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AN INTRODUCTION TO DECOUPLING AND HARMONIC ANALYSIS
OVER Q,

ZANE KUN LI

ABSTRACT. The goal of this expository paper is to provide an introduction to decoupling by
working in the simpler setting of decoupling for the parabola over Q,. Over QQ,, commonly
used heuristics in decoupling are significantly easier to make rigorous over Q, than over R
and such decoupling theorems over Q, are still strong enough to derive interesting number
theoretic conclusions.

1. INTRODUCTION
1.1. Motivation. For an interval J < [0, 1], let
0, :={(&n)eR e |n—-& <[]} (1)

and let f; be defined such that ﬁ] = flij. For 6 € N71 let Ps be a partition of [0, 1] into
intervals of length 0. For 2 < p < o0, let D, r(d) be the best constant such that

1flr@ey < Dpr(6)( Z HfKH2LP(R2))1/2 @
KEP(g

for all f with Fourier transform supported in [ J kep; 0. A special case of Bourgain and
Demeter’s paraboloid decoupling theorem [3, 4] gives that

DPJR((S) Spe 5_8(1 + 5_(%_%))

By interpolation, it suffices to prove the critical estimate that Dgg(d) <. 67°. In 2020,
Guth, Maldague, and Wang in [13] improved this estimate to < (logd~1)¢ for an unspecified
large constant C'. One application of their estimate is the following: Let K (V) be the best
constant such that

J N
H Z ane(nx + nzt)HLg’t(TQ) < K<N)(Z lan|?)12 3)
n=1 o

for all {a,})_; = C and where here e(z) := ¢*™*. They were able to show that K(N) <
(log N)© for the same unspecified large constant C. Before this, the best known upper bound

was due to Bourgain in [2] who showed an upper bound of exp(O(lolgof0 fgv ) using the divisor

bound and a lower bound of (log N)*® by analyzing major arcs.

Recently, instead of working over R, decoupling has been studied over Q, (we use Q,
instead of Q, as we reserve p for the LP norm), see for example [8] and [10]. The prime
q throughout will be an odd prime. In [10], with Shaoming Guo and Po-Lam Yung, we
optimized Guth, Maldague, and Wang’s argument and worked over Q, instead of R to prove
a parabola decoupling theorem over Q, which then was able to reduce C' down to 2+, that
is, K(N) <. (log N)?*e.

Similar to the advantages of working with the Walsh model in time frequency analysis

(see for example [21]), there are some clear advantages in working over Q, instead of R. The
1
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following are some heuristics that are used when thinking about decoupling over R but need
to be made rigorous when writing out the proofs. This often involves working with smooth
cutoffs or convolutions to make all the “essentially” statements rigorously true and can be
somewhat technical. Over Q,, however, the statements below are rigorously true with little
modification.

(7) The neighborhood of the parabola 6; is essentially a parallelogram.

(ii) Balls and squares are essentially the same and so the square [0, R]? is essentially the
same as the square [—R, R]* which in turn is essentially the same as the ball B(0, R).
Furthermore, O(1) dilates of geometric objects such as a balls and rectangles are also
essentially the same, and so we don’t distinguish between B(0, R) and B(0, 2R).

(ii7) Consider an R x R? rectangle centered at the origin pointing in the direction of (say)
(—1,1). The square [0, R?]? can essentially be partitioned by R many translates of
these rectangles.

(iv) The Fourier transform of 1p(g 1) is essentially 15 1).

(v) (Small angle approximation) If || « 1, then e(§) ~ 1.

(vi) (Local constancy property) If f is Fourier supported in 6, then |f| is essentially constant
on translates of the polar (or dual) set 6* := {z € R? : |z - &| < 1 for all £ € #}. Thus
if J =[a,a+ d] and 6 = 6, then |f]| is essentially constant on translates of the “dual
tube” {(x,y) € R? : |z + 2ay| <67, |y| < 672}. The a in = + 2ay can be replaced with
any point in J.

Additionally, decoupling theorems over @, are still strong enough to imply the applications
of decoupling to exponential sums and solution counting such as in Vinogradov’s Mean Value
Theorem and (3) above as often only even LP norms are considered. Thus the author believes
decoupling over @, provides an ideal setting for someone just starting out in the area.

1.2. Decoupling for the parabola over Q,. We now redefine our definitions in (1) and
(2) to work over Q,. For J < Z,, let

0y :={(&n) eQq:&e J|n-& <[]} (4)

and let f; be defined such that fJ = flJXQq. For § € ¢V, let Ps be a partition of Z, into
intervals of length 6. Finally, we let D,(0) := Dy, g,(d) be defined such that

[ £lzr@2) < Dy, () D) IfxlZoz)

K€P5

for all f with Fourier transform supported in | KePs Or. We will prove the following Q,
analogue of Bourgain and Demeter’s decoupling theorem applied to the parabola.

Theorem 1.1. For 6 € ¢~, we have
Dan(é) Spae 576(1 + 57(%7%)),

Once again by interpolation, it suffices to prove that D g, (0) <q.- 07°. The proof we follow
is the efficient congruencing inspired proof of parabola decoupling over R due to myself in
[16]. Following the proofs of the Main Conjecture in Vinogradov’s Mean Value Theorem
using the harmonic analysis method of decoupling by Bourgain, Demeter, and Guth in [5]
and the number theoretic method of efficient congruencing by Wooley [26], it is an interesting
question to determine how these two methods are related. This study led to new proofs of
decoupling for the parabola [16], cubic moment curve [11], and the degree & moment curve
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[12], corresponding to [17, Section 4.3], [14], and [26], respectively. See also [7] for proof of
decoupling for fractal sets on the parabola which was inspired from efficient congruencing
for ellipsephic sets [1]. Additionally see [8] for an interpretation into decoupling of a classical
argument (see for example [22, Chapter 5] or [20, Theorem 13]) that gave partial progress
towards the Main Conjecture in Vinogradov’s Mean Value Theorem.

This paper is organized as follows: In Sections 2 and 3, we review the needed facts for Q,
that are relevant to our paper. In particular, in Section 3, we state the version of the locally
constant property /wavepacket decomposition that we will use. In Section 4, we show that
Theorem 1.1 is sharp up to the € in the exponent, prove an interpolation theorem that allows
use to reduce Theorem 1.1 to just showing the p = 6 case, and show that Theorem 1.1 is
strong enough to imply an estimate for K (V) in (3). In Section 5, we prove Dg g, (0) Sqc 67°
save for one key step (Proposition 5.4). Finally, in Section 6, we give five different proofs of
Proposition 5.4.

Notation. We say that f is Fourier supported in 2 if its Fourier transform J? is supported
in Q. Given an interval I, we let Ps(/) be the partition of I into intervals of length 0. Given
two positive expressions X and Y, we write X <Y if X < CY for some absolute constant
C. If C depends on some additional parameter A, then we write X <4 Y. We write X ~ Y
if X <Y and Y < X. By writing f(z) = O(g(z)), we mean |f(z)| < g(z).

Acknowledgements. The author is supported by NSF grants DMS-2037851 and DMS-
2311174. This expository paper evolved from the slides of a talk the author gave on March 26,
2022 at the AMS Spring Central Sectional Meeting and also the notes for a series of lectures
given by the author from April to May 2022 at the National Center for Theoretical Science
(NCTS) in Taipei, Taiwan. A recording of this lecture series can be viewed at https://
youtu.be/_ML8jAubcqo&list=PLQZfZKhcOkiAXeVcTAnYT9_YwpQ13SMB5. The author would
like to thank NCTS for the kind hospitality during his visit. The author would also like to
thank the anonymous referee for their comments and suggestions in improving the exposition.

2. SOME BASIC FACTS ABOUT Q,

We will summarize all the relevant facts about @Q, in this section and the next. See the
Introduction and Section 2 of [8], Section 2 of [10], Chapters 1 and 2 of [18], and Chapter 1,
Sections 1 and 4 of [23] for additional discussion of analysis on Q,. The exposition in this
section and the next borrows heavily from the presentation in [8] and [10].

2.1. Definitions and basic geometric observations. The field Q, is the completion of
Q under the g-adic norm, defined by |0| = 0 and |¢*b/c| = ¢ * if a € Z, b,c € Z\{0} and q is
relatively prime to both b and c. Then @, can be identified with the set of all formal series

ee}
Q, = {Zajqj tkeZ,aj€{0,1,...,q— 1} for every j > k}

j=k
and the g-adic norm on Q, satisfies |Z;O=k a;¢’| = q7% if ar # 0. A nice article illustrating
one way to visualize Q3 can be found in [15]. Strictly speaking we should be writing | - |,
instead of | - |, but we omit this dependence since we will only be dealing with one fixed
q. The g-adic norm on Q, induces a norm on Qg, which we denote also by | - | by abuse of
notation, via |(x,y)| := max(|z|, |y|). The key property obeyed by the g-adic norm is the
ultrametric triangle inequality: |r + y| < max(|z|, |y|) with equality if |z| # |y].
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We adopt all our geometry terminology in analogy from the real setting. An interval
I(a,r) in Q, is a set of the form {{ € Q, : | — a|] < r} where a € Q, and r > 0; r will then
be called the length of the interval. Given an interval I, we will use |I| to denote the length
of I. A square in Qg of side length r is then the product of 2 intervals in @Q, of length r.
Finally, we define the ball B(a,r) := {{ € Q] : |£ — a| < r} where a € Q2 and r > 0 and will
say this ball has radius r, in analogy to the real setting.

The ring of integers Z coincides with the unit interval 1(0,1) = {§ € Q, : [¢] < 1}.
Elements in Z, are exactly the elements in Q, of the form Z]>0 a;jq¢’ where a; € {0,1,...,q—
1}. As each positive integer has a base ¢ representation, we may embed N into Z,. Identifying
—1 with the formal power series >, (¢ — 1)¢’ in Z, allows us to embed Z into Zq. Inverting
formal power series and that the addition of two formal power series is still a formal power
series shows that Q embeds into Q.

Having given the definitions of Q, and Z,, we now give some basic geometric observations.
Intervals of length ¢ partition [0, 1] into ' many intervals. Not only is the same is true in
Z4, but also two distinct intervals are always separated by a positive distance.

Lemma 2.1. Fiz k € N. For a € {0,1,...,¢" — 1}, the intervals I(a,q*) = {€ € Q, :
&€ — a| < q7*} partition Z, into ¢* many disjoint intervals and each pair of intervals are
separated by a distance at least ¢~ **1.

Proof. The ¢ € Q, such that |€ — a| < ¢7F are exactly the ¢ € Z, such that ¢ =a (mod ¢")
when we write ¢ as a formal power series. Since a ranges from 0 to ¢* — 1, the I(a,q %)
partition Z, into ¢* many disjoint intervals of length ¢*

Next, suppose |£; —a| < ¢7% and [& — b] < ¢* for some a # b. Since |a — b| = ¢~
and |(& — &) — (a — b)| < ¢7F, it follows from the equality case of the ultrametric triangle
inequality that |&; — &| = |a — b] = ¢~ **L. O

k+1

Next, from how |- | is defined on Qg, squares of side length r and balls of radius r are the
same. More precisely:
Lemma 2.2. Fiz an arbitrary (A, B) € Q. The square {(z,y) € Q2 : |[z—A| <r,|y—B| <r}
of side length 1 is the same as the ball {(x,y) € Q2 : |(z,y) — (A, B)| <r} of radius r.

By the ultrametric triangle inequality, intervals can be centered at any point in the interval.
Lemma 2.3. Fiz an interval I(xg,7). For any b€ I(xg,7), we have I(xg,r) = 1(b,1).

Proof. Fix arbitrary b € I(zg, ), then |b—x¢| < r. We only show that {{ € Q, : |{—b| < r} <
I(xg, 7). But this follows from the ultrametric triangle inequality: |§ —xzo| = [ —b+b— x| <

max(|¢ — b, |b — xo|) < r. The reverse containment is true by interchanging the roles of z
and b. O

Lemma 2.3 then is able to show that two intervals of the same length are either exactly
the same or completely disjoint.

Corollary 2.4. If two intervals (potentially of different lengths) intersect, then one is con-
tained inside the other.

Proof. Let I; and I, be two intervals with |I;| = r < s = |I3|. By hypothesis, we can find an
a€ly nly. By Lemma 2.3, I) = I(a,r) and I, = I(a, s) and hence I; < I,. O
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Corollary 2.4 shows that intervals in Q, act like dyadic intervals in R. Furthermore,
Lemma 2.1 shows that two distinct intervals of two (potentially different) lengths are going
to be at least separated by ¢ times the length of the smaller interval. We can also extend
Corollary 2.4 to products of intervals.

Corollary 2.5. If two squares (potentially of different side lengths) intersect, then one is
contained inside the other.

Proof. Let B=1xJand B' = I' x J' with |I| = |J| = r and |I'| = |J'| = s. Without loss of
generality we may assume that r < s. We can find a (x,y9) € B n B’. Therefore zp € I n I’
and yo € J n J' and by Corollary 2.4, [ ¢ I’ and J < J'. Therefore B c B'. O

We end with the observation that sum of two balls of radius r is still a ball of radius r
and that the shear of a ball is still a ball. This should be compared to the real setting where
the sum of two balls of radius r is a ball of radius 27 and the shear of a ball or a square is
an ellipse or parallelogram, respectively.

Lemma 2.6. We have the following properties:
(i) For a,be Q,, tf I = I(a,r) and I' = I(b,r), then [ +1' = I(a + b,r). Similarly, for
c,deQ2, B(c,r) + B(d,r) = B(c+d,r).
(it) If So = (§$) with |a| < 1, then S,B(0,1) = B(0,1).

Proof. To prove the first part of (i), if @ and  were such that o —a| < r and |8 —b| < r,
then |(a + ) — (a + b)| < max(|Ja —al, |8 —b|) < r and hence o + € I(a + b,7). On the
other hand, if £ is such that [§ — (@ + b)| < 7, then write £ = ({ —b) +b. We have { —be [
and b e I'. The second part of (i) follows from the first part of (i) and the observation that
balls of radius r are just products of two intervals of length 7.

Next to prove (i), since S;' = (%), it just suffices to show that S,B(0,1) < B(0,1).
But this follows from that |z + 2ay| < max(|z|, |2ay|) < 1 for |z|, |y| < 1 where here we have
also used that ¢ is an odd prime and so |2| = 1. O

2.2. The Fourier transform on Q,. We now summarize the relevant facts about the
Fourier transform over Q,. Let x be the additive character of @, that is equal to 1 on Z,
and nontrivial on ¢~'Z,. This is the analogue of ¢*™@. Up to isomorphism, the character
is essentially unique, given by y(z) := e(Z;k a;¢’) if ¥ = 3,., a;¢’. Therefore the small
angle approximation in Q,: “If [¢| < 1, then x(§) = 1.” is rigorously true.

In @Z, the Schwartz functions are finite linear combinations of characteristic functions of
cubes in Qfll. The Fourier transform of such a function f is defined by

~

fle)= | roxta g

where here dx is the Haar measure on @Z normalized so that ZZ has volume 1. The theory
of integration and the Fourier transform in @, is essentially the same as in R. We refer the
interested reader to [23, Section 4] for more details.

The key property obeyed by the Fourier transform is that the Fourier transform of the
unit interval is the unit interval and so the indicator function of the unit intervals plays the
same role as Gaussians in R. This should be compared to the real setting where the Fourier
transform of the unit interval is a sinc function. More precisely:

Proposition 2.7. We have that Tzq = 1z,.
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Proof. We need to show that
| xt-e 9o = 12,000 5)
Zq

If £ € Zy, then | — 2€| < 1 and hence —xz€ € Z,. Since x is trivial on Z, and Z, has volume
1, it follows that the left hand side of (5) is equal to 1.

On the other hand if € ¢ Z,, choose an z such that |x¢| = 1. Since if |{| > 1, then |{| = ¢
this implies that | — zo&| = ¢ and so x(—z¢&) # 1. Additionally, the ultrametric triangle
inequality gives that Z, = x¢ + Z,. We then have

|| xayde = x(-206) | x(-ta - an)g) o
= X(—fof)f X(—y&) dy = X(-%&)L x(—y&) dy.

:E()Jqu q
But since x(—z0&) # 1, we must have qu X(—z&) dz = 0. O
Since B(0,1) = Zz Proposition 2.7 immediately shows that the Fourier transform of 15 1)

is also 1p(0,1)- Addltlonally, by a change of variables, this shows for example that the Fourier
transform Of 1B(O,R is R 13(071/}{)

3. GEOMETRY FOR PARABOLA DECOUPLING AND WAVEPACKET DECOMPOSITION
Having set up the basic geometric and analytic facts over Q,, we now move to observations

that are most relevant to parabola decoupling over Q,.

3.1. The neighborhood of the parabola. We first finish some easy consequences about
6;. In addition to (4), for J < Z,, let 75 := B((a,a?),|.J|) for any a € J. The definition of
7 is independent of the choice of a € J by the ultrametric triangle inequality. Additionally,
0y < 7 since if (§,n) € 0, then [ —a| < |J] since € € J and

n—a®| = In— & + & —a®| < max(|n — &7, |§ — all¢ + al) < ||

where in the last inequality we have also used that £, a € Z,.
While 05 is the |J|> neighborhood of the piece of parabola above J, it also turns out at
this scale, the curvature of 6; is no longer visible.

Lemma 3.1. For any J c Z,, 0; coincides with the parallelogram
{(&m) e Q€ —al <|J|,In—2a€ +a* < ||}
where a is any point in J.

Proof. Fix arbitrary a € J. By Lemma 2.3, J = {{ € Q, : | — a| < |J|}. Next, |n — &% =
|(n — 2a€ + a*) — (€ — a)?| and hence if | —a| < |J], then |p — &*] < |J|* if and only if
In — 2a€ + a? < |J)?. O

Finally, the following lemma will be useful later in computing the support of a convolution.

Lemma 3.2. For any J < Z,, 0; + B(0,|J]?) = 0.
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Proof. The o direction is immediate. Let (&,10) € 05 and (r,s) € B(0, |J|*). Write J = {£ €
Qq : |€ —a| < |J|} for some a € J. Then |(§ + ) — a| < max(|§, — al,|r|) < |J| and hence
& +r e J. Next,

(0 + 5) = (S0 +7)°] = (10 — &) + (s — 2r& — 17)]
< max(|no — &, Isl, [2réol, [r*]) < [J]*

where here we have also used that ¢ is an odd prime and so |2| = 1. O

3.2. Geometry of tubes and wavepacket decomposition. Fix a § € ¢~. We define
the shorthand
05 := 02y x 8°Z, and Ts:= 06 'Z, x 6 *Z,.
They are dual to each other in the sense that T5 = {z € Q : |z - | < 1 for all £ € 65}. Since
07, can be partitioned into 6! many intervals of length 62, it follows that 65 is the union
of =1 many squares of side length §2. Similarly, T is the union of §~! many squares of side
length 5.
For a € Z,, let M, = (4,%). Then by Lemma 3.1, for each K € Ps, we have

O = ( 52) + M, 05 (6)

for any a € K. The right hand side is independent of a € K since if b € K, then

(bbz) - (;2) ; (;a) (b—a)+ ((1)) (b—a)? e (;‘;) + M,

and M, = Mb(g(al_b) (1)) and this latter matrix preserves 65 by the ultrametric triangle in-
equality.
For K € Ps and a € K, let Tj ¢ be the dual parallelogram to 0k centered at the origin
given by
Tox ={zeQl:|z-(§— <;>)| < 1 for all € € Ok}
Using (6),
Tox = {we Q) |or +2axs| <0 ' |22 <67} ={xeQ2: Mz e T} = M, " T;

for any a € K. This parallelogram depends only on K but not on the choice of a € K since
for any other b e K, M, " = M,"(}2® ) and |2(b — a)| < § and so this second matrix
preserves Ty by the ultrametric triangle inequality. In analogy to the real setting, we will
call (—2a,1) the direction of T k.

Since Tj is the union of 6~! many squares of side length 6!, by Lemma 2.6(ii), it follows
that Tp i is also the union of 6! many squares of side length §~'. Heuristically, it is useful
to think of Ty s as a 6~ x 62 “tube” pointing in the direction (—2a, 1).

The translates of 1)) x pointing in any direction completely partition any square of side length
52

Lemma 3.3. Let 0 € ¢ " and fix K € Py. Then a 6% x 672 square in Q can be partitioned
into 6~ many translates To.x .-
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22
21
20
12
11
10
02
01
00

00 01 02 10 11 12 20 21 22 00 01 02 10 11 12 20 21 22 00 01 02 10 11 12 20 21 22

To,1(0,1/3) To,1(1,1/3) To,1(2,1/3)

FiGURrE 1. In Qs, the three possible 3 x 9 parallelograms containing the origin
in B(0,9) are: Tos,/3 = {x € QF : [w1]s < 3,|aals < 9, Tosas o= {z €
Q§ : ’11,'1 + 21’2’3 < 3, ‘1’2’3 < 9}, and TO’I(2’1/3) = {iL' € Q% . ‘1’1 + 41’2‘3 <
3, |xals < 9}. Here for example, “12” denotes the elements in Qg given by
1-37242.37 4.

22
21
20
12
11
10
02
01
00

00 01 02 10 11 12 20 21 22 00 01 02 10 11 12 20 21 22 00 01 02 10 11 12 20 21 22
To,1(2,1/3) To,1¢2,1/3) + (5,0) To,1(2,1/3) + (3,0)
FIGURE 2. The three translates of T 1(2.1/3) that partition 5(0,9). Informally,

we are just shifting ¢ 7(2,1/3) + (%, 0) and having the boundary of B(0,9) wrap
around.

Proof. Let B be the square of side length §=2. Without loss of generality, we may assume
that B = B(0,072). Since

{reQ:le|<6? = JreQ:lz—1t <5}

teS
where § = {Z_2N<j<_Najqj ca; € {0,1,...,q — 1}} and § = ¢V, we can write B =
U, Ts + (¢,0). Applying M, to both sides, we obtain that

B=M,"B =M "T;+ (t,0) = | Tox + (1,0)
t t

where in the first equality we have used the ultrametric triangle inequality. 0
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Lemma 3.3 implies that we can tile Qg by translates of Tj i for each K. Let T(K) denote
this tiling.

Lemma 3.4 (Wavepacket decomposition). Let § € ¢~ and fir K € Ps. Let f be a Schwartz
function with Fourier transform supported in 0. Then |f| is constant on every T € T(K)

and fl\T is supported on O for every T € T(K). Hence it is natural to write

f=> flr (7)

TeT(K)

where each term flp (which we will call a “wavepacket”) is Fourier supported on Ok and
has constant modulus on every T € T(K). It also follows that if T is any subset of T(K),
then Y rer flr is Fourier supported in O .

Remark 1. In Lemma 3.4, that |f| is constant on every T' € T (K) is sometimes called the
“locally constant property.”

Proof. We will show that |f(z)| is constant for all x € A + Tg x for any A € Q2. By Fourier
inversion, we have that
f‘

@I =1] FOxE o)l
= | [ A(s +a,(s+a)? +t)x((s +a)ry + (s + a)?xs)x(trsy) ds dt|
Jis|<s,|t)<62

= | [ f(s +a,(s+a)? +t)x(s(z + 2axy) + s222)x(txs) ds dt|. (8)
Jis|<s,|t)<62

For z € A+ Ty i, write x = A+ M Ty for y € Ts. Then Mz = M A + y and hence
X(s(z1 + 2ax2) + s*w2) = x((s,5%) - My A)x((s.5%) - y) = x((s,5%) - M, A)

since sy, s*ys € Z,. Next x(tra) = x(tA2)x(ty2) = x(tAz) since tys € Z,. Therefore (8) is
equal to

| Fls+a,(s+a)+t)x((s, %) - MTA)x(tAs) ds di|

|s|<d,[t|<6?
which is a constant 1ndependent of x and only depends on A, K, and f

Next to prove f 17 is supported on O, it suffices to observe that f 1r = f 1T Observe
that 17 is a modulation of 1To,K and

e = [ e 9de= [ XMy dy = 610,0,7).
MJTTg Ts
Thus I; is supported on M 05 = O — O.
Finally, the decomposition (7) follows since translates of Tj k tiles Q2. This completes the
proof. O

Corollary 3.5. If K € Ps and f is Fourier supported on Ok, then |f| is constant on any
ball of radius 6.

Proof. Observe that B(a,0) < a + Ty x and |f| is constant on a + Tj x and hence also on
B(a,?). O
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We now end with a lemma about the intersection of two non-parallel tubes (of course we
only use this bound when they intersect).

Lemma 3.6. Let 6 € ¢~ and K, K' € P; be two distinct intervals. Consider a translate T
of To.rc and a translate T" of Ty k. Then |T nT'| < 62/d(K, K').

Proof. Write T = Ty + (r,s) and T" = Ty x + (', s'). Without loss of generality, we may
assume that (r,s) = (0,0). Applying M we may assume that T = T;. Then for some
be K,

TnT c{ze Qg Doy <07 oy 4 202y — 1] <671
’l“/ 571
_ _| < —
20 |b|
which has area < §72/|b| = 67 2/d(K, K). O

clreQ):|nl<d |

4. BASICS OF DECOUPLING
For ease of notation, we will now let D,(d) := Dy, q,(9).

4.1. Sharpness of Theorem 1.1. Before we start our proof of Theorem 1.1, we first prove
that up to a 07¢ factor, the estimate is sharp. We first start with a computation.

Lemma 4.1. We have

Loy (.”L’) = X(axl + a2x2>531T0,K
for anyace K.

Remark 2. The right hand side is well-defined since for x € Tj g,

x((a —b)zy + (a® — b%)x3) = x((a — b)(z1 + 2am3) — (a — b)*xs) = 1
if a,be K (and so |a — b < ).
Proof. We compute

~

Ly, = L x(z-&)d¢ = e((s + a)zy + (s + a)?xo)e(tzy) ds dt

5| <4, lt]<6

= x(azy + azxg)f

[t]<62

X(txs) dtf x(s(zy + 2axs) + s21y) ds.

|s|<o
By Proposition 2.7, the integral in ¢ is equal to 521|m2|<572 and the integral in s is equal to
01|z, +2azs|<s-1- This completes the proof of the lemma. O

This then allows us to show the following result.
Proposition 4.2. We have D,(0) 2 1 + 5,
Proof. To see that D,(0) > 1, take f = 1,,. Then
| £lze2) = 1ol zegazy = ( D | frellZocgz)

KEP(S

and hence
| fllzr(@2)

= 1.
(ZKeR; HfKH%p(Qg))l/z

D,(5) >
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Next, to see that D,(6) > 5_(%_%), take f = > i p fic where fi is such that f;( =031y,
Therefore fx = x(axa1 + af2)ly, . for any ax € K. This implies that | fx|rgz) = 637

and so
(S a2 = 67230,
K€P5

We also have

f= Z Ik = Z x(axw +a§(1'2)1T0,K-

K€P5 K€P5
For = € Z2, since ax € K < Zq, axxy + ajxs € Zg and hence x(axxy + ajas) = 1 for z € Z2.
Furthermore, Zg < T k for every K € P5. Thus

1flze@z) = [flze@zy = 07

and hence

Jun
w

| fllzr@2) L si(lo2

= ) = 6_(5_5).
(Xkers | il Zo(gz)

D,(9) =

»
3

O

4.2. Interpolation of decoupling estimates. Now we reduce Theorem 1.1 to just showing
the case when p = 6. To do this, we need to be able to interpolate decoupling estimates.
First we need that Fourier restriction to fx is a bounded operator on LP.

Lemma 4.3. Let K € Ps and f be Fourier supported in UKGP(; Orx. Then

| ficlee@zy < [ f e (@2
foralll <p < 0.

Proof. By definition, fx = f * \1/9K and hence Young’s inequality gives that
| fcllzo@z) = If * Loxlze@z) < [ fler@2) Lok | 1 @2)-
Applying Lemma 4.1 shows that HTQ «|L1(@2) = 1 which completes the proof of the lemma. [
Now we are ready to show that one can interpolate decoupling estimates.
Proposition 4.4. [f% = p—o + =8 then
Dp(5) < Dy, (6)" Dy, (8)'7°.
Proof. Write Ps := {I,,..., Iy} for some N = §! € ¢". Define the operator

f]j 1 - EPGIJC]

where P@ij =[x Iej, is the Fourier projection of f to 0r,. Then for r = py, p1, we have

N N

17T e @2) OIONI Z Py )1l 2 @2)'? = Dr(8) (X | Poy, frltroz)?
k=1 j=1 k=1
N

< D,(8) (Y el ) = Dr(O) (i) leznr 2y

k=1
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where in the second inequality we have used Lemma 4.3. Therefore the operator T sends
C2(LP(Q2)) into LP°(QZ) and also £*(LP*(QZ)) into LP*(QZ). Thus by Riesz-Thorin interpo-
lation, T' : ¢*(LP(Q2)) — LP(Q?) for all p € [po,p1] and the operator norm of T', that is,
Dp(6), is < Dy (0)" Dy, (0)°. O

Therefore if we could show that Dg(d) <. 0~¢, then interpolating the estimate that Dy () =
1, which follows from Plancherel, and D, (5) < =Y/ which follows from Cauchy-Schwarz
proves Theorem 1.1. Thus it remains to just show the [2L® decoupling estimate.

4.3. Parabola decoupling over Q, implies quadratic VMVT. Before we begin our
proof of [ L% parabola decoupling, we show that such a decoupling theorem over Q, is strong
enough to imply exponential sum estimates.

Lemma 4.5. Suppose for some odd prime q, we knew that

[ £ls@zy Sqe 675D 1fsl7oz) (9)

JEP(;

for all f Fourier supported in | Jgep, 0. Then K(N) <4c N°.

Proof. By zeroing out entries, K (V) is increasing in N. Thus it suffices to only show the
desired estimate in the case when N = ¢' for some ¢ € N. Indeed, suppose we knew this for
all N € ¢". Then for N ¢ ¢", we can find an s such that ¢° < N < ¢**! and hence for some
067 K(N) < K(qs+1> < C€7q(qs+1)a — Ce’qqaqsa < C&qana.

Choose 6 = ¢~ and F such that

F(€>77) = Z q20tan1(n7n2)+3(0,q*10t)(ga 77)'
n=1
We first check that F is supported in Ukep _, Ox. 1t suffices to show that for each K =
I(n,q7"), we have (n,n?) + B(0,q ') < 0. Indeed if |{ — n| < ¢~ and |n — n?| < ¢~ 1%,
then £ € K and
€% =l = (€ =n)* + 2n(¢ — n) +n® =y < max(|§ —nl*, 12n]l¢ —nl, [n* —n]).

Since ¢ > 3 is an odd prime, |2n| < 1 and so the above is < ¢~ % < ¢,
Inverting the Fourier transform gives that

qt

F(zx) = (Z anX(z1n 4+ 221%))1p( g100) (2)

n=1

and Fg = apx(vin + 29n°) g0y (2) with K = I(n,q7"). This gives that |Fx|reqz) =
¢**"%|a,| and so

qt
(X IFxlZse)® = () lanl?)*. (10)
n=1

K€P5
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On the other hand, expanding yields

qt

HFH%(Q?I) = Z Uy Oy Ang Ay O (pg X
ni,...,ng=1

J X((ny +ng +n3 —ng —ns —ng)ry + (nf + n% + n§ — nZ - ng - né)l’g) dx
B(O’qlot)

and applying Proposition 2.7 gives that the above is equal to

q E anlangangamlansane1|n1+n2+n3—n4—n5—ng|Sq*mt,|n%+n%+n§—ni—ng—ng|<q*mt’ (11)
ni,...,ng=1

Note that (ni,...,n6) € ([1,¢'] n N)b satisfies

ny +ng +ng —ny —ns — ng = 0 (mod ¢*")
2,2, .2 .2 2 2 _ 10t (12)
ni +n;+n; —ny —n; —ng =0 (mod ¢)
if and only if it satisfies
Ny +no+ng—ng—ns—ng =0
2 o (13)

ni+n3+n3—nj—nz—ng=0.
Indeed, since n; € [1,¢'] N N, we have n; + ny + nz —ng — ns — ng € [—3¢*,3¢"] n N and
n? +ni 4+ n2 —n? —n2 —ni e [-3¢*,3¢*"] nN. Since 3¢' < 3¢* < ¢'%, the only integer
=0 (mod ¢'") in [-3¢, 3¢"] and [—3¢*, 3¢*] is O itself. Thus (11) is equal to

qt

¢ Y aneny +nws)|Gora).

n=1

Combining this with (10) and (9), then shows that K (V) <,. N° as desired. O
Remark 3. The equivalence of (12) with (13) for n; € [1, ¢'] "N is the same equivalence used
in efficient congruencing, see for example [26, Eq. (2.9)].

5. A PROOF OF [*L® PARABOLA DECOUPLING

Our main goal now is to prove that Dg(d) <. 6 °. For ease of notation, we will let
D(6) := Dg(0) = De g, (6).

5.1. Parabolic rescaling.

Proposition 5.1. Let f be a Schwartz function on Qg Fourier supported in UKGRs Ox. Then
for any interval I < Z, of length o = 0, we have

)
|f1llzr@g) < Dp(2)( D0 IfklEn@e) ™
KePs(I)

Proof. Write I = I(a, o) for some a € I. We have

|f1(:c)|=|f f Fls, 8 + ) x(swr + 52w )e(t) ds di.
[t|<62 JI(a,0)
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Let s := 07'(s —a) and ¢’ := o~2t. Then the above is equal to
|03J Flos' + a, (s + ) + o) x(08 (21 + 2am3) + 028%x2) x (02 x3) ds' dt'|.
t'1<(6/0)? JZq

Write Typ = (§%9), fa(z) := f(x)x(az1 + a*x,), and ga(y) = 07° fu(T, 5y). then gu(s', s +

) = f (08 + a,(0s' + a)® + o*t') and g, is Fourier supported in UK’eP(;/ 0. Therefore
| f1lcr@2) = 0% Pl gall Lr(g2)- Applying the definition of D,(d/0) and undoing the above
change of variables finishes the proof. O

5.2. Bilinear reduction. Let v € ¢~V be an intermediate scale chosen later such that
d « v « 1. On a first read, it may be useful to set v = 1/q though we will later choose it to
be something larger, see the proof of Proposition 5.11. Suppose a and b were integers such
that § < min(v?, v?). Let M,4(d,v) be the best constant such that

f@ P < Map@G)°C Y Iflo@)( S [ fxles)’ (14)

1 KePs(I) K'ePs(I")

for all f Fourier supported in | Jx.p, 0k and all intervals I, I’  Z, with [I| = v*, |[I'| = v°
and d(I,1') > v.

If we think of v ~ ¢° and a and b are small, then we essentially have M, ,(0,v) ~ D(J)
as I and I’ are rather large intervals and we have not decoupled much. However, if a and b
were so large such that v? and v are basically the same size as d, then M, ,(5,v) ~ 1 after
applying the triangle inequality. Thus our goal will be to pass from small (a, b) to large (a, b)
efficiently.

The following trivial bound will be useful when we reach large (a,b).

Lemma 5.2. [f § < min(v?, ), then
Ma7b(5, l/) < D(—

Proof. This follows immediately from { f2g* < ({f°)¥3({¢%)%3, parabolic rescaling, and
applying the definitions of D(d) and M, (0, v). O

The previous lemma also implies that if we knew a good bound for D(¢), then we would
know a good bound for M,;(d,v). However, what we want is the opposite. This is accom-
plished in the next proposition and essentially reduces the linear decoupling problem to a
bilinear decoupling problem.

Proposition 5.3. If § < v, then
)
D(6) < D(=) + v WM, 1 (6,v).
v

Proof. Fix arbitrary f Fourier supported in (. p, 0. We have

J@g |JC|6:JQ | Z fJfJ’|3§JQ |Z f3|3+f(@2| Z Frfnl?.

i JJep, i Jep, a  JJeP,
d(J,J")>v
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By Minkowski’s inequality and parabolic rescaling, the first term above is

< (X 1o < DY o)™ (15)

JeP, KePs

On the other hand, the second term is

<00 max | |RPITP. (16
J,J'eP, Q2
d(J,J)>v 1

Observing that § f3¢3 < ({ f2¢*)Y2(§ f4¢*)"/? and then applying the definition of M (5, v)
to each term then shows that (16) i

Sy M11 d,v) Z HfKHLG(Q2

K€P5

Combining this with (15) and applying the definition of D(d) completes the proof. O

As our argument is bilinear in nature, we could use Holder’s inequality to reduce to the
bilinear decoupling problem. Before we continue, we give a second proof of Proposition 5.3
that relies on the broad/narrow decomposition first introduced by Bourgain and Guth in
[6]. The broad/narrow decomposition is more commonly used to reduce linear decoupling
problems to multilinear decoupling problems. Let f be Fourier supported in Jz. p, U For
each o € Q2, let Z,, be the set of all intervals .JJ' € P, such that | f(z0)| = v maxyep, | f1(x0)|.
We have two cases: #Z7,, > 2 or #1,, < 2.

It #7,, > 2, let J; and J, be two distinct intervals in Z,,. Note that the choice of J; and
Jo depends on xy. We then have

Flao)l < ] alao)l < v max| (o)

JeP,

< v 2 fr (20) |2 fro (o) M2 < 072 Jmax | fr(20) fr (o) |2
AT )~

where in the third inequality we have used that .J;, Jo € Z,, and in the last inequality we
have used that J; and Jy are distinct and so d(Jy, J2) = qv by Lemma 2.1. On the other
hand if #7,, < 2, then we have

| f(zo)| < | Z fir(zo)| + | Z fr(wo)| <2maX|fJ o)| + Z | f7(z0)] 31%5})>y<|fJ($0)|-
JeL,, J¢T., J¢ T,

Therefore we have shown that for each = € @3, we have

< —2 () [V2.
(@)l < 3max|fy(z)] + 77 max |f(z)fr(@)]
d(J,J")>v
Raising both sides to the 6th power and integrating gives
J s | maipan + uomf s |£2(a) o)
Q2 Q

Je » 2 J,JeP,
T d(J,J")>v

f (D 1 fs( O max f |5 (@) fr ().
QG Jep, gy

Now proceeding as in (15) and (16) then finishes the proof.
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5.3. The key step. The following lemma turns out to be the efficient way to climb up from
small (a, b) to large (a,b).
Proposition 5.4. If 1 < a < 2b and 6 < v®, then
M,y(6,v) < I/_O(l)MQb’b((s, v).
To prove Proposition 5.4, it suffices to show the following lemma.

Lemma 5.5. If1 <a <20b, |I| =%, |]’| =vb, d(I,I') = qu, and § < v* we have

f Pt s rom S f Ll

JeP 2b
for all f Fourier supported in | Jy.p, Ox
Indeed, Proposition 5.4 follows from Lemma 5.5 by applying the definition of My, (9, v/) to
SQ2 |f71?|fr|* and then applying the definition of M, ;(d,v). Next, by the proof of parabolic

rescaling and shifting I’ to the origin, to prove Lemma 5.5 it suffices to instead prove the
following result.

Lemma 5.6. If1 <a<20b, |I|=v" d(I, 0) qu, and § < v** we have
f P fromlt < o0 S f 2 o ! (17)
JeP 2b

for all f Fourier supported in | Jy.p, 0K

We will give five somewhat different proofs of Lemma 5.6 later in Section 6. In some of
the proofs we will prove instead the following reduction.

Lemma 5.7. If 1 < a <2b, |I| =v°, d(I, 0) qu, and 6 < v*®, we have
Sy o 0l <0700 f £oPUfroum (18)
B(0,p—2b JEP 1 ( B(0,v=2b)

for all f Fourier supported in | Jycp, Ox-

To see that Lemma 5.7 implies Lemma 5.6 (and hence Proposition 5.4), since (18) is true
for all f Fourier supported in | . p, U, by translation we have that

f P 0wt < 00 f o fromm (19)
B JeP,,

for all squares B of side length % and all f Fourier supported in | ;. p, U Since squares
of side length v~ tile Q2, summing (19) over B then gives Lemma 5.6.

5.4. Iteration. Before we give its proof, we now show that if we had Lemma 5.6 (and hence
Proposition 5.4), then we will have shown D(d) <,. 6 ¢ which by the interpolation from
Proposition 4.4 proves Theorem 1.1. Proposition 5.4 allows us to climb in the first index in
M, (6, v). To move this increase to the second index, we need the following.

Proposition 5.8. If § < min(v?,1°), then

J

Mop(6,v) < My (0, V)1/2D(_b)1/2'
v
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Proof. This follows from § f2g* < (§ f4¢?)Y2({ ¢°)%/? and applying the definition of M, (5, v)
to the first term on the right hand side and parabolic rescaling to the second term on the
right hand side. U

Lemma 5.9. If N € N and 6,v € ¢~ are such that § < v?", then

N—-1
o) D2yt [] Do)

N
V2

M1,1(5> V) < C%V_O(l)D(

j=0
where Cy is the implied absolute constant from Proposition 5.4.

Proof. Repeatedly applying Proposition 5.4 followed by Proposition 5.8 a total of N times
gives that

M, (6,v) < (Cv© Y2 M- 1on (0,1) 1/2N H D(— 0 1/2J'+1.

Jj=0 V2J
Applying Lemma 5.2, then completes the proof. O
Combining this with Proposition 5.3 gives the following.
Lemma 5.10. If N € N and 6,v € ¢V are such that § < v?", then

) )
D(6) < CoD(-) + CoCiv WD (i e H DI sz

N
1/2

where C4 is the implied absolute constant from Proposition 5.4 and Cy is the implied absolute
constant from Proposition 5.3.

We now just need to iterate Lemma 5.10. To avoid having to deal with the constraints
that 6, € ¢~, it will be more convenient to bound

D(0):= sup D(d) (20)
d0eq—Nn[4,1]
instead of D(§) as D(d) is defined for all real § € (0, 1] (rather than just for § € ¢~) and is
monotonic, that is, ©(0;) < D(dg) if 6, = ds. (A warning: The notation in (20) is reverse
from what it is in [8, Section 5].) Trivially we also have that if § € ¢, then D(5) < D(9).
Thus to show that D(§) <,. 6 for all § € ¢V, it suffices to show that D(d) <, 6 ¢ for all
d e (0,1].

Proposition 5.11. If N € N and 6 € (0, 1], then
D) < (¢ + Co)D(g 15"

N—

SIE

7=0

_2N 1

1 (2 G2 D (g

)2J+1

where Cy is the implied absolute constant from Proposition 5.4, Cy is the implied absolute
constant from Proposition 5.3, and Cs is the implied absolute constant from the v=°M in
Lemma 5.10.
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12N

Proof. Fix N € N and & € ¢ n [§,1]. Suppose first that §y < g 2. Let v:= g8 %" 1>
53/2N > 62" Since 6y < ¢ 2", v e ¢ N. Note that for j = 0,1,2,..., N,

0, 12N . 1——— - 1 i
0 _ log,do—[log, d,/" 127 > 5, 2V q72J > 51 SN q727
1/23 0
and hence
50 j 1
—927 ¢1— -
() <@g 70 7).
v

Thus applying Lemma 5.10 gives that

do 2. —Cs do 1 do LN_l dp \_1_
D(6) < CoD(=7) + CoCy™ @ D) 2% D(—50) w2 [ [ D) 77
j=0
11 C3 N—1 1 N 2 Nl J o1 1
< CY®D(q7 10" 2N ) + CL02 N D(q72 625N D (g2 s | | D(g ¥ 6 T ) e
j=0

Applying the trivial bound that ®(¢72") < ¢2"/2 then shows that

N-1

D(6) < CaD (g0 3) + CuCig 6 ¥ D (g [ o(g o' o)

<.
Il
o

as long as 9y < q’zN. On the other hand if 9y > q*2N, we apply the trivial bound and obtain
that D(dg) < 551/2 < ¢*"2. Since D(8) = 1 by Proposition 4.2, combining the bounds
obtained in the two regimes above and then taking the supremum over all d; € ¢ N [6, 1],
the completes the proof of the lemma. O

We now are ready to show that ©(J) <, 67°. Let A > 0 be the smallest constant such
that D () <,c 07¢ for all 6 € (0,1]. From the trivial bound on D(§), A < 1/2. If A = 0,
then we are done and so we assume that A > 0. Choose N such that

5 N C’3>1

6 2 A
Then Proposition 5.11 implies that for all § € (0, 1], we have

1

D(8) Sqe 807F 4 55~ SR g

where the last inequality is by our choice of N. But this contradicts the minimality of A.
Therefore we must have A = 0 which finishes the proof.

6. FIVE PROOFS OF THE KEY STEP

In this section we give five different proofs of Lemma 5.6 which in turn implies Proposition
5.4. Before we begin our proofs, we first discuss how the efficient congruencing proof in the
quadratic Vinogradov case found in [17, Section 4.3] motivated the definition of M, ;(d, v)
and Proposition 5.4.
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6.1. Motivation. The inspiration for the definition of M, ;(d,v) and Proposition 5.4 came
from [17, Section 4.3] which is the quadratic Vinogradov version of Heath-Brown’s simplifi-
cation [14] of Wooley’s proof [25] of cubic Vinogradov. See [17] and [24] for more details on
Vinogradov’s Mean Value Theorem.

The main bilinear object considered in [17, Section 4.3] is

L(X;a,b) := max J[]| Yo elan+ )Pl > e(an+ Bn®)| dadB.
0,1]2

£#n (mod p) neX neX
n=¢ (mod p?) n=n (mod pb)

For fixed residue classes ¢ (mod p®) and 7 (mod p®) with € # 1 (mod p), the integral counts
the number of solutions to

X1+ To+ T3 =Ty4 +T5+ Tg 91
PR R YT 21)
with 1 < 7; < X, 21 = 24 = £ (mod p®), the other 7; = n (mod p), and £ # n (mod p).
The key estimate in [17, Section 4.3] with regards to I1(X;a,b) is that if 1 < a < 2b and
p?* < X, then

1 (X;a,b) < p™ "1, (X;2b,b). (22)

This should be immediately compared to Proposition 5.4. This loss of p?*~¢ is sharp. To see

this, heuristically we expect I;(X;a,b) ~ X3/p®™? (here we use ~ somewhat informally).
Thus if we define I} (X; a, b) := (p*™2*/X3)[,(X; a,b), (22) now reads I} (X;a,b) < I;(X;2b,b)
and we expect both sides to be ~ 1. Since we will want to prove D(d) ~ 1 (and hence
M, (6, v) ~ 1), we should expect I{(X;a,b) to be similar to M, (0, v).

We now turn to the proof of (22) from [17, Lemma 4.4] as this will motivate our proofs
of Lemma 5.6. Since solutions to (21) are translation invariant, by subtracting 1, we may
assume that 7 = 0 and so & # 0 (mod p). Write 2; = £ + p%y; for i = 1,4 and x; = py; for
i =2,3,5,6. Since z? + 23 + 23 = 23 + 22 + 3 we must have

(€ +p")* = (€ +p"ya)” (mod p™). (23)
Then
P (1 — ya) (26 + p*(y1 + y4)) = 0 (mod p).
Since £ # 0 (mod p), we have 2§ + p*(y1 + y2) # 0 (mod p) and hence we obtain an extra
congruence y; = y4 (mod p**~?). This will allow us to count the solutions efficiently. Fix
ys (mod p?*~*). There are p?®~@ many choices and this gives the p?*~ on the right hand side
of (22). This choice then fixes y; mod p*~ and hence z; = 74 = & (mod p?) for some ¢’

Now we apply the definition of I (X;2b,b).
Broadly speaking the steps of this proof are

1. Use translation invariance to shift 4 of the variables to be 0 (mod p).
2. Since xy, 73, 75,76 = 0 (mod p°), we look at the quadratic equation mod p%.
3. Find diagonal behavior in the remaining z; and z, variables at scale mod p%.

The analogue of translation invariance in decoupling is parabolic rescaling and so we have
implemented Step 1 already in Lemma 5.6. Another way to view Lemma 5.6 is that we
decouple the two copies of f; into f; which are at scale v?* all the while keeping the four
copies of fr,» on both sides. This corresponds to upgrading x; and z, from mod p*
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knowledge to mod p?* knowledge while gaining no new knowledge in the other remaining
variables.

We now give our five proofs of Lemma 5.6. On a first read and to more easily compare
the argument with the efficient congruencing argument in Section 6.1, it may be useful to
set v =1/q.

6.2. A first proof of Lemma 5.6. Our first proof will take advantage of the fact that

both exponents on the left hand side of (17) are even and resembles a Cérdoba-Fefferman

argument (see for example [9, Section 3.2]). This proof is a modification of an argument

that first appeared in [16, Lemma 2.7]. To prove Lemma 5.6, we prove Lemma 5.7 instead.
By definition, the left hand side of (18) is equal to

| S BT ot (24)
B(0,v—2b)

J,J'€P o (I)

As (L x Qq) nUgep, Ox = {(§,1) € QF : { € L, [n — §2| < 87}, the definition of fi, then gives

fr(z) = J J J?(s, s* + t)x(smy + 8%x0) x(twy) ds dt
|t|<62 JL

for any interval L < Z,. Expanding then gives that (24) is

Z f f (...)1f X((-++)a) dadsy - - - dsg dty - - - dig
J,J'€P o (I) [t1]<62,...,|te|<62 J I xI(0,01)2x J' x I(0,v0)2 B(0,v—2b)

where s € J, sy € J', 59,53, 85,86 € 1(0, 1),
3

~ ~

()1 = .f(siasz2 +t7,) (Si+3a822+3 +ti+3)>
i=1

and
3

3
(. . )2 = Z(Sl - Si+3>x1 + (S? - 8224_3)1'2 + Z(tz — ti+3)$2-

i=1 i=1

Since |t;] < 6%, |zo] < v, and § < v, |30 (t;—tirs)za] < 1and so x (30, (t; —tir3)xs) =
1. Therefore

e

j n«»ﬁM=f KO 51— si33)a1 + (52— 82,5)20) da
B(0,p—2b) B(0,p—2b) -1

—4b
VLIS sl S 822, gl

by Proposition 2.7. Since § < v% and sy, s3, 55, 86 € 1(0,2°), if we have [s? + s2 + s2 — s —

s2 — sg| < v*®, then
|51 + 8451 — 84| < V. (25)

Notice that in this step, if we had set ¥ = 1/q, then this is exactly (23). Recall that
sieJcl, syeJ <l andletd(l,0) = qu. Forany r € I, write s; = r+s} and s4 = r+g/ for
some |s7], |s4| < v*. By the ultrametic triangle inequality, |s1+s4| = |2r+ (s} +5s))| = qv since
12r| = qu > v* = |8} + s)|. Inserting this into (25) shows that we have |s; — s4] < (qv) " 1v/?®
(corresponding to Step 3 in the efficient congruencing argument on Page 19) and hence
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we can insert the requirement that d(J,J') < (qv)~'v* into 3}, , in (24). Applying two
instances of the Cauchy-Schwarz inequality gives that

fB(O,uzb) Z fafolfiowml" = Z f |fJ|2|fI(07Vb)|4 (26)

J,J'€P, o (I) JeP, g (1) ¥ BO»™
d(J,J")<(qv) 1w

which completes the proof.

6.3. A second proof of Lemma 5.6. Another way to interpret solution counting and the
argument in Section 6.1 is to make use of the identity § f(z) dz = f(0) and ask under what
conditions does 0 lie in the Fourier support of f. This was the point of view taken in [8].
Like the proof in Section 6.2, this second proof also makes use of the fact that 2 and 4 are

even, however it takes more into account some geometric properties.
Like in (24), the left hand side of (17) is equal to

o~ —_—

Z J Fifr Froml* = Z (ﬁ]*ﬁ*m)*E(‘O,j)*fI(O,Vb)*.fI(O,Vb))(0>' (27)

JJEP o (1) Y Q7 J,J'EP, 9 (1)

Observe that JT(OW\b) and fy,») are supported in (Ugep, 0.0y Ox = {(§:m) 1 €] < Vv, Il <
v}, Partition this rectangle into squares {1} of side length v?*. Therefore (27) is equal to
Z Z (F1% Frr s (Frowr * From) * Fromm * from)10)(0). (28)

[ J,JIGPVQb (I)

Given a [, we now need to decide for which J, J" € P2 (1) is 0 contained in the support of

Fre L (Frowy * fromey = fro.m) * frow) 1o- Since f; is Fourier supported in Jgep, sy Ox < 65
and similarly for f,/, it suffices to ask for which J, J' € P ([)is 0 € 0; — 0, + 1. In fact, it
suffices to ask something weaker. Recall the definition of 7; in Section 3.1. As #; < 7, we
will ask for which J,.J" € P (I) is 0 € 75 — 750 + 0. Since |J| = |J'| = v**, 7; and 75 are
squares of side length ©?°. Then 7; — 7;» +[] is a square of side length »?* which contains 0.
Therefore our question reduces to asking for which J, J' € P2 () is such that

7y — 7+ 0= B(0,v”). (29)
If (29) holds, then there exists an sy € J, sy € J" and (b, by) € [ such that

|57 — sy + by <v®

<
|52 — 52 + by| < V.

We will only be interested in the second inequality. Since [J < {(&,n) : [£] < VP, |n] < v*
ba| < v and hence |s% — s2,| < v*. Using that s; € J < I, sy < J' < I, d(I,0) > qu and
the same reasoning as at the end of the proof of the previous section, we see |s; + sy/| = qu
and hence |s; — s;/| < v?*(qv)~1. But then by the ultrametric triangle inequality, |s — 5| <
v (qu)~t for all se J and s’ € J'.

Therefore we have shown that given a [], in order for 0 to lie in the support of fJ I
(fT(O,I/\b) * f/oj * f10.0%) * f1(0,) 10, we cannot have that d(J, J') > v*(qv)~'. Thus (28) is

—~
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equal to

—_—

Z > fre fJ’*(fIOub Fro0m * Frowm * Troom)10

JJ'EP o (1)
da(J,J’ )<u2b(qu) !

—_—

Again using that fI 0.0%) fI 0,b) fI ob) * frow is supported on the {{J} and then finally
applying § f(z)dz = f (O), shows that (27) is equal to

f@ S AT !

2
i JJeP o (D)
d(J,J")<v? (quv)~!

which by the same application of the Cauchy-Schwarz inequality as in (26) completes the
proof.

6.4. A third proof of Lemma 5.6. The third proof of Lemma 5.6 relies importantly on
that one of the exponents is a 2 and so suggests us to apply Plancherel. This argument first
appeared in [19, Proposition 19] and is similar to the argument in [12] which we will present
in the next section. An argument similar to this one was used to prove decoupling for fractal
sets on the parabola in [7]. By Plancherel, the left hand side of (17) is

f@| ST el - f@2| S Fre Frown * From (30)

a7 JeP o (D) a7 JeP o (D)

If we could show that the { fJ # m) * ]?0,7)} JEP () AT€ almost pairwise orthogonal, then

combining this with another application of Plancherel in (30) would finish the proof.
Inspired by that we only looked at the quadratic equation in Section 6.1, we only look at the

vertical projection of the supports of f g% ﬁ * f (o). Since fT(O; is supported in the strip

{(€&m) e QF:Inl <v*}, T1t0.) * Jr0,2) is also supported in the strip {(€,7) € Q2 : |n| < v*}.
Next, f; is supported in 0; < 77 < S := {(&, n) eQ: |7)—3J| v?*} for any sy € J. The

ultrametric triangle inequality then shows that f g * fI 0,b) fI oty is supported in the strip
S;. Now we claim that the {S;} are almost pairwise dispmt Suppose there was a J and J’
such that S; N Sy # . Then the ultrametric triangle inequality gives that |s2, — s%| < v?.
But just like as in the argument in Sections 6.2 and 6.3, since J,J' < [ and d(,0) = qv,
it follows that |s; + sy| = qv and hence |s; — sp| < v®(qv)~! and d(J,J") < v?*(qu)~!
Therefore (30) is equal to

J‘Q Z fJ flOI/b flOI/b fJ’*fIOI/b f[(o,,b

2
@ JJ'EP o (1)
d(J,J")<v? (qu) !

which by the same application of the Cauchy-Schwarz inequality as in (26) gives that this is
J Z |fJ f1(0ub fI(Oub | .
q JeP 2b

Applying Plancherel then finishes the proof.
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6.5. A fourth proof of Lemma 5.6. In this fourth proof, we will rely on that the exponent
2 suggests the use of Plancherel, much like in the third proof. However to avoid using that
4 is even, we will instead rely on the locally constant property. This proof is essentially the
argument in [12] in the case of the parabola.

To prove Lemma 5.6, we prove (18) instead. Partition B(0,7~?°) into translates of T,
that is, vertical v=% x =2 rectangles {{1}. Such a partition exists by Lemma 3.3 (in fact
the proof of Lemma 3.3 gives an explicit construction). Therefore it suffices to show that for
each [], we have

f L friom |t < vO® f P 0w (31)
O

JeP 2b

for all f Fourier supported in UK€P6 Ok. Since we want (31) to be true for all f Fourier
supported in | Jyp, Or, it suffices to prove prove (31) when [J = T,». That is, we just need

to show that
) f Pl o (32)

JEP o

f P o * <

for all f Fourier supported in | Jgp, 0. By the locally constant property, | f;(,4)| is constant
on any translate of T,». Thus to prove (32) it suffices to just show that

j | bl , |fl($>y)|2 drdy < ,—01) j | bH b |fJ(l’,y)|2 dz dy. (33)
T|<v y|<v 2 s Jl<w )

JEPV2b (I)

Since in the efficient congruencing argument, we only looked at the quadratic equation, this
suggests in (33) that we freeze the = variable and look only at (33) in the y variable. Thus
we need to show that for every xy such that |z¢| < 7%, we have

[ tra< ¥ f (o, y)P dy. (34)
lyl<v—2b JEP, o (I) ¥ IWISV™ 2
Rewriting the left hand side of (34) and applying Plancherel, we obtain

Z F1(@o, y) 1y <p-n?dy = | | Z Frlao,n) » v qml>dn  (35)

Qi jep o (1) Qi jeP o (1)

Where here we use J?to just denote the Fourier transform in the second variable. Let F (n) :=

§g, F(&mx(Exo)le, (& m) dE. Then fr(wo,y) = §o Fuo(m)x(ny) dn and so fi(xo,y) = Fu(y)
Wthh is supported in the projection of ; onto the y-axis, but in Section 6.4, we saw that
such a projection is contained in S;. By the ultametric triangle inequality, the convolution
of f(wo,n) with 1,<,2» does not change its support. Since from Section 6.4, we saw that
S;n Sy =g ifd(J,J") > v*®(qu)~L, by the same argument as at the end of Section 6.4, it
follows that (35) is

y~ oW J J(x0,m) * v | dy.
Qq jep 2b(1

Undoing Plancherel then gives the right hand side of (34) which then completes the proof.
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6.6. A fifth proof of Lemma 5.6. The previous four proofs all rely on the fact that
S@2 Fifr|from|* = 0if d(J,J') > (qv)~'v* or some variant. Our final proof is qualitatively
different in that it does not go through this step. The proof of Lemma 5.6 given here is in the
style of Bourgain and Demeter’s proof of decoupling for the paraboloid [3, 4] specialized to
the case of the parabola. The Bourgain and Demeter argument uses a different bilinearization
than in (14), but the main ideas are similar in that this proof makes use of bilinear Kakeya
and wavepacket decomposition. This argument (in the real setting) first appeared in [16,
Section 3].
To prove Lemma 5.6, we first reduce to proving the a = b case.

Lemma 6.1. If1 <a <b and |I| = v*, then

f@g Pl < Y f P o (36)

JeP b(I

for all f Fourier supported in | Jy.p, Ox-

Proof. By partitioning Qg into squares of side length »~° and since we want (36) to be true
for all f Fourier supported in | . p, Urc, 1t suffices to show that

a0l < 3 [ 1o

) JeP,,(I)

Since | fr(o,»)| is constant on T,» and B(0, v=t) < T, it suffices to show that

J@ > FlpeenlP < D] j |flpownl

q JeP b(I JEPb

But this is just an application of Plancherel since f;1p(,-+) is Fourier supported on 6; +
B(0,7*) and by Lemma 3.2, this is equal to #;. This completes the proof of Lemma 6.1. [

Therefore to prove Lemma 5.7 (and hence Lemma 5.6), it suffices to assume that a = b.
To do this, we first show an intermediate inequality that is an application of wavepacket
decomposition and bilinear Kakeya (and is also related to the ball inflation step in [4], see
[16, Lemma 3.4]):

Jf |ff|2|ff<o,,,b>|4sV—O“)(Jf |ff|2><Jf Fromm ). (37)
B(0,v—2b) B(0,v—2b) B(0,p—2b)

where |I| = v*, d(I,0) = qv, f is Fourier supported in |y p 0k and §, := ‘—;‘ §5-

Partition B(0,v~?") by translates of Tj; and call this collection 7([). Similarly, parti-
tion B(0,v~?) by translates of Ty, ;4 = T,» and call this collection T(I(0,2?)). Since f;
is Fourier supported in 6; and fj,+) is Fourier supported in 6;¢ ,+), from wavepacket de-
composition, we can write | f7|*> = 2irer(n) cplp and |fro.0|* = 2TeT(1(00h) ¢t 17 for some

nonnegative constants ¢y and cgv. Thus the left hand side of (37) becomes

2 4 T Tl
Y Gl (38)
oy TTBO)

T'eT (1(0,0%))
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By Lemma 3.6,
T ~T| - v=22/d(1,0)
[BO,v=2)] =

< VP (qu)7h

Therefore (38) is
<) Y G =@) ' Y A ), )

TeT(I) TeT(I) TeT(I')
T'eT(1(0,L7))

which is exactly the right hand side of (37). Thus we have shown that

f L from * < uomgf A f Fromm ).
B(0,v—2b) B(0,v—2b) B(0,v—2b)

We next show that
J[ fi)? < E J[ frl? 39
0w | 1| | J| ( )

JeP o, (1) Y BOV72)
This would finish the proof of (18) since |J| = v?* and so |f;| is constant on B(0,v~?") by
Corollary 3.5 and hence

e =[Pl
B(0,v—2b) B(0,p—2b) B(0,v—2b)
. By Plancherel,

(39)
2 _ 1 i )
JVB(O,V%) |fI| J | Z f1 B(0,v 2b)|

Qi JeP 5 (1)

“[1 Y Aelemt= ¥ f hl2

9 JeP, o (1) JeP o, (1) Y BOw™2)

Thus it remains to show

where in the last equality we have used that the support of 1 Bow-2v) is B(0, v%) and since
65 + B(0,v%?) = 6, each term in the ), are orthogonal.
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