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Abstract—Software models help improve the reliability of
software systems: models can convey requirements, and can
analyze design and implementation properties. A key strength
of Alloy, a commonly used modeling language, is the Alloy
Analyzer toolset. The Analyzer is an automated analysis engine
that searches for all valid instances, which are assignments to
the sets of the model such that all executed formulas hold, up
to a user-provided scope. Unfortunately, despite the Analyzer,
writing correct models remains a difficult and error-prone task.
To address this, a unit testing framework, AUnit, was created for
Alloy. Since then, several traditional imperative testing practices,
including mutation testing, fault localization and repair, have
been established for Alloy models. Prior work has introduced
the feasibility of these approaches and produced command line
prototype tools. This paper highlights the effort to translate these
research products into the Analyzer, the main model development
tool for Alloy, to produce one consolidated integrated develop-
ment environment that provides robust testing support.

Index Terms—Alloy, SAT Solver, Software Testing

I. INTRODUCTION

As software pervades our society and lives, and software
failures become increasingly costly, there is a growing need
to produce higher quality software at lower costs. To achieve
this, software developers can utilize bounded verification tech-
niques where key portions of the system’s design are modeled
in declarative logic and then automatically analyzed up to a
user-provided scope [3, 6, 12, 17, 33, 35, 44]. In addition
to catching subtle but often dangerous bugs that can arise in
designs, a precise model of a system’s design also enables:
architects to guarantee changes are safe before modifying the
implementation, stakeholders to remove ambiguity about the
system being built, and developers to produce better self-
diagnosing code [24]. However, leveraging software models
to catch early design bugs introduces a “chicken and egg”
problem: to gain the many benefits that come from having a
software model, the model itself needs to be correct. Unfortu-
nately, writing correct models is a difficult task, in part because
reasoning about the interaction between multiple formulas is
difficult to do manually.

Alloy is a popular declarative, first order modeling lan-
guage [13] that has been used to validate software designs
[4, 8, 18, 23, 41, 44], to test and debug code [9, 19], to
repair program states [27, 43] and to provide security analysis
of systems [3, 5, 34]. A key strength of Alloy is the ability
to develop models in the Analyzer, an instance enumeration
toolset powered by SAT solvers that lets users explore their

models by producing a collection of satisfying instances,
which are assignments to the sets and relations of the model
such that all executed formulas hold. At a conceptual level,
each instance depicts behavior currently allowed by the mod-
eled system. The SAT solver will then explore all possible
behavior, potentially revealing unintended restrictions (or lack
thereof) of the modeled system.

We created AUnit to address the need to have a systematic
method to check the correctness of Alloy models [32]. Prior
to AUnit, there was no formal notion of “testing” in the
Analyzer. As a result, experienced users would employ a
range of ad-hoc techniques, such as enumerating instances and
visually inspecting them for issues, that are time consuming
and error prone. AUnit’s key insight is that unit testing, the
most effective way to validate code, provides a blueprint on
how to validate models. In the context of Alloy’s declarative
execution, in which there is no notion of imperative control
flow and the SAT solver finds all satisfying scenarios in one
execution, AUnit defines: (1) what is a test case, (2) how is a
test case executed and its pass/fail outcome resolved and (3)
what are different types of coverage criteria.

To start providing native support for testing in the Analyzer,
we have previously extended the Analyzer to include support
for AUnit [30]. In addition, there are a number of testing
techniques which leverage AUnit: μAlloy is a mutation testing
framework which also provides automated test generation,
AlloyFL is a fault localization technique and ARepair is a
generate and validate automated repair technique. Outside
of AlloyFL, these techniques are deployed as standalone,
command-line prototype tools that are run outside of the
Analyzer by passing the location of an Alloy model as one of
the parameters to the tool. The results from these frameworks
are then printed to the command line terminal and sometimes
produce artifacts that are saved locally. Therefore, Alloy users
do not have access to one centralized integrated development
environment (IDE) in which they can actively benefit from
these enhancements to test and debug their Alloy models.

In this paper, we introduce the Analyzer Plus IDE, an inte-
grated development environment for Alloy that combines these
AUnit testing frameworks together to form one comprehensive
toolset. The benefit of this is two-fold. First, since the Analyzer
is the main development environment for Alloy, users will have
access to a wide range of debugging options without having
to change any behavior related to how they already develop
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1 .  s i g  C l a s s  {  e x t :  lone  C l a s s  }
2 .  one s i g  O b j e c t  e x t ends  C l a s s  { }
3 .  pred A l l E x t O b j e c t ( )  {
4 .  / / E a c h  c l a s s  e x c e p t  O b j e c t  i s  a  s u b - c l a s s  o f  O b j e c t .
5 ; a l l  c :  C l a s s  -  O b j e c t  |  c  i n  c . * e x t
6 .  }

(a)

1 .  v a l  T e s t 0  {
2 . some d i s j  O b j 0 :  O b j e c t  {
3 . some d i s j  O b j 0 ,  C l s 0 ,  C l s 1 :  C l a s s  {
4 .               O b j e c t  =  Obj0
5 . C l a s s  =  Obj0 +  C l s 0  +  C l s 1
6 . e x t  =  C l s 0 - > C l s 1  +  C l s 1 - > C l s 0
7 . @ c m d : { ! A l l E x t O b j e c t [ ] }
8 .  } } }
9 .  @Test T e s t 0 :  run { T e s t 0 }

(b)

Obj0

Cls0
ext      

Cls1

(c)

Fig. 1. Faulty Java Class Diagram Model and Fault Revealing Test Case

Alloy models. Second, we are able to improve the experience
of using these different testing techniques by developing novel
interfaces that both contextualize the results and guide the user
through the results. Therefore, we can create an Alloy IDE that
aids in the development of models, rather than one that just
enables the development of models.

In this paper, we make the following contributions:

• Integrating AUnit Frameworks. We incorporate a range
of testing frameworks enabled by AUnit into the Ana-
lyzer, Alloy’s main IDE.

• Reporting. We design novel reports that are displayed
within the Analyzer to convey the results of different
testing frameworks.

• Case Study. We explore how the Analyzer Plus IDE can
help users find and fix faults in real world faulty models.

• Open Source. We release our IDE as an open-source
extension to the Analyzer. Analyzer Plus IDE can be
found at: https://alloyanalyzerplus.github.io/.

II. BACKGROUND

In this section, we illustrate key concepts of Alloy, AUnit,
and the various testing frameworks that utilize AUnit.

A. Alloy and AUnit

Figure 1 shows a real world faulty Alloy model of a Java
class diagram [40]. Signature paragraphs introduce named sets
and their relations. Line 1 introduces the named set C l a s s ,
which contains relation e x t  that conveys that each C l a s s
atom can extend zero or one other C l a s s  atoms. Line 2 intro-
duces the named singleton (one) set O b j e c t  that extends the
C l a s s  signature. Similar to imperative language inheritance,
a signature that extends another signature is a subsignature of
that signature. Predicates introduce named formulas that can
be invoked elsewhere. The predicate A l l E x t O b j e c t  attempts
to state using universal quantification ( a l l )  that every class
except Object extends Object. The fault, in red, uses reflexive
transitive closure (*) and relational join ( . )  to accidentally
convey that every class is a sub-class of itself.

AUnit test cases consists of two components: a valuation,
which outlines a specific instance to reason over, and a
command, which outlines the formulas under test. A test case
passes if the valuation is a valid instance of the command;
otherwise, the test fails. In Alloy, there are two types of
faults that can appear in a model: (1) under-constrained
faults in which the model allows instances it should prevent,
and (2) over-constrained faults in which the model prevents

instances it should allow. Therefore, AUnit’s format allows for
users to directly check for these types of faults without having
to (1) enumerate scenarios until finding one that is malformed
or (2) enumerate all scenarios and realizing one was missing.

Figure 1 (b) and (c) textually and graphically show a failing
test case that highlights the fault in A l l E x t O b j e c t .  Since
both C l s 0  and Cls1’s are not connected to Obj0 through any
possible traversal of their e x t  relations, the valuation depicted
should not be found as a solution to A l l E x t O b j e c t .  However,
due to the fault, the valuation will incorrectly be found as a
valid instance. We have previously introduced native support
for AUnit within the Analyzer [30], which expands Alloy’s
grammar to allow for the declaration of valuation (v a l )
paragraphs, support the declaration of test case commands
(@cmd) within valuations, and to flag Alloy-specific execution
commands which are for test cases (@Test).

B. AlloyFL

Given a faulty model and a fault revealing AUnit test
suite, AlloyFL returns a ranked list of suspicious abstract
syntax tree (AST) node locations in the faulty model. To
flag locations, AlloyFL supports five different suspiciousness
formulas: (1) Tarantula [14], (2) Ochiai [1], (3) Op2 [20],
(4) Barinel [2] and (5) DStar [42]. AlloyFL is a hybrid fault
localization technique that uses a combination of spectrum-
based fault localization and mutation-based fault localization
techniques. For spectrum-based fault localization, since Alloy
lacks control flow, the suspiciousness score is calculated per
predicate paragraph in the model. For mutation-based fault
localization, the suspiciousness score is calculated per AST
nodes covered by failing tests. For each flagged node, a
suspiciousness score is built based on how mutants generated
at that location change the test suite’s pass/fail behavior. The
user can apply a weight to determine how much of the final
aggregate score is scaled towards either the spectrum-based
or the mutation-based technique. By default, AlloyFL uses
the Ochiai suspiciousness formula and a weight of 0.4 (40%
mutant-based score and 60% spectrum-based score).

For our faulty class diagram model, AlloyFL returns a
ranked list of 7 faulty locations. The most suspicious location
is the actual faulty subformula “c i n  c .*ex t ,”  with a suspi-
ciousness score of 0.80. This fault can be corrected by either
replacing the left operand with “Object”  or replacing the
right operand with “O b je c t . ^  ext”.  The next 3 suspicious
locations refer to expressions and formulas that relate to “c i n
c .*ex t .”  For example, the second most suspicious location
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Fig. 2. AlloyFL Interface for the Faulty Class Diagram Model

is the quantified formula that directly encompasses the faulty
formula, which has a score of 0.76.

Motivation for Integration. Unlike the other AUnit extended
frameworks, AlloyFL is provided as an extension to the
Analyzer and is our motivation for porting the other tools,
μAlloy and ARepair, into the Analyzer. As a command line
tool, AlloyFL could just print a list of locations from most
to least suspicious to the screen; however, this would require
the user to determine where in the model these locations are.
Sometimes an expression or formula could appear multiple
times in a model; therefore, tying the command line output to
the right portions of the model can take some effort.

In contrast, by integrating AlloyFL into the Analyzer, we
can directly highlight the suspicious portion of the model
for the user, removing the ambiguity and enhancing the user
experience for exploring the ranked list of suspicious locations.
To achieve this, we updated the logging interface of the
Analyzer to have an “AlloyFL” report tab that displays the
ranked list and we automatically highlight locations in the text
editor pane based on their suspiciousness score. To illustrate,
Figure 2 shows both of these outputs for our example model.
A location in the model appears more red the more suspicious
the location is found to be. In addition, the user can elect to
highlight any single suspicious location.

C. μAlloy

μAlloy generates first-order mutants, generates mutant-
killing test cases and performs mutation testing on Alloy
models. To generate mutants, μAlloy makes changes to the
model at the abstract syntax tree (AST) level. For each visited
node, μAlloy finds all the applicable mutation operators and
applies each operator to the node one at a time. The list of cur-
rently supported mutant operators can be seen in Table I. For
example, if μAlloy encounters a unary formula, μAlloy would
attempt to apply UOD, UOI, and UOR mutant operators to
that node. During this process, μAlloy automatically discards
any mutated model that does not compile. In addition, μAlloy
also filters all equivalent mutants. Since we are mutating first
order logic statements, we can actually use Alloy itself to
check if the original formula and the mutated formula are log-
ically equivalent with respect to a user provided scope. If this
check fails, Alloy will find a counterexample that highlights
the difference between the original model and the mutated
model. Through μAlloy, users can elect to automatically turn

all of these counterexamples into test cases, which guarantees
that the user will have a test that can kill all non-equivalent
mutants. Once all mutants for a model have been generated,
μAlloy performs mutation testing using a user provided test
suite and reports the mutation score to the user.

For our example model and an test suite of size 8, μAlloy
generates 18 non-equivalent mutants and prunes 11 equivalent
mutants 0.7 seconds. Then, μAlloy performs mutating testing
over the 8 tests and 18 mutants in 0.4 seconds, which results in
a mutation score of 14/18. μAlloy generates one additionally
test case that kills all 4 remaining non-equivalent mutants.
Performing mutation testing on this updated test suite yields
a score of 18/18 in 0.45 seconds.

Current Limitations. μAlloy is currently supported as a
command line tool [37], which is limited to reporting the
score, listing the file name of any unkilled mutant and if
selected, printing the mutant killing test suite to a file location.
However, while this information can be helpful, it is currently
missing a lot of context that would enable a user to efficiently
apply mutation testing to help improve the quality of their
test suite and the accuracy of their model. First, any unkilled
mutant is stored as a complete, mutated Alloy model. The
user is then left to individually open these mutants and do a
differential comparison on their own to figure out the mutated
location in the model. Considering that a mutant could be
a single character change on one of the lines in the model,
having the user take on all the burden to hunt down where the
mutated statement is does not scale well, impacting how easily
users can rectify any unkilled mutants. Another limitation is
that μAlloy does not convey which non-equivalent mutants are

TABLE I
MUTATION OPERATORS

Mutation Description

MOR Multiplicity Operator Replacement
QOR Quantifier Operator Replacement
UOR Unary Operator Replacement
BOR Binary Operator Replacement
LOR List Operator Replacement
UOI                  Unary Operator Insertion
UOD                  Unary Operator Deletion
LOD                  Logical Operand Deletion
PBD                  Paragraph Body Deletion
BOE                  Binary Operand Exchange
IEOE Imply-Else Operand Exchange
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5 . -  a l l  c :  C l a s s  -  O b j e c t  |  c  i n  c . * e x t  }
5 . +  a l l  c :  C l a s s  -  O b j e c t  |  O b j e c t  i n  c . * e x t  }

Fig. 3. ARepair Patch for the Faulty Class Diagram Model

Level 1 in

Level 2 c .

Level 3 c *

connected to their associated mutant killing test case. Instead,
all tests appear in a single test suite file and the automatically
generated names for tests are in the format “Test[X].”

D. ARepair

ARepair follows the standard generate-and-validate ap-
proach, which takes as input a faulty Alloy model and an
AUnit test suite with at least one failing test. To fix the model,
ARepair uses a greedy, iterative approach where ARepair
explores potential patches and applies the first patch that
makes some failing tests now pass and no passing test now
fail. To generate patches, ARepair first checks if mutants
generated by μAlloy over just the faulty location can satisfy
the greedy choice. If not, ARepair builds an abstract syntax
tree representation of the faulty location and creates holes at
each level of the AST in a bottom-up fashion. Then, ARepair
uses Alloy’s grammar and RexGen [39], an Alloy expression
generator, to create lists of possible substitutions into each
hole. From there, ARepair explores different combinations of
substitutions into the holes, searching for a patch that satisfies
the greedy choice. If no such patch is found at the current
level of the AST, ARepair moves up a level in the AST and
repeats the process. In the end, this greedy approach either
finds a patch that makes all tests passing or fails to fix the
model.

For our faulty class diagram and a test suite with with
14 tests, in the first iteration, ARepair finds that a mutation
applied by AlloyFL can make four failing tests now pass but
no passing test fail. So, ARepair applies this mutation to the
model which mutates “c i n  c . * e x t”  to “c ! =  c .*ex t .”
ARepair then starts its second iteration, in which ARepair does
not find a mutant that satisfies the greedy choice. Therefore,
ARepair attempts to use the synthesizer to fix the model, which
results in “c ! =  c . * e x t”  being replaced with “Object  i n
c .*ex t .”  At this point, ARepair determines that all tests have
now passed and the model is fixed. Once a patch is found,
ARepair then sends the fixed model to the simplifier, which
creates a presentable, human readable version of the patch. In
our case, the final patch, shown in Figure 3, is semantically
equivalent to the correct patch.

Current Limitations. ARepair is currently supported as a
command line tool [38]. As ARepair is executing, ARepair
displays the intermediate fixes and the final patch to the
terminal as completed, updated models. As a result, where
the model was changed throughout the process is not readily
apparent to the user. By the end, ARepair may have found a
successful patch by changing any predicate that is connected
to a failing test, changing a signature paragraph, or changing
multiple locations throughout the model. All the user knows
is that the final iteration displayed passes all tests, assuming
ARepair is able to successfully patch the model. Therefore,
the burden is entirely on the user to determine how the model

Level 4 ext

Fig. 4. AST Breakdown of the Faulty Binary Formula Node

was fixed, which the user will likely want to know to help
validate the patch. This also hinders the transfer of knowledge
to the end user, who would need to work hard to learn what
mistake they made in their original faulty model.

III. IMPLEMENTATION

In this section, we highlight the implementation changes that
we have made to support different testing techniques within
the Analyzer. These efforts combine together to form our new
integrated development environment: Analyzer Plus IDE.

A. AUnit Parser and Abstract Syntax Tree

We built our own parser that enables us to gather additional
information valuable for testing that is not available through
the original parser of the Alloy model. For AUnit, we inten-
tionally view different first-order logic formulas supported by
Alloy in a more nuanced context than Alloy needs to. Specifi-
cally, in AUnit, constraints which evaluate to sets are regarded
as expressions and constraints which evaluate to true and false
are regarded as formulas. We made this distinction because we
naturally envisioned different coverage requirements for each:
expression coverage criteria relate to the size of sets while
formula coverage criteria relate to the truth value. As a result
of creating a more fine-grained classification of nodes, we are
able to form smaller groups of mutant operators. Since μAlloy
is integral to both AlloyFL and ARepair, smaller mutant
operator groups enables use to apply a more narrow focus
during fault localization and repair that can lead to smaller
locations and a smaller patches respectively. In addition, these
distinctions reduce the number of non-compile-able first order
mutants we generate.

To illustrate, Figure 4 shows the AST of the faulty node
from our example model, which is the binary formula of the
form [ e x p r ]  i n  [ e x p r ] .  Our AUnit parser will view “c
i n  c . * e x t”  as a binary formula. However, we view the sub-
constraint “c .*ex t”  as a binary expression. As a result, AUnit
will consider these two first-order logic constraints to have dif-
ferent coverage information and to belong to different mutation
operator groups. To apply the BOR mutation operator on level
1 of the faulty AST (e.g. on formula “c i n  c .*ext”) ,  the
set inclusion operator is replaced with the binary set operators
set exclusion ( ! in) ,  set equality (=) and set inequality (!=).
Since the right hand and left hand operands for set inclusion
are both expressions, we do not additionally create the mutants
by substituting in binary logical operators (conjunction (and),
disjunction (or), implication (=>) or biconditional (<=>)).
These logical operators require the left and right hand operands
to be formulas to make sense and, in the Analyzer’s case, even
to compile. To apply the BOR mutation operator on level 2 of
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(a) μAlloy Execution GUI (b) μAlloy Test Generation GUI

Fig. 5. μAlloy User Interfaces

the faulty AST (e.g. on expression “c.*ext”),  the relational
join operator is replaced with the binary set operators set union
(+), set intersection (&) and set difference ( -)  but not with any
operator that produces a formula.

However, to the Analyzer, all of these distinctions are
irrelevant, as the Analyzer simply needs to store information
relevant to translate the model to an equivalent conjunctive
normal form formula to hand off to a SAT solver. To help
facilitate these testing and debugging operations, the AUnit
parser includes support for the Visitor pattern, which allows
for the different testing frameworks to define their own actions
that occur for each type of node in the AST.

B. Supporting μAlloy

For μAlloy, our primary focus is to improve the user’s
ability to use μAlloy for the main benefit mutation testing
gives: determining the quality of your test suite, and if needed,
helping identify how to improve your test suite.

1) Report Designs: For the μAlloy report tab, we first share
all the details of the mutation testing execution ranging from
the mutation score to the total time taken. Then, the rest of
the report tab is dedicated to helping users investigate any
unkilled, non-equivalent mutants. Specifically, we present the
user with a list of all unkilled mutant and enable the user to
drill into each of these by presenting in a separate pop up
window that contains (1) the mutant killing test case textually
and graphically and (2) the mutated location. As mentioned
before, one of the key benefits of performing mutation testing
in Alloy compared to imperative languages is that we can
use Alloy to not only detect non-equivalent mutants but to
also produce a mutant killing test case. However, μAlloy’s
command line prototype does little to help the user apply
this information effectively, mainly by keeping the generated
test case and the corresponding mutant separated in outputs
presented to the user.

Figure 5 shows examples of the main interfaces for μAlloy
in Analyzer Plus IDE for our faulty class diagram model.
Figure 5 (a) shows the main mutation testing report that
appears in the main Analyzer logging pane. For our example,
the user is presented with the overall mutation score first,
77.7%. Then, the unkilled mutants are listed. The user can
select the “View mutant killing test case” link to investigate
each unkilled mutant individually. Selecting this link for our

example model and any of unkilled mutant listed, produces
the GUI in Figure 5 (b), as all four remaining mutants are
killed by this test case.

This pop-up GUI contains all the information the user needs
to determine if she would like to add the test case to their
model. The automatically generated test case is displayed to
the user graphically, for easy inspection, and textually, to
easily be copied. In addition, we present a breakdown of the
mutant location, so the user can easily identify what part of the
model was mutated. Importantly, our interface directly couples
the mutant together with the mutant-killing test case. As a
result, Analyzer Plus IDE improves the ability of the user
to effectively leverage μAlloy to strengthen their existing test
suite. In addition, since new tests are generated, adding these
test to their model can use help reveal potential faults in their
model, should a test case unexpectedly fail.

2) Usage: μAlloy can be run in two ways. First, the user
can press the μAlloy icon on the icon menu bar. Second, the
user can select the “Execute μAlloy” option from the μAlloy
dropdown menu. By default, μAlloy will generate mutants,
create mutant-killing test cases and then perform mutation
testing using the generated mutants and the original test suite,
which does not include any of the test cases generated by
μAlloy. The only setting the user can configure for μAlloy is
whether or not to save the test suite to a local file.

C. Supporting ARepair

For ARepair, our primary focus is to improve the user’s
ability to easily understand what part of the model was
patched, in order for the user to feel comfortable in accepting
the automatically repaired model.

1) Report Designs: For the ARepair, we first present how
the model is patched to the user, so the user can easily decide
if they want to adopt the patch. To achieve this, the user
can click the “view patched model” to be presented with a
complete model that passes all tests. In addition, to give more
context on what changed, we display a “diff” of any patched
structures within the Alloy model. In green, we highlight
anything that has been inserted into the model. In red, we
highlight anything that has been deleted. Second, we want to
highlight the previously failing test cases that now pass, as
this is the direct behavior we have changed. Figure 6 shows
the main report tab for ARepair for our faulty class diagram
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TABLE II
PERFORMANCE RESULTS OF AUNIT TESTING FRAMEWORKS FOR CASE STUDY MODELS

Model #AST #Flt #Test #Fail Scp

array            68              1            38              1              3
cd            52              1            16              5              3

fsm            85              1            21              2              5
scl          176              3            66              6              3
sll            40              1            23              4              3

MuAlloy
#Mut Time[s]

62 9.9
18            0.41
72 4.5
91            8.15
38 1.1

AlloyFL
Rank Time[s]

1:8                 4
1:7            1.32

1:21              1.2
1:23            12.9
1:9            2.05

ARepair
Acc Time [s]

3                   7.8
3                1.85
= 0.6

3              268.8
3                0.35

Fig. 6. ARepair User Interfaces

model. After displaying all patched structures, we then present
all previously failing tests that now pass. For each test case,
we allow the user to graphically view the valuation of the test
case and we additionally present the command of the test case
textually. The command is broken up into two components: the
command explicitly outlined in the test case and the facts of
the model which are always implicitly enforced. In addition,
during execution, the main log tab maintains a record of each
iteration ARepair undergoes and its associated information,
such as the number of failing tests that were updated to passing
tests based on the intermediate fix. The information displayed
in the log tab, the Analyzer’s main execution report log, is the
information the command line tool produces.

2) Usage: ARepair can be run in two ways. First, the user
can press the ARepair icon on the icon menu bar. Second,
the user can select the “Execute ARepair” option from the
ARepair drop-down menu. In addition, the user can configure
different parameters for the ARepair execution:

• Search Strategy: This specifies the type of search the syn-
thesizer should conduct when considering how to combine
together substitutions into different holes. The user can
toggle between “all-combinations” or “base-choice.”

– For all combinations, ARepair tries all combinations of
candidate fragments for all holes until it finds some
failing test passed and no passing test failed. All combi-
nations is akin to a brute force approach: it is more likely
to find a patch but suffers from runtime scalability issues.

– For base choice, ARepair holds all holes constant except
one hole. For that hole, ARepair explores candidate
fragments and picks the one that makes the maximum
number of failing tests pass and no passing test fails.
Base choice scales better but could miss a patch.

• Max Try Per Hole: This parameters is used when the
search strategy is “base-choice”. The user can specify the

maximum number of candidate expressions to consider
for each hole during repair as the argument. By default,
ARepair uses 1000.

• Number of Partitions: This parameter is used when the
search strategy is "all-combinations". The user can specify
the number of partitions of the search space for a given
hole. If By default, ARepair uses 10.

• Max Try Per Depth: This parameter is used when the
search strategy is "all-combination". The user can specify
the maximum number of combinations of candidate expres-
sions to consider for each level/depth of holes during repair.
By default, ARepair uses 10000.

• Save Patch: The user can specify whether or not to save
a copy of the patched model to their local machine. By
default, ARepair does save the patch.

IV. CASE STUDY

All models in our case study are real world faulty models
created by novice users learning Alloy [40]. One of the most
common uses of Alloy is educational. Since Alloy renders its
scenarios graphically, the output of the model feels approach-
able to new users. This allows educators to highlight with
graphical illustrations how different formulas work or interact
with other formulas. While educational, our models are still
reflective of mistakes users make when writing models and
based on a recent user study [16], the faults in our study are
the same type of fault even expert modelers introduce into
Alloy models. For our case study, we focus on two types of
faults: (1) models in which the fault is extremely subtle: all
models are incorrect due to a single character and (2) a faulty
model with multiple mistakes within it, in which we highlight
how the frameworks can combine together to help correct it.

Table II highlights the efficacy of the different testing
techniques over our running example, the class directory, as
well as the illustrative examples in our case study, to give a
frame of reference for the performance of these techniques as
we step over how a user would realistically leverage them.
Column Model coveys the model under test. The next 4
columns help convey the size of the model and fault: Column
#AST is the number of AST nodes the model is comprised of
excluding the test suite, #Flt is the number of faulty locations,
#Test is the size of the test suite, which is produced by μAlloy,
#Fail is the number of failing tests and Scp is the scope used.
The next six columns display performance information for
the three frameworks. #Mut is the number of non-equivalent
mutants generated. Rank is a ratio of where the faulty location
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s i g  Element  { }
one s i g  A r r a y  {

i 2 e :  I n t  - >  E l e m e n t ,  l e n g t h :  I n t
}
f a c t  InBound {

/ /  A l l  i n d e x e s  should be v a l i d  # s .
a l l  i : E l e m e n t . ~ ( A r r a y . i 2 e )  {

i  > 0 && i  <  A r r a y . l e n g t h
}
A r r a y . l e n g t h  >=  0

}
(a)

one s i g  FSM {
s t a r t :  s e t  S t a t e ,  s t o p :  s e t  S t a t e

}
s i g  S t a t e  {  t r a n s i t i o n :  s e t  S t a t e  }
f a c t  V a l i d S t a r t A n d S t o p  {

F S M . s t a r t  ! =  FSM.stop
//No t r a n s i t i o n  ends a t  th e  s t a r t  s t a t e .
a l l  s : S t a t e  |  F S M . s t a r t  ! =  s . t r a n s i t i o n
no F S M . s t o p . t r a n s i t i o n

}

(b)

Fig. 7. Faulty Models with a Single Character Bug

s i g  L i s t  {  h e a d e r :  lone  Node }
s i g  Node {  l i n k :  lone  Node }
pred A c y c l i c ( l : L i s t )  {

//Some node t e r m i n a t e s  th e  l i s t .
no l . h e a d e r  o r
some n :  Node {

n i n  l . h e a d e r . ^ l i n k  =>  no n . l i n k
}

}

(c)

(a) μAlloy Results (b) μAlloy Fault Revealing Test

Fig. 8. Debugging a Array Model

is on the ranked list compared to the total number of suspicious
locations flagged. Acc displays the accuracy of the patch: (3)
means the patch is logically equivalent to the oracle solution,
(=) means the patch is plausible, i.e. passes all tests but it not
logically equivalent to the oracle patch. Time[s] conveys the
total execution time, from pressing the button to execute the
framework in Analyzer Plus IDE to the time Analyzer Plus
IDE finishes populating the report panel, in seconds.

Each framework has a full evaluation done within their re-
spective research papers, that can be referenced for further per-
formance insights across larger scale benchmarks [31, 36, 40].
Rather than focusing on repeating performance evaluations,
this section highlights how these different testing interfaces
can proactively help users debug real world faulty models.

A. Single Character Bugs

Figure 7 highlights three different models: (a) an array data
structure, (b) a finite state machine and (c) a singly linked list
data structure. The faulty character, in red, for each model is
the result of the user selecting the wrong operator. We include
only the faulty predicate or fact in our paper, the complete
models can be found on Analyzer Plus IDE’s website. In Alloy,
a single character change can have a subtle impact on the
underlying model. For instance, if the wrong operator makes
the model overconstrained, meaning the fault prevents a valid
formula from being found, a user may find themselves in the
situation where, to notice the fault, the user needs to enumerate
all scenarios and realize one or two were missing. Given that
predicates often produce hundreds of scenarios, this type of
error is extremely difficult to spot in practice.

To highlight how Analyzer Plus IDE can help ease this
burden, we illustrate the following steps. First, we draft a

single test case for each model. Then, we perform mutation
testing using μAlloy and save the generated test suite. After
providing an oracle for the test suite, we then execute the test
suite and investigate any failing test(s) and their corresponding
mutant. From there, we step over how investigating the failed
test case(s) and applying various AUnit frameworks can lead
the user to a correct model.

1) Array: For the array in Figure 7 (b), the user accidentally
put greater than instead of greater than or equal (>=). Figure 8
(a) shows the results from running μAlloy starting with a single
test created that outlines a valid array of size 0. This test case
kills just 9 of 62 mutants. To kill the remaining 53 mutants, an
additional 33 tests are created. Figure 8 (b) displays the mutant
killing test case for the BOR mutant which mutates “ i  > 0”
to “ i  >= 0.” For the displayed test case, the user would label
this test as valid, as the indices for the array are assigned values
0 and 1 and the length of the array is 2. However, when the
user runs the corresponding test case, the user will find that
it is incorrectly invalid for their model. After labeling all the
test cases μAlloy produces, the user would discover that the
test in Figure 8 (b) is the only failing test.

Since only a single tests fails, the user can jump immedi-
ately to applying the mutant to fix their model. If the user
goes back to the μAlloy results and pulls up the mutant tied
to the test in Figure 8 (b), the user will discover that applying
the BOR mutant “ i  >= 0” will cause their failing test to
now pass, fixing the model. Should the user want further
confirmation, the user can run AlloyFL, which returns the
same location (“ i  > 0”) as the most suspicious location, with
a score that is notable higher than the next location.

2) FSM: For the finite state machine in Figure 7 (a),
the user accidentally put set inequality instead of subset
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(a) μAlloy Results (b) μAlloy Fault Revealing Test

(c) AlloyFL Results

Fig. 9. Debugging a Faulty Finite State Machine Model

exclusion ( ! in) .  Figure 9 (a) shows the results from running
μAlloy with a single test that outlines a valid FSM with
two states. This test case kills 38 of 72 mutants. To kill
the remaining 34 mutants, an additional 20 tests are created.
Figure 9 (b) displays the mutant killing test case for the BOR
mutant that replaces “FSM.State  ! =  s . t r a n s i t i o n ”  with
“FSM.State  ! i n  s . t r a n s i t i o n .”  For this test case, the
user would label this test as invalid, as S t a t e1  contains a
transition that ends in the start state. However, when the user
runs the test case, the user will find that it is incorrectly valid
for their model. In fact, after labeling all the test cases μAlloy
produces, the user will end up with 2 failing tests. The other
failing test was generated for the MOR mutant that changes
the declaration relation from “ t r a n s i t i o n :  s e t  S t a t e”  to
“ t r a n s i t i o n :  lone State .”

Given that more than one test fails and the failing test cases
are tied to two very different mutated locations, the user may
jump to running AlloyFL to help narrow in on the faulty
behavior. The results of which can be seen in Figure 7 (c).
However, the user will discover that two locations are tied for
the most suspicious location with a score of 0.59: the location
of the BOR change and the location of the MOR change that
produced the two failing test cases. This is where the μAlloy’s
test generation GUI can help guide the user.

First, to take a closer look at the test case in Figure 9 (b),
the user can run the Evaluator, a tool within the Analyzer
that returns the concrete value of an expression or formula
over a specific instance, on this test case’s valuation to reveal
that the suspicious formula associated with this test case con-
cretely evaluates to “State0 ! =  { S t a t e 0 , S t a t e 1 } .”  From
this, the user can see that the use of set inequality in this
formula means that if a state has multiple transitions, then
that state can incorrectly have the starting state as one of
its transitions, as a singleton set will never match a set with
multiple elements. For the other most suspicious location, the

fix implied by the mutant is to limit the multiplicity constraint
for the t r a n s l a t i o n  relation. In this case, the problematic
formula “FSM.State  ! =  s . t r a n s i t i o n ”  will not be an
issue because the expression “ s . t r a n s l a t i o n ”  will either
be empty or a singleton set, successfully preventing a state
from transitioning to the starting state.

If the user applies either the BOR or MOR mutant, the
user will find that either change will make both failing tests
now pass. However, because of the detailed μAlloy report, the
user can quickly distinguish that the MOR patch would be
plausible to the user’s intentions: applying this mutant would
make all tests pass, but limit the functionality of the finite state
machine more than the user would want. As a result, the user
would adopt the BOR mutant change, resulting in a corrected
finite state machine model. As seen in Table II, ARepair would
actually apply the MOR mutant to fix this model, resulting in
a plausible patch instead of a correct patch.

3) List: For the singly-linked list in Figure 7 (c), the user
accidentally used reflexive transitive closure instead of transi-
tive closure (^). Figure 10 (a) shows the results from running

μAlloy with a single test that outlines a valid list of size 2.
This test case kills just 9 of 38 mutants. To kill the remaining
29 mutants, an additional 23 tests are created. Figure 10 (b)
displays the mutant killing test case for the UOR mutant
that mutates “ l . h e a d e r . * l i n k”  into “ l . h e a d e r . ^ l i n k .”
For the displayed test case, the user would label this test
as invalid, as there is a cycle in the list with the last two
nodes pointing back to each other. However, when the user
runs the corresponding test case, the user will find that it is
incorrectly valid for their model. After labeling all the test
cases μAlloy produces, the user would discover that there are
actually 4 failing test cases. All 4 failing tests contain a list
with a cycle and are incorrectly found as valid instances for
the faulty model.

Given how many tests fail, the user is likely to use AlloyFL
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(a) μAlloy Results (b) μAlloy Fault Revealing Test

(c) AlloyFL Results

Fig. 10. Debugging a Faulty Singly-Linked List Model

1 .  one s i g  L i s t  {  header  :  lone  Node }
2 .  s i g  Node {  l i n k :  lone  Node, e l e m :  one I n t  }
3 .  f a c t  connected      {  L i s t . h e a d e r . * l i n k  =  Node }
4 .  pred L o o p ( T h i s :  L i s t )
5 . no T h i s . h e a d e r . l i n k  o r
6 . one n :  T h i s . h e a d e r . * l i n k  |  n . l i n k  =  n
7 .  }
8 .  pred S o r t e d ( T h i s :  L i s t )  {
9 . a l l  n :  T h i s . h e a d e r . * l i n k  {

10. one n . l i n k  && n . e l e m  <=  n . l i n k . e l e m
11.  } }
12.  pred R e p O k ( T h i s :  L i s t )  {  L o o p [ T h i s ]  and S o r t e d [ T h i s ]  }

Fig. 11. Faulty SLL Model

to narrow in on the faulty behavior. Figure 7 (c) displays the
results from running AlloyFL on the μAlloy test suite. The
faulty expression is the tied as the most suspicious location,
with a a score of 0.62. The l i n k  relation declaration is also
flagged as the most suspicious location, which helps reiterate
that there is an issue relating to how the link’s in the list are
forming. To choose between which locations to edit, the user
can see that the next 3 suspicious locations flagged by AlloyFL
all encompass the ^ l i n k  expression. If the user checks the
μAlloy report, the user can then try applying the mutant UOR,
which the user would narrow in on because it is the only
mutant that produces a failing test (Figure 10 (b)) and directly
mutates the flagged location.

B. Multiple Faults - SLL

The sorted looped list model (SLL) contains the following
predicates: Loop which outlines that the last node in the linked
list points to itself, Sorted which outlines that element should
appear in sorted order in the list and RepOk which applies
both Loop and Sorted together. Figure 11 depicts a faulty
version of this model with 3 different faulty locations across
2 different predicates. To illustrate how Analyzer Plus IDE can
help a user triage a model with multiple faulty locations, we
first create a single test case that depicts a valid loop list with

3 nodes. Then, we ran μAlloy and collected the generated test
suite, which produced 65 tests. After labeling these tests as
valid or invalid, we end up with 6 failing tests.

Next, we highlight how the AUnit frameworks can be used
iterative. First, running AlloyFL on the initial version of the
faulty model produces the results in Figure 12 (a). For the
most suspcious location, μAlloy has a single mutant associated
with a failing test for this location; therefore we update “one
n . l i n k ”  to “no n . l i n k .”  After than, running AlloyFL again
produces the results in Figure 12 (b). Based on the currently
failing tests and the μAlloy results, we then changed “&&”
to “||”. This fully fixes the faulty Sorted predicate, but still
leaves 5 failing test cases. Running AlloyFL on this new
version produces the results in Figure 12 (c). This time, the
most suspicious location is connected to multiple failing tests
that are derived from different mutants; therefore, there is not a
clear mutant to apply. At this point, the user can run ARepair,
which produces the results in Figure 13.

Whether a small, subtle bug or a series of larger bugs
that noticeably alters the behavior of the model, our case
study highlights that Analyzer Plus IDE is able to help guide
users towards a corrected model by helping the user: build a
strong starting test suite (μAlloy), learn more about any faulty
behavior based on the difference between their model and
the mutant(s) that produce failing test(s) (μAlloy), and help
the user figure out where to change their model (AlloyFL).
Moreover, if the user does not know where to get started
to debug their fault, or if the user would rather spend their
modeling efforts writing additional predicates, Analyzer Plus
IDE can always automatically fix the model for the user
(ARepair). The performance of running ARepair on these
models can be seen in Table II. For the single character faults,
ARepair finds a patch very quickly, as expected since these
faults can be repaired by mutation. For the larger SLL model,
ARepair patches the model in 4.5 minutes.

125



(a)

(b)

(c)

Fig. 12. AlloyFL GUIs for Debugging the SLL Model

Fig. 13. ARepair GUIs for Repairing the SLL Modelt

V. RELATED WORK

In this section, we give an overview of work related to Alloy.
Debugging Techniques for Alloy. The testing frameworks

Analyzer Plus IDE integrates into the Analyzer are based on
tools that are coupled with AUnit tests. However, there are
other debugging techniques for Alloy that use assertions. For
repair, ICEBAR extends ARepair to consider built in Alloy
assertions over test cases to guide the repair and check candi-
date patches [10]. ATR is an Alloy repair technique that tries
to find patches based on a preset number of templates and uses
Alloy assertions as an oracle. BeAFix is an automated repair
technique that uses a bounded exhaustive search [11]. TAR is
a mutation-oriented repair technique that is aimed at repairing
Ally4Fun models, which are educational exercises [7]. FLACK
is a fault localization technique that locates faults by using a
partial max sat toolset to compare the difference between a
satisfying instance of a predicate and a counterexample from
an assertion over that predicate [45].

These techniques all focus heavily on using assertions for
debugging. Alloy assertions can be a powerful tool for users,
but assertions are written in first order logic. Our focus with
Analyzer Plus IDE is to improve the native support within

the Analyzer for AUnit-based frameworks, as a novice user is
more likely to accurately write an AUnit test case than an more
robust but complicated assertion. In the future, Analyzer Plus
IDE can benefit from incorporating these other frameworks to
give users even more ways to test and debug their models.

Scenario Explanation. In a similar vain to testing, there
have been a few bodies of work that look to explain why
a instance was generated for an Alloy command execution.
Analyzer Plus IDE shares a synergy with Amaglam, which
aims to help users understand why a instance was found as
a solution to an executed command. Specifically for a given
instance, Amaglam will generate a trace to outline why a user
selected atom or tuple was generated to satisfy the executed
command [21]. Recent work also introduced abstract instances
for Alloy, which looks to distinguish between portions of a
scenario that are present to satisfy the overall, global facts
of the model compared to the portions of a instance that are
present to satisfy the explicitly executed constraints of the Al-
loy command [26]. Both these frameworks are complimentary
to the overall purpose of Analyzer Plus IDE.

Extensions to the Analyzer for Enumeration. Viewing
scenarios is a common “spot check” process for Alloy users,
in addition to scenarios being used for test generation and
other testing activities. As a result, over the years, there have
been several extensions to the Analyzer to influence the way
that scenarios are enumerated. A common approach is to try
and provide users with an interesting subset of scenarios that
may be more valuable to the user: Aluminum enumerates
minimum scenarios [22], Hawkeye allows users to influence
what instance gets enumerated next based on the current
scenario [28], CompoSAT enumerates scenarios with unique
coverage [25], and Seabs allows user to enumerate scenarios
that differ based on abstract functions [29]. In addition, Reach
allows users to enumerate scenarios by size and does not
reduce the number of scenarios generated [15].

VI. CONCLUSION AND FUTURE WORK

While the Alloy Analyzer is a strength of Alloy com-
pared to other modeling languages, it is far behind the
IDEs for imperative code, e.g. Eclipse for Java. As a result,
the development process in Alloy can still feel rough and
unaccommodating. We believe a key functionality missing
from the Alloy Analyzer is a structured format for users to
verify the correctness of a model. Therefore, we introduce the
Analyzer Plus IDE, an integrated development environment for
Alloy models that contains several testing features including
test generation, mutation testing, fault localization and repair.
Our case study highlights how these testing frameworks can
improve developer productivity when debugging models and
aid in the creation of more accurate software models. Recently,
Alloy was updated to support linear temporal logic. As a result,
Alloy is now able to directly express behavioral properties of a
system in addition to structural properties of a system. As new
versions of AUnit and the AUnit enabled testing frameworks
are released, we plan to update Analyzer Plus IDE to build an
IDE that also supports testing temporal models.
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