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ABSTRACT: We report asymmetric potassium-isothiourea-boronate-catalyzed Wittig olefinations of 4-substituted
cyclohexanones with non-stabilized phosphorus ylides to afford highly enantioenriched axially chiral alkenes. The optimal
catalyst features an unusual macrocyclic amide-potassium-boronate chelate. Kinetic and spectroscopic analyses are
consistent with a Lewis acid mechanism for the catalytic olefination that results in formation of the oxaphosphetane adduct
under cryogenic conditions. Thermal fragmentation of the oxaphosphetane to the alkene product occurs after the reaction is
complete. Computational studies indicate that cycloaddition proceeds via a stepwise mechanism involving
enantiodetermining polar 1,2-addition to afford an intermediate potassium betaine complex.

The Wittig reaction has stood as one of the essential
methods for stereoselective alkene synthesis since its initial
report,}? finding continuous application in both industry
and academia to this day.3-7 Olefination of suitably
substituted prochiral ketones permits the formation of
axially chiral alkene products®'3 and numerous
approaches to asymmetric Wittig and Horner-Wadsworth-
Emmons reactions have been demonstrated using
stoichiometric chiral controlling elements,* with canonical
examples relying on covalent chiral auxiliaries!>-17 or chiral
ligands.1819 In contrast, examples of asymmetric catalysis of
Wittig-type olefinations to access axially chiral products are
exceedingly rare; to our knowledge there exist only three
reported examples, using either Brgnsted acid, H-bond-
donor, or phase-transfer catalysts and attaining up to 75%
enantiomeric excess (ee) (Scheme 1A).20-23 Herein, we
report highly enantioselective Wittig reactions of 4-
substituted cyclohexanones catalyzed by a novel
potassium-isothiourea-boronate complex.

The generally accepted mechanism for the Wittig reaction
involves an initial irreversible asynchronous concerted
[2+2] cycloaddition between a carbonyl compound and a
phosphorus ylide to form a mixture of cis- and trans-
oxaphosphetane (OPA) species, followed by an irreversible
stereospecific cycloreversion to afford the corresponding
alkene and phosphine oxide (Scheme 1B).24-27 Zwitterionic
“salt-free” betaine species have not been observed during
Wittig reactions, and have been conclusively excluded as
possible intermediates in the reactions of certain classes of
ylides.?® However, Lewis acidic metal cations (typically Li*)
have been shown to stabilize betaine species and thereby
influence the outcomes of Wittig olefinations.?°-32 Reactions
of aldehydes with non-stabilized ylides exhibit a substantial
decrease in Z-selectivity upon addition of lithium salts,
consistent with the establishment of a lithium-mediated
cycloaddition pathway via a betaine intermediate with
lower Kkinetic selectivity for the formation of the cis-OPA
(Scheme 1C).24293334 Additionally, reactions of ketones with
stabilized ylides are accelerated dramatically in the
presence of lithium salts.3>

Recently, our group discovered novel chiral lithium-
isothiourea-boronate derivatives that catalyze highly
enantioselective Matteson homologation reactions (Scheme
1D).3637 Given the observed effects of lithium salts on the
rate and stereoselectivity of standard Wittig reactions, we
considered whether this new family of chiral Lewis acids
might exert enantiocontrol over Wittig reactions generating
axially chiral alkenes. In particular, we envisioned that
chiral alkali metal-based Lewis acids might catalyze the
addition of non-stabilized phosphorus ylides to 4-
substituted cyclohexanones to generate enantioenriched
OPA intermediates (Scheme 1E). The resulting intermediate
could then undergo stereospecific cycloreversion on
warming to afford an enantioenriched axially chiral alkene
product. Key to this strategy is the low-temperature
stability of OPAs derived from non-stabilized ylides,252° as
the Lewis basic phosphine oxide byproduct of
fragmentation to the alkene would likely be a potent
catalyst poison.38-40

A preliminary assay of alkali metal-isothiourea-boronate
derivatives developed in our study of the Matteson reaction
revealed that while lithium- and sodium-based catalysts Li-
3a and Na-3a afforded only racemic product in the
olefination of 4-phenylcyclohexanone with ylide 2a, the
potassium-isothiourea-boronate derivative K-3a catalyzed
the model reaction in 64% ee (Table 1). Reaction
enantioselectivity proved highly responsive to the identity
of the arylpyrrolidine moiety on the catalyst, with the
unsubstituted derivative K-3h affording nearly racemic
product and the 3-phenanthryl-substituted K-3f

Scheme 1. Synthetic and Mechanistic Aspects of
Stereoselective Wittig Olefinations
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inducing the highest levels of selectivity (92% ee). The Na
analog Na-3f was less enantioselective (30% ee), while the
Li derivative afforded only racemic product. While removal
of the a-boryl substituent had little effect on ee (K-3g, 90%
ee), catalysts epimeric at the a-boryl stereocenter (K-epi-
3a-f) promoted very poorly selective reactions in all cases.

We sought to elucidate the basis for the ligand effects and
the superior performance of potassium-based catalysts in
this transformation. An X-ray crystal structure analysis of
K-3f-THF revealed an unusual macrocyclic chelate in which
the potassium cation is coordinated between the amide
oxygen and the anterior boronate oxygen (Figure 1A). This
ligation mode is dramatically different from the five-
membered amide-Li-isothiourea chelate previously
observed in the X-ray structure of a lithium-isothiourea-
boronate derivative.36:37

To assess the relevance of these solid-state structural
differences to the corresponding solution structures,
solution IR spectra of M-3f (M = Li, Na, K) were acquired and
compared to spectra of the two chelates predicted by DFT
(Figure 1B). The unmetallated
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Figure 1. Characterization of alkali metal-isothiourea-boronate catalyst structures by (A) single-crystal X-ray diffraction; (B) IR
spectroscopy; and (C) NMR studies. Hydrogen atoms and close contacts in the crystal structure of K-3f-THF are omitted for clarity.
(D) Electrostatic potential map of anion derived from deprotonation of 3f. Red = electron-rich, blue = electron-poor. (E) Proposed

model of catalyst structure-enantioselectivity relationship.

isothiourea-boronate 3f (M = H) exhibits absorbances
corresponding to the amide C-O (1660 cm') and
isothiourea N-C-N (1590 cm') moieties that are closely
reproduced in the calculated spectrum. The spectra of K-3f
and Na-3f display similar patterns in the carbonyl region,
with a redshift of the C-0 stretch by roughly 40 cm! and a
flattening of the N-C-N stretch relative to the spectrum of
3f. These spectral changes are in good agreement with
predicted IR spectra of the amide-metal-boronate chelates.
In contrast, the spectrum of Li-3f reveals a redshift of both
peaks by roughly 40 cm, in good agreement with the

calculated amide-metal-isothiourea chelate (for in-depth
discussion of IR spectra, see SI).36:37

These fundamental differences in chelation mode were
found to translate into differences in relative Lewis acidity,
as demonstrated in a Gutmann-Beckett analysis?¢3° (Figure
1C). A slight tempering of the Lewis acidity of K-3f relative
to KHMDS and of Na-3f relative to NaHMDS is observed,
whereas a significant increase in Lewis acidity is measured
for Li-3f relative to LIHMDS. In an electrostatic potential
map of the 3f-derived isothiourea-boronate anion (Figure
1D), a high degree of electron density appears at the
boronate oxygen atoms, consistent with the observed
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cNMR yield.

buffering of Lewis acidity in the two proposed amide-metal-
boronate chelates. The low enantioselectivities obtained
with catalysts K-epi-3a-f (Table 1) can be attributed to the
steric effect of the syn a-boryl methyl group, which likely
interferes with formation of the amide-K-boronate chelate
(Figure 1E).

The scope of enantioselective olefinations catalyzed by K-3f
was examined with a set of representative cyclohexanone
and ylide substrate combinations (Figure 2). Reactions
proceeded effectively with ylide derivatives bearing linear
alkyl substituents, with the targeted products generated in
high yields and generally high enantioselectivities (5a-d). A
particular sensitivity to the steric properties of the ylide
was noted, as evidenced by a dramatic decrease in ee
observed with a B-phenyl derivative (compare 5a with 5e).
Cyclohexanone derivatives bearing a variety of C4 aryl
substituents (5f-h) underwent olefination with excellent

levels of enantioselectivity, with only slightly lower
selectivities obtained for 4,4-disubstituted derivatives (5i,
5j). Reactions with C4 alkyl-substituted derivatives were
slightly less enantioselective, with a relatively minor effect
associated with substituent steric variation (77-83% ee,
5k-m).

We sought to glean insight into the basis for the intriguing
transannular electronic effects on ee revealed in the
substrate scope study (compare 5c¢ with 5f). Through-space
electric-field effects have been documented previously in
hydride additions to 4-substituted cyclohexanones.*!
Computed free energy of activation barriers for the
uncatalyzed olefination of a series of para-substituted 4-
arylcyclohexanones were found to correlate well with the
calculated electric field intensity along the forming C-C
bond in an equatorial addition of the ylide (Figure 3A). An
examination of the K-3f-catalyzed olefinations of the same
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Figure 3. (A) (top) Proposed model of electric field-induced rate acceleration; (bottom) Computed electric field intensity along the
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reaction for the more enantioselective substrate.

set of substituted 4-arylcyclohexanones (Figure 3B)
revealed that higher enantioselectivity was obtained with
substrates bearing more electron-deficient aromatic rings.
The enantioselectivity data, expressed as AAGH (= -
RTIn(enantiomer ratio)), was plotted against several
different standard parameters and found to correlate best
with ometa (Figure 3C, see SI for correlations with other
parameters).*243 A significant effect on rate was also
observed, with electron-withdrawing 4-substituents
leading to faster reactions in both the catalyzed and
uncatalyzed olefinations (Figure 3D).

A full kinetic analysis of the olefination of ketone 1a was
performed with data collected by UV-visible spectroscopy,
monitoring the disappearance of the intensely orange-red
ylide 2d at 520 nm (Figure 4). Plots of the concentration
versus time data in a pair of “same excess” experiments with
different initial concentrations (Figure 4A, black and red
traces) revealed poor graphical overlay, consistent with a
catalyst deactivation process.** This deactivation could be
ascribed directly to product inhibition of K-3fby OPA 4d, as
excellent overlay was obtained by addition of the
appropriate amount of racemic OPA 4d to the reaction with
lower initial concentrations (Figure 44, blue trace). A set of
“different excess” experiments (Figure 4B) revealed
approximate doubling of reaction rate with a doubling of
initial ylide concentration, but only a small increase in rate
with a doubling of initial ketone concentration. These
observations are most consistent with a first-order kinetic
dependence on ylide and saturation kinetics in ketone.
Variation of the total catalyst concentration [K-3f]r

revealed a first-order kinetic dependence (Figure 4C),
which in combination with the absence of a nonlinear effect
(Figure 4D) is consistent with a monomeric catalyst species
throughout the catalytic cycle.

These kinetic results lead us to postulate the catalytic cycle
shown in Figure 4E, in which free catalyst K-3f reversibly
binds ketone 1a to form complex A, followed by turnover-
limiting and enantiodetermining irreversible addition of
ylide 2d to form betaine complex B, which reversibly
dissociates the OPA product 4d to return free K-3f.
Consistent with the proposed inhibition of K-3f via
reversible P-O bond cleavage of 4d to form B, cleavage of
OPA intermediates by LiBr to form lithium betaine species
has been demonstrated to be facile at -78 °C.2° On the basis
of the kinetic data, it can be estimated that K-3f exhibits a
threefold preference for binding of OPA 4d over ketone 1a.
This would induce a shift in catalyst resting state over the
course of the reaction from the ketone complex A to the
betaine complex B, manifesting as a roughly zero-order
kinetic dependence on ketone in the early stages of the
reaction that develops into a first-order dependence as the
reaction progresses.

DFT  calculations of the  putative catalyzed
enantiodetermining transition states leading to product 5b
with the 1:1:1 catalyst:ketone:ylide stoichiometry
supported by the Kkinetic analysis reproduced both the
correct sense and magnitude of enantioinduction (Figure
4G). The reaction proceeds via a polar 1,2-addition to forge
the C-C bond and afford an intermediate potassium betaine
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complex.3* Overall transition state geometry appears to be
dictated primarily by two factors: (1) facial selectivity for
equatorial addition to the cyclohexanone, and (2)
minimization of steric interactions between the
triphenylphosphonium moiety and the catalyst framework,
dictating the orientation of the ylide substituent. Bulky ylide
substituents may hinder steric differentiation with the
triphenylphosphonium  moiety, leading to lower
enantioselectivity (Figure 2, 5e). While this computational
model recapitulates the observed enantioselectivity in the
formation of 5b, the exact basis for enantioinduction is
complex and not fully elucidated at this stage.

ASSOCIATED CONTENT

In summary, highly enantioselective Wittig olefinations of
4-substituted cyclohexanones are catalyzed by a chiral
Lewis-acidic  potassium-isothiourea-boronate complex
possessing a novel macrocyclic chelate structure. The
enantiodetermining cycloaddition is a stepwise process
involving irreversible polar 1,2-addition to form a
potassium betaine complex followed by a reversible
cyclization. Future studies will focus on application of the
mechanistic observations made here to enantioselective
catalysis of other challenging alkali-metal-mediated
transformations.
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