
Crucible: Graphical Test Cases for Alloy Models

Adam G. Emerson

University of Texas at Arlington

Arlington, TX USA

adam.emerson@mavs.uta.edu

Allison Sullivan

University of Texas at Arlington

Arlington, TX USA

allison.sullivan@uta.edu

AbstractÐAlloy is a declarative modeling language that is well
suited for verifying system designs. Alloy models are automati-
cally analyzed using the Analyzer, a toolset that helps the user
understand their system by displaying the consequences of their
properties, helping identify any missing or incorrect properties,
and exploring the impact of modifications to those properties.
To achieve this, the Analyzer invokes off-the-shelf SAT solvers
to search for scenarios, which are assignments to the sets and
relations of the model such that all executed formulas hold.
To help write more accurate software models, Alloy has a unit
testing framework, AUnit, which allows users to outline specific
scenarios and check if those scenarios are correctly generated or
prevented by their model. Unfortunately, AUnit currently only
supports textual specifications of scenarios. This paper introduces
Crucible, which allows users to graphically create AUnit test
cases. In addition, Crucible provides automated guidance to users
to ensure they are creating well structured, valuable test cases. As
a result, Crucible eases the burden of adopting AUnit and brings
AUnit test case creation more in line with how Alloy scenarios
are commonly interacted with, which is graphically.

Index TermsÐAlloy, SAT Solver, Scenario Enumeration

I. INTRODUCTION

In today’s society, we are becoming increasingly dependent

on software systems. However, we also constantly witness the

negative impacts of buggy software. One way to help develop

better software systems is to leverage software models. When

forming requirements, software models can be used to clearly

communicate to all stakeholders both the desired system as

well as the environment it will be deployed in. When creating

designs and implementations, software models can help reason

over how well the design and implementation choices satisfy

the requirements. As such, software models can help detect

flaws earlier in development and thus aid in the delivery of

more reliable systems.

Alloy [13] is a relational modeling language. A key strength

of Alloy is the ability to develop models in the Analyzer, an

automatic analysis engine based on off-the-shelf SAT solvers,

which the Analyzer uses to generate scenarios that highlight

how the modeled properties either hold or are refuted, as

desired. The user is able to iterate over these scenarios one

by one, inspecting them for correctness. Alloy has been used

to verify software system designs [35], [3], [32], [7], and

to perform various forms of analyses over the corresponding

implementation, including deep static checking [14], [10],

systematic testing [18], data structure repair [34], automated

debugging [11] and to synthesize security attacks [1], [20],

[27].

However, to gain the many benefits that come from utilizing

software models, the model itself needs to be correct. Unfor-

tunately, while Alloy offers succinct formulation of complex

properties, Alloy’s support for expressive operators, such as

transitive closure and quantified formulas, can make writ-

ing non-trivial properties challenging, especially for beginner

users. In Alloy, there are two types of faults that can appear

in a model: (1) under-constrained faults in which the model

allows scenarios it should prevent, and (2) over-constrained

faults in which the model prevents scenarios it should allow. To

help detect these types of faults in an Alloy model, a unit test-

ing framework, AUnit, was created [26], [25]. AUnit enables

users to outline a specific scenario they expect their model

to allow or prevent and then check that this behavior actually

occurs. This improves upon the previous ad-hoc practices that

require users to either (1) enumerate scenarios until finding one

that is malformed or (2) enumerate all scenarios and realize

one was missing, in order to determine if their model is faulty.

AUnit laid the foundation to bring a number of proven

imperative testing practices to Alloy, including mutation test-

ing [29], automated test generation [25], fault localization [30],

automated repair [28] and partial synthesis of models [31].

These extensions help establish a comprehensive testing envi-

ronment for Alloy that is similar to the robust testing support

that imperative languages like Java have. Unfortunately, when

it comes to the actual creation of an AUnit test case, the user is

required to outline the valuation portion of a test case textually

as a series of set equality statements that are wrapped around

an existentially quantified formula.

However, valuations, which outline scenarios, are com-

monly interacted with graphically not textually. This results in

a gap between the user’s mental model of an Alloy valuation

and the way the user currently has to create the valuation in

order for the Analyzer to successfully reproduce it and perform

unit testing. This paper addresses this issue by introducing

Crucible, which establishes support for users to graphically

create test cases. In addition, Crucible leverages the underlying

model to help guide the user to create well-formed test cases

by warning users when they attempt to create test cases that

violate the model’s structural constraints, which helps the user

create stronger, more effective test suites.

In this paper, we make the following contributions:

Graphical Specification of Test Cases: We introduce Cru-

cible, which enables users to create AUnit test cases graphi-

cally through a drag and drop interface.

218

2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/23/$31.00 ©2023 IEEE
DOI 10.1109/ISSRE59848.2023.00065



(a) (b) (c)

1. one sig List {header: lone Node}

2. sig Node {link: lone Node}

3. pred acyclic {

4. all n : List.header.*link{

5. n !in n.*link }

6. }

7. run acyclic for 3

L0

N0 N1

header

link

1. val TwoNode {

2. some disj N0, N1 : Node, L0 : List{

3. List = L0 , Node = N0 + N1

4. header = L0->N0, link = N0->N1

5. }

6. }

7. @Test Test0: run {acyclic and TwoNode}

Fig. 1. Faulty Alloy Model and Fault-Revealing AUnit Test Case

Automated Guidance: Based on the underlying model, Cru-

cible will prevent users from creating malformed test cases

and inform the user of which part of the model’s signatures

prevents the test case from being feasible.

Evaluation: We evaluate the overhead of Crucible’s trans-

lation between the graphical and textual representation of a

test case. We also use key examples to highlight the need to

support the graphical creation of test cases to ease the burden

of creating test cases for models with complicated structures.

Open Source: We release Crucible as an open-source toolset

at: https://github.com/Crucible-Alloy/Crucible.

II. BACKGROUND

A. Alloy

To highlight how modeling in Alloy works, Figure 1 (a)

depicts a faulty model of a singly-linked list with an acyclic

constraint. Signature paragraphs and the relations declared

within introduce atoms and their relationships (lines 1 - 2).

Line 1 introduces a named set List and uses the relation

header to express that each List atom has zero or one

header node (lone). Similarly, line 2 introduces the named set

Node and uses the link relation to express that each Node

atom points to zero or one other node. Predicate paragraphs

introduce named formulas that can be invoked elsewhere (lines

3 - 6). The predicate Acyclic uses universal quantification

(all), set exclusion (!in), relation join (.), and reflexive

transitive closure (*) to try to express the idea that ªfor

all nodes in the list, no node is reachable from themselves

following one or more traversals down the link relation.º The

fault, in red, can be corrected by replacing reflexive transitive

closure (‘*’) with transitive closure (‘^’), which will produce

a set that will not include the node itself.

Commands indicate which formulas to invoke and what

scope to explore. The command on line 7 asks the Analyzer to

search for satisfying assignments to all the sets of the model

(List, header, Node, and link) such that Acyclic is true

using up to 3 List atoms and 3 Node atoms. A user can iterate

over all the scenarios found by the SAT solver one by one. At

a conceptual level, each scenario depicts behavior currently

allowed by the modeled system. Figure 1 (b) graphically

displays a scenario that a user would expect to be found by the

Analyzer when the command at line 7 is executed: a list with

two nodes and no cycles. Therefore, the user would expect

to encounter this scenario at some point. However, due to the

fault, this will never happen.

B. AUnit

AUnit addresses the need to have a systematic method to

check the correctness of Alloy models [26]. Before AUnit,

there was no formal notion of ªtestingº in the Analyzer. As

a result, experienced users would employ a range of ad-hoc

techniques, such as enumerating all scenarios ± which can

number in the thousands ± and visually inspecting them for is-

sues, a process which is both time consuming and error prone.

Moreover, the number of scenarios can be in the thousands

and the order scenarios are presented is based on the order the

backend SAT solver finds them, which means the scenarios are

effectively unordered. Altogether, this makes the enumeration-

inspection process impractical. For instance, since scenarios

are unordered, the user cannot count on inspecting them in

order of increasing size, which would make it more feasible

to catch a missing scenario.

The key insight behind AUnit is that unit testing, the most

effective way to validate code, provides a blueprint on how

to validate models. Specifically, an AUnit test case consists

of two components: a valuation, which is an assignment to

the sets and relations of the model, and a command, which

specifies the Alloy formulas under test. A test case passes if

the valuation is a valid scenario of the associated command;

otherwise, the test fails. AUnit enables a user to directly ensure

a specific scenario they have in mind is correctly generated

± which checks for over-constrained faults ± or prevented ±

which checks for under-constrained faults ± without having to

rely on encountering the scenario, or not, in the Analyzer.

To demonstrate, Figure 1 (b) and (c) depicts an AUnit

test case graphically and textually which reveals the faulty

behavior. This test case is based on a scenario which is valid

for the correct model, but is incorrectly invalid for the faulty

model. The valuation, outlined in lines 1-6 in Figure 1 (c),

assigns all the sets (List and Node) and relations (header

and link) of the singly-linked list to concrete values, creating

a single scenario to reason over, by using existential quantifi-

cation (‘some’) and the disjoint operator (‘disj’) to declare

local variables and set equality (‘=’) to assign these local

variables to constrain the sets of the model. The command

given in line 7 in Figure 1 (c) outlines the Acyclic predicate

as the formula under test. When the Analyzer executes the test

case, the command is unexpectedly unsatisfiable, revealing the

fault. Prior work has extended the Analyzer with the ability

to natively declare AUnit test cases by extending the grammar

with new keywords: val to outlined valuations and @Test to

flag which Alloy commands refer to test executions [24].

219



C. Challenge: Specifying Test Cases Textually

The textual format, as seen in Figure 1 (c), can be tedious to

provide, especially if the test case reasons over multiple states,

contains numerous atoms or has higher arity relations. These

features in a model can quickly bloat the length of the textual

representation, impacting the readability, and thus usability,

of an AUnit test. For instance, if a model has 10 signatures,

then the atoms for all 10 signatures need to be accounted for as

local variables declared by the existentially quantified formula.

Then, the user needs to make a set equality formula for each

signature. For a scope of 3, this would be declaring up to 30

variables and creating 10 separate set equality formulas for

just the signatures. The test case would still need to create set

equality formulas to account for any relations, which could

utilize all 30 variables multiple times.

The textual representation is also not in line with the default

way users inspect scenarios, which is graphically. As a result,

requiring users to supply the textual representation increases

the burden on the user to accurately translate their mental

image of a scenario into a valid test case. In fact, recent work

has demonstrated the importance of spatial cognition ability in

solving Alloy tasks for both novice and expert users [17]. This

is especially true for writing AUnit test cases, which requires

the user to mentally picture a scenario of interest and then

accurately write constraints to, in turn, generate that exact

scenario. Crucible addresses these pain points by allowing

the user to directly supply the graphical representation of a

scenario, which Crucible will automatically translate to the

textual representation.

III. Crucible

This section outlines important implementation details of

Crucible, which is a standalone desktop application. We first

present an overview of Crucible’s system architecture. Then

we step over the process of creating test cases, including how

Crucible ensures a user cannot create a malformed test case

and how Crucible automatically translates graphical renderings

to textual test cases.

A. Framework Overview

Figure 2 displays the high level software architecture for

Crucible. Crucible looks to connect two main processes to-

gether: (1) the React graphical user interface (GUI), which

the user will use to create AUnit test cases and (2) the

Alloy Analyzer, which will execute the AUnit test cases.

While the Analyzer is written in Java, our GUI is built using

popular web technologies; Typescript, React, and Electron.

To ensure the two processes are able to communicate, the

Analyzer is wrapped in a SpringBoot REST API which is

launched in conjunction with the GUI. This API handles

the communication between processes when Alloy is needed,

which occurs (1) when the model is initially parsed and

its signature and predicate information is stored for use by

Crucible and (2) when a test case is executed. Although it

may have been a more obvious choice to write Crucible using

a Java framework like JavaFX [21], which would do away with

Fig. 2. Crucible Software Architecture Diagram

the additional overhead of an API, we opted for a web-based

desktop platform for several reasons.

Firstly, the core purpose of Crucible is to improve both

user experience and efficiency while writing AUnit test cases.

With this in mind, it is critical that the application’s interface is

familiar, intuitive, and performant. Front-end frameworks like

React, Angular, and Vue, have all been driving forces in UI

development over the last decade [22]. These frameworks, par-

ticularly React, have grown to support a massive ecosystem of

well-documented off-the-shelf primitive components that serve

to expedite development of web and desktop applications alike.

Thanks to widespread adoption of React and the GUI oriented

nature of the web, the available open-source components are

of a higher-quality than those which may be available within

the Java ecosystem.

Secondly, of equal importance is the portability and accessi-

bility of Crucible. By writing Crucible with web technologies,

specifically React and Typescript, we ensure that deployment

of Crucible is even more flexible than that afforded by Java.

If in the future a third-party wished to host Crucible on a

server for remote learning or some other application, it would

be relatively trivial to port the codebase into a fully fledged

web application. Notably, one of the main educational envi-

ronments for Alloy is the Alloy4Fun website, which provides

an online hosted platform for editing, sharing and interpreting

Alloy models [16]. Crucible’s current form factor can more

easily be integrated with Alloy4Fun than a JavaFX variant of

Crucible. As a result, Alloy4Fun can feasibly be updated to

give new users a native environment to easily address ªhow

do I test my Alloy program?º

B. Creating a Project

To get started with Crucible, the user first needs to input

their Alloy model into a new "Project". Each project consists

of a single Alloy file, and acts as an organizational object

220



(a) (b)

Fig. 3. Crucible canvas in action: (a) highlighting in green the allowed connections and (b) declaring higher arity connections.

for all of the tests written for the model. Upon selecting an

Alloy file, the file path is sent via the API to the Java process,

where it is passed into the Alloy Analyzer and converted into a

JSON object of the model’s signature and predicate definitions.

The JSON object is then returned to the GUI process where

it is cached in a SQLite database for subsequent usage. The

SQLite database is used by Crucible to help provide automated

guidance, as it contains all the information needed to know any

structural constraints attached to a model’s signatures, such as

multiplicity constraints, and any defined relations. The SQLite

object also stores all the information needed such that Crucible

can easily allow users to test any predicate currently defined

in the model, including ensuring that the user provides the

required parameters for a predicate, if needed.

C. Creating a Test Case

Once the model has been imported and a project has been

initialized, the user can then create any number of test cases.

Each test is uniquely named, and consists of (1) a canvas

onto which the user can spawn any number of atoms and

connections, as allowed by the model, and (2) a set of all

predicates and assertions declared in the model, by which the

user can select which predicate(s) to consider under evaluation.

Atoms are elements of signature sets and connections populate

relations onto the canvas, e.g. to replicate the valuation in

Figure 1 (b), N0 would be a placeable Node atom and the red

header directed line would be a placeable connection.

In Crucible’s project view, the model’s signatures are pre-

sented as small tokens in a drawer menu on the left hand

side. Each token displays the signature’s name, relations, and

multiplicity. Every token is assigned a color upon project

initialization which can be edited to the user’s liking. To build

a test, atoms are dragged from the appropriate signature token

and onto the canvas. Upon being added to the canvas, each

atom is automatically given a unique nickname for use in

command string generation and to help identify the atom as a

predicate parameter. Once a sufficient number of atoms have

been added to the canvas, connections can be made between

them through a similar drag and drop interaction, or in the case

of connections with a higher arity, a modal pop-up. Changes

to a test case are saved automatically as they are made, further

streamlining the process and allowing a user to focus on the

task at hand.

D. Automated Guidance

As atoms are dropped onto the canvas, Crucible checks the

current canvas state for multiplicity violations and alerts the

user if they are attempting an addition that violates the model.

Consider the List signature from our singly-linked list model:

1. one sig List {header: lone Node}

This signature uses the singleton multiplicity constraint, mean-

ing that there can only be one List object for any valid

scenario of this model. Therefore, if a user tries to form a

test case with multiple List objects, Crucible will alert the

user that she is attempting to violate the structural constraints

of the List signature. This is an important detail for the user

to be aware of, as any test with more than one List object

will always be prevented by the model. Therefore, Crucible’s

proactive guidance ensures the user will not incorrectly draw

conclusions about the correctness of any predicates under test.

To illustrate, if the user built the following valuation:

L1L0

N0 N1

header

link

and checked that it is successfully prevented by the acyclic

predicate, the user could build a false sense of security in

the accuracy of their acyclic predicate, as the valuation will

always be prevented due to the presence of two List atoms,

regardless of any formulas in acyclic.

As a user initiates a connection interaction to add relations

to the canvas, valid connection targets will be highlighted

based on the defined relations in the model, as seen in Figure 3

where the two Node atoms are glow green to outline valid

header connections. If a user attempts to make a connection

to a non-valid target, they will be notified of the issue. In

221



addition, if the user attempts to make a connection that violates

a relational multiplicity constraint, they will again be notified

and the action will be prevented.

To illustrate, consider the header relation:

1. one sig List {header: lone Node}

The header relation conveys two important pieces of infor-

mation. First, the header relation is meant to connect a List

atom to a Node atom. Second, the multiplicity constraint lone

further restricts this by asserting that for each List atom, the

header relation can only connect that List atom to either no

Node atom or exactly one Node atom. As seen in Figure 3 (a),

when a user wants to add a header relation to their test case,

the user will see that the relation must start on a List object,

and only end connections on Node atoms will be highlighted.

For higher arity (3+) relations, we do not currently enforce

multiplicity constraints. However, if a higher arity connection

is specified of the form ªa->b->cº and the user deletes the

connection ªa->b,º we automatically remove ªb->cº from

the canvas. In addition, to add a higher arity connection, we

created a tailored modal that helps guide the user to specify

each segment of the connection with drop-down menus that

populate with only the valid atom options. Figure 3 (b) shows

the higher arity relation modal. Since our singly linked list

model only has binary relations, we use the LTS from our

evaluation in Section IV-B to highlight this interface and its

corresponding guidance.

Crucible’s proactive nature of preventing users from creat-

ing test cases that violate the constraints outlined in signature

paragraphs, and alerting users as to why what they are attempt-

ing to create is malformed, ensures that user is both aware

of how the structural constraints of their model restrict the

shape of valid valuations and ensures the user knows that the

valuation is prevented because of these structural constraints,

regardless of any command portion the user may have placed

on the test case. This directly prevents the false sense of

security that can be formed about a predicate mentioned

earlier, where creating a test case with more than one list

does not help us evaluate the acyclic predicate or any other

system property the user writes.

As a tradeoff for the guidance we provide, users cannot

directly form test cases for constraints enforced by the signa-

ture paragraphs of their model. We do believe that users should

ensure their signature paragraphs are correct and modify them

if they are not. Since Crucible proactively gives the user

detailed error message pop-ups when the user tries to violate

multiplicity constraints and grays out improper relation con-

nections, the user still interactively explores these constraints

within Crucible, enabling the user to still check the accuracy

of their signature paragraphs, albeit indirectly. However, we

feel the tradeoff is worthwhile to ensure users are actually

testing the predicates they intend to.

E. Automated Translation

Running a test in Crucible is as simple as pressing a

button. At runtime, the test’s canvas is converted into an

AUnit command string that the Alloy API can process and

execute using the Analyzer. The command string is a series

of valid Alloy formulas that, when executed, will produce just

the scenario outlined on the canvas. To create the command

string, Crucible processes each atom captured on the canvas,

which includes tying the atom to its unique nickname and

capturing all of the declared connections attached to this

atom. Then, Crucible builds a mapping from each atom to the

atom’s associated signature. Once this mapping is formed, for

each signature, Crucible generates an existentially quantified

formula of the form:

some disj [nickname]* : [signature name] {

The disj keywords ensures that each variable name listed

will produce a distinct atom for any satisfying instance. For

example, in Figure 3 the following will get generated based

on the state of the canvas:

some disj L0 : List {

some disj N0, N1 : Node {

where N0 and N1 cannot be represented by the same atom for

any scenario produced by the Analyzer. Crucible processes

each signature in the order they are declared in the model.

Once all nicknames have been declared as local variables,

Crucible generates a set equality formula of the form:

[signature name] = [nickname] (+ [nickname])* |

no [signaure name]

[relation name] = [connection] (+ [connection])* |

no [relation name]

where (+) is set union. As a result, the value each signature

set can take for any generated scenario is restricted to just

the declared local variables of that type and nothing else. In

addition, relations are restricted to the connections specified

by the atoms. Likewise, the set equality formula must be

declared within the scope of the local variables. If there are

no atoms in the canvas for a signature or no connections for

a relation, then the empty set operator (no) is used instead

to ensure that this signature or relation does not appear in

the corresponding scenario the Analyzer generates to satisfy

the outlined valuation. For our example this will result in the

following:

some disj L0 : List { //Start of L0 scope

some disj N0, N1 : Node { //Start of N0, N1 scope

List = L0, Node = N0 + N1

header = L0->N0, linke = N0-N1

Before running a test the user has the option of modifying

the predicate(s) they wish to test. Users can adjust predicates

by opening the predicate modal, where they will be able to

assign atoms by nickname as parameters and chose one of the

states for the predicate, as seen in Figure 4.

The states are "Don’t Test" (null), where the predicate is

not tested, "Valid", where the valuation is expected to be

generated by the predicate, and "Invalid" where the valuation is

expected to be prevented by the predicate. Based on the user’s

222



Fig. 4. Crucible Predicates Modal

selection, Crucible will append the following information to

the command string:

null: ""

true: [predicate name][(param)*]

false: ![predicate name][(param)*]

For our example, this will result in the following:

some disj L0 : List { //Start of L0 scope

some disj N0, N1 : Node { //Start of N0, N1 scope

List = L0, Node = N0 + N1

header = L0->N0, linke = N0-N1

acyclic[]

}}

Outlining the predicate under test within the scope of the local

variables is important, as predicates can have parameters. For

instance, if acyclic was defined as ªacyclic[l : List]º

then the predicate under test would become ªacyclic[L0],º

which the Analyzer will fail to compile if the predicate call is

located outside the scope of the L0 variable.

Once the command string is generated, the string is sent to

the Java Process to be run in the Analyzer. If the command

string is satisfiable, the API returns a success code to the

GUI Process, and the user is notified that the test has passed.

Alternatively, if the test is not satisfiable, the API returns

the failure. It is worth noting that due to the multiplicity

constraints being strictly enforced on the canvas, it is not

possible to generate a failing test case without enabling one or

more predicates, with the exception of higher arity relations

which require further exploration.

IV. EVALUATION

We evaluate Crucible in two ways. First, we evaluate the

overhead of translating graphical renderings into executable

test cases. Second, we conduct an illustrative case study over

a select set of models to highlight how Crucible can ease the

burden of creating test cases for models with tedious features

for textual test case creation.

A. Overhead

Table I shows the runtime to translate the canvas state of

Crucible into a command string for increasingly larger and

larger test cases. Column Model conveys the model under

evaluation. The next two columns outline the size of the

model: column #Sig is the number of signatures and column

TABLE I
OVERHEAD OF TRANSLATION

Model #Sig #Rel #Atoms #Con Time[ms]

LTS 3 1

3 3 6
6 6 9

12 12 11
24 24 14
48 48 21

CV 5 4

9 20 8
21 35 9
36 60 11
48 80 14
60 100 25

#Rel is the number of relations in the model. To convey the

size of the test case, column #Atoms displays the number

of atoms on the canvas and column #Con shows the number

of connections on the canvas. Column Time[ms] conveys the

average time it takes (rounded to the nearest millisecond)

across ten executions for Crucible to generate the command

string once the execute test button in pressed. To perform

the calculations, we create incrementally larger graphical test

cases in Crucible for the two models we explore in our

case study: the LTS model, which contains a higher arity

relation, and the CV model, which contains a large number

of signatures and relations.

The result of these benchmarks indicate that the conversion

process of a canvas into a command string is negligible.

Runtime appears to increase linearly as the number of atoms

and connections does, but even with an impractically large

model of 60 atoms and 100 arity-3 connections, the translation

process on our modest workstation (a 2014 Macbook Pro) did

not exceed an average of 25ms. With this is mind, we conclude

that the graphical-to-textual translation process adds virtually

no overhead when working on an Alloy model of a typical

size, and is unlikely to be an issue for larger scale models.

B. Case Study: Debugging Real World Faulty Models

For our case study, we focus on two models from the

Alloy4Fun benchmark [2]. Alloy4Fun is a online learning

platform for Alloy whose exercises have users attempt to write

predicates for various models, which are checked against a

back-end oracle solution. Submissions to Alloy4Fun have been

anonymized and made into an open source benchmark. These

models represent faulty models created by new Alloy users.

While AUnit is available for any Alloy user, we envision that

new users are more likely to utilize AUnit. Our case study

looks to highlight how different model structures can make

writing AUnit test cases tedious and error prone.

1) Higher Arity Relations: Often times, Alloy models con-

sist of binary relations (2-arity). For instance, in Figure 1, the

relation header is a binary relation of the form List×Node.

This is conceptually easier for a user to visualize mentally

and put on paper, as the header can be envisioned a directed

line that connects a single List atom to a single Node atom.

However, in Alloy, it is possible for a relation of higher arity

to be specified. To illustrate, consider the Labeled Transition

System (LTS) model from the Alloy4Fun benchmark shown

in Figure 5. Line 1 introduces the signature State, which

223



1. sig State { trans : Event -> State }

2. sig Init in State {}

3. sig Event {}

4.

5. //The LTS is deterministic.

6. pred inv3 {

7. all s : State, e : Event | lone s.(e.trans)

8. }

Fig. 5. Faulty Model of a Labeled Transition System (LTS)

contains the relation trans. This relation is a tenary relation

(3-arity) of the form State×Event×State. Rather than

being a directed line between two atoms, trans indirectly

connects two states through an intermediate Event atom. The

idea of the trans relation is that the transitions between states

are triggered by events; therefore, this intermediate Event

atom is an important connection between the states.

For the remainder of the LTS model, line 2 introduces the

Init signature as a subset (in) of the State signature, which

conveys the initial state of the system, and line 3 introduces

the signature Event that contains no relation itself. We elect

to illustrate Crucible’s experience over predicate inv3, which

is the third exercise in the LTS model on Alloy4Fun, as it

involves the trans ternary relation in its formulation. The

faulty predicate inv3 (lines 6 - 8) is meant to convey that

the LTS is deterministic, meaning that for every state, every

Event triggers either no transition or a unique transition to a

next state. The faulty formulation uses an incorrect order of

the relational joins. To illustrate, the following is the correct

version of the predicate, with the difference highlighted in red:

all s : State, e : Event | lone e.(s.trans)

This error is a subtle change textually, but the fault results

in a formula that is trivially always true. Namely, the faulty

expression ªe.transº looks to form a relational join of the

form Event with State×Event×State. Since there is a

type mismatch, this first join will always produce an empty

set. Since an empty set always satisfies the lone multiplicity

constraint, this produces the trivially true behavior. To reveal

this fault, the user needs an AUnit test case in which an Event

triggers multiple possible state transitions for the same state.

Consider the following fault revealing test case, where the

red text highlights the behavior the model should prevent:

some disj State0, State1: State | Event0, Event1,

Event2: Event {{

State = State0 + State1

trans = State1->Event0->State0

+ State1->Event0->State1

Event = Event0 + Event1 + Event2

Init = State1

}}

Since Event0 triggers two different transitions for State1,

the valuation should not be generated, but the faulty predicate

will produce it. For comparison, Figure 6 displays the same

test case recreated in Crucible. For the visual test case, the user

can see that State1 has two transitions, but both use Event0,

as there are not connections drawn to Event1 or Event2. In

both cases, a user is likely to spot the issue with the conflict

being the only values population the trans relation.

Fig. 6. The faulty LTS test case in Crucible

Consider the process of creating a larger test case. For

example, the following test case that extends the previous one:

some disj State0, State1, State2: State | Event0,

Event1, Event2: Event {{

State = State0 + State1 + State2

trans =

State0->Event0->State0 + State0->Event0->State1

+ State0->Event0->State2 + State0->Event1->State0

+ State0->Event1->State1 + State0->Event1->State2

+ State0->Event2->State0 + State0->Event2->State1

+ State0->Event2->State2 + State1->Event0->State0

+ State1->Event0->State1 + State1->Event0->State2

+ State1->Event1->State0 + State1->Event1->State1

+ State1->Event1->State2 + State1->Event2->State0

+ State1->Event2->State1 + State1->Event2->State2

+ State2->Event0->State0 + State2->Event0->State1

+ State2->Event0->State2 + State2->Event1->State0

+ State2->Event1->State1 + State2->Event1->State2

+ State2->Event2->State0 + State2->Event2->State1

+ State2->Event2->State2

Event = Event0 + Event1 + Event2

Init = State1

}}

which is significantly harder to follow textually. The extension

to this test case is derived by using Amalgam [19] to create a

maximal scenario based on the first test case. Using Amalgam

allows us to highlight one of the largest (and therefore more

complex) fault revealing test cases that a user could create with

AUnit while remaining in the same scope as the small initial

test case. There are several instances in which a user may be

motivated to create larger test cases. For instance, if a user is

looking to perform fault localization, repair or partial model

synthesis with their AUnit test suite, past experiments reveal

that larger test cases that encompass a wide degree of behavior

result is notably better performance for these frameworks [30],

[28], [31].

Realistically, if creating this test manually, the user is likely

to copy, paste and then tweak assignments to the trans

relation, which is an error prone process. In addition, if the

user is textually specifying a relation this large, the user would

realistically execute the test case and visually inspect the

scenario the Analyzer produces multiple times as they build

224



Fig. 7. The maximal LTS test case in Crucible

up the valuation, to make sure the valuation actually matches

their expectation.

In contrast, Figure 7 displays this same larger test case

recreated in Crucible. Due to the different format of creating

a test, Crucible removes the potential for copy-paste errors.

More importantly, since Crucible provides a live graphical

view as the user builds up a test case, Crucible removes

the need to do repeated executions to spot-check the textual

specification. These spot-checks do involve repeatedly running

Alloy’s backend SAT solver, although AUnit tests do not

individually have a high overhead. While both the textual and

graphical representations are cluttered, it is easier to implement

lightweight interventions to make a graphical test case more

readable. For instance, when a user hovers on a connection,

we can gray out all unrelated atoms, easily bringing different

portions of the trans relation into focus for the user. For

now, users can drag and re-arrange the visual layout to better

inspect connections post-creation. In contrast, there is no easy

pathway to increase readability for the textual representation.

2) Numerous Signatures and Relations: In a recent profile

of over 2000 different Alloy models [9], the median number

of signatures and relations in a model is 8 and 2 respectively.

Therefore, it is realistic to expect that a user may work with a

model that contains a large number of signatures and relations.

As the number of signatures and relations grow, the complexity

of the valid scenarios for the models also grows. While Alloy

defaults to a scope of 3 for commands, this scope is an upper

bound of the size of each signature individually, and not a

collective scope. As a result, if a user has 8 signatures in

their model, a valid scenario can have up to 24 atoms. In

addition, the scope does not place any restrictions on the size

of relations. Therefore, these 24 atoms can be interconnected

in 100s of ways. All of this increases the burden for a user

to mentally visualize a scenario and then textually specify the

corresponding test case. In fact, it would not be surprising in

this instance, if the user first drew a scenario on paper before

writing the corresponding test case.

To illustrate how Crucible can ease the burden of creating

test cases with numerous signatures and relations, we select the

CV model from the Alloy4Fun benchmark, which has 5 signa-

1. abstract sig Source {}

2. sig User extends Source {

3. profile : set Work,

4. visible : set Work

5. }

6. sig Institution extends Source {}

7.

8. sig Id {}

9. sig Work {

10. ids : some Id,

11. source : one Source

12. }

13.

14. // The works publicly visible in a curriculum

15. // must be part of its profile

16. pred inv1 {

17. User.visible in User.profile

18. }

Fig. 8. Faulty Model of a Curriculum Vitae Policy

tures and 4 relations, as seen in Figure 8. Line 1 introduces an

abstract signature Source. As an abstract signature, Source

cannot directly have atoms itself. The next two signatures

extend the Source signature. Line 2 introduces the signature

User, which contains two relations: profile connects a User

to any number (set) of Work elements (line 3) and visible

connects a User to any number (set) of Work elements as

well (line 4). Line 6 introduces the signature Institution

and line 8 introduces the signature Id, neither of which define

any relations. Lastly, line 9 introduces the signature Work,

which contains two relations: ids connects a Work atom to

at least one (some) Id atom (line 10) and source connects a

Work atom to exactly one (one) Source atom (line 11).

The faulty predicate inv1 (lines 16 - 18) attempts to use

subset (in) to specify that any visible work is someone’s CV

must be part of that person’s profile. The correct version of

the predicate is:

all u:User | u.visible in u.profile

which is similar to the incorrect formula, but constrains

the subset relationship to be true for each individual

person (u.visible), rather than a universal perspective

(User.visible). As a result, for the incorrect formula, a

user could have a visible work in their CV as long as at least

one person has that work in their profile, even if that person

is not them. Consider the following fault revealing test case:

some disj User0, User1: User | Work0, Work1, Work2:

Work | Id0 : Id {{{

User = User0 + User1

profile = User1->Work0 + User1->Work1 + User1->Work2

visible = User0->Work0 + User0->Work1 + User0->Work2

Id = Id0

Work = Work0 + Work1 + Work2

ids = Work0->Id0 + Work1->Id0 + Work2->Id0

source = Work0->User1 + Work1->User1 + Work2->User0

no Institution

}}}

The issue with this test case is that User0 is able to

have Work0 visible on their CV despite not having Work0

in their profile because another user (User1) has the work

in their profile. In fact, for this test case, this is true for

every single work that is visible on User0’s CV. At first

glance, this relationship may be easy to type and confirm

225



textually. However consider the following test case, which is

an extension of the previous test case:

some disj User0, User1, User2: User | Work0, Work1,

Work2: Work | Id0, Id1, Id2: Id

{{{

User = User0 + User1 + User2

profile = User0->Work1 + User0->Work2 + User1->Work0

+ User1->Work1 + User1->Work2 + User2->Work0

+ User2->Work1 + User2->Work2

visible = User0->Work0 + User0->Work1 + User0->Work2

+ User1->Work0 + User1->Work1 + User1->Work2

+ User2->Work0 + User2->Work1 + User2->Work2

Id = Id0 + Id1 + Id2

Work = Work0 + Work1 + Work2

ids = Work0->Id0 + Work0->Id1 + Work0->Id2

+ Work1->Id0 + Work1->Id1 + Work1->Id2

+ Work2->Id0 + Work2->Id1 + Work2->Id2

source = Work0->User2 + Work1->User2 + Work2->User1

no Institution

}}}

This test case is again derived by using Amalgam to create

a maximal scenario based on the first test case [19] to also

highlight one of the largest fault revealing AUnit test case

a user could in theory create based on the scope. Again, the

faulty behavior is revealed by the portion presented in red text.

Figure 9 displays the same test case recreated in Crucible.

As with the LTS model, the main advantage of using

Crucible is reducing the uncertainty of mentally re-creating

such a long text chain for specifying a test case. In this case,

rather than the majority of the complication being one relation,

the complexity comes from the combination of different ways

the atoms can relate to one another within the model. This still

creates a high spatial cognitive burden to attempt to mentally

visualize the test valuation from the text format, which is

likely to result in the user incrementally writing the test and

executing it to spot check that the test is written correctly.

However, in both cases, there is a high spatial cognitive burden

to attempt to mentally visualize the test valuation from the text

format. While the large test case one again looks cluttered, the

same lightweight visual interventions mentioned earlier apply

here as well, while nothing can ease the text inspection burden.

V. FUTURE WORK

In Crucible’s current form, larger test cases can become

quite cluttered, as is the case for Figure 7. Although this

creates some overhead for the user as they are required to

track connections visually, we hold that this overhead is less

than that of the alternative ± mentally visualizing a test case

then writing a complex valuation textually. In future work,

we will explore ways to reduce the visual clutter that a large

test case creates by looking into new pathing techniques for

connections and alternative visualization methods for canvases.

In Alloy, a user can customize the Analyzer’s output with

a robust theming subsystem. In Crucible’s current version,

limited support for customization is available, with users

having the ability to assign a custom color to each signature

type. In a future release we aim to further enable the user to

customize the appearance of their test with features such as

the ability to rename atom instances, change the shape of the

Fig. 9. The Curriculum Vitae Model test in Crucible

signatures, and highlight connections on hover. Enabling users

to be more expressive when designing test cases will increase

clarity and allow for the adoption of custom typologies within

a user or organization’s workflow.

In addition, we hope to further improve our support for

high arity (arity-3 and above) connections. This can be ac-

complished by improving the interface used to create arity-3

connections and by hardening our automated guidance tech-

niques to ensure high arity relations have their multiplicities

correctly enforced on the canvas. Optimized support for arity-

3 and above connections will ensure that Crucible is useful

for the majority of Alloy models in use today.

Finally, we plan to explore how to infer the underlying

model structure from a collection of graphical test cases.

This would alleviate the ªhow do I get startedº burden of

writing software models, which a recent user study found that

both novice and expert Alloy users struggle to get started

writing their model [17]. Specifically, based on an initial

set of graphical test cases, we want to automatically create

the signature paragraphs. To illustrate, from the test case in

Figure 1 (b), we can conclude that there are two signatures

(Node and List) and that there are two binary relations

(header to type List×Node and link to type Node×Node).

While a single test case does not let us confirm with absolute

certainty the multiplicity of these relations, the user could

supply additional tests that do. If not, we envision having an

interactive process where we query the user for clarification.

VI. RELATED WORK

Testing and Debugging Techniques for Alloy. Cruicble

aims to ease the adoption of AUnit. There are a number of

testing and debugging techniques which utilize AUnit tests:

µAlloy is a mutation testing framework [25], AlloyFL is a

hybrid fault localization technique that uses spectrum-based

and mutation-based fault localization strategies to create a

ranked list of suspicious locations [30], and ARepair is a

generate-and-valid automated repair technique that uses AUnit

test cases as an oracle to evaluate potential patches [28].

ICEBAR extends ARepair to consider built in Alloy assertions

in addition to test cases to guide the repair [12].

There are also a number of repair techniques that use built

in assertions in place of AUnit tests. ATR is an Alloy repair

technique that tries to find patches based on a preset number

of templates and uses Alloy assertions as an oracle [36].

BeAFix is an automated repair technique that uses a bounded

226



exhaustive search [4]. TAR is a mutation-oriented repair

technique that is aimed at repairing Alloy4Fun models, which

are educational exercises [5]. FLACK is a fault localization

technique that locates faults by using a partial max sat toolset

to compare the difference between a satisfying instance of

a predicate and a counterexample from an assertion over

that predicate [37]. Alloy assertions can be used to check

the accuracy of predicates, but assertions need to be written

correctly themselves to be beneficial.

Drawing System Workflows. Our approach shares the spirit

of storyboard programming, which uses user-provided graph-

ical representations of data structures to synthesize code to

perform data structure manipulations, based on the insight that

it can be easier and more intuitive for a user to draw concrete

data structure manipulations than to write the code [23].

Besides storyboard programming, there are other efforts re-

lated to drawing data structures and their transformations [8].

Crucible makes use of a similar insight: that it can be easier

to draw examples of system behavior rather than to formally

write the constraints. While not mathematical software models,

there are several efforts to allow users to draw different

UML diagrams [33], [6], [15]. These efforts, in particular

FlexiSketch [33], allow users to free hand draw portions of

UML diagrams. The lessons learned from the efforts helped

informed our choice of where to draw the line between free-

hand drawings and a more structure drag-and-drop interface.

VII. CONCLUSION

AUnit test cases give users a simple and systematic way to

spot check their Alloy models for correctness. In addition, a

unit testing framework helps the model development process

feel closer to that of writing imperative programs for novice

software modelers. However, the need to specify AUnit test

cases textually is a barrier to adoption for AUnit and its

supported testing infrastructures, like fault localization and

automated repair. By enabling users to build AUnit test cases

graphically, we bring the creation of test cases more in line

with how users interact with the output of Alloy models, which

is largely a graphical process. Crucible takes this process a

step further by helping guide users to create well-formed test

cases based on the existing underlying model.

REFERENCES

[1] Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards
a formal foundation of web security. In: 2010 23rd IEEE Computer
Security Foundations Symposium. pp. 290±304 (2010)

[2] Alloy4Fun Benchmark: https://zenodo.org/record/4676413 (2022)

[3] Bagheri, H., Kang, E., Malek, S., Jackson, D.: A formal approach for
detection of security flaws in the Android permission system. Formal
Asp. Comput. (2018)

[4] Brida, S.G., Regis, G., Zheng, G., Bagheri, H., Nguyen, T., Aguirre, N.,
Frias, M.F.: Bounded exhaustive search of alloy specification repairs. In:
ICSE (2021)

[5] Cerqueira, J., Cunha, A., Macedo, N.: Timely specification repair for
alloy 6. In: Software Engineering and Formal Methods. pp. 288±303
(2022)

[6] Chen, Q., Grundy, J., Hosking, J.: An e-whiteboard application to sup-
port early design-stage sketching of uml diagrams. In: IEEE Symposium
on Human Centric Computing Languages and Environments, 2003.
Proceedings. 2003. pp. 219±226. IEEE (2003)

[7] Chong, N., Sorensen, T., Wickerson, J.: The semantics of transactions
and weak memory in x86, Power, ARM, and C++. SIGPLAN Not. 53(4),
211±225 (2018)

[8] Ding, C., Mateti, P.: A framework for the automated drawing of data
structure diagrams. IEEE Transactions on Software Engineering 16(5),
543±557 (1990)

[9] Eid, E., Day, N.A.: Static profiling alloy models. IEEE Transactions on
Software Engineering pp. 1±1 (2022)

[10] Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: TACO: Efficient
SAT-based bounded verification using symmetry breaking and tight
bounds. TSE (2013)

[11] Gopinath, D., Malik, M.Z., Khurshid, S.: Specification-based program
repair using SAT. In: TACAS. pp. 173±188 (2011)

[12] Gutiérrez Brida, S., Regis, G., Zheng, G., Bagheri, H., Nguyen, T.,
Aguirre, N., Frias, M.: ICEBAR: Feedback-Driven Iterative Repair of
Alloy Specifications (2023)

[13] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The
MIT Press (2006)

[14] Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: ISSTA
(Aug 2000)

[15] Lank, E., Thorley, J., Chen, S., Blostein, D.: On-line recognition of
uml diagrams. In: Proceedings of Sixth International Conference on
Document Analysis and Recognition. pp. 356±360. IEEE (2001)

[16] Macedo, N., Cunha, A., Pereira, J., Carvalho, R., Silva, R., Paiva,
A.C.R., Ramalho, M.S., Silva, D.: Experiences on teaching alloy with
an automated assessment platform. In: Raschke, A., Méry, D., Houdek,
F. (eds.) Rigorous State-Based Methods. pp. 61±77 (2020)

[17] Mansoor, N., Bagheri, H., Kang, E., Sharif., B.: An empirical study
assessing software modeling in alloy. In: FormaliSE. p. To Appear
(2023)

[18] Marinov, D., Khurshid, S.: TestEra: A novel framework for automated
testing of Java programs. In: ASE (2001)

[19] Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The power of
"why" and "why not": Enriching scenario exploration with provenance.
In: FSE (2017)

[20] Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.:
The Margrave tool for firewall analysis. In: LISA. pp. 1±8 (2010)

[21] OpenJFX: JavaFX - documentation (2023), https://openjfx.io/
[22] Saks, E.: JavaScript Frameworks: Angular vs React vs Vue. Master’s

thesis, University of Texas at Austin (2019)
[23] Singh, R., Solar-Lezama, A.: Synthesizing data structure manipulations

from storyboards. In: FSE. pp. 289±299 (2011)
[24] Sullivan, A., Wang, K., Khurshid, S.: AUnit: A Test Automation Tool

for Alloy. In: ICST DEMO Track. pp. 398±403 (2018)
[25] Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test

generation and mutation testing for Alloy. In: ICST (2017)
[26] Sullivan, A., Zaeem, R.N., Khurshid, S., Marinov, D.: Towards a test

automation framework for Alloy. In: SPIN. pp. 113±116 (2014)
[27] Trippel, C., Lustig, D., Martonosi, M.: Security verification via auto-

matic hardware-aware exploit synthesis: The CheckMate approach. IEEE
Micro (2019)

[28] Wang, K., Sullivan, A., Khurshid, S.: Automated model repair for Alloy.
In: ASE (2018)

[29] Wang, K., Sullivan, A., Khurshid, S.: MuAlloy: A Mutation Testing
Framework for Alloy. In: ICSE Demo Track. pp. 29±32 (2018)

[30] Wang, K., Sullivan, A., Khurshid, S.: Fault localization for declarative
models in Alloy. In: ISSRE (2020)

[31] Wang, K., Sullivan, A., Marinov, D., Khurshid, S.: ASketch: a sketching
framework for Alloy. In: ABZ. pp. 121±136 (2018)

[32] Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automat-
ically comparing memory consistency models. In: POPL (2017)

[33] Wüest, D., Seyff, N., Glinz, M.: Flexisketch: A mobile sketching tool for
software modeling. In: International conference on mobile computing,
applications, and services. pp. 225±244. Springer (2012)

[34] Zaeem, R.N., Khurshid, S.: Contract-based data structure repair using
Alloy. In: ECOOP. pp. 577±598 (2010)

[35] Zave, P.: How to make Chord correct (using a stable base). CoRR
abs/1502.06461 (2015)

[36] Zheng, G., Nguyen, T., Brida, S.G., Regis, G., Aguirre, N., Frias, M.F.,
Bagheri, H.: Atr: Template-based repair for alloy specifications. In:
ISSTA. p. 666±677 (2022)

[37] Zheng, G., Nguyen, T., Gutiérrez Brida, S., Regis, G., Frias, M.F.,
Aguirre, N., Bagheri, H.: Flack: Counterexample-guided fault localiza-
tion for alloy models. In: ICSE. pp. 637±648 (2021)

227


