from our achievability proof which is shown
assuming an adaptive adversary and the converse which is
shown when (a) both the transmitter and adversary are non-
adaptive and (b) when both are adaptive (see Appendix D, [11]).
It is also easy to see that, in general, if the transmitter is adaptive
and the adversary is not, the exponent could be improved.
The transmitter and detector may extract some randomness
unknown to the adversary from the channel output feedback
of, say, the first half of the block, and use this to implement a
scheme with shared randomness during the second half. Since
there are channels for which deterministic exponent is zero
while the exponent under shared randomness is positive (for
instance, see Example 2), these (possibly augmented by an
independent random channel output component which provide
additional shared randomness) serve as examples where such
an improvement is feasible.

3) With private randomness: If the adversary is non-
adaptive and the transmitter is adaptive, improved exponents
are possible along the lines of the above discussion. This
follows from the fact that there are channels where the exponent
with shared randomness is positive, while that with private
randomness is zero (specifically, trans-symmetrizable but with
conv(W) ∩ conv(W) = ∅; see Example 2). We also showed
that memoryless schemes may be strictly sub-optimal even
if the adversary is adaptive (Appendix E, [11]). Also, the
impossibility result in Theorem 5 can be shown when both the
transmitter and adversary are adaptive.

2023 IEEE International Symposium on Information Theory (ISIT)

1229
Authorized licensed use limited to: Arizona State University. Downloaded on July 30,2024 at 16:35:07 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations,” The Annals of Mathematical Statistics,
pp. 493–507, 1952.

[2] W. Hoeffding, “Asymptotically optimal tests for multinomial distributions,”
The Annals of Mathematical Statistics, pp. 369–401, 1965.

[3] T. M. Cover, Elements of information theory. John Wiley & Sons, 1999.
[4] V. Strassen, “Meßfehler und information,” Zeitschrift für Wahrschein-

lichkeitstheorie und verwandte Gebiete, vol. 2, pp. 273–305, 1964.
[5] F. Fangwei and S. Shiyi, “Hypothesis testing for arbitrarily varying

source,” Acta Mathematica Sinica, vol. 12, no. 1, pp. 33–39, 1996.
[6] F. G. Brandão, A. W. Harrow, J. R. Lee, and Y. Peres, “Adversarial

hypothesis testing and a quantum Stein’s lemma for restricted mea-
surements,” IEEE Transactions on Information Theory, vol. 66, no. 8,
pp. 5037–5054, 2020.

[7] R. Blahut, “Hypothesis testing and information theory,” IEEE Transac-
tions on Information Theory, vol. 20, no. 4, pp. 405–417, 1974.

[8] M. Hayashi, “Discrimination of two channels by adaptive methods and
its application to quantum system,” IEEE Transactions on Information
Theory, vol. 55, no. 8, pp. 3807–3820, 2009.

[9] Y. Polyanskiy and S. Verdú, “Binary hypothesis testing with feedback,”
in Information Theory and Applications Workshop (ITA), 2011.

[10] D. Blackwell, L. Breiman, and A. Thomasian, “The capacities of certain
channel classes under random coding,” The Annals of Mathematical
Statistics, vol. 31, no. 3, pp. 558–567, 1960.

[11] E. Modak, N. Sangwan, M. Bakshi, B. K. Dey, and V. M. Prabhakaran,
“Hypothesis testing for adversarial channels: Chernoff-Stein exponents,”
arXiv preprint arXiv:2304.14166, 2023.

[12] A. Lapidoth and P. Narayan, “Reliable communication under channel
uncertainty,” IEEE transactions on Information Theory, vol. 44, no. 6,
pp. 2148–2177, 1998.

[13] S. Chaudhuri, N. Sangwan, M. Bakshi, B. K. Dey, and V. M. Prabhakaran,
“Compound arbitrarily varying channels,” in 2021 IEEE International
Symposium on Information Theory (ISIT), pp. 503–508, IEEE, 2021.

[14] B. Bergh, N. Datta, and R. Salzmann, “Composite classical and quantum
channel discrimination,” arXiv preprint arXiv:2303.02016, 2023.

[15] S. Chaudhuri, N. Sangwan, M. Bakshi, B. K. Dey, and V. M. Prab-
hakaran, “Compound arbitrarily varying channels,” arXiv preprint
arXiv:2105.03420, 2021.

2023 IEEE International Symposium on Information Theory (ISIT)

1230
Authorized licensed use limited to: Arizona State University. Downloaded on July 30,2024 at 16:35:07 UTC from IEEE Xplore.  Restrictions apply. 


