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1 | INTRODUCTION

Edge-colouring is an important and active area of graph theory; for an overview see, for
example, the book by Stiebitz et al. [8]. One of the key results here is the remarkable theorem of
Vizing [9], proved independently by Gupta [6], that every multigraph G admits a proper edge
colouring with at most A(G) + 7 (G) colours, where A(G) and 7 (G) denote respectively the
maximum degree and the maximum edge multiplicity of G, and an edge colouring is called
proper if no two different edges sharing a vertex get the same colour.

Some local versions of edge colouring problems (where a possible colour of an edge
xy depends on local information such as the degrees of x and y rather than the global
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maximum degree) were introduced already in the influential paper of Erdés et al. [5]. One of
the strongest asymptotic results here is by Bonamy et al. [1] giving the following local list
version of Vizing's theorem: for every ¢ > 0 if the maximum degree A(G) of a graph G is
sufficiently large, the minimum degree § (G) is at least In>> A(G) and we have an assignment of
colour lists to edges e — L(e) so that each edge {x,y} gets at least (1 + ¢)max{d(x), d(¥)}
colours then there is a proper edge colouring ¢ of G with ¢(e) € L(e) for each edge e, where
d(x) denotes the degree of a vertex x.

Resolving a conjecture posed in [1], Christiansen [3, 4] proved that every simple graph G
admits a proper edge colouring into N := {1, 2, 3, ...} which is local, meaning that the colour of
any edge {x, y} is at most max{d (x), d(y)} + 1. In the special case when the graph G is biparite,
the stronger conclusion that the colour of {x, y} is at most max{d(x), d(y)} (which may be
called the local Konig Theorem) follows from the more general results of Borodin et al. [2].

The purpose of this note is to observe that the proof of Christiansen extends to multigraphs.
The following definition seems to be the ‘right’ one in this context: let us call an N-valued edge
colouring ¢ of a multigraph local if for every edge e with endpoints x and y it holds that

¢(e) < max{d(x) + 7 (x), d(y) + w(»)}, 1)

where 7 (z) denotes the maximum edge multiplicity at a vertex z. Here is a local version of
Vizing's theorem for multigraphs.

Theorem 1. Every multigraph admits a proper local edge colouring.

The standard example (a 3-vertex multigraph where every pair has the same multiplicity)
shows that one cannot decrease the right-hand size of (1) in general. Note that, even without
the extra locality restriction, we do not know the minimum number of colours as a function of
A and 7 that suffices for proper edge colouring of every multigraph with maximum degree A
and maximum edge multiplicity 77; see Scheide and Stiebitz [7] for our current knowledge of
this question.

The original Vizing's theorem as well as some other edge colouring results can be derived
from the so-called Fan Equation of Vizing [10] (which is discussed in detail in [8, Section 2]).
Here we present a local version of the Fan Equation (which, in this more general setting,
becomes an inequality, see Theorem 4) and derive Theorem 1 from it. As another consequence
of Theorem 4, we have the following result.

Theorem 2. Let G = (V, E) be a simple graph and k € N. If the maximum degree of G is
at most k and the set of vertices of degree exactly k spans no cycle in G, then there is a proper
local colouring E — {1, ..., k}.

2 | NOTATION AND PRELIMINARIES

By N :={1, 2,..} we denote the set of positive integers. For integers k > ¢ > 0, we denote
[, k] = {¢, ..., k} and [k] = {1, ..., k}.

Let G = (V, E,r) be a multigraph, that is, V and E are the sets of vertices and edges
respectively, and r is a (not necessarily injective) function from E to (Z) the set of unordered
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pairs of vertices. The (edge) multiplicity 7 (x,y) = Ir~1({x, y})| of a pair {x,y} € (Z) is the
number of edges whose end-points are x and y. For x,y € V and e € E, we write x € e (resp.
e = xy) to mean that x € r(e) (resp. r(e) = {x, y}).

The degree of x € V isd(x) = Zer\ {x}n‘(x, y) which is the number of edges incident to x.
Also, let 77 (x) = maxyey (377 (%, y) denote the maximum multiplicity at x.

As only edges will be coloured, we will usually say just ‘colouring’ instead of ‘edge
colouring’. A partial colouring of G is a function ¢ : dom(¢) — N where the domain dom(¢) of
¢ is a subset of E. We may also write this as ¢ : E =~ N. If dom(¢) = E (i.e., every edge is
coloured) then we call ¢ a colouring (and write ¢ : E — N). A (partial) colouring ¢ is proper if
no two distinct edges sharing at least one vertex get the same colour. It is called local if

¢ (e) < max{d(x) + w(x) : x € e}, for every e € dom(¢), 2

that is, for every coloured edge e there is x € e with ¢(e) < d(x) + 7 (x).

Given a partial colouring ¢, a ¢-chain is a sequence of distinct edges C = (ey, ..., €,) such that
{e1, ..., ep} N dom(¢) = {ey, ..., ey} (ie., ey is the only uncoloured edge) and, for every i € [p — 1],
the edges e; and e;,; share exactly one vertex. The C-shift (or shift along C) of ¢ is the partial
colouring ¢’ with dom(¢’) = (dom(¢)\ {e,}) U {e;} which coincides with ¢, except ¢’ (e;) == ¢ (e;41)
for i € [p — 1] (while e, is uncoloured under ¢). Informally speaking, we shift colours one step
down along C. A ¢-chain (e, e’) with e = xy and ¢’ = xz (thus, e is uncoloured, e’ is coloured and
y # z)is called ¢-safeif p(e") < d(y) + 7 (y) and no edge incident to y has colour ¢ (e”). A ¢-chain
C = (ey, ..., ep) wWith m > 3 is ¢-safe if, for every i € [m — 1], the ¢,-chain (e;, e;11) is ¢;-safe, where
¢; denotes the (ey, ..., ¢;)-shift of ¢. In other words, C is ¢-safe if each individual 1-edge step of the
C-shift is safe with respect to the current colouring. Note that the sequence C = (e;) made of a single
edge e; uncoloured under ¢ is a ¢-chain (and its shift keeps the partial colouring ¢ unchanged); also,
let us agree that every such single-edge chain is ¢-safe. When the colouring ¢ is understood, we may
say just ‘chain’ instead of ‘¢p-chain’, and so on.

For a vertex x € V and distinct colours a, § € N with 8 not present at x, let P.(«, 3, ¢)
denote the sequence of edges on the maximal (¢, 3)-bichromatic path that starts at the vertex x.
Thus the values of ¢ on P (a, 8, ¢) alternate between a and f3, starting with «; if the colour « is
not present at x, then P.(«, 8, ¢) is the empty sequence. Note that we exclude the case that
P.(a, B, ¢) is a double edge by requiring that 8 is missing at x in this definition.

In some proofs, we will be given an integer k and the set of possible colours will be
restricted to [k]. Then we will use the following definitions that implicitly depend on k. Given
¢ : E =~ [k], we let for a vertex x € V

¢(x) == [k]\{#(e) : e 2 x},
to be the set of colours missing at x, and

(x) =& (x) N [d(x) + m(x)],

to be the set of colours which are safe at x. Thus a colour is safe at x if it is missing at x and is at
most d(x) + 7 (x). Also, the potential (function) of ¢ : E ~ [k] is

D(P) = Y IPX)I.

xev
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Lemma 3. LetG = (V, E, ) be a multigraph, k € N be a positive integer, ¢ : E —~ [k] be
a proper local partial colouring, and ¢’ be the shift of ¢ along a ¢-safe chain (e, e’), with
e=xy and e =xz. Then ¢' is a proper local partial colouring and ®(¢") < D().
Moreover, we have equality if and only if (') < d(z) + 7 (2).

Proof. The edge e = xy gets coloured during the shift. The new colouring ¢’ is proper
because the set of colours at x does not change while the new colour on e = xy was
missing at y. Also, the locality condition for e holds from the y-side, that is,
¢'(e) = g(e) < d(y) + m(y).

Consider the difference ®(¢") — ®(¢). Since the contributions of a vertex that sees the
same sets of colours on incident edges in ¢ and ¢’ cancel each other, we have to look at
y and z only. The contribution of y to ®(¢") — ®(¢) is exactly —1, because the shift
reduces the number of safe colours at y by 1 (namely, ¢(e’) is now gone from this list).
The contribution of z to ®(¢") — ®(¢) is at most 1, and it is equal to 1 if and only if the
colour moved out from z is in [d(z) + 7 (z)], that is, if and only if ¢(e") < d(z) + 7 ().
This finishes the proof of the lemma. O

3 | MULTIFANS

Let k € N and a multigraph G = (V, E, §3) be given. Let ¢ : E ~ [k] be any proper local partial
colouring. Let e € E be an uncoloured edge and let x € e.

A multifan at x with respect to e and ¢ (and k) is a sequence F = (ey, y;, ..., €p, y,) With p > 1
consisting of edges e, ..., ¢, and vertices y,, ..., , satisfying the following conditions.

(F1) The edges ey, ..., e, are distinct, e; = e, and e; = xy, fori € [p].
(F2) Foreveryi € [2,p]thereis j € [i — 1] such that ¢(e;) € ¢( yj); in particular, e; is coloured

by ¢.

Also, we denote V (F) = {y,, ...,yp}. Note that V (F) does not include x.

Usually, the Fan Equation is stated for an edge critical multigraph (when a desired colouring of
the whole edge set exists when we remove any edge). Having in mind possible algorithmic and
descriptive set theory applications, we state a version where the multigraph G we want to colour
need not be edge critical and the presented result can be used to ‘improve’ the current partial
colouring using chains of special kind. With this in mind, we make the following definitions.

A chain C = (ey, ..., ¢,) is improving if it is ¢-safe and the C-shift ¢" of ¢ has strictly smaller
potential, or there is a way to extend ¢’ to e, keeping ¢’ proper and local (in particular, strictly
decreasing the potential). Note that the new proper local colouring ¢’ satisfies ®(¢") < ®(¢) in
either case. We say that a chain C is Vizing if it starts with some edges f,....f,,q > 1, all
containing the same vertex z and then continues with a (possibly empty) initial segment of a
bichromatic path starting at y, where y # z is the other endpoint of fq. (Some further
restrictions can be put on possible chains arising from the proof of Theorem 4 but we would
like to keep this definition simple and short.) Also, for z € V letdy(z) := |{e € dom(¢) : e 3 z}I
denote the number of edges at z that are assigned a colour by ¢.

Theorem 4 (Local Fan Inequality). Let k > 2, let G = (V, E,r) be a multigraph with
A(G) < k,and let ¢ : E —~ [k] be a partial proper local colouring that admits no improving
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Vizing chain. Suppose that e € E is uncoloured. Let x € e and let F = (ey, J;, ..., e, yp) bea
multifan at x with respect to e and ¢. Then all of the following properties hold.

(a) For every i € [p] there are m > 0 and a sequence ig> i, > ---> i, such that
ip=1,im =1 and (e, €,_,, -, €;,) iS a ¢-safe chain.
(b) For everyi € [p], we have

# ()N ¢ (y) N [max{d(x) + 7(x),d(y) + 7(¥)}] = @. 3)

(c) For all choices of i € [p],a € #(x), and B e $(yi), the (a, B)-bichromatic path
P, (a, B, ¢) from y, ends in x.

(d) Foreveryi,je [pl, ify # Y then
NI = 2. @)

(e) If the multifan F is maximal then |{y,, ...,yp}l > 2 and

>, (mp(x,z) — minfk, d(2) + 7(2)} + dy(2)) > 1. (%)
ZEV (F)

(Here 7y denotes the edge multiplicity in the multigraph F, while m = 71 is taken with
respect to the whole multigraph G.)

Proof. To prove Part (a) for any given i € [p], we construct a required sequence as
follows. Initially, let iy := i and m := 0. If the current i,, is equal to 1 then stop. Otherwise
let iyy41 € [i, — 1] be any index satisfying (F2) for iy, (i.e., ¢(e;,) € ¢ (ei,,,), increase m
by 1, and repeat. Let ig > i; > ---> i, be the final sequence (with iy =i,i, = 1, and
m > 0). Clearly, (e;,, ..., €;,) is a chain.

Although this is intuitively obvious, let us formally check that the chain (e; , ..., €;,) is
¢-safe. This vacuously holds if m = 0, so assume that m > 1. Let ¢, := ¢ and, inductively
for j € [m], let $;41 be the (€i_;11» €iy,_;)-shift of ¢;; equivalently, ¢, , is obtained from ¢ by
shifting along (e, ..., €;,_,). We show by induction on j € [m] that the ¢;-chain
(€iy_js €y 18 ¢;-safe and the partial colouring ¢;,, is proper and local. So take any
J € [m]. We know that ¢; is proper and local (by induction if j > 2 and by ¢, = ¢ if
j = 1). Note that ¢ (ei,_) = #(e;,_,) (since, by (F1), the edge e;,,_, is distinct from any edge
whose colour changes when we construct ¢; from ¢, = ¢). By the choice of iy,;+1 (i.e., by
(F2)), ¢ (e;,_,) isin &( y,.mijﬂ). Since all colours at x are pairwise distinct, the colour ¢ (e;,, )
cannot appear aty,  when we pass from ¢, = ¢ to ¢;. Thus ¢, (ei,_,) = #(e;,_) is also in
aj( yl-m_jﬂ) and the ¢j—chain (€ipjirs €ip) 18 ¢j—safe. It follows that the partial colouring ¢j 1
is proper and local by Lemma 3, as required.

Suppose that Part (b) is false. Let i € [p] be the smallest index violating it. Let « be a
colour present in the left-hand side of (3). Let (iy, ..., i) be the sequence returned by Part
(a) for this index i. Let ¢’ be the shift of ¢ along (e;,, e;,_,, .., €;,). By Lemma 3, the new
colouring ¢’ is proper and local (and satisfies ®(¢") < ®(¢)). Under ¢', the edge ¢; = xy, is
uncoloured; also, the colour « is missing at both x and y.. Indeed, & was missing at both x
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and y, before the shift (i.e., under ¢) while the shift, that affects only edges at x, does not
move colour « at all.

Obtain ¢” from ¢’ by colouring e; with the colour . By the above arguments, the new
colouring ¢” is still proper. By definition, a is at most max{d (x) + 7 (x), d(y) + 7 ()}, so
¢” is also local. Thus (e;,,, ..., €;,) is an improving Vizing chain for ¢. This contradiction proves
Part (b).

Let us turn to Part (c). Suppose that the claim is false for some vertex y, and colours «
and . Choose the smallest possible such index i € [p]. Recall that 8 is missing at
Y, P =P, (a, B, ¢) is the (a, B)-bichromatic path starting at y, and we assumed on the
contrary that the final endpoint of P is a vertex x" # x. The vertex set V (P) of P does not
contain x, as otherwise x would be an endpoint (since a is missing at x). It follows
that none of the edges incident to x (in particular, none of ey, ..., ¢,) can belong to P. Let
ip =1 > ---> i, = 1 be the sequence returned by Part (a) for this i and let ¢’ be the shift of
¢ along the chain (e;,, ..., €;,). By Lemma 3, the partial colouring ¢’ is proper and local, and
satisfies ®(¢") < ®(¢p). Note that the edge e; is not coloured by ¢’

Let the path P traverse edges (f, ..., f,) and vertices (14, U, ..., Up41) in this order. Thus
w =y and f, = usus for every s € [¢]. By Part (b), the colour a is present at y; under ¢
and also under ¢’ (since the other endpoint of the colour-a edge at y cannot be x). Thus
¢ > 1. Let f; = ¢; denote the edge coming before the path P in our shifting procedure.
Let P’ :=(f,, ..., f,). It is a path (since V (P) # x) and a ¢'-chain (since f, & dom(¢")).
Also, let ug == x (so that f; = uouy) and let C be the concatenation of (e;,, ..., €;,) and P.
Clearly, C is a Vizing chain.

Observe that if we were interested in only proper edge-colourings (i.e., not requiring
that the extra locality property in (2) holds), then we could have taken the P’-shift of ¢’
and assign one of « or 8 to the (now uncoloured) edge f,, thus finding a colouring with
strictly larger domain than ¢. Instead, we proceed as follows.

Starting with ¢’, we iteratively apply the (£, f;,,)-shifts fors = 0, 1, ..., ¢ — 1 as long as
each of them is safe. Lemma 3 implies that the potential ® cannot increase at any step.
Thus @ stays constant by our assumptions on ¢.

Suppose first that we cannot perform the above shift for some s < ¢ — 1, that is, before
doing the whole chain P’. Denote the obtained colouring ¢”. Thus ¢” is the (f, ..., f;)-shift
of ¢’, where s is the maximum index (assumed to be at most ¢ — 1) such that (f, ..., f;) is
a ¢'-safe chain. Note that s > 1 since the first shift (along (e;, f;)) moves the colour « to
e; = xy; and cannot violate the locality condition at x by a < d(x) + 7 (x). Since the
(fy fy41)-shift is not safe in the current colouring ¢” but results in a proper colouring
(since we shift along a bichromatic path), we have that
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Y= ¢” (fg+1) > d(us) + ﬂ(us)- (6)

Suppose first that s > 2. Consider the (f,_,, f,_;)-shift (i.e., the penultimate one before
we obtained ¢”). This shift moves the colour from f,_; = us_1us to f,_, = us_rus_1, with
the moved colour being y. Thus by (6) and the last claim of Lemma 3, the (f,_,, f;_;)-shift
strictly decreased the value of the potential, while the chain C truncated at f,_, is safe and
thus improving, a contradiction. So, suppose that s = 1. Here when we shift the colouring ¢’
along the path P’, we perform the first safe shift (f, ) but we cannot proceed with the

second shift, namely along (f;, f,). However, then we have that u; =y, and y = 8 in (6),
contradicting the assumption of Part (c) that 8 lies in ¢ ( ¥ C[d(y) + 7 (¥l
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Thus, we can assume that the whole chain P’ is ¢’-safe (and thus C is ¢-safe). We shift
¢’ all way along it to obtain ¢”; equivalently, ¢” is the C-shift of ¢. The edge f, is
uncoloured by ¢”. Let y be the element of {«, 8} different from ¢”(f,_,) = ¢'(f,). Recall
that f, is the last edge of the maximal « /3-bichromatic path P with respect to ¢ that starts
with y. Clearly, the colour y is missing at the penultimate vertex u, under ¢”.

Let us show that y cannot occur at u,;; under ¢”. Suppose otherwise. As y is not
present at u,.; under ¢ (by the maximality of P) but is present at u,,; under ¢', it must be
the case that y = 8 and uy4q = Y, for some j € [m] (and the colour 8 appeared at Y,

because it was shifted to it from y; | during the (e;,, ..., &;)-shift of ¢). We conclude that i;

dny woyy paprojumod 0 ‘8110L601

is strictly less than i = iy and the reversal of the path P is the maximal «/S-bichromatic
path starting at ¥, under ¢. This means that Pyij (a, B, ¢) ends at y; # x and the index i;

contradicts the minimality of i. This contradiction proves that y is not present at u,,,
under ¢”, as claimed.

We conclude that, under ¢”, the colour y is missing at both u, and u,,;. Next, one can
show similarly to above that y < d(u,) + 7 (uz): otherwise, for ¢ > 2, the shift for
s = ¢ — 2 would strictly decrease ® while, for ¢ = 1, this would contradict the choice of
B by y = B and u, = y,. Thus if we colour f, by y then we obtain a proper local colouring.
Hence, C is an improving Vizing chain. This contradiction proves Part (c).

Let us turn to Part (d). Suppose on the contrary there are i, j € [p] such that y; # y; and
there is a colour 8 € ¢(y) N ¢( ¥)- Let a be any element in # (x). The last set is nonempty
since at most d(x) — 1 < k edges at x are coloured. Part (c) applies to i (resp. j) and gives
that the a/B-alternating chain starting at y, (resp. y;) ends at x. This means that, in the
multigraph formed by the edges coloured « or §, the three distinct vertices y;, y; and X lie in
the same connectivity component and each has degree 1. This is contradiction, since the
{a, B}-bichromatic multigraph has maximum degree at most 2.

For Part (e), suppose that the multifan F is maximal. Since at most d(y;) — 1 edges
are coloured at y,, there is § € é( y,). The colour § must be present at x for otherwise, by
colouring e; with colour 3, we obtain a larger proper local colouring and thus (e;) is an

improving chain, a contradiction. Let ¢’ = xy’ be the edge of colour . By maximality, the
fan F contains the edge e’. Thus V (F) contains y’ # y and has size at least 2, as desired. It

remains to prove (5). For this, define ' := {¢(e,), ..., (ep)} and I == Usev ) # (z). (Recall
that V (F) = {y,, ..., J,,}.)
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Claim 1. The sets T and I'” are the same.

Proof of Claim. Let us show that I' C I'"". Take any index i € [2, p]. By (F2), there is
Jj € [i — 1] such that ¢(e;) € $(yﬂ. Thus ¢(e;) € I', as desired.

Conversely, pick any i € [p] and B € $(y,). By Part (b), we have that § & ¢ (x).
Thus there is ¢’ = xg with ¢(e’) = 8. By the maximality of F, there is j € [2,p]
with e’ = e;. Thus § = ¢(e;) belongs to I'. We conclude that I' D I', finishing the
proof of the claim. O

By Claim 1 and Part (d), we have that

p—1=N=I"= ) Ig@I> ) (@mink d&)+ 7(2)}— ds()).
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Also, we have that p = ZzeV(F)ﬂF(x’ z). Putting these two identities together, we
obtain (5). This finishes the proof of the lemma. O

Note that, in Theorem 4, if e is the only edge of G not coloured by ¢ then dg(y) = d(y,)
except dy(y;) = d(y,) — 1 and the Local Fan Inequality simplifies to

2, (e(x,2) — minfk — d), 7(2)}) > 2.

z€V (F)
Now we are ready to derive the promised local version of Vizing's theorem.

Proof of Theorem 1. Let k := max{d(x) + 7(x) : x € V(G)}. Starting with the empty
colouring, iteratively apply improving Vizing chains until none exists. (We stop since the
potential strictly decreases each time.) Suppose that some edge e is not coloured by the
final colouring ¢. Let x € e and let F = (e, ), ..., e, yp) be a maximal multifan at x with
respect to e and ¢. Then the Local Fan Inequality (5) holds by Theorem 4. Since
k > d(z) + m(z) for every z € V(G), the inequality states that

> (mr(x,z2) — w(z) + dg(z) — d(2)) > 1.

Z€V (F)
This is impossible as each summand in the left-hand side is clearly nonpositive. []

It easy to convert the proof of Theorem 1 into an algorithm that finds a local colouring of input
multigraph G = (V, E, r) without isolated vertices with running time polynomial in IEl. The
algorithm starts with the empty partial colouring ¢, and iteratively finds an improving Vizing
chain and changes the current partial colouring accordingly. Each step decreases the potential.
Thus we make at most ®(¢,) = O(IEl) improvements. Given an uncoloured edge, an improving
Vizing chain as in the proof of Theorem 4 can be easily found in polynomial in IE| time.

Note that if G is a simple graph, then the Local Fan Inequality (5) states that

> (dg(z) — minfk — 1,d(2)}) > 1. -

zZEV (F)

Proof of Theorem 2. Let C be the set of pairs (¢, e) such that ¢ is a proper local partial
colouring E (G) —~ [k] with the smallest possible potential, while e € E an edge is not
coloured by ¢. Suppose that the theorem is false. Thus C is nonempty.

Claim 2. For every (¢, e) € C and x € e there are at least two different choices of
f € E such that f = xy for some y € V with d(y) = k and (¢',f) € C for some ¢'.

Proof of Claim. Let F = (e, y,, -.., &, yp) be a maximal multi-fan at x with respect to
e; = e and ¢. By Theorem 4, the Local Fan Inequality (7) holds. Since dg(y;) < d(y;) — 1,
the contribution of y, to the left-hand size of (7) is at most 0 if d(y,) = k and at most —1 if
d(y;) < k — 1. We conclude by k > d(z) for every z € V(G) that there are at least two
indices i € [p] such that d(y) = k.

ASUDII suowWwo)) aanear) dqearidde oy £q pausaAoS e sa[ANIE YO 28N JO $A[NI 10 KIRIqUT SUIUQ AS[TAN UO (SUONIPUOI-PUB-SULI/ W0 AA[IM KIRIqIaur[uo//:sdny) Suonipuo)) pue suua], ayi 23S *[707/L0/0€] uo A1eiqry auruQ A KNsioatun) o[y d1saure)) £q ¢S1¢z180/2001°01/10p/wod Kapim: Krexquiaurjuoy/:sdny woiy papeofumod ‘0 ‘8110601
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Let us show that, for each such i, the edge f:=e; satisfies the claim. Indeed, let
ip=1i>14 > --->1I, =1 be the sequence of indices returned by Part (a) of Theorem 4.
Let ¢' be the shift of ¢ along the ¢-safe sequence (e;,,e;,_,, .., €;,)- By Lemma 3,
(¢',f) € C, as required. O

Start with any (¢;, e;) € C with e; = x3%. By applying Claim 2 (twice) and changing
the pair (¢,, e;) we can assume first that d (3q) = k and then that also d (0g) = k (and thus
k = A(G)). Starting with ¢, and e; = x;%, we inductively construct an infinite sequence
¢1, ¢,, ... and an infinite path visiting edges e;, e, ... and vertices X, X, X3, ... in the stated
order such that (¢, ¢;) € C and d(x;) = k for everyi > 1 as follows. Leti > 1 and suppose
that we already have ¢,, ..., ¢, and ey, ..., ¢; as above. Claim 2 when applied to (¢, ;) with
X = X;;1 gives at least two different potential choices of the next edge e;1; = X;4+1X;+, and
the next partial colouring ¢, , (i.e., such that (¢,,,, e;41) € C and d(x;;,) = k). For at
least one of these choices we have x;,, & {x, ..., x;} as otherwise this would create a cycle
on vertices of degree k. Thus we can always extend the path by a new edge. However, this
contradicts the finiteness of our graph G, thus proving Theorem 2. O

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees for their helpful comments. Clinton
Conley was supported by NSF Grants DMS-1855579 and DMS-2154160. Jan Grebik was
supported by Leverhulme Research Project Grant RPG-2018-424. Oleg Pikhurko was supported
by ERC Advanced Grant 101020255 and Leverhulme Trust Grant RPG-2018-424.

REFERENCES

1.

M. Bonamy, M. Delcourt, R. Lang, and L. Postle, Edge-colouring graphs with local list sizes, J. Combin.
Theory, Series B. 165 (2024), 68-96.

O. V. Borodin, A. V. Kostochka, and D. R. Woodall, List edge and list total colourings of multigraphs,
J. Combin. Theory, Series B. 71 (1997), 184-204.

A. B. G. Christiansen, The power of multi-step Vizing chains, STOC'23-Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, 2023, pp. 1013-1026.

A. B. G. Christiansen, The power of multi-step Vizing chains, E-print arxiv:2210.07363 (2022). https://arxiv.
org/abs/2210.07363

P. Erdds, A. L. Rubin, and H. Taylor, Choosability in graphs, Proceedings of the West Coast Conference
on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979), 1980,
pp. 125-157.

R. P. Gupta, The chromatic index and the degree of a graph, Notices Am. Math. Soc. 13 (1966), 719.

D. Scheide and M. Stiebitz, The maximum chromatic index of multigraphs with given A and u, Graphs
Combin. 28 (2012), 717-722.

M. Stiebitz, D. Scheide, B. Toft, and L. M. Favrholdt, Graph edge coloring, Wiley Series in Discrete
Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2012.

V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964), 25-30.

V. G. Vizing, The chromatic class of a multigraph, Kibernetyka. 3 (1965), 29-39.

How to cite this article: C. T. Conley, J. Grebik and O. Pikhurko, Local version of
Vizing's theorem for multigraphs, J. Graph Theory (2024), 1-9.
https://doi.org/10.1002/jgt.23155

ASUADIT sUOWWO)) NI a[qearidde ) £q PAUIA0S d1e SA[INIE V() (SN JO SI[NT 10§ AIRIQIT UIUQ AJ[IAY UO (SUONIPUOD-PUR-SULIAWOY" 1M’ AXRIqIaUI[u0y/:sdNY) SUONIPUOY) PUe SWLIRL, Y1 23S “[+20T/L0/0€] U0 Areiqry aurjuQ LA\ “ANsIoatun) uo[[ajy daure) £q ¢S1¢z181/2001°01/10p/wod Ka[im: Kreaqupauriuoy/:sdny woy papeofumoc ‘0 ‘81 10L60T



	Local version of Vizing's theorem for multigraphs
	1 INTRODUCTION
	2 NOTATION AND PRELIMINARIES
	3 MULTIFANS
	ACKNOWLEDGEMENTS
	REFERENCES


