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1. Introduction
Modern machine learning has not only surpassed the state
of the art inmany engineering and scientific problems, but
it also has had an impact on society at large, and will likely
continue to do so. This includes deep learning, large lan-
guage models, diffusion models, etc. In this article, we
give an account of certain mathematical principles that
are used in the definition of some of these machine learn-
ing models, and we explain how classical invariant theory
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plays a role in them. Due to space constraints we leave
out many relevant references. A version of this manuscript
with a longer set of references is available on arXiv [1].

In supervised machine learning, we typically have a
training set (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1, where 𝑥𝑖 ∈ ℝ𝑑 are the data points
and 𝑦𝑖 ∈ ℝ𝑘 are the labels. A typical example is image
recognition, where the 𝑥𝑖 are images and the 𝑦𝑖 are image
labels (say, “cat” or “dog”), encoded as vectors. The goal is
to find a function ̂𝑓 in a hypothesis space ℱ, that not only
approximately interpolates the training data ( ̂𝑓(𝑥𝑖) ≈ 𝑦𝑖),
but also performs well on unseen (or held-out) data. The
function ̂𝑓 is called the trained model, predictor, or estimator.
In practice, one parametrizes the class of functions ℱ with
some parameters 𝜃 varying over a space Θ of parameter
values sitting inside some ℝ𝑠; in other words, ℱ = {𝑓𝜃 ∶ℝ𝑑 → ℝ𝑘, 𝜃 ∈ Θ ⊆ ℝ𝑠}. Then one uses local optimiza-
tion (in 𝜃) to find a function in ℱ that locally and approx-
imately minimizes a prespecified empirical loss functionℓ which compares a candidate function 𝑓𝜃’s values on the
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𝑥𝑖 with the “true” target values 𝑦𝑖. In other words, one ap-
proximately solves 𝜃∗ ≔ argmin𝜃∑𝑛𝑖=1 ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖), and
then takes ̂𝑓 = 𝑓𝜃∗ .

Modern machine learning performs regressions on
classes of functions that are typically overparameterized
(the dimension 𝑠 of the space of parameters is much larger
than the number 𝑛 of training samples), and inmany cases,
several functions in the hypothesis class ℱ can interpolate
the data perfectly. Deep learning models can even interpo-
late plain noise, or fit images to random labels. Moreover,
the optimization problem is typically nonconvex. There-
fore the model performance is highly dependent on how
the class of functions is parameterized and the optimiza-
tion algorithms employed.

The parameterization of the hypothesis class of func-
tions is what in deep learning is typically referred to as the
architecture. In recent years, the most successful architec-
tures have been ones that use properties or heuristics re-
garding the structure of the data (and the problem) to de-
sign the class of functions: convolutional neural networks
for images, recurrent neural networks for time series, graph
neural networks for graph-structured data, transformers,
etc. Many of these design choices are related to the sym-
metries of the problem: for instance, convolutional neural
networks can be translation equivariant, and transformers
can be permutation invariant.

When the learning problem comes from the physical sci-
ences, there are concrete sets of rules that the function be-
ing modeled must obey, and these rules often entail sym-
metries. The rules (and symmetries) typically come from
coordinate freedoms and conservation laws [19]. One clas-
sical example of these coordinate freedoms is the scaling
symmetry that comes from dimensional analysis (for in-
stance, if the input data to the model is rescaled to change
everything that has units of kilograms to pounds, the pre-
dictions should scale accordingly). In order to domachine
learning on physical systems, researchers have designed
models that are consistent with physical law; this is the
case for physics-informed machine learning, neural ODEs
and PDEs, and equivariant machine learning.

Given data spaces 𝑉,𝑊 and a group 𝐺 acting on both
of them, a function 𝑓 ∶ 𝑉 → 𝑊 is equivariant if 𝑓(𝑔 ⋅ 𝑣) =𝑔 ⋅ 𝑓(𝑣) for all 𝑔 ∈ 𝐺 and all 𝑣 ∈ 𝑉 . Many physical prob-
lems are equivariant with respect to rotations, permuta-
tions, or scalings. For instance, consider a problem where
one uses data to predict the dynamics of a folding protein
or uses simulated data to emulate the dynamics of a turbu-
lent fluid. Equivariant machine learning restricts the hy-
pothesis space to a class of equivariant functions. The phi-
losophy is that every function that the machine learning
model can express is equivariant, and therefore consistent
with physical law.

Symmetries were used formachine learning (and in par-
ticular neural networks) in early works [16], and more re-
cently they have been revisited in the context of deep learn-
ing. There are three main ways to implement symmetries.
The simplest one parameterizes the invariant and equivari-
ant functions with respect to discrete groups by averaging
arbitrary functions over the group orbit [3]. The second ap-
proach, explained in the next section, uses classical repre-
sentation theory to parameterize the space of equivariant
functions (see for instance [8]). The third approach, the
main point of this article, uses invariant theory.

As an example, we briefly discuss graph neural net-
works (GNNs), which have been a very popular area of
research in the past couple of years. GNNs can be seen
as equivariant functions that take a graph represented by
its adjacency matrix 𝐴 ∈ ℝ𝑛×𝑛 and possible node features𝑋 ∈ ℝ𝑛×𝑑, and output an embedding 𝑓(𝐴, 𝑋) ∈ ℝ𝑛×𝑑 so
that 𝑓(Π𝐴Π⊤, Π𝑋) = Π𝑓(𝐴, 𝑋) for all Π 𝑛 × 𝑛 permuta-
tion matrices. Graph neural networks are typically imple-
mented as variants of graph convolutions or message pass-
ing, which are equivariant by definition. However, many
equivariant functions cannot be expressedwith these archi-
tectures. Several recent works analyze the expressive power
of different GNN architectures in connection to the graph
isomorphism problem.

Beyond graphs, equivariant machine learning models
have been extremely successful at predicting molecular
structures and dynamics, protein folding, protein binding,
and simulating turbulence and climate effects, to name a
few applications. Theoretical developments have shown
the universality of certain equivariant models, as well
as generalization improvements of equivariant machine
learning models over nonequivariant baselines. There has
been some recent work studying the inductive bias of equi-
variant machine learning, and its relationship with data
augmentation. See [1] for a list of references on these top-
ics.

2. Equivariant Convolutions and
Multilayer Perceptrons

Modern deep learning models have evolved from the clas-
sical artificial neural network known as the perceptron.
The multilayer perceptron model takes an input 𝑥 and out-
puts 𝐹(𝑥) defined to be the composition of affine linear
maps and nonlinear entry-wise functions. Namely,

𝐹(𝑥) = 𝜌 ∘ 𝐿𝑇 ∘ … . ∘ 𝐿2 ∘ 𝜌 ∘ 𝐿1(𝑥) , (1)

where 𝜌 is the (fixed) entrywise nonlinear function and𝐿𝑖 ∶ ℝ𝑑𝑖 → ℝ𝑑𝑖+1 are affine linear maps to be learned
from the data. The linear maps 𝐿𝑖 can be expressed as𝐿𝑖(𝑥) = 𝐴𝑖𝑥 + 𝑏𝑖 where 𝐴𝑖 ∈ ℝ𝑑𝑖×𝑑𝑖+1 and 𝑏𝑖 ∈ ℝ𝑑𝑖+1 . In
this example each function 𝐹 is defined by the parameters𝜃 = (𝐴𝑖, 𝑏𝑖)𝑇𝑖=1.
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The first neural network that was explicitly equivariant
with respect to a group action is the convolutional neural
network. The observation is that if the 𝑁 ×𝑁 input images𝑥 are seen in the torus ℤ/𝑁ℤ × ℤ/𝑁ℤ, the linear equivariant
maps are cross-correlations (which in ML are referred to
as convolutions) with fixed filters. The idea of restricting
the linear maps to satisfy symmetry constraints was gen-
eralized to equivariance with respect to discrete rotations
and translations, and to general homogenous spaces. Note
that when working with arbitrary groups there are restric-
tions on the functions 𝜌 for the model to be equivariant.

Classical results in neural networks show that certain
multilayer perceptrons can universally approximate any
continuous function in the limit where the number of neu-
rons goes to infinity. However, that is not true in general
in the equivariant case. Namely, functions expressed as
(1) where the 𝐿𝑖 are linear and equivariant may not uni-
versally approximate all continuous equivariant functions.
In some cases, there may not even exist nontrivial linear
equivariant maps.

One popular idea to address this issue is to extend this
model to use equivariant linear maps on tensors. Now𝐿𝑖 ∶ ℝ𝑑⊗𝑘𝑖 → ℝ𝑑⊗𝑘𝑖+1 are linear equivariant maps (where
the action in the tensor product is defined as the tensor
product of the action in each component and extended
linearly). Now the question is how can we parameterize
the space of such functions to do machine learning? The
answer is via Schur’s lemma.

A representation of a group 𝐺 is a map 𝜙 ∶ 𝐺 → GL(𝑉)
that satisfies 𝜙(𝑔1𝑔2) = 𝜙(𝑔1)𝜙(𝑔2) (where 𝑉 is a vector
space and GL(𝑉), as usual, denotes the automorphisms
of 𝑉 , that is, invertible linear maps 𝑉 → 𝑉). A group ac-
tion of 𝐺 on ℝ𝑑 (written as ⋅) is equivalent to the group
representation 𝜙 ∶ 𝐺 → GL(ℝ𝑑) such that 𝜙(𝑔)(𝑣) = 𝑔 ⋅ 𝑣.
We extend the action ⋅ to the tensor product (ℝ𝑑)⊗𝑘 so that
the group acts independently in every tensor factor (i.e., in
every dimension or mode), namely 𝜙𝑘 = ⊗𝑘𝑟=1𝜙 ∶ 𝐺 →GL((ℝ𝑑)⊗𝑘).

The first step is to note that a linear equivariant map𝐿𝑖 ∶ (ℝ𝑑)⊗𝑘𝑖 → (ℝ𝑑)⊗𝑘𝑖+1 corresponds to a map between
group representations such that 𝐿𝑖 ∘ 𝜙𝑘𝑖 (𝑔) = 𝜙𝑘𝑖+1(𝑔) ∘ 𝐿𝑖
for all 𝑔 ∈ 𝐺. Homomorphisms between group represen-
tations are easily parametrizable if we decompose the rep-
resentations in terms of irreducible representations (aka
irreps):

𝜙𝑘𝑖 = 𝑇𝑘𝑖⨁ℓ=1 𝒯ℓ . (2)

In particular, Schur’s Lemma says that a map between two
irreps over ℂ is zero (if they are not isomorphic) or a mul-
tiple of the identity (if they are).

The equivariant neural-network approach consists in de-
composing the group representations in terms of irreps
and explicitly parameterizing the maps [9]. In general,
it is not obvious how to decompose an arbitrary group
representation into irreps. However in the case where𝐺 = SO(3), the decomposition of a tensor representation
as a sum of irreps is given by the Clebsch–Gordan decom-
position: ⊗𝑘𝑠=1𝜙𝑠 = ⊕𝑇ℓ=1𝒯ℓ (3)

The Clebsch–Gordan decomposition not only gives the de-
composition of the right side of (3) but also it gives the ex-
plicit change of coordinates. This decomposition is funda-
mental for implementing the equivariant 3D point-cloud
methods defined in [8] and other works (see references in
[1]). Moreover, recent work [6] shows that the classes of
functions used in practice are universal, meaning that ev-
ery continuous SO(3)-equivariant function can be approxi-
mated uniformly in compact sets by those neural networks.
However, there exists a clear limitation to this approach:
Even though decompositions into irreps are broadly stud-
ied in mathematics (plethysm), the explicit transforma-
tion that allows us to write the decomposition of tensor
representations into irreps is a hard problem in general. It
is called the Clebsch–Gordan problem.

3. Invariant Theory for Machine Learning
An alternative but related approach to the linear equivari-
ant layers described above is the approach based on invari-
ant theory, the focus of this article. In particular, the au-
thors of this note and collaborators [18] explain that for
some physically relevant groups—the orthogonal group,
the special orthogonal group, and the Lorentz group—one
can use classical invariant theory to design universally ex-
pressive equivariant machine learning models that are ex-
pressed in terms of the generators of the algebra of invari-
ant polynomials. Following an idea attributed to B. Mal-
grange (that we learned from G. Schwarz), it is shown how
to use the generators of the algebra of invariant polynomi-
als to produce a parameterization of equivariant functions
for a specific set of groups and actions.

To illustrate, let us focus on O(𝑑)-equivariant func-
tions, namely functions 𝑓 ∶ (ℝ𝑑)𝑛 → ℝ𝑑 such that𝑓(𝑄𝑣1, … , 𝑄𝑣𝑛) = 𝑄𝑓(𝑣1, … , 𝑣𝑛) for all 𝑄 ∈ O(𝑑) and all𝑣1, … , 𝑣𝑛 ∈ ℝ𝑑 (for instance, the prediction of the position
and velocity of the center ofmass of a particle system). The
method of B. Malgrange (explicated below) leads to the
conclusion that all such functions can be expressed as

𝑓(𝑣1, … , 𝑣𝑛) = 𝑛∑𝑗=1𝑓𝑗(𝑣1, … , 𝑣𝑛)𝑣𝑗 , (4)

where 𝑓𝑗 ∶ (ℝ𝑑)𝑛 → ℝ are O(𝑑)-invariant functions. Clas-
sical invariant theory shows that 𝑓𝑗 is O(𝑑)-invariant if
and only if it is a function of the pairwise inner products
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(𝑣⊤𝑖 𝑣𝑗)𝑛𝑖,𝑗=1. So, in actuality, (4) can be rewritten

𝑓(𝑣1, … , 𝑣𝑛) = 𝑛∑𝑗=1𝑝𝑗 ((𝑣⊤𝑖 𝑣𝑗)𝑛𝑖,𝑗=1) 𝑣𝑗 , (5)

where 𝑝𝑗 ∶ ℝ𝑛+(𝑛2) → ℝ are arbitrary functions. In other
words, the pairwise inner products generate the algebra of
invariant polynomials for this action, and every equivari-
ant map is a linear combination of the vectors themselves
with coefficients in this algebra.

In this article, we explicate the method of B. Mal-
grange in full generality, showing how to convert knowl-
edge of the algebra of invariant polynomials into a char-
acterization of the equivariant polynomial (or smooth)
maps. In Section 4 we explain the general philosophy
of the method, and in Section 5 we give the precise al-
gebraic development, formulated as an algorithm to pro-
duce parametrizations of equivariantmaps given adequate
knowledge of the underlying invariant theory. In Section
6, we work through several examples.

We note that, for machine learning purposes, it is not
critical that the functions 𝑝𝑗 are defined on invariant poly-
nomials, nor that they themselves are polynomials. In
the following, we focus on polynomials because the ideas
were developed in the context of invariant theory; the ar-
guments explicated below are set in this classical context.
However, in [18], the idea is to preprocess the data by
converting the tuple (𝑣𝑗)𝑛𝑗=1 to the tuple of dot products(𝑣⊤𝑖 𝑣𝑗)𝑛𝑖,𝑗=1, and then treat the latter as input to the 𝑝𝑗 ’s,
which are then learned using a machine learning architec-
ture of one’s choice. Therefore, the 𝑝𝑗 ’s are not polyno-
mials but belong to whatever function class is output by
the chosen architecture. Meanwhile, some recent works
[2,5,11] have proposed alternative classes of separating in-
variants that can be used in place of the classical algebra
generators as input to the 𝑝𝑗 ’s, and may have better nu-
merical stability properties. This is a promising research
direction.

4. Big Picture
We are given a group 𝐺, and finite-dimensional linear 𝐺-
representations 𝑉 and𝑊 over a field 𝑘. (We can take 𝑘 = ℝ
or ℂ.) We want to understand the equivariant polynomial
maps 𝑉 → 𝑊 . We assume we have a way to understand 𝐺-
invariant polynomials on spaces related to 𝑉 and 𝑊 , and
the goal is to leverage that knowledge to understand the
equivariant maps.

The following is a philosophical discussion, essentially
to answer the question: why should it be possible to do
this? It is not precise; its purpose is just to guide thinking.
Below in Section 5 we show how to actually compute the
equivariant polynomials 𝑉 → 𝑊 given adequate knowl-
edge of the invariants. That section is rigorous.

The first observation is that any reasonable family of
maps 𝑉 → 𝑊 (for example linear, polynomial, smooth,
continuous, etc.) has a natural 𝐺-action induced from the
actions on 𝑉 and 𝑊 , and that the 𝐺-equivariant maps in
such a family are precisely the fixed points of this action,
as we now explain. This observation is a standard insight
in representation and invariant theory.

Let Maps(𝑉,𝑊) be the set of maps of whatever kind,
and let 𝐺𝐿(𝑉) (respectively 𝐺𝐿(𝑊)) be the group of linear
invertible maps from 𝑉 (respectively 𝑊) to itself. Given𝑓 ∈ Maps(𝑉,𝑊) and 𝑔 ∈ 𝐺 and 𝑣 ∈ 𝑉 , we define the map𝑔𝑓 by 𝑔𝑓 ≔ 𝜓(𝑔) ∘ 𝑓 ∘ 𝜙(𝑔−1), (6)

where 𝜙 ∶ 𝐺 → 𝐺𝐿(𝑉) and 𝜓 ∶ 𝐺 → 𝐺𝐿(𝑊) are the group
homomorphisms defining the representations 𝑉 and 𝑊 .
The algebraic manipulation to verify that this is really a
group action is routine and not that illuminating. A per-
haps more transparent way to understand this definition
of the action as “the right one” is that it is precisely the
formula needed to make this square commute:

𝑉 𝑊
𝑉 𝑊

𝑓
𝜙(𝑔) 𝜓(𝑔)𝑔𝑓

It follows from the definition of this action that the con-
dition 𝑔𝑓 = 𝑓 is equivalent to the statement that 𝑓 is 𝐺-
equivariant. The square above automatically commutes,
so 𝑔𝑓 = 𝑓 is the same as saying that the below square
commutes— 𝑉 𝑊

𝑉 𝑊
𝑓

𝜙(𝑔) 𝜓(𝑔)𝑓
—and this is what it means to be equivariant.

An important special case of (6) is the action of 𝐺 on𝑉∗, the linear dual of 𝑉 . This is the case𝑊 = 𝑘 with trivial
action, and for ℓ ∈ 𝑉∗ (6) reduces to 𝑔ℓ ≔ ℓ ∘ 𝜙(𝑔−1).
This is known as the contragredient action. We will utilize it
momentarily with 𝑊 in the place of 𝑉 .

The second observation is thatMaps(𝑉,𝑊) can be iden-
tified with functions from a bigger space to the underlying
field 𝑘 by “currying,” and this change in point of view pre-
serves the group action. Again, this is a standardmaneuver
in algebra. Specifically, given any map 𝑓 ∈ Maps(𝑉,𝑊),
we obtain a function ̃𝑓 ∶ 𝑉 × 𝑊 ∗ → 𝑘, defined by the
formula ̃𝑓 ∶ 𝑉 ×𝑊 ∗ → 𝑘(𝑣, ℓ) ↦ ℓ(𝑓(𝑣)).
Note that the function ̃𝑓 is linear homogeneous in ℓ ∈𝑊 ∗. Conversely, given any function 𝑓′ ∶ 𝑉 ×𝑊 ∗ → 𝑘 that
is linear homogeneous in the second coordinate, we can
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recover a map 𝑓 ∶ 𝑉 → 𝑊 such that 𝑓′ = ̃𝑓, by taking𝑓(𝑣) to be the element of𝑊 identified along the canonical
isomorphism 𝑊 → 𝑊 ∗∗ with the functional on 𝑊 ∗ that
sends ℓ ∈ 𝑊 ∗ to 𝑓′(𝑣, ℓ)—this functional is guaranteed
to exist by the fact that 𝑓′ is linear homogeneous in the
second coordinate. An observation we will exploit in the
next section is that the desired functional is actually the
gradient of 𝑓′(𝑣, ℓ) with respect to ℓ.

This construction gives an identification ofMaps(𝑉,𝑊)
with a subset of Maps(𝑉 × 𝑊 ∗, 𝑘). Furthermore, there is a
natural action of 𝐺 on Maps(𝑉 ×𝑊 ∗, 𝑘), defined precisely
by the above formula (6) with 𝑉 × 𝑊 ∗ in place of 𝑉 , 𝑘 in
place of𝑊 , and trivial action on 𝑘;1 and the identification
described here preserves this action. Therefore, the fixed
points for the 𝐺-action on Maps(𝑉,𝑊) correspond with
fixed points for the 𝐺-action on Maps(𝑉 × 𝑊 ∗, 𝑘), which
are invariant functions (since the action of 𝐺 on 𝑘 is trivial).

What has been achieved is the reinterpretation of equi-
variant maps 𝑓 ∈ Maps(𝑉,𝑊) first as fixed points of a𝐺-action, and then as invariant functions ̃𝑓 ∈ Maps(𝑉 ×𝑊 ∗, 𝑘). Thus, knowledge of invariant functions can be par-
layed into knowledge of equivariant maps.

5. Equivariance from Invariants
With the above imprecise philosophical discussion as a
guide, Algorithm 1 shows how in practice to get from a de-
scription of invariant polynomials on 𝑉 ×𝑊 ∗, to equivari-
ant polynomial (or smooth) maps 𝑉 → 𝑊 . The technique
given here is attributed to B. Malgrange; see [13, Proposi-
tion 2.2] where it is used to obtain the smooth equivariant
maps, and [15, Proposition 6.8] where it is used to obtain
holomorphic equivariant maps. Variants on this method
are used to compute equivariant maps in [7, Sections 2.1–
2.2], [12, Section 3.12], [4, Section 4.2.3], and [20, Sec-
tion 4].

The goal of the algorithm is to provide a parametriza-
tion of equivariant maps. That said, the proof of correct-
ness is constructive: as an ancillary benefit, it furnishes a
method for taking an arbitrary equivariant map given by
explicit polynomial expressions for the coordinates and ex-
pressing it in terms of this parametrization.

We now exposit in detail Algorithm 1 and its proof of
correctness, in the case where 𝑓 is a polynomial map; for
simplicity we take 𝑘 = ℝ. The argument is similar for
smooth or holomorphic maps, except that one needs an
additional theorem to arrive at the expression (7) below. If𝐺 is a compact Lie group, the needed theorem is proven in
[14] for smooth maps, and in [10] for holomorphic maps
over ℂ.

We begin with linear representations 𝑉 and 𝑊 of a
group 𝐺 over ℝ. We take 𝑊 ∗ to be the contragredient

1The action of 𝐺 on 𝑉 × 𝑊 ∗ is defined by acting separately on each factor; the
action on𝑊 ∗ is the contragredient representation defined above.

Algorithm 1 Malgrange’s method for getting equivariant
functions
Input: Bihomogeneous generators 𝑓1, … , 𝑓𝑚 for ℝ[𝑉 ×𝑊 ∗]𝐺.

1. Order the generators so that 𝑓1, … , 𝑓𝑟 are of degree0 and 𝑓𝑟+1, … , 𝑓𝑠 are of degree 1 in 𝑊 ∗. Discard𝑓𝑠+1, … , 𝑓𝑚 (of higher degree in 𝑊 ∗).
2. Choose a basis 𝑒1, … , 𝑒𝑑 for 𝑊 , and let 𝑒⊤1 , … , 𝑒⊤𝑑 be

the dual basis, so an arbitrary element ℓ ∈ 𝑊 ∗ can
be written ℓ = 𝑑∑𝑖=1 ℓ𝑖𝑒⊤𝑖 ,
and ℓ(𝑒𝑖) = ℓ𝑖.

3. For 𝑗 = 𝑟 + 1, … , 𝑠, and for 𝑣 ∈ 𝑉, ℓ ∈ 𝑊 ∗, let 𝐹𝑗(𝑣)
be the gradient of 𝑓𝑗(𝑣, ℓ) with respect to ℓ ∈ 𝑊 ∗,
identified with an element of 𝑊 along the canoni-
cal isomorphism 𝑊 ∗∗ ≅ 𝑊 ; explicitly,

𝐹𝑗(𝑣) ≔ 𝑑∑𝑖=1 ( 𝜕𝜕ℓ𝑖 𝑓𝑗(𝑣, ℓ)) 𝑒𝑖.
Then each 𝐹𝑗 is a function 𝑉 → 𝑊 .

Output: Equivariant polynomial functions 𝐹𝑟+1, … , 𝐹𝑠
from 𝑉 to 𝑊 such that any equivariant polynomial
(or smooth, if 𝐺 is compact) map 𝑓 ∶ 𝑉 → 𝑊 can be
written as 𝑓 = 𝑠∑𝑗=𝑟+1𝑝𝑗(𝑓1, … , 𝑓𝑟)𝐹𝑗 ,
where 𝑝𝑗 ∶ ℝ𝑟 → ℝ are arbitrary polynomial (or
smooth, if 𝐺 is compact) functions.

Remark: Because the 𝑓𝑗(𝑣, ℓ)’s are being differentiated
with respect to variables in which they are linear, Step
3 could alternatively have been stated: for each 𝑗, define𝐹𝑗 as the vector in 𝑊 whose coefficients with respect to
the 𝑒𝑖’s are just the coefficients of the the ℓ𝑖’s in 𝑓𝑗(𝑣, ℓ).

representation to 𝑊 , defined above. (If 𝐺 is compact, we
can work in a coordinate system in which the action of𝐺 on 𝑊 is orthogonal, and then we may ignore the dis-
tinction between 𝑊 and 𝑊 ∗, as discussed above in the
case of 𝐺 = O(𝑑).) We suppose we have an explicit set𝑓1, … , 𝑓𝑚 of polynomials that generate the algebra of in-
variant polynomials on the vector space 𝑉 ×𝑊 ∗ (denoted
as ℝ[𝑉 × 𝑊 ∗]𝐺)—in other words, they have the property
that any invariant polynomial can be written as a polyno-
mial in these. We also assume they are bihomogeneous, i.e.,
independently homogeneous in 𝑉 and in 𝑊 ∗. To reduce
notational clutter we suppress the maps specifying the ac-
tions of 𝐺 on 𝑉 and 𝑊 (which were called 𝜑 and 𝜓 in the
previous section), writing the image of 𝑣 ∈ 𝑉 (respectively𝑤 ∈ 𝑊 , ℓ ∈ 𝑊 ∗) under the action of an element 𝑔 ∈ 𝐺 as𝑔𝑣 (respectively 𝑔𝑤, 𝑔ℓ). We suppose 𝑓1, … , 𝑓𝑟 are degree 0
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in ℓ (so they are functions of 𝑣 alone), 𝑓𝑟+1, … , 𝑓𝑠 are degree1 in ℓ, and 𝑓𝑠+1, … , 𝑓𝑚 are degree > 1 in ℓ.
Now we consider an arbitrary 𝐺-equivariant polyno-

mial function 𝑓 ∶ 𝑉 → 𝑊.
We let ℓ ∈ 𝑊 ∗ be arbitrary, and, as in the previous section,
we construct the functioñ𝑓 ∶ 𝑉 ×𝑊 ∗ → ℝ(𝑣, ℓ) ↦ ℓ(𝑓(𝑣)).
Equivariance of 𝑓 ∶ 𝑉 → 𝑊 implies that ̃𝑓 is invariant:̃𝑓(𝑔𝑣, 𝑔ℓ)=ℓ∘𝑔−1(𝑓(𝑔𝑣))=ℓ∘𝑔−1(𝑔𝑓(𝑣))=ℓ(𝑓(𝑣))= ̃𝑓(𝑣, ℓ).
From the invariance of ̃𝑓, and the fact that 𝑓1, … , 𝑓𝑚 gen-
erate the algebra of invariant polynomials on 𝑉 ×𝑊 ∗, we
have an equality of the form̃𝑓(𝑣, ℓ) = 𝑃(𝑓1(𝑣), … , 𝑓𝑚(𝑣, ℓ)), (7)

where 𝑃 ∈ ℝ[𝑋1, … , 𝑋𝑚] is a polynomial. Note that 𝑓1, … , 𝑓𝑟
do not depend on ℓ, while 𝑓𝑟+1, … , 𝑓𝑚 do.

We now fix 𝑣 ∈ 𝑉 and take the gradient 𝐷ℓ of both sides
of (7) with respect to ℓ ∈ 𝑊 ∗, viewed as an element of𝑊 .2

Choosing dual bases 𝑒1, … , 𝑒𝑑 for 𝑊 and 𝑒⊤1 , … , 𝑒⊤𝑑 for 𝑊 ∗,
and writing ℓ = ∑ℓ𝑖𝑒⊤𝑖 , we can express the operator 𝐷ℓ
acting on a smooth function 𝐹 ∶ 𝑊 ∗ → ℝ explicitly by the
formula 𝐷ℓ𝐹 = 𝑑∑𝑖=1 ( 𝜕𝜕ℓ𝑖 𝐹) 𝑒𝑖.
Applying 𝐷ℓ to the left side of (7), we get

𝐷ℓ ̃𝑓(𝑣, ℓ) = 𝑑∑𝑖=1 ( 𝜕𝜕ℓ𝑖 ℓ(𝑓(𝑣))) 𝑒𝑖
= 𝑑∑𝑖=1( 𝜕𝜕ℓ𝑖 ( 𝑛∑𝑗=1 ℓ𝑗𝑒⊤𝑗 𝑓(𝑣))) 𝑒𝑖
= 𝑑∑𝑖=1 (𝑒⊤𝑖 𝑓(𝑣)) 𝑒𝑖= 𝑓(𝑣),

so 𝐷ℓ recovers 𝑓 from ̃𝑓. (Indeed, this was the point.)
Meanwhile, applying 𝐷ℓ to the right side of (7), writing𝜕𝑗𝑃 for the partial derivative of 𝑃 with respect to its 𝑗th
argument, and using the chain rule, we get

𝐷ℓ𝑃(𝑓1, … , 𝑓𝑚) = 𝑚∑𝑗=1 𝜕𝑗𝑃(𝑓1, … , 𝑓𝑚)𝐷ℓ𝑓𝑗 .
Combining these, we conclude

𝑓(𝑣) = 𝑚∑𝑗=1 𝜕𝑗𝑃(𝑓1(𝑣), … , 𝑓𝑚(𝑣, ℓ))𝐷ℓ𝑓𝑗(𝑣, ℓ). (8)

2In the background, we are using canonical isomorphisms to identify 𝑊 ∗ with
all its tangent spaces, and𝑊 ∗∗ with𝑊 .

Now we observe that 𝐷ℓ𝑓𝑗(𝑣) = 0 if 𝑗 ≤ 𝑟, because in those
cases 𝑓𝑗(𝑣) is constant with respect to ℓ. But meanwhile,
the left side of (8) does not depend on ℓ, and it follows
the right side does not either; thus we can evaluate it at
our favorite choice of ℓ; we take ℓ = 0. Upon doing this,𝐷ℓ𝑓𝑗(𝑣, ℓ)|ℓ=0 also becomes 0 for 𝑗 > 𝑠, because in these
cases 𝑓(𝑣, ℓ) is homogeneous of degree at least 2 in ℓ, so
its partial derivatives with respect to the ℓ𝑖 remain homo-
geneous degree at least 1 in ℓ, thus they vanish at ℓ = 0.
Meanwhile, 𝑓𝑗(𝑣, ℓ)|ℓ=0 itself vanishes for 𝑗 = 𝑟 + 1, … ,𝑚,
so that the (𝑟 + 1)st to 𝑚th arguments of each 𝜕𝑗𝑃 vanish.
Abbreviating 𝜕𝑗𝑃(𝑓1(𝑣), … , 𝑓𝑟(𝑣), 0, … , 0)
as 𝑝𝑗(𝑓1(𝑣), … , 𝑓𝑟(𝑣)), we may thus rewrite (8) as

𝑓(𝑣) = 𝑠∑𝑗=𝑟+1𝑝𝑗(𝑓1(𝑣), … , 𝑓𝑟(𝑣))𝐷ℓ𝑓𝑗(𝑣, ℓ).
Finally, we observe that, 𝑓𝑗 being linear homogeneous inℓ for 𝑗 = 𝑟 + 1, … , 𝑠, 𝐷ℓ𝑓𝑗(𝑣, ℓ) is degree 0 in ℓ, i.e., it
does not depend on ℓ. So we may call it 𝐹𝑗(𝑣) as in the
algorithm, and we have finally expressed 𝑓 as the sum∑𝑠𝑟+1 𝑝𝑗(𝑓1, … , 𝑓𝑟)𝐹𝑗, as promised.

6. Examples
In this section we apply Malgrange’s method to param-
etrize equivariant functions in various examples. In all
cases, for positive integers 𝑑, 𝑛, we take a group 𝐺 of 𝑑 × 𝑑
matrices, equipped with its canonical action on ℝ𝑑, and
we are looking for equivariant maps(ℝ𝑑)𝑛 → ℝ𝑑
from an 𝑛-tuple of vectors to a single vector. The under-
lying invariant theory is provided by Weyl’s The Classical
Groups in each case.

The orthogonal group. We parametrize maps that
are equivariant for 𝐺 = O(𝑑). By the Riesz representa-
tion theorem, we can identify ℝ𝑑 with (ℝ𝑑)∗ along the
map 𝑣 ↦ ⟨𝑣, ⋅⟩, where ⟨⋅, ⋅⟩ is the standard dot product⟨𝑣, 𝑤⟩ = 𝑣⊤𝑤. Since O(𝑑) preserves this product (by defini-
tion), this identification is equivariant with respect to theO(𝑑)-action, thus (ℝ𝑑)∗ is isomorphic with ℝ𝑑 as a repre-
sentation of O(𝑑). We may therefore ignore the difference
between 𝑊 = ℝ𝑑 and 𝑊 ∗ in applying the algorithm.

Thus, we consider the ring of O(𝑑)-invariant polynomi-
als on tuples(𝑣1, … , 𝑣𝑛, ℓ) ∈ (ℝ𝑑)𝑛 × ℝ𝑑 = 𝑉 ×𝑊.
We begin with bihomogeneous generators for this ring. By
a classical theorem of Weyl known as the first fundamental
theorem for O(𝑑), they are the dot products 𝑣⊤𝑖 𝑣𝑗 for 1 ≤ 𝑖 ≤𝑗 ≤ 𝑛; 𝑣⊤𝑖 ℓ for 1 ≤ 𝑖 ≤ 𝑛; and ℓ⊤ℓ. These are ordered by
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their degree in𝑊 as in Step 1 of the algorithm; we discardℓ⊤ℓ as it is degree > 1 in 𝑊 .
We can work in the standard basis 𝑒1, … , 𝑒𝑑 for𝑊 = ℝ𝑑,

and we have identified it with its dual, so Step 2 is done as
well.

Applying Step 3, we take the generators of degree 1 in𝑊 , which are 𝑓1 = 𝑣⊤1 ℓ, … , 𝑓𝑛 = 𝑣⊤𝑛ℓ.
Taking the gradients, we get

𝐹𝑗(𝑣1, … , 𝑣𝑛) = 𝑑∑𝑖=1 ( 𝜕𝜕ℓ𝑖 𝑣⊤𝑗 ℓ) 𝑒𝑖
= 𝑑∑𝑖=1(𝑣𝑗)𝑖𝑒𝑖= 𝑣𝑗 ,

where (𝑣𝑗)𝑖 denotes the 𝑖th coordinate of 𝑣𝑗. Thus the𝐹𝑗(𝑣1, … , 𝑣𝑛) yielded by the algorithm is nothing but
projection to the 𝑗th input vector. Meanwhile, the𝑓1(𝑣), … , 𝑓𝑟(𝑣) of the algorithm are the algebra generators𝑣⊤𝑖 𝑣𝑗 of degree zero in ℓ; thus the output of the algorithm is
precisely the representation described in (5) and the para-
graph following.

The Lorentz and symplectic groups. If we replace O(𝑑)
with the Lorentz group O(1, 𝑑 − 1), or (in case 𝑑 is even)
the symplectic group Sp(𝑑), the entire discussion above
can be copied verbatim, except with the standard dot prod-
uct being replaced everywhere by the Minkowski product𝑣⊤ diag(−1, 1, … , 1)𝑣 in the former case, or the standard
skew-symmetric bilinear form 𝑣⊤𝐽𝑤 (where 𝐽 is block diag-
onal with 2×2 𝜋/2-rotationmatrices as blocks) in the latter.
We also need to use these respective products in place of
the standard dot product to identify ℝ𝑑 equivariantly with
its dual representation. The key point is that the invariant
theory works the same way (see [12, Sec. 9.3] for a concise
modern treatment, noting that 𝑂(𝑑) and 𝑂(1, 𝑑 − 1) have
the same complexification).

The special orthogonal group. Now we consider 𝐺 =SO(𝑑). We can once again identify ℝ𝑑 with its dual. How-
ever, this time, in Step 1, the list of bihomogeneous gen-
erators is longer: in addition to the dot products 𝑣⊤𝑖 𝑣𝑗 and𝑣⊤𝑖 ℓ (and ℓ⊤ℓ, which will be discarded), we have 𝑑 × 𝑑 de-
terminants det(𝑣𝑖1 , … , 𝑣𝑖𝑑 ) for 1 ≤ 𝑖1 ≤ ⋯ ≤ 𝑖𝑑 ≤ 𝑛, anddet(𝑣𝑖1 , … , 𝑣𝑖𝑑−1 , ℓ) for 1 ≤ 𝑖1 ≤ ⋯ ≤ 𝑖𝑑−1 ≤ 𝑛. The former
are of degree 0 in ℓ while the latter are of degree 1. Thus,
the latter contribute to our list of 𝐹𝑗 ’s in Step 3, while the
former figure in the arguments of the 𝑝𝑗 ’s. Carrying out
Step 3 in this case, we find that

𝑑∑𝑖=1 ( 𝜕𝜕ℓ𝑖 det(𝑣𝑖1 , … , 𝑣𝑖𝑑−1 , ℓ)) 𝑒𝑖

is exactly the generalized cross product of the 𝑑−1 vectors𝑣𝑖1 , … , 𝑣𝑖𝑑−1 . Thus we must add to the 𝐹𝑗 ’s a generalized
cross-product for each ( 𝑛𝑑−1)-subset of our input vectors; in
the end the parametrization of equivariantmaps looks like

𝑓 = 𝑛∑𝑖=1𝑝𝑖 ((𝑣⊤𝑗 𝑣𝑘){𝑗,𝑘}∈([𝑛]2 ), det(𝑣|𝑆)𝑆∈([𝑛]𝑑 )) 𝑣𝑖+ ∑𝑆′∈( [𝑛]𝑑−1) 𝑝𝑆′ ((𝑣
⊤𝑗 𝑣𝑘){𝑗,𝑘}∈([𝑛]2 ), det(𝑣|𝑆)𝑆∈([𝑛]𝑑 )) 𝑣𝑆′ ,

where [𝑛] ≔ {1, … , 𝑛}, ([𝑛]𝑘 ) represents the set of 𝑘-subsets
of [𝑛], det(𝑣|𝑆) is shorthand for det(𝑣𝑖1 , … , 𝑣𝑖𝑑 ) where 𝑆 ={𝑖1, … , 𝑖𝑑}, and 𝑣𝑆′ is shorthand for the generalized cross
product of the 𝑑 − 1 vectors 𝑣𝑖1 , … , 𝑣𝑖𝑑−1 where 𝑆′ ={𝑖1, … , 𝑖𝑑−1}.

The special linear group. We include an example
where we cannot identify ℝ𝑑 with its dual representation.
Namely, we take 𝐺 = SL(𝑑,ℝ). As 𝐺 does not preserve
any bilinear form on ℝ𝑑, we must regard (ℝ𝑑)∗ as a dis-
tinct representation. Thus in Step 1 we must consider the
polynomial invariants on(𝑣1, … , 𝑣𝑛, ℓ) ∈ (ℝ𝑑)𝑛 × (ℝ𝑑)∗.
A generating set of homogeneous invariants is given by the
canonical pairings ℓ(𝑣𝑖), 𝑖 = 1, … , 𝑛, and the 𝑑 × 𝑑 deter-
minants det(𝑣|𝑆), 𝑆 ∈ ([𝑛]𝑑 ), where we have used the same
shorthand as above for a 𝑑-subset 𝑆 of [𝑛] and the 𝑑×𝑑 de-
terminant det(𝑣|𝑆) whose columns are the 𝑣𝑖’s indexed by𝑆. The former are degree 1 in ℓ while the latter are degree0. So, writing ℓ = ∑𝑑𝑖=1 ℓ𝑖𝑒⊤𝑖 as in Step 2, we have

𝑓𝑟+𝑗(𝑣, ℓ) = ℓ(𝑣𝑗) = 𝑑∑𝑖=1 ℓ𝑖 ⋅ (𝑣𝑗)𝑖,
and again in Step 3 we get𝐹𝑗(𝑣) = 𝑣𝑗 ,
with the computation identical to the one above for the
orthogonal group. Thus the algorithm outputs that an ar-
bitrary 𝐺 = SL(𝑑, ℝ)-equivariant polynomial map has the
form 𝑓 = 𝑛∑𝑗=1𝑝𝑗 (det(𝑣|𝑆)𝑆∈([𝑛]𝑑 )) 𝑣𝑗 .

The symmetric group. We give an example where the
algebra of invariants is generated by something other than
determinants and bilinear forms, so the 𝐹𝑗 ’s output by the
algorithm are not just the 𝑣𝑗 ’s themselves and generalized
cross products. Take 𝐺 = 𝑆𝑑, the symmetric group on 𝑑
letters, acting on ℝ𝑑 by permutations of the coordinates.
As 𝑆𝑑 realized in this way is a subgroup of O(𝑑), we can
once again identify ℝ𝑑 with its dual.

By the fundamental theorem on symmetric polynomi-
als, the algebra of 𝐺-invariant polynomials on a single
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vector 𝑣 ∈ ℝ𝑑 is given by the elementary symmetric
polynomials in the coordinates 𝜎1(𝑣) = ∑(𝑣)𝛼, 𝜎2(𝑣) =∑𝛼<𝛽(𝑣)𝛼(𝑣)𝛽, etc., where 𝛼, 𝛽,⋯ ∈ [𝑑] index the coor-
dinates of the vector 𝑣. Weyl showed that for any 𝑛, the
algebra of invariant polynomials on an 𝑛-tuple of vectors(𝑣1, … , 𝑣𝑛) ∈ (ℝ𝑑)𝑛, is generated by the polarized elemen-
tary symmetric polynomials

𝜎1(𝑣𝑖) = ∑𝛼 (𝑣𝑖)𝛼,𝜎2(𝑣𝑖, 𝑣𝑗) = ∑𝛼≠𝛽(𝑣𝑖)𝛼(𝑣𝑗)𝛽,𝜎3(𝑣𝑖, 𝑣𝑗 , 𝑣𝑘) = ∑𝛼≠𝛽≠𝛾(𝑣𝑖)𝛼(𝑣𝑗)𝛽(𝑣𝑘)𝛾,
etc., where 𝑣𝑖, 𝑣𝑗 , 𝑣𝑘, … can be any of the vectors 𝑣1, … , 𝑣𝑛,
distinct or not. (Up to a scalar multiple, one recovers the
original, unpolarized elementary symmetric polynomials
of a single vector by setting 𝑖 = 𝑗 = 𝑘 = … .) Run-
ning the algorithm to parametrize equivariant functions(ℝ𝑑)𝑛 → ℝ𝑑, we write down the algebra of invariants on(𝑣1, … , 𝑣𝑛, ℓ) ∈ (ℝ𝑑)𝑛 × ℝ𝑑, and see that the algebra gen-
erators of degree 1 in ℓ have the form 𝜎𝑠(𝑣𝑗1 , … , 𝑣𝑗𝑠−1 , ℓ),
where, again, 𝑗1, … , 𝑗𝑠−1 ∈ [𝑛] can be distinct or not. The
gradients of these become the 𝐹𝑗 ’s of Step 3. For the sake of
explicitness, we fix 𝑑 = 3, 𝑛 = 2, and write out the results
as column vectors. We get

𝐷ℓ𝜎1(ℓ) = (111) ; 𝐷ℓ𝜎2(𝑣𝑖 , ℓ) = ((𝑣𝑖)2 + (𝑣𝑖)3(𝑣𝑖)1 + (𝑣𝑖)3(𝑣𝑖)1 + (𝑣𝑖)2) , 𝑖 = 1, 2;
𝐷ℓ𝜎3(𝑣𝑖 , 𝑣𝑗 , ℓ) = ((𝑣𝑖)2(𝑣𝑗)3 + (𝑣𝑖)3(𝑣𝑗)2(𝑣𝑖)1(𝑣𝑗)3 + (𝑣𝑖)3(𝑣𝑗)1(𝑣𝑖)1(𝑣𝑗)2 + (𝑣𝑖)2(𝑣𝑗)1) , (𝑖, 𝑗) = (1, 1), (1, 2), (2, 2).

Thus any 𝑆3-equivariant polynomial map (ℝ3)2 → ℝ3 is
a linear combination of these six maps, with coefficients
that are polynomials in 𝜎1(𝑣𝑖), 𝜎2(𝑣𝑖, 𝑣𝑗), and 𝜎3(𝑣𝑖, 𝑣𝑗 , 𝑣𝑘)
with 𝑖, 𝑗, 𝑘 ∈ {1, 2}.
7. Discussion
This article gives a gentle introduction to equivariant ma-
chine learning, and it explains how to parameterize equi-
variant maps 𝑉 → 𝑊 in two different ways. One requires
knowledge of the irreducible representations and Clebsch-
Gordan coefficients, and the other requires the knowledge
of the generators of the algebra of invariant polynomials
on 𝑉 × 𝑊 ∗. The main focus is on the latter, which is use-
ful to design equivariant machine learning with respect to
groups and actions where the invariants are known and are
computationally tractable. This is not a panacea: some-
times the algebra of invariant polynomials is too large, or
outright not known. Both these issues come up, for ex-
ample, in the action of permutations on 𝑛 × 𝑛 symmetric
matrices by conjugation, the relevant one for graph neural
networks. The invariant ring has not been fully described

as of this writing, except for small 𝑛, where the number of
generators increases very rapidly with 𝑛; see [17].

From a practitioner’s point of view, it is not yet clear
which of these approaches will behave better in practice.
We conjecture that Malgrange’s construction applied to
nonpolynomial invariants such as [2, 5, 11], as described
at the end of Section 3, is a promising direction for some
applications, especially because some of them exhibit de-
sirable stability properties.
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