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Abstract
Maximum likelihood estimation is among themost widely-usedmethods for inferring
phylogenetic trees from sequence data. This paper solves the problem of computing
solutions to the maximum likelihood problem for 3-leaf trees under the 2-state sym-
metric mutation model (CFN model). Our main result is a closed-form solution to
the maximum likelihood problem for unrooted 3-leaf trees, given generic data; this
result characterizes all of the ways that a maximum likelihood estimate can fail to
exist for generic data and provides theoretical validation for predictions made in Parks
and Goldman (Syst Biol 63(5):798–811, 2014). Our proof makes use of both classical
tools for studying group-based phylogenetic models such as Hadamard conjugation
and reparameterization in terms of Fourier coordinates, as well as more recent results
concerning the semi-algebraic constraints of the CFN model. To be able to put these
into practice, we also give a complete characterization to test genericity.
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1 Introduction and Preliminaries

This paper is concerned with inferring the evolutionary history of a set of a species
or other taxa from sequence data using maximum likelihood. In practice, maximum
likelihood inference is among the most commonly-used in phylogenetic analyses,
and in contrast to the simple (but more analytically tractable) model considered in
this paper, maximum likelihood estimation is typically undertaken with sophisticated
models of site evolution, utilizing heuristic (e.g. hill-climbing) methods and multiple
start points to explore the tree space in order to obtain parameters which maximize
the likelihood. A variety of excellent and widely-used implementations exist, many
of which have been used in thousands of studies (e.g., Nguyen et al. 2015; Stamatakis
2014; Yang 2007; Price et al. 2010).

Nonetheless, there remains interest in computing analytic (i.e., closed-form) solu-
tions in simpler cases (Chor and Snir 2004; Chor et al. 2003, 2000; Yang 2000; Chor
et al. 2007; Hobolth and Wiuf 2024; Chor et al. 2005) as well as exact solutions via
algebraic methods (Kosta and Kubjas 2019; Garcia Puente et al. 2022), with the goal
of providing a more rigorous understanding of the properties of maximum likelihood
estimation and the ways that it can fail. For example, it is well-known that the maxi-
mum likelihood tree need not be unique (Steel 1994), that for certain data there exists
a continuum of trees which maximize the likelihood (Chor et al. 2000), and that there
exist data for which the maximum likelihood estimate does not exist—or at least, is
not a true tree with finite branch lengths (Kosta and Kubjas 2019). In the context of
phylogenetic estimation, maximum likelihood exhibits complex behavior even in very
simple cases; one important example of this is long-branch attraction, a form of esti-
mation bias which has been the subject of much interest (see, e.g., Susko and Roger
2021; Parks and Goldman 2014; Bergsten 2005; Anderson and Swofford 2004), but
is not yet fully understood.

The specific problem that we consider in this paper is that of using maximum
likelihood to estimate the branch lengths of an unrooted 3-leaf tree frommolecular data
generated according to theCavendar-Farris-Neyman (CFN)model, a binary symmetric
model of site substitution. A related problem of estimating rooted 3-leaf trees under the
molecular clock assumption was considered by Yang (2000). The problem considered
here differs from that in Yang (2000) as we do not assume a molecular clock; instead
our problem involves maximizing the likelihood over three independently varying
branch length parameters.

The 3-leaf MLE problem in this paper was considered, though not fully solved, in
Kosta and Kubjas (2019). There, the authors introduced a general algorithm for com-
puting numerically exact solutions using semi-algebraic constraints (i.e. polynomial
inequalities) satisfied by phylogenetic models, along with methods from numerical
algebraic geometry. Applying their method to the 3-leaf maximum likelihood prob-
lem under the CFN model, they discovered a nontrivial example where the maximum
likelihood estimate does not exist. A similar problemwas also considered in Parks and
Goldman (2014), who obtained a partial solution (i.e., involving simulations) for the
4-state Jukes-Cantor model, allowing them to use distance estimates to predict with
high accuracy certain features of the maximum likelihood estimate for specific data.
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In this paper,we go one step further, presenting a full solution to the 3-leafmaximum
likelihood problem under the CFN model, for generic data. Our proofs have a similar
flavor to themodel boundary decompositions technique inAllman et al. (2019, Section
4), butwe consider a submodel that is not full dimensional. Themain result of this paper
provides a full characterization of the behavior of maximum likelihood estimation in
this setting, up to and including necessary and sufficient conditions for the MLE to
exist, as well as detailed analysis describing the ways in which an MLE may fail to
exist. Further, our results validate the predictions given in Parks and Goldman (2014),
providing theoretical underpinning to an interesting connection between maximum
likelihood and distance-based estimates appearing in that paper.

While finalizing this manuscript, the recent work of Hobolth andWiuf (2024) came
to our attention. Building on a connection between the multinomial distribution and
maximum likelihood estimation of 3-leaf trees under the CFN model, the authors of
Hobolth andWiuf (2024) make a surprising and interesting discovery about the likeli-
hood geometry for 3-leaf models: in the case of three leaves, estimation by maximum
likelihood is equivalent to estimation by pairwise distances, an equivalence which
does not hold for trees with four or more leaves. In particular, the authors use this to
obtain an analytic solution to the MLE problem for 3-leaf trees which is applicable
whenever the data (regarded here as a vector representing the empirical site pattern
frequencies) lies in the interior of the parameter space of the model. The present paper
provides a natural extension of the 3-leaf result in Hobolth and Wiuf (2024) in two
ways: first, by providing a simple characterization of when the data lies in the interior
of the model, and second, by analyzing in detail the case when it does not; the analysis
of this non-interior case is both substantial and technically non-trivial, and provides an
improved understanding of the settings where maximum likelihood is prone to failure,
such as in the case of trees with very long or short branches.

The remainder of this paper is structured as follows. In Sect. 1 we introduce the
model, problem statement, and some of the key tools that will be employed. In
Sect. 2, we present our main result, a closed-form “analytic” solution to the maximum-
likelihood problem for 3-leaf trees under the CFN model. In Sect. 3, we discuss the
significance and novel contribution of this result. A proof of the main result is then
presented in Sect. 4.

1.1 Data andModel of Evolution

1.1.1 Tree Parameter

For any finite set X , an X -tree T is an ordered pair (T ;ϕ) where T is a tree with
vertex set V (T ) and the labelling map ϕ : X → V is a map such that v ∈ ϕ(X )

whenever v ∈ V (T ) and deg(v) ≤ 2. If ϕ is a bijection into the leaves of T , then T
is called a phylogenetic X -tree; in this case the elements of X are identified with the
leaves of the tree (for a standard reference, see Semple and Steel 2003). In addition,
we associate with T a vector of nonnegative branch lengths d := (de)e∈E(T ), where
E(T ) is the edge set of T .
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We regard X as a set of taxa, with T representing a hypothesis about their evo-
lutionary or genealogical history; the branch lengths are regarded as representing a
measure of evolutionary distance measured in expected number of mutations per site.
In this paper we consider exclusively the case X = [3].

Rather than using the evolutionary distances d as edge parameters of T , for our
analyses it will bemore convenient to use an alternative parameterization of the branch
lengths as a vector θ := (θe)e∈E(T ) ∈ [0, 1]|E(T )|, where

θe := exp(−2de) (1)

for all e ∈ E(T ). The numerical edge parameters (θe)e∈E(T ) have been referred to
as “path-set variables” (Chor et al. 2003); we refer to them here as the Hadamard
parameters.

1.1.2 Site Substitution Model

The site substitution model considered in this paper is the fully symmetric Cavendar-
Farris-Neyman (CFN) model. Also known as the N2 model (e.g., in Semple and Steel
(2003)), the CFN model takes as input a tree parameter Tθ = (T , θ), consisting of a
phylogenetic [n]-tree T = (T ,ϕ) along with edge parameters θ = (θe)e∈E(T ), and
outputs a random vector X = (X1, . . . , Xn), whose entries X1, . . . , Xn ∈ {−1,+1}
are associated with the n leaves of T .

The CFN model, corresponding to a time-reversible Markov chain on a tree, is the
simplest model of site substitution, possessing only two nucleotide states, which we
denote by +1 (pyrimidine) and −1 (purine). Under this model, the probability of a
nucleotide in state i transitioning to state j over an edge of length t can be shown to
be

Pi j (t) =
{ 1

2

(
1+ e−2t) if i = j

1
2

(
1 − e−2t) if i ̸= j

for all i, j ∈ {−1,+1} (Yang 2000, and for a more general reference, see Semple and
Steel (2003), p. 197). In other words, the transition probability from state i to j along
a given edge e, denoted Pi j (e), is

Pi j (e) =
1
2
(1+ i jθe) (2)

for all i, j ∈ {+1,−1}.
Moreover, we assume a uniform root distribution, from which it follows that

P [X = σ ] = P [X = −σ ] (3)

for all σ ∈ {−1, 1}n (c.f. Lemma 8.6.1.(ii) in Semple and Steel (2003), see also
Sturmfels and Sullivant (2004), p. 221).
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The distribution of X depends on both the topology and branch lengths of the tree
parameter. For a phylogenetic [n]-tree T with topology τ and Hadamard parameters
θ , we use the notation

p(τ, θ) := (pσ (τ, θ))σ∈{−1,1}n , (4)

where

pσ (τ, θ) := P [X = σ ]

and P is the distribution of X under the CFN model with parameters T and θ .

1.1.3 Identifiability of Model Parameters

Another way to understand the CFNmodel is as a parameterized statistical model with
the tree topology τ held fixed; in this case, the CFN model is regarded as the image
of the map

%τ : &τ → '2n−1 ⊆ R2n

θ '→ p(τ, θ)

where &τ ⊆ [0, 1]|E(T )| is the set of possible Hadamard parameters, and where
'r−1 ⊂ Rr is the probability simplex of dimension r − 1; i.e.,

'r−1 :=
{
x ∈ Rr : x1, . . . , xr ≥ 0 and x1 + · · · + xr = 1

}
.

The usual assumption prescribed for the CFNmodel (which is not made in this paper)
is that &τ = (0, 1)|E(T )| (so that 0 < θe < 1 for all e ∈ E(T ), or equivalently, that
0 < de < ∞ for all e ∈ E(T )). Under that assumption, %τ is injective (Hendy 1991),
and hence the edge parameters θ = (θe)e∈E(T ) are identifiable. This means that if
Tθ := (T , θ) and Tθ ′ := (T , θ ′) are two n-leaf trees with the same topology τ but
with edge parameters θ and θ ′ such that θ ̸= θ ′, then the distributions of X will be
different under Tθ and Tθ ′ .

On the other hand in this paper, we consider an extension by allowing θe ∈ [0, 1]
for each edge e ∈ E(T ), rather than θe ∈ (0, 1). This extension allows for branch
lengths which are infinite or zero (when measured in expected number of mutations
per site), in order to better understand the behavior of maximum likelihood estimation
in the limit as one or more branch lengths tend to zero or to infinity. This seemingly
slight extension of the model substantially adds to the complexity of the analysis. In
particular, as a consequence of this extension, it is no longer the case that the numerical
parameters θ are identifiable, which presents certain complications, described in detail
later in the paper. On the other hand, it also has the effect of guaranteeing the existence
of the maximum likelihood estimate.
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1.1.4 Data

In practice, DNA sequence data is typically arranged as amultiple sequence alignment,
an n × N matrix, with each row corresponding to a leaf of T and each column
representing an aligned site position. It is standard (albeit unrealistic) to assume that
sites evolved independently, and as such our data consists of N randomcolumn vectors

X (1), . . . , X (N ) i id∼ X

where X is a random variable taking values in {+1,−1}n whose distribution will be
described below, and which is regarded as a vector of nucleotides observed at the
leaves of T such that Xi is the nucleotide observed at the vertex with label i for each
i ∈ [n]. Under the CFN model, the distribution of X depends on the topology of T as
well as the edge parameters θ . Due to the exchangeability of X (1), . . . , X (N ), the data
can be summarized by a site frequency vector

s := (sσ )σ∈{−1,1}n (5)

where

sσ := #
{
ι ∈ [N ] : X (ι) = σ

}
.

1.1.5 ˛-Split Patterns

In light of Eq. (3), it is possible using a change of coordinates to represent the dis-
tribution of X using a vector of 2n−1 entries rather than 2n entries. For any vector
σ ∈ {−1,+1}n and any α ∈ [n − 1], we say that σ has α-split pattern if there exists
k ∈ {−1,+1} such that σi = k if and only if i ∈ α.

For example, if n = 3 then (+1,−1,+1) and (−1,+1,−1) both have {2}-split
pattern; (+1,+1,−1) and (−1,−1,+1) both have {1, 2}-split pattern, and so forth.

Analogously to the notation in Eq. (4), define the expected site pattern spectrum to
be

p̄(τ, θ) := ( p̄α)α⊆[n−1] , (6)

where

p̄α(τ, θ) := P
[
X has α-split pattern

]
.

In other words, p̄α is the probability that the entries of X correspond to the split
α|([n]\α). For this vector p̄, we follow (Hendy and Penny 1993) in assuming that the
subsets of [n − 1] are ordered lexicographically, e.g., so that for n = 3, we have the
order (∅, {1} , {2} , {1, 2}).

By Eq. (3), the distribution vector p ∈ '2n−1 is fully specified without loss of
information by the lower dimensional vector p̄ ∈ '2n−1−1 (c.f., Allman and Rhodes
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(2007)). The data may also be summarized by the lower-dimensional (but sufficient)
statistic

s̄ := (s̄α)α∈[n−1], (7)

where

s̄α := #
{
ι ∈ [N ] : X (ι) has α-split pattern

}
.

1.2 TheMaximum Likelihood Problem

Let T = (T ,ϕ) be a phylogenetic [n]-tree with unrooted tree topology τ and
Hadamard edge parameters θ = (θe)e∈E(T ) for some n ≥ 2. Given data taking the
form of Eq. (5), or equivalently Eq. (7), the log-likelihood function is the function

ℓ(θ) :=
∑

σ∈{−1,1}n
sσ log pσ (τ, θ)

= −N log 2+
∑

α∈[n−1]
s̄α log p̄α(τ, θ)

(8)

where pσ and p̄α are defined as in Eqs. (4) and (6).
The maximum likelihood problem is to find all parameters τ and θ ∈ [0, 1]|E(T )|

which maximize Eq. (8).
When n = 3, there is only one unrooted tree topology, in which case this problem

reduces to that of finding the numerical parameters θ ∈ [0, 1]3 which maximize Eq.
(8).

1.3 Hadamard Conjugation

In this section we introduce an important reparametrizaton of the CFN model, as well
as a central tool in our analyses: Hadamard conjugation.

For any even subset Y ⊆ [n], define the path set P(T , Y ) induced by Y on T to
be the set of 1

2 |Y | edge-disjoint paths in T , each of which connects a pair of leaves
labelled by elements from Y , taking P(T ,∅) = ∅. This set is unique if T is a binary
tree (Semple and Steel 2003).

The edge spectrum is the vector

γ := (γα)α⊆[n−1] ,

where

γα :=

⎧
⎨

⎩

−∑
e∈E(T ) de : α = ∅

de : e induces the split α|([n]\α)
0 : else
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Inductively define H0 := [1], and for k ≥ 0 define

Hk+1 :=
[
Hk Hk
Hk −Hk

]
(9)

Let H := Hn−1. Then H is a 2n−1 × 2n−1 matrix, and by our choice of ordering for
[n − 1], we have H = (hα,β)α,β⊆[n−1] where

hα,β = (−1)|α∩β|.

In particular, H is a symmetric Hadamard matrix with H−1 = 1
2n−1 H . Since H is the

character table of the group Zn−1
2 , multiplication by H can be regarded as a discrete

Fourier transformation, a commonly-used tool in the study of the CFN model and
other group-based substitution models [see Semple and Steel (2003, chp. 8) as well
as Coons and Sullivant (2021), Sullivant (2018), Hendy et al. (1994)]. Closely related
to the discrete Fourier transform is the next theorem, which allows us to translate
between the edge spectrum and the expected site pattern spectrum.

Theorem 1.1 [Hadamard conjugation (Hendy and Penny 1993; Evans and Speed
1993)] Let γ ∈ R2n−1

be the edge spectrum of a phylogenetic [n]-tree T , let
H := Hn−1, and let p̄ the expected site pattern spectrum as defined in Eq. (6).
Then

p̄ = H−1 exp (Hγ ) ,

where the exponential function exp(·) is applied component-wise.

Hadamard conjugation, as formulated in this theorem, has proved to be an essential
tool in a number of previous results and has analogues for substitution models other
than the CFN [see, e.g., Chor et al. (2003, 2000)]. For a proof and a detailed discussion
of this theorem, we refer the reader to Semple and Steel (2003). In particular, we will
utilize the following proposition, itself a consequence of Theorem 1.1.

Proposition 1.2 [Corollary 8.6.6 in Semple and Steel (2003)] Let θe ∈ [0, 1] for all
e ∈ E(T ). Then for all subsets α of [n − 1],

p̄α = 1
2n−1

∑

Y⊆X :
|Y | even

⎡

⎣(−1)|Y∩α| ∏

e∈P(T ,Y )

θe

⎤

⎦ . (10)

Note that Proposition 1.2 holds even if the root distribution is not taken to be uniform,
however we do not consider that case in this paper. When n = 3, Eq. (10) reduces to

p̄α(θ) =
1
4

⎛

⎝1+
∑

1≤i< j≤3

(−1)|{i, j}∩α|θiθ j

⎞

⎠ , (11)
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and by a change of notation, this can be rewritten as

P [X ∈ {−σ, σ }] = 1
4
(1+ σ1σ2θ1θ2 + σ1σ3θ1θ3 + σ2σ3θ2θ3)

for all σ ∈ {−1,+1}3. Therefore by Eq. (3),

P [X = σ ] = 1
8
(1+ σ1σ2θ1θ2 + σ1σ3θ1θ3 + σ2σ3θ2θ3) (12)

for all σ ∈ {+1,−1}3.

1.4 Interpretation of Hadamard Parameters

We regard a vector of Hadamard parameters θ = (θe)e∈E(T ) as biologically plausible
if θe ∈ (0, 1) for all e ∈ E(T ). Since − 1

2 log θe is the expected number of mutations
on edge e, it follows that θe ∈ (0, 1) if and only if de ∈ (0,∞). In other words,
biologically plausible Hadamard parameters correspond to trees with branch lengths
having positive and finite expected number of mutations per site. In this work, we
allow for θe ∈ [0, 1] in order to better study the ways that maximum likelihood can
fail to return a tree with biologically plausible parameters; for example, trees with
extremely short or long branches are of special interest, since it is in this setting that
long-branch attraction is hypothesized to occur.

Observe that θe ∈ [0, 1] measures the correlation between the state of the Markov
process at the endpoints of the edge e. Suppose e = (u, v) ∈ E(T ) and let Xu and
Xv denote the state of the Markov process at nodes u and v respectively. Equation (2)
implies that if θe = 1 then Xu = Xv with probability 1. On the other hand, if θe = 0
then Xu and Xv are independent; to see why this is the case, observe that using Eq.
(2), it holds for all i, j ∈ {−1, 1} that

P [Xu = i, Xv = j] = P [Xu = i]P [Xv = j | Xu = i]

= 1
2
· 1
2

= P [Xu = i]P [Xv = j] .

Theobservationhas an important consequencewhich is summarized in the next lemma.
In particular, by conditioning on the state of the Markov process at the endpoints of
e and using the Markov property, a straightforward calculation gives the following
result:

Lemma 1.3 (Independence caused by “infinitely long” branches) Let T = (T ,ϕ) be
a phylogenetic [n]-tree. Let e ∈ E(T ) and let Ae|Be denote the split induced by e on
the leaf set [n]. If θe = 0 then the random vectors (Xi : i ∈ Ae) and (Xi : i ∈ Be) are
independent.

A proof of Lemma 1.3 can be found in Appendix A.
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1.5 Fourier Coordinates and Semi-algebraic Constraints

One key takeaway of 1.2 is that the probability of any site pattern can be computed as
a polynomial function of the Hadamard parameters.

Hence the CFN model for a fixed tree topology τ may be regarded as the image of
the map

%τ : &τ → '2n−1−1 ⊆ R2n−1

θ '→ p̄(τ, θ)
. (13)

In our setting, we take &τ = [0, 1]|E(T )| and regard the statistical model as the image

Mτ := im (%τ ). (14)

An important monomial parameterization of the CFN model is obtained by means
of the discrete Fourier representation (see Coons and Sullivant 2021; Sullivant
2018; Sturmfels and Sullivant 2004), which here is given by the matrix H . If
q = (q111, q101, q011, q110)⊤ is a vector of Fourier coordinates, then q = H2 p̄. In
the case with n = 3, we have γ = (−(d1 + d2 + d3), d1, d2, d3)⊤, so that Theorem
1.1 implies that

q = H2 exp (H2γ ) = exp

⎛

⎜⎜⎝

⎡

⎢⎢⎣

0
−2(d1 + d3)
−2(d2 + d3)
−2(d1 + d2)

⎤

⎥⎥⎦

⎞

⎟⎟⎠ =

⎡

⎢⎢⎣

1
θ1θ3
θ2θ3
θ1θ2

⎤

⎥⎥⎦ . (15)

For group-based models (see, e.g., Sullivant 2018) like the CFN model, %τ is a
polynomial map, and hence all points in Mτ satisfy certain polynomial equalities,
called phylogenetic invariants, and polynomial inequalities, called semi-algebraic
constraints, both of which are usually formulated in terms of Fourier coordinates.

In the 3-leaf case considered here, the only phylogenetic invariant is q111 = 1,
which is equivalent to the stochastic invariant p̄∅ + p̄{1} + p̄{2} + p̄{1,2} = 1.

The semi-algebraic constraints of the CFN model were studied more generally by
Matsen (2008) and Kosta and Kubjas (2019). When the assumption is made that the
tree parameter has biologically plausible parameters, the semi-algebraic constraints
for 3-leaf trees consist of the following inequalities:

q > 0 (16)

and

q110q101 < q011, q110q011 < q101, and q101q011 < q110. (17)

The inequality Eq. (16) corresponds simply to the assumption that the evolutionary
distance between each pair of leaves is finite.
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The remaining semi-algebraic constraints in Eq. (17) have straightforward inter-
pretation in terms of the additive evolutionary distances on the tree induced by the
branch lengths d1, d2, and d3. To see this, observe that by Eq. (15), the inequalities in
Eq. (17) can be written as

θ1θ2θ1θ3 < θ2θ3, θ1θ2θ2θ3 < θ1θ3, and θ1θ3θ2θ3 < θ1θ2,

and by Eq. (1), these are equivalent to

di + d j < (di + dk)+ (dk + d j ) for all i, j, k ∈ [3].

In other words, the semi-algebraic constraints in Eq. (17) are nothing but the triangle
inequality in disguise.1

Taken together, Eqs. (16) and (17) are equivalent to the tree having branch lengths
in d1, d2, d3 which are both positive and finite. Note this assumption is not made in
this paper, as we allow for branch lengths to also be either zero or infinite, a relaxation
which corresponds to using non-strict inequalities in Eqs. (16) and (17). Nonetheless,
the strict inequalities will play an important role in our main result.

Remark 1.4 The semi-algebraic constraints in (17) show up in other settings as well.
For example, inMatsen (2008) they appear as embeddability conditions for theKimura
3-parameter model; in that setting, the inequalities are equivalent to the nonnegativity
of the off-diagonal entries of the mutation rate matrix, and therefore—just as in our
setting—implicitly specify that the branch lengths be nonnegative. For a generalization
of these inequalities as embeddability conditions see the main result of Ardiyansyah
et al. (2021).

Because the Fourier coordinates factorize into Hadamard parameters, as shown in Eq.
(15) (and more generally: see, e.g., Semple and Steel 2003), the nontrivial Fourier
coordinates thus have a simple biological interpretation. For each distinct pair i, j ∈
[3], since E [Xi ] = E

[
X j
]
= 0, it follows that

cov(Xi , X j ) = E
[
Xi X j

]

= P
[
Xi = X j

]
− P

[
Xi ̸= X j

]

= 1
2

(
1+ θiθ j

)
− 1

2

(
1 − θiθ j

)
by Eq. (2)

= θiθ j .

(18)

In other words, the nontrivial Fourier coordinates are covariances of nucleotides
observed at the leaves of the tree.

Both the monomial parameterization in Eq. (15) and the semialgebraic constraints
in Eqs. (16 and (17) will play an important role in the proof and interpretation of
our main result for 3-leaf trees. In particular, our approach is to estimate the Fourier

1 For trees with more than 3 leaves, a similar interpretation holds using the inequalities of the 4-point
condition.
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Fig. 1 Three-leaf tree T with
Hadamard edge parameters
θT1 , θT2 , θT3

2

1 3

θT1

θT2

θT3

coordinates θ1θ2, θ1, θ3, θ2θ3 directly from the data, and it turns out that whether or
not these estimates satisfy inequalities corresponding to Eqs. (16) and (17) completely
determines the qualitative properties of the maximum likelihood estimate.

2 Main Result: An Analytic Solution to the 3-Leaf MLE Problem

2.1 The 3-Leaf Maximum Likelihood Problem

Let T be an unrooted phylogenetic [3]-tree, with unknown numerical edge parameters
θT = (θT1 , θT2 , θT3 ) ∈ [0, 1]3, as shown in Fig. 1. Let s be a site frequency vector
obtained from N independent samples X (1), . . . , X (N ) generated according to the
CFN process on T . The 3-leaf maximum likelihood problem is to find all numerical
parameters θ ∈ [0, 1]3 which maximize Eq. (8) given the data s.

Note that since there is only one possible unrooted topology for a 3-leaf tree, the
topology parameter τ does not play a role in this problem.

2.2 Key Definitions and Notation

The key statistics used are the following:

Definition 2.1 (The statistics M+
i j ,M

−
i j , Bi j ,B) For all i, j ∈ [n] such that i ̸= j ,

define

M+
i j :=

∑

σ∈{+1,−1}n
σiσ j=1

sσ and M−
i j :=

∑

σ∈{+1,−1}n
σiσ j=−1

sσ , (19)

as well as

Bi j :=
M+

i j − M−
i j

N
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and

B := (B12, B13, B23).

In words, M+
i j is the number of samples for which leaves i and j share the same

nucleotide state and M−
i j is the number for which the nucleotides observed at leaves

i and j differ. It follows by definition that M+
i j + M−

i j = N and that M+
i j = M+

j i and
M−

i j = M−
j i for all distinct i, j ∈ [3].

The statistic Bi j measures the observed correlation of the observations at leaves i
and j of the tree. By the law of large numbers,

Bi j → P
[
Xi = X j

]
− P

[
Xi ̸= X j

]

almost surely as N → ∞. Therefore by Eq. (18), Bi j is a consistent estimator of the
Fourier coordinate θiθ j , which is itself the covariance of Xi and X j . Moreover, it is
easy to check that

B12 =
1
N

(
s̄∅ − s̄{1} − s̄{2} + s̄{1,2}

)

B13 =
1
N

(
s̄∅ − s̄{1} + s̄{2} − s̄{1,2}

)

B23 =
1
N

(
s̄∅ + s̄{1} − s̄{2} − s̄{1,2}

)
.

(20)

Due to symmetries of the problem, it will be useful to index the statistics in
Definition 2.1 using permutations.

Notation 2.2 (Indexing with permutations) Let Alt(3) denote the alternating group
of degree 3, which can be expressed in cycle notation as

Alt(3) = {(1), (123), (132)} .

For each π ∈ Alt(3), we write

M+
π := M+

π(1),π(2), M−
π := M−

π(1),π(2), and Bπ := Bπ(1),π(2).

The use of the statistic B will permit us to obtain a simple criterion for when a
maximum likelihood estimate corresponding to a 3-leaf tree with finite branch lengths
exists. This criteria involves the following set:

Definition 2.3 (The set D) Define

D : =
{
x ∈ (0, 1)3 : xi x j < xk for all distinct i, j, k ∈ [3]

}
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As we will show in the next theorem, it turns out that given some fixed data s, a
maximum likelihood estimate with finite branch lengths exists precisely if and only
if B ∈ D. Importantly, since B is an estimate of the nontrivial Fourier coordinates
(q110, q101, q011) = (θ1θ2, θ1θ3, θ2θ3), the inequalities which define D correspond
precisely to the semi-algebraic constraints in Eqs. (16) and (17).

2.3 Assumptions About the Data

We make two simplifying assumptions about the data s:

A.1 s̄α > 0 for all α ⊆ [2].
A.2 B12, B13 and B23 are nonzero and distinct.

In words, assumption A.1 states that each site pattern aaa, aab, aba, abb is
observed at least once in the data (where a and b represent different nucleotides).
One consequence of this is that M+

i j ,M
−
i j ∈ (0, N )whenever i ̸= j . Since the number

of site patterns is 2n−1, this assumption would be unrealistic for a tree with many
more leaves (e.g., n > 30) given the size of genomic datasets (Chor et al. 2000), but
for our purposes (i.e., with n = 3), this assumption is reasonable. Assumption A.2
is an assumption about the genericity of the data, in the sense that it is equivalent to
assuming that

B12B13B23(B12 − B13)(B13 − B23)(B12 − B23) ̸= 0,

or equivalently,

(
s̄∅ − s̄{1} − s̄{2} + s̄{1,2}

)
·
(
s̄∅ − s̄{1} + s̄{2} − s̄{1,2}

)
·
(
s̄∅ + s̄{1} − s̄{2} − s̄{1,2}

)
·

·
(
s̄{1,2} − s̄{2}

)
·
(
s̄{2} − s̄{1}

)
·
(
s̄{1,2} − s̄{1}

)
̸= 0.

These two assumptions considerably simplify the problem with very little loss of
generality, as both assumptions are likely to be satisfied when N is large.

2.4 Statement of Main Result

Our main result is the following theorem, which solves the maximum likelihood
problem for 3-leaf trees; further discussion of this result is given in Sect. 3.

Theorem 2.4 (Global MLE for the 3-leaf tree) Assume that A.1 and A.2 hold. Then
ℓ has a maximizer on the set [0, 1]3. Denote the set of all such maximizers as

EMLE :=
{
θ̂ ∈ [0, 1]3 : ℓ(θ̂) = max

θ∈[0,1]3
ℓ(θ)

}
,

and let π1,π2,π3 ∈ Alt(3) such that

Bπ1 < Bπ2 < Bπ3 .
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Table 1 Summary of results of Theorem 2.4, which gives the MLE for a 3-leaf tree, as a function of the
data B12, B13, B23

Conditions MLE θMLE = (θ1, θ2, θ3)

Bi j B jk < Bik & Bi j > 0, all distinct i, j, k ∈ [3]
(√

B12B13
B23

,
√

B12B23
B13

,
√

B13B23
B12

)

B23 < B12B13 & B12, B13 > 0 (1, B12, B13)

B13 < B12B23 & B12, B23 > 0 (B12, 1, B23)

B12 < B13B23 & B13, B23 > 0 (B13, B23, 1)

B12, B13 < 0 θ1 = 0, θ2θ3 = B23
B12, B23 < 0 θ2 = 0, θ1θ3 = B13
B13, B23 < 0 θ3 = 0, θ1θ2 = B12
B12, B13, B23 < 0 At least two of θ1, θ2, θ3 are zero

with the third one taking any value

If B ∈ D, then

EMLE =
{(√

B12B13

B23
,

√
B12B23

B13
,

√
B13B23

B12

)}

. (21)

On the other hand, if B /∈ D, then the following trichotomy holds:

(i) If 0 < Bπ2 then

EMLE =
{
θ ∈ [0, 1]3 : θπ1(1) = Bπ1(1),π1(3), θπ1(2) = Bπ1(2),π1(3),

and θπ1(3) = 1
}
.

(ii) If 0 ∈ (Bπ2 , Bπ3) then

EMLE =
{
θ ∈ [0, 1]3 : θπ3(1)θπ3(2) = Bπ3, and θπ3(3) = 0

}
.

(iii) If Bπ3 < 0 then

EMLE =
⋃

A⊆[3]:
|A|≥2

{
θ ∈ [0, 1]3 : θi = 0 for all i ∈ A

}
.

Enumerating out the possible cases of Theorem 2.4 immediately yields the
following corollary.

Corollary 2.5 Under the assumptions of Theorem 2.4, the MLE can be determined
from the values of B12, B13, B23 using Table 1.

Before proving this theorem in Sect. 4, we first discuss its significance and some
implications.
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Table 2 Table of predictions (from Parks and Goldman (2014)) for the behavior of maximum likelihood as
a function of distance estimates

Conditions Prediction

D23 ≥ D12 + D13 (incl. D23 = ∞) d1 = 0

D13 ≥ D12 + D23 (incl. D13 = ∞) d2 = 0

D12 ≥ D13 + D23 (incl. D12 = ∞) d3 = 0

D12 = D13 = ∞ d1 = ∞
D12 = D23 = ∞ d2 = ∞
D13 = D23 = ∞ d3 = ∞
D12 = D13 = D23 = ∞ At least two of d1, d2, d3 are infinite

3 Discussion of Novel Contribution

In addition to providing necessary and sufficient conditions for the MLE to exist as a
tree with finite branch lengths, Theorem 2.4 also characterizes the ways that this can
fail to occur, and highlights a subtle connection between the semi-algebraic constraints
given in Eqs. (16) and (17) and properties of the maximum likelihood estimate.

In an important paper on long-branch attraction (Parks and Goldman 2014), a com-
pelling connection was drawn between maximum likelihood and distance estimates
on a 3-leaf tree under the Jukes-Cantor model of site substitution. Through a com-
bination of analytic boundary case analysis and simulations, the authors argued that
the failure of distance-based branch-length estimates to satisfy the triangle inequality
and nonnegativity constraints was a good predictor of maximum likelihood failing to
return a tree with biologically plausible branch lengths.

Due to the use of different substitution models (i.e., the CFN model considered
here versus the 4-state Jukes-Cantor model considered in Parks and Goldman (2014)),
some translation is necessary to recognize the connection between our results and
those of Parks and Goldman (2014).

The distance estimates used in Parks andGoldman (2014) are related to the standard
Jukes-Cantor correction (Jukes and Cantor 1969; Yang 2006), and are given by the
formula

Di j := −3
4
log

(

1 − 4
3

M−
i j

N

)

,

which returns an estimate of evolutionary distance Di j between taxa i and j , measured
in expected number of mutations per site. The variable M−

i j is the number of samples
such that the nucleotide states observed at taxa i and j differ (i.e., the same as in this
paper). The convention used in Parks and Goldman (2014) is to define Di j = ∞ if
M−

i j ≥ 3/4. Formulated in terms of these distances, the predictions made in Parks and
Goldman (2014) are given in Table 2.
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By comparison, for the CFNmodel considered in this paper, the analogous distance
estimate (see, e.g., Yang 2000) is

D̃i j := −1
2
log

(

1 −
2M−

i j

N

)

= −1
2
log(Bi j ),

with the convention that D̃i j = ∞ if Bi j ≤ 0.
An inspection of Tables 1 and 2 reveals that, modulo the aforementioned change

to the distance estimates to account for the different substitution models, the results
of Theorem 2.4 coincide precisely with the predictions made in Parks and Goldman
(2014) for all data satisfying Assumptions A.1 and A.2. Thus, Theorem 2.4 puts the
predictions in Parks and Goldman (2014) on a sound theoretical basis, as it proves
that certain properties of the maximum likelihood estimate are fully determined by
whether or not the data satisfies the semialgebraic constraints of the model (i.e., the
inequalities of Eqs. (16 and (17), which are mirrored by the inequality conditions in
Tables 1 and 2).

In addition, Theorem2.4 provides a characterization and better understanding of the
way that the maximum likelihood estimator can fail to return a tree with biologically
plausible branch lengths, but instead returns an estimate with edge parameters θ /∈
(0, 1)3. Consider the data point

s := (s(−1,−1,−1), s(−1,−1,+1), s(−1,+1,−1) . . . , s(+1,+1,+1))

= (17, 5, 27, 5, 16, 5, 19, 6).

Kosta and Kubjas (2019), it was shown using algebraic methods that maximum like-
lihood fails to return an estimate with biologically plausible edge parameters for this
data point. Instead, it was shown that for this data, the likelihood is maximized as
the branch length of leaf 2 goes to infinity. It is easy to verify this conclusion with
Theorem 2.4. Observe that

B12 =
(17+ 5+ 19+ 6) − (27+ 5+ 16+ 5)

100
= −0.06

B13 =
(17+ 27+ 5+ 6) − (5+ 5+ 16+ 19)

100
= 0.1

B23 =
(17+ 5+ 16+ 6) − (5+ 27+ 5+ 19)

100
= −0.12.

Since B12, B23 < 0, it follows by row 6 of Table 1 that the likelihood is maximized
when

θ1θ3 = 0.1 and θ2 = 0.

This agrees with the result in Kosta and Kubjas (2019), as θ2 = 0 if and only if
d2 = +∞. Indeed, Theorem 2.4 characterizes all the ways that the likelihood estimate
might be maximized when one or more branch lengths tend to infinity, up to our
simplifying Assumptions A.1 and A.2.
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Further, Theorem 2.4 provides a succinct explanation of why, for this data, it would
be unreasonable to expect maximum likelihood to return a tree with biologically
plausible edge parameters. For any tree with edge parameters θ ∈ (0, 1)3, the Fourier
coordinates must satisfy the semi-algebraic constraint in Eq. (17), but for this data
point, since B12, B23 < 0, the estimates of the Fourier coordinates fail to satisfy a
corresponding positivity inequality.

The previous example elucidates one of the ways that long branches on a species
tree can result in the MLE returning a boundary case: when data comes from a species
tree with one or more very long branches relative to the size of N , it is more likely
that one or more components of Bwill be negative, so that B /∈ D and hence the MLE
must be on the boundary.

Nonetheless, this is not the full story. The next example shows how the MLE can
lie on the boundary of the model even if all of the distance estimates are finite and
positive. Consider the data

s := (21, 12, 9, 8, 7, 11, 17, 15),

so that

B12 =
(21+ 12+ 17+ 15) − (9+ 8+ 7+ 11)

100
= 0.3

B13 =
(21+ 9+ 11+ 15) − (12+ 8+ 7+ 17)

100
= 0.12

B23 =
(21+ 8+ 7+ 15) − (12+ 9+ 11+ 17)

100
= 0.02.

In this case Bi j > 0 for all i, j ∈ [3], so the analogous inequality to Eq. (16) is
satisfied: based on the data, all of the pairs of nucleotides are positively correlated, so
no infinitely-long branches are to be expected; the distance estimates D̃12, D̃13, D̃23
are all finite and positive.

However, by Theorem 2.4, this is not sufficient to guarantee that maximum likeli-
hood will return a tree with biologically plausible parameters, since there is another
semi-algebraic constraint (i.e., Eq. (17)) whichmust be satisfied for such trees. Indeed,
since

B12B13 = 0.036 > 0.02 = B23,

it follows that B /∈ D, and hence the data falls into case (i) of Theorem 2.4. More
specifically, since this data corresponds to row2ofTable 1, it follows that the likelihood
is maximized when

θ = (θ1, θ2, θ3) = (1, B12, B13) = (1, 0.3, 0.12),

which does not correspond to a binary tree because the branch length of leaf 1 is zero.
One final and more general takeaway from Theorem 2.4 is that it highlights how the

geometry of the statistical model, here determined by the semi-algebraic constraints
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Eqs. (16) and (17), influences the possible behavior ofmaximum likelihood estimation.
Maximum likelihood returns a tree with biologically plausible branch lengths if and
only if the data satisfies analogues of the polynomial inequalities Eqs. (16) and (17).
In addition, when the data does not lie in the interior of the model, the question
of which inequalities are not satisfied determines the different ways that maximum
likelihood fails (i.e., which branches have lengths zero or infinity). This suggests that
for phylogenetic trees with more than three leaves, a better understanding of the role
that semialgebraic constraints play in maximum likelihood estimation may turn out to
be useful in explaining some of the more complex behaviors of maximum likelihood
estimation of phylogenetic trees. Of special interest to note are 4-leaf trees, due to
the possibility of long-branch attraction. Indeed, recent work has shown that in the
4-leaf case, the study of semi-algebraic constraints for phylogentic models involves
surprising subtleties that may be important for inference (Casanellas et al. 2021).

Tobe sure, in the cases of treeswithn ≥ 4 leaves, to say nothing ofmore realistic and
complicated substitution models, the increased algebraic complexity of the likelihood
equations presents formidable obstacles. First, as shown in Hobolth and Wiuf (2024),
when n ≥ 4, the likelihood equations do not have solutions which can be expressed
in terms of pairwise sequence comparisons (as was done here and in Hobolth and
Wiuf (2024)). Moreover, in many cases, closed form solutions are unlikely to exist at
all; an example of this can be found in the analysis of the 4-leaf MC-comb in Chor
et al. (2003), where it was shown that the critical points of the likelihood function
correspond to zeros of a degree 9 polynomial which cannot be solved by radicals.

Despite these limitations, solutions can nonetheless be obtained using tools from
numerical algebraic geometry which return theoretically correct solutions with prob-
ability one (see, e.g., Kosta and Kubjas 2019, Gross et al. 2016, Chor et al. 2005,
Chor et al. 2003). Moreover, the number of solutions, called the maximum likelihood
(ML) degree, can be computed using Gröbner basis techniques (Hoşten et al. 2005)
and methods from singularity theory (Rodriguez andWang 2017; Maxim et al. 2024).

4 Proof of theMain Result

Our proof of Theorem 2.4 considers the problem of maximizing the log-likelihood
separately two cases:

(1) the interior case, i.e., the problem of maximizing ℓ over all θ ∈ (0, 1)3, and
(2) the boundary cases, corresponding to when θ ∈ ∂(0, 1)3.

For the boundary cases, we follow the approach taken by the authors of Parks and
Goldman (2014), who analyzed the maximum likelihood problem in the context of
the Jukes-Cantor model and obtained analytic solutions for boundary cases there by
decomposing the boundary ∂(0, 1)3 into 26 components, consisting of 8 vertices, 12
edges, and 6 faces, and then maximizing ℓ on each of those individually. Our approach
is similar, though we group certain edges and faces together in those cases in which
the analysis is similar.

The approach taken to proving Theorem 2.4 is as follows. First, the problems
of maximizing ℓ in the interior case and boundary cases are considered separately in
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Table 3 Summary of the results of Lemmas 4.2, 4.3, 4.4, 4.6, and 4.5

Set S Criteria for S ̸= ∅ ℓ(θ), θ ∈ S

Eint (B12, B13, B13) ∈ D Eq. (24)

Etriv Always nonempty −∞
Eind Always nonempty −N log 8

Gπ (π ∈ Alt(3)) Bπ ∈ (0, 1) Eq. (44)

Fπ (π ∈ Alt(3)) Bπ ′ , Bπ ′′ ∈ (0, 1), where
{
π ′,π ′′} = Alt(3)\ {π} Eq. (39)

Sects. 4.1 and 4.2 respectively. Section4.3 presents several lemmaswhich compute and
compare log-likelihoods of local maxima in various cases, with results summarized
in Table 3. Finally, in Sect. 4.4, we utilize these results to prove Theorem 2.4.

4.1 Maximizing the Log-Likelihood on (0, 1)3

In this subsection we consider the problem of maximizing Eq. (8) on the set (0, 1)3.
This set corresponds to those trees whose branches are of finite and nonzero length,
when measured in expected number of mutations per site. Since (0, 1)3 is open, the
existence of a local maximum is not guaranteed. The main result of this subsection
gives, for generic positive data, necessary and sufficient conditions for ℓ to have a
local maximum in (0, 1)3, and a formula if it exists; it also shows ℓ has at most one
local maximum on (0, 1)3.

We begin with an important definition and a technical lemma.
Let φ̂ : R3\ {x : x1x2x3 = 0} → C3 be defined by

φ̂(x1, x2, x3) :=
(√

x1x2
x3

,

√
x1x3
x2

,

√
x2x3
x1

)
. (22)

Further, let φ be the restriction of φ̂ to D:

φ := φ̂|D.

The next lemma summarizes some useful properties of φ.

Lemma 4.1 The function φ : D → (0, 1)3 is a continous bijection, with inverse
function φ−1 : (0, 1)3 → D given by

φ−1(y) = (y1y2, y1y3, y2y3). (23)

Proof of Lemma 4.1 First, note that if x = (x1, x2, x3) ∈ D then φ(x) ∈ (0, 1)3 by the
definition of φ̂ andD.Moreover, since x1, x2, x3 ̸= 0,whenever x = (x1, x2, x3) ∈ D,
it follows that φ is continuous on D.

Next, to show that φ is injective, let x, x̃ ∈ D such that φ(x) = φ(x̃). Let φ1
and φ2 denote the first and second components of φ respectively. Then φ1(x)φ2(x) =
φ1(x̃)φ2(x̃) or equivalently, x21 = x̃21 . Since x, x̃ ∈ (0, 1)3, this implies x1 = x̃1.
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Similar arguments show that x2 = x̃2 and x3 = x̃3, and hence x = x̃ . Therefore φ is
injective.

Next we show that φ is surjective. Let y ∈ (0, 1)3 be arbitrary. Then it is easy to
see that the point y′ = (y′

1, y
′
2, y

′
3) := (y1y2, y1y3, y2y3) satisfies

y′
i y

′
j < y′

k

for all choices of distinct i, j, k ∈ [3], and hence y′ ∈ D. Moreover, φ(y′) = y
by definition of φ̂. Therefore φ is surjective and has an inverse given by the formula
φ−1(y) = y′, which is precisely the formula in Eq. (23). ⊓⊔

We are now ready to state the main lemma of this subsection, which solves the
problem of maximizing ℓ on the set (0, 1)3, or in other words, solves the maximum
likelihood problem for biologically plausible parameters.

Lemma 4.2 (MLE for 3 Leaf Tree—Interior Case) Assume that A.1 and A.2 hold,
and let

θ∗ := φ̂(B) =
(√

B12B13

B23
,

√
B12B23

B13
,

√
B13B23

B12

)

If B ∈ D then θ∗ is the unique local maximum of ℓ in (0, 1)3 and has log-likelihood

ℓ(θ∗) =
∑

α⊆[2]
s̄α log

(
s̄α
N

)
− N log 2. (24)

On the other hand, if B /∈ D then ℓ has no local maximum on (0, 1)3.

Proof of Lemma 4.2 For ease of notation, we will write

s̄1 := s̄∅, s̄2 := s̄{1}, s̄3 := s̄{2}, and s̄4 := s̄{1,2}. (25)

It follows by Eqs. (8) and (11) that

ℓ(θ | s) = s̄1 log (1+ θ1θ2 + θ1θ3 + θ2θ3)+ s̄2 log (1 − θ1θ2 − θ1θ3 + θ2θ3)

+ s̄3 log (1 − θ1θ2 + θ1θ3 − θ2θ3)+ s̄4 log (1+ θ1θ2 − θ1θ3 − θ2θ3)

− N log 8.
(26)

An initial attempt to compute the critical points of ℓ(θ) directly by taking the
gradient of ℓ yields a polynomial system which is difficult to solve analytically, so
insteadwemodify this approachbyfirst considering adifferent functionwhose extrema
are closely related to those of ℓ.
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To define this function, first letDF ⊆ R3 be the intersection of half-spaces defined
by the following inequalities

1+ x + y + z > 0

1 − x − y + z > 0

1 − x + y − z > 0

1+ x − y − z > 0

(27)

and let F : DF → R be defined by

F(x, y, z) := s̄1 log (1+ x + y + z)+ s̄2 log (1 − x − y + z)

+ s̄3 log (1 − x + y − z)+ s̄4 log (1+ x − y − z) − N log 8
(28)

The significance of F is owed to the observation that ℓ = F ◦φ−1, which is proved
in the next claim.

Claim 1: For all θ ∈ (0, 1)3,

ℓ(θ) = F ◦ φ−1(θ). (29)

Proof of Claim 1 Since the domain of ℓ is (0, 1)3, it follows from Lemma 4.1 and
Eqs. (26) and (28) that Eq. (29) holds provided that F is defined on the image of
φ−1. Therefore, since im(φ−1) = D and dom(F) = DF it will suffice to show that
D ⊆ DF .

Let u ∈ D. Then by Lemma 4.1 there exist w1, w2, w3 ∈ (0, 1) such that

u = (w1w2, w1w3, w2w3).

To show that u ∈ DF , it suffices by Eq. (27) to show that

1+ w1w2 + w1w3 + w2w3 > 0

1 − w1w2 − w1w3 + w2w3 > 0

1 − w1w2 + w1w3 − w2w3 > 0

1+ w1w2 − w1w3 − w2w3 > 0.

The first of these four equations holds trivially. As for the other three, we will only
prove 1 + w1w2 − w1w3 − w2w3 > 0, as the other two inequalities can be proved
in the same manner. Let h(w1, w2) := 1+ w1w2 − w1 − w2. Since w1, w2 > 0 and
w3 < 1, it holds that

1+ w1w2 − w1w3 − w2w3 > h(w1, w2).

Therefore it will suffice to show that h(w1, w2) ≥ 0 for all w1, w2 ∈ [0, 1]. Indeed,
using calculus it is easy to see that h is minimized on [0, 1] × [0, 1] when at least
one of the arguments w1, w2 equals one, and that the minimum is zero. Therefore
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1+w1w2 −w1w3 −w2w3 > 0. We conclude that D ⊆ DF , as required to prove the
claim. ⊓⊔

The next two claims serve to characterize the extrema of F .
Claim 2. The point B = (B12, B13, B23) is the unique critical point of F .

Proof of Claim 2 It is first necessary to verify that B is in the domain of F . To do this,
it will suffice to show that B satisfies the inequalities in Eq. (27).

Using Eq. (20) and the observation s̄1 + s̄2 + s̄3 + s̄4 = N , it is easy to check that

1+ B12 + B13 + B23 =
4
N
s̄1

1 − B12 − B13 + B23 =
4
N
s̄2

1 − B12 + B13 − B23 =
4
N
s̄3

1+ B12 − B13 − B23 =
4
N
s̄4.

(30)

Therefore by A.1, it follows that B = (B12, B13, B23) satisfies the inequalities in Eq.
(27), as required. Therefore B is in the domain of F .

We now proceed with a standard critical point calculation. Letting v1 = (1, 1, 1)⊤,
v2 = (−1,−1, 1)⊤, v3 = (−1, 1,−1)⊤, v4 = (1,−1,−1)⊤, and taking partial
derivatives of F in Eq. (28) with respect to the variables x, y and z, it follows that for
all u = (x, y, z)⊤ ∈ DF ,

∇F(u) =

⎡

⎣
A1 − A2 − A3 + A4
A1 − A2 + A3 − A4
A1 + A2 − A3 − A4

⎤

⎦ , (31)

where

Ai :=
s̄i

1+ v⊤
i u

, for each i = 1, 2, 3, 4. (32)

Setting ∇F = 0 and using Eq. (31), we deduce that the following system of equations
holds:

A1 − A4 = 0

A3 − A4 = 0

A2 − A3 = 0.

Substituting the formulas for the Ai ’s from Eq. (32) and rearranging terms, we obtain

(
v⊤
4 s̄1 − v⊤

1 s̄4
)
u = s̄4 − s̄1
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(
v⊤
3 s̄4 − v⊤

4 s̄3
)
u = s̄3 − s̄4

(
v⊤
2 s̄3 − v⊤

3 s̄2
)
u = s̄2 − s̄3.

Writing this out, this is the matrix equation

⎡

⎣
s̄1 − s̄4 −(s̄1 + s̄4) −(s̄1 + s̄4)

−(s̄3 + s̄4) s̄3 + s̄4 s̄3 − s̄4
s̄2 − s̄3 −(s̄2 + s̄3) s̄2 + s̄3

⎤

⎦ u =

⎡

⎣
s̄4 − s̄1
s̄3 − s̄4
s̄2 − s̄3

⎤

⎦ .

Using the fact that s̄1 + s̄2 + s̄3 + s̄4 = N , one can check that the 3 × 3 matrix in the
above equation has inverse

1
2N

⎡

⎢⎣
− s̄3+s̄2

s̄4
− (s̄1+s̄4)(s̄3+s̄2)

s̄4 s̄3
− s̄1+s̄4

s̄3
− s̄4+s̄2

s̄4
s̄4 s̄3−s̄1 s̄2

s̄4 s̄3
− s̄1+s̄3

s̄3
− s̄4+s̄3

s̄4
s̄4 s̄2−s̄1 s̄3

s̄4 s̄3
s̄4+s̄3
s̄3

⎤

⎥⎦ .

Therefore

u = 1
2N

⎡

⎢⎣
− s̄3+s̄2

s̄4
− (s̄1+s̄4)(s̄3+s̄2)

s̄4 s̄3
− s̄1+s̄4

s̄3
− s̄4+s̄2

s̄4
s̄4 s̄3−s̄1 s̄2

s̄4 s̄3
− s̄1+s̄3

s̄3
− s̄4+s̄3

s̄4
s̄4 s̄2−s̄1 s̄3

s̄4 s̄3
s̄4+s̄3
s̄3

⎤

⎥⎦

⎡

⎣
s̄4 − s̄1
s̄3 − s̄4
s̄2 − s̄3

⎤

⎦

= 1
N

⎡

⎣
s̄1 − s̄2 − s̄3 + s̄4
s̄1 − s̄2 + s̄3 − s̄4
s̄1 + s̄2 − s̄3 − s̄4

⎤

⎦ .

By Eq. (20), the right-hand side is precisely the vector (B12, B13, B23)
⊤, and therefore

we conclude that B = (B12, B13, B23) is the unique critical point of F on its domain
P . This completes the proof of the claim. ⊓⊔

Let HF denote the Hessian matrix of F ; that is,

HF :=

⎡

⎢⎢⎣

∂2F
∂x2

∂2F
∂x∂ y

∂2F
∂x∂z

∂2F
∂ y∂x

∂2F
∂ y2

∂2F
∂ y∂z

∂2F
∂z∂x

∂2F
∂z∂ y

∂2F
∂z2

⎤

⎥⎥⎦ .

It is clear that F is twice-differentiable on its domain, so HF (x) is defined for all
x ∈ DF .

Claim 3. HF (B) is negative definite.

Proof of Claim 3 Since HF (B) is a real symmetric matrix, it will suffice to show that
its eigenvalues are all negative, as this will imply that HF (B) is negative definite.
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Using the code in Appendix B, we first compute the characteristic polynomial of
HF :

Pchar(λ) := det (λI − A)

= λ3 + 3λ2
( 4∑

i=1

s̄i
t2i

)

+ 8λ

⎛

⎝
∑

1≤i< j≤4

s̄i s̄ j
t2i t

2
j

⎞

⎠+ 16
∑

α⊆[4]:
|α|=3

(
∏

i∈α

s̄i
t2i

)

,

where t1 = 1+ x + y+ z, t2 = 1− x − y+ z, t3 = 1− x + y− z, t4 = 1+ x − y− z,
and s̄1, s̄2, s̄3, s̄4 are defined in Eq. (25).

We need to show that Pchar has only negative roots, as this will imply that all three
eigenvalues of HF are negative, and hence that HF (B) is negative definite. Since HF is
a real symmetric matrix, the roots of Pchar are all real numbers, and therefore it will be
enough to show that Pchar has no nonnegative roots. Indeed, since all the coefficients
of Pchar are positive, Decartes’ rule of signs implies that Pchar has no positive roots.
Moreover since (s̄1, s̄2, s̄3, s̄4) ̸= (0, 0, 0, 0) by A.1, the constant term in Pchar is
nonzero, and hence Pchar(0) ̸= 0 as well. We conclude that Pchar has no nonnegative
roots, as required to prove the claim. ⊓⊔

Using the results of the previous three claims, the next two claims will together
characterize the local maxima of ℓ on (0, 1)3.

Claim 4: If B ∈ D then θ∗ ∈ (0, 1)3 and θ∗ is a local maximum of ℓ.

Proof of Claim 4 Observe that F and φ−1 are both differentiable on their respective
domains. Therefore if θ ∈ (0, 1)3 and x = φ−1(θ), then using the chain rule to
differentiate Eq. (29) gives

∇ℓ(θ) = ∇F(x) · Jφ−1(θ). (33)

Suppose B ∈ D. Then by Lemma 4.1, θ∗ = φ(B) ∈ (0, 1)3 and B = φ−1(θ∗).
Therefore Eq. (33) implies

∇ℓ(θ∗) = ∇F(B) · Jφ−1(θ∗).

By Claim 2, B is a critical point of F , i.e., ∇F(B) = 0. Therefore

∇ℓ(θ∗) = 0.

This shows that θ∗ is a critical point of ℓ.
Next we show that θ∗ is a local maximum of ℓ. Since ℓ = F ◦φ−1 by Eq. (29), and

since F and φ−1 are both twice differentiable on their respective domains, therefore
it follows by the chain rule for Hessian matrices (see, e.g., Magnus and Neudecker
2007, pp. 125–126), that ℓ is also twice differentiable and has Hessian matrix

Hℓ(θ) = (Jφ−1(θ))⊤ (HF (x)) Jφ−1(θ)+
3∑

i=1

(
∂F
∂xi

(x)
)
(H(φ−1)i

(θ))
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where

(φ−1)1(θ) := θ1θ2, (φ−1)2(θ) := θ1θ3, and (φ−1)3(θ) := θ2θ3

for all θ ∈ (0, 1). Since B is a critical point of F due to Claim 2, we have ∂F
∂xi

(B) = 0
for each i = 1, 2, 3. Therefore

Hℓ(θ
∗) = (Jφ−1(θ∗))⊤ (HF (B)) Jφ−1(θ∗).

Since HF (B) is a negative definite matrix by Claim 3, and since det Jφ−1(θ∗) ̸= 0 by
Eq. (34), we conclude that Hℓ(θ

∗) and HF (B) are similar matrices, and hence Hℓ(θ
∗)

is negative definite as well. Therefore by the second derivative test (see, e.g., Magnus
and Neudecker 2007, Theorem 4, p. 140), the point θ∗ is a local maximum of ℓ. This
completes the proof of the claim. ⊓⊔

Claim 5: If θ ∈ (0, 1)3 is a local maximum of ℓ then B ∈ D and θ = θ∗.

Proof of Claim 5 Let θ ∈ (0, 1)3 be a local maximum of ℓ and let x = φ−1(θ). Since
θ a critical point, Eq. (33) implies

0 = ∇F(x) · Jφ−1(θ).

Since

det Jφ−1(θ) =

∣∣∣∣∣∣

θ2 θ3 0
θ1 0 θ3
0 θ1 θ2

∣∣∣∣∣∣
= −2θ1θ2θ3 ̸= 0, (34)

it follows that Jφ−1(θ) is non-singular, and hence

∇F(x) = 0.

Therefore x is a critical point of F . Since the only critical point of F is B by Claim 3,
it follows that x = B. Since x ∈ D by Lemma 4.1, this implies that B ∈ D. Therefore

θ = φ(x) by definition of x

= φ(B) since B = x ∈ D
= θ∗ by definition of θ∗.

This completes the proof of the claim. ⊓⊔

We can now use Claims 4 and 5 to prove the theorem. If B ∈ D then Claims 4 and 5
imply that θ∗ is the unique local maximum in (0, 1)3. On other other hand, if B /∈ D,
then the contraposition of Claim 5 implies ℓ has no local maximum in (0, 1)3. This
proves the first part of Lemma 4.2; it remains only to prove Eq. (24).
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Indeed, if B ∈ D then since θ∗ = φ(B12, B13, B23), it follows by definition of φ

that

θ∗
i θ∗

j = Bi j (35)

for all i, j ∈ [3] such that i < j . Plugging Eq. (35) into Eq. (30),

1+ θ∗
1 θ∗

2 + θ∗
1 θ∗

3 + θ∗
2 θ∗

3 = 4
N
s̄1

1 − θ∗
1 θ∗

2 − θ∗
1 θ∗

3 + θ∗
2 θ∗

3 = 4
N
s̄2

1 − θ∗
1 θ∗

2 + θ∗
1 θ∗

3 − θ∗
2 θ∗

3 = 4
N
s̄3

1+ θ∗
1 θ∗

2 − θ∗
1 θ∗

3 − θ∗
2 θ∗

3 = 4
N
s̄4.

Therefore by Eq. (26),

ℓ(θ∗) =
4∑

i=1

s̄i log
(
s̄i
N

)
− N log 2,

which is precisely Eq. (24). This completes the proof of Lemma 4.2. ⊓⊔

4.2 Maximizing the Log-Likelihood on @(0, 1)3

In this subsection we consider the problem of maximizing ℓ on the boundary ∂(0, 1)3.
As discussed at the beginning of Sect. 4, this corresponds to the boundary of the unit
cube, consisting of 6 faces, 12 edges, and 8 vertices. The lemmas in this section
consider the problem of maximizing ℓ on various groupings of these components.

The eight vertices of the unit cube are simply the elements of the set {0, 1}3. The
twelve edges are the sets

E(·, j,k) :=
{
(θ1, j, k) ∈ R3 : θ1 ∈ (0, 1)

}

E( j,·,k) :=
{
( j, θ2, k) ∈ R3 : θ2 ∈ (0, 1)

}

E( j,k,·) :=
{
( j, k, θ3) ∈ R3 : θ3 ∈ (0, 1)

}

defined for j, k ∈ {0, 1}. The 6 faces are the sets of the form

Fπ,i :=
{
(θ1, θ2, θ3) : θπ(1), θπ(2) ∈ (0, 1), θπ(3) = i

}
,

where π ∈ Alt(3) and i ∈ {0, 1}.
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The task at hand is to maximize ℓ on each of these boundary sets. We begin with the
next lemma, which utilizes assumption A.1 to dispatch the edge and vertex boundary
cases which are “trivial” in the sense of never containing the maximum.

Lemma 4.3 (Trivial cases: Etriv) Assume that A.1 holds. Let

Etriv := E(1,1,·) ∪ E(1,·,1) ∪ E(·,1,1) ∪ {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)} .

If θ ∈ Etriv then ℓ(θ | s) = −∞.

Proof If θ ∈ E(1,1,·) ∪ E(1,·,1) ∪ E(·,1,1) ∪ {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)} then
there exist two leaves i, j ∈ [3]with i ̸= j such that θi = θ j = 1. By A.1, there exists
a σ ∈ {1,−1}3 with σi ̸= σ j and sσ > 0. Moreover, by Eq. (2), the probability of a
transition occuring along the path between leaves i and j is zero. In particular, since
P [X = σ ] ≤ P

[
Xi ̸= X j

]
, this implies that P [X = σ ] = 0. Therefore

sσ logP [X = σ ] = −∞.

Therefore ℓ(θ) = −∞ by Eq. (8). ⊓⊔
The next lemma considers the remaining 4 vertices of the unit cube (1, 0, 0),

(0, 1, 0), (0, 0, 1), and (0, 0, 0), as well as the edges E(0,0,·), E(0,·,0), and E(·,0,0).
The union of these boundaries is the following set:

Eind := {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)} ∪ E(0,0,·) ∪ E(0,·,0) ∪ E(·,0,0).

=
⋃

A⊆[3]:
|A|≥2

{
θ ∈ [0, 1]3 : θi = 0 for all i ∈ A

}
.

The next lemma shows that Eind consists of all choices of numerical parameter values
under which the X1, X2, and X3 are independent.

Lemma 4.4 (Log-likelihood of ℓ on Eind) If θ ∈ Eind then

ℓ(θ) = −N log 8. (36)

Proof Suppose θ ∈ Eind, and let i, j ∈ [3] such that i ̸= j . Then the path between
leaves i and j contains an edge e such that θe = 0. Therefore byLemma1.3, the random
variables X1, X2 and X3, are mutually independent. Therefore for all σ ∈ {−1, 1}3,

P [X = σ ] = P [X1 = σ1]P [X2 = σ2]P [X3 = σ3]

= 1
2
· 1
2
· 1
2

= 1
8
.

(37)

Substituting this into Eq. (8) implies Eq. (36).
⊓⊔
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Fig. 2 An example of a tree with
numerical parameters
θ ∈ Fπ,1 =
{θ : θ1, θ2 ∈ (0, 1), θ3 = 1}
with π = (1) the identity
permutation. Since θ3 = 1, Eq.
(2) implies that no transitions
can occur on leaf 3, and hence
vertex 3 is regarded to lie on the
path between leaves 1 and 2

2

1

3
θ1

θ2

The next lemma of this section considers the problem of maximzing ℓ on the three
faces Fπ,1, π ∈ Alt(3). An example of the graphical model correponding to these
cases is shown in Fig. 3.

Lemma 4.5 (Maximizers of ℓ on Fπ,1) Let π ∈ Alt(3), and let θ ∈ Fπ,1. Then the set
of local maxima of ℓ on Fπ,1 is

Fπ :=
{
(θ1, θ2, θ3) : θπ(1) = Bπ(1),π(3), θπ(2) = Bπ(2),π(3)

}
∩ Fπ,1.

Moreover, if θ ∈ Fπ then

ℓ(θ) = −N log 8+
∑

π̃∈Alt(3)\{π}
M+

π̃
log(1+ Bπ̃ )+ M−

π̃
log(1 − Bπ̃ ) (38)

or equivalently

ℓ(θ) =
∑

π̃∈Alt(3)\{π}
M+

π̃
log

(
M+

π̃√
2N

)

+ M−
π̃
log

(
M−

π̃√
2N

)

. (39)

Proof Let π ∈ Alt(3), and let i = π(1), j = π(2), and k = π(3). Let θi , θ j ∈ (0, 1)
be arbitrary. Since θk = 1, it follows by Eq. (12)

P [X = σ ] = 1
8

(
1+ σiσ jθiθ j + σiσkθi + σ jσkθ j

)

= 1
8
(1+ σiσkθi )(1+ σ jσkθ j ).

Hence Eq. (8) can be written as

ℓ(θ) = −N log 8+
∑

σ∈{−1,1}3
sσ log (1+ σiσkθi )+

∑

σ∈{−1,1}3
sσ log

(
1+ σ jσkθ j

)
.
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Therefore

ℓ(θ) = −N log 8+ M+
ik log (1+ θi )+ M−

ik log (1 − θi )+ M+
jk log

(
1+ θ j

)

+ M−
jk log

(
1 − θ j

)
.

(40)

Differentiating with respect to θi and θ j , it follows that for each u ∈ {i, j},

∂ℓ

∂θu
= M+

uk

1+ θu
− M−

uk

1 − θu
.

Solving the system ∇ℓ(θ) = 0, we obtain the solution satisfying

(θi , θ j ) = (Bik, Bjk) (41)

and if Bik, Bjk ∈ (0, 1) then Eq. (41) determines the unique critical point of ℓ on the
set Fπ,1; on the other hand, if Bik /∈ (0, 1) or Bjk /∈ (0, 1), then ℓ has no critical points
on Fπ,1.

Moreover, this critical point on Fπ,1 is a maximum by the second derivative test
since for all θ ∈ Fπ,1, the Hessian matrix

Hℓ(θ) =

⎡

⎢⎢⎣
−
(

M+
ik

(1+θi )2
+ M−

i j

(1−θi )2

)
0

0 −
(

M+
jk

(1+θ j )2
+ M−

jk

(1−θ j )2

)

⎤

⎥⎥⎦

is negative definite.
Finally, if Eq. (41) holds, plugging θi = Bik and θ j = Bjk into Eq. (40) gives

ℓ(θ) = −N log 8+ M+
ik log (1+ Bik)+ M−

ik log (1 − Bik)

+ M+
jk log

(
1+ Bjk

)
+ M−

jk log
(
1 − Bjk

)
,

(42)

which is nothing but Eq. (38) written in a different notation. It remains to prove Eq.

(39). Observe that 1+ Bπ = 2M+
π

N and 1 − Bπ = 2M−
π

N for all π ∈ Alt(3). Equation
(39) can be obtained by making these substitutions in Eq. (38) and then simplifying
using logarithm properties and M+

π + M−
π = N . ⊓⊔

The final lemma of this section considers the problemofmaximizing ℓwhen exactly
one parameter in {θ1, θ2, θ3} is assumed to be zero. This pertains to each of the 3
remaining faces Fπ,0, π ∈ Alt(3), as well as the remaining six edges E(·,0,1), E(·,1,0),
E(0,·,1), E(1,·,0), E(0,1,·), and E(1,0,·). Such boundaries represent one of two graphical
models, like those shown in Fig. 2. We group the boundary cases up into the following
three sets, defined for each π ∈ Alt(3):

Gπ :=
{
(θ1, θ2, θ3) : (θπ(1), θπ(2)) ∈ (0, 1]2\ {(1, 1)} and θπ(3) = 0

}
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2

1 3

θ2 ∈ (0, 1)

2

1 3θ1 ∈ (0, 1)

θ2 ∈ (0, 1)

Fig. 3 The graphical model corresponding to a 3-leaf “tree” with edge parameters θ ∈ E(1,·,0) (left) or
θ ∈ F(·,·,0) (right). In both cases, the biological meaning of θ3 = 0 is that species 3 is “infinitely far away”
from species 1 and 2, when distances are measured in expected number of mutations per site. By Lemma
1.3, (X1, X2) ⊥⊥ X3, and for this reason we depict vertex 3 as a disconnected vertex

Interpreted geometrically, Gπ consists of the union of one face and two of its adjacent
edges:

G(1) = F(1),0 ∪ E(1,·,0) ∪ E(·,1,0)
G(123) = F(123),0 ∪ E(0,1,·) ∪ E(0,·,1)
G(132) = F(132),0 ∪ E(1,0,·) ∪ E(·,0,1).

Lemma 4.6 (Maximizers of ℓ on Gπ )
Let π ∈ Alt(3). The local maxima of ℓ on Gπ are the points in the set

Gπ =
{
(θ1, θ2, θ3) : θπ(1)θπ(2) = Bπ

}
∩ Gπ ,

all of which have log-likelihood

ℓ(θ) = M+
i j log(1+ Bi j )+ M−

i j log(1 − Bi j ) − N log 8 (43)

or equivalently

ℓ(θ) = M+
π log

(
M+

π

4N

)
+ M−

π log
(
M−

π

4N

)
. (44)

In particular, this implies that if Bπ /∈ (0, 1) then ℓ has no local maxima on F.

The proof of this lemma is similar to that of Lemma 4.5, and can be found in
Appendix A.

The key results of Sects. 4.2 and 4.1 are summarized in Table 3. In that table,
computed are the maximizer(s) of ℓ on the interior and boundary of the unit cube
(namely, the sets Eint, Etriv, Eind,Gπ , and Fπ,1,π ∈ Alt(3), which together partition
the closed unit cube). The corresponding sets of maximizers on each of these sets
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(Eint, Etriv, Eind,Gπ , and Fπ , π ∈ Alt(3), respectively) are level sets of ℓ, although
some of them may be empty depending on the data. The necessary and sufficient
conditions for each of them to be nonempty, as well as the value that the log-likelihood
function takes on each of them, are shown in the second and third columns of the table.

4.3 Comparisons of Likelihoods

To prove Theorem 2.4 will require some comparisons of the log-likelihoods of ele-
ments of Eint, Eind,Gπ , and Fπ , (π ∈ Alt(3)). In this subsection, we prove several
lemmas toward this end.

We will make use of the information inequality, which we state next (for proof, see,
e.g., Theorem 2.6.3 in Cover (2006)).

Theorem 4.7 (Information Inequality) Let k ≥ 1. If p̃ = ( p̃1, . . . , p̃k) and q̃ =
(q̃1, . . . , q̃k) satisfy p̃, q̃ ∈ 'k−1 then

k∑

i=1

p̃i log q̃i ≤
k∑

i=1

p̃i log p̃i ,

with equality if and only if p̃ = q̃ .

The next two lemmas utilize the information inequality to show that elements of
Eint have greater log-likelihood than elements of Fπ and Gπ , for all π ∈ Alt(3).

Lemma 4.8 (Eint vs Fπ ) If θ∗ ∈ Eint then

ℓ(θ∗) > ℓ(θ)

for all θ ∈ Fπ and all π ∈ Alt(3).

Proof We prove the case with π = (1) as the proofs for the cases with π ∈
{(123), (132)} are similar.

Let θ ∈ Fπ . By Eq. (39),

ℓ(θ) = M+
13 log

(
M+

13√
2N

)

+ M−
13 log

(
M−

13√
2N

)

+ M+
23 log

(
M+

23√
2N

)

+ M−
23 log

(
M−

23√
2N

) (45)

Observe that

M+
13 = s̄∅ + s̄{2}

M−
13 = s̄{1} + s̄{1,2}

M+
23 = s̄∅ + s̄{1}
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M−
23 = s̄{2} + s̄{1,2}.

Therefore we can rewrite Eq. (45) as

ℓ(θ) =
(
s̄∅ + s̄{2}

)
log

(
M+

13√
2N

)

+
(
s̄{1} + s̄{1,2}

)
log

(
M−

13√
2N

)

+
(
s̄∅ + s̄{1}

)
log

(
M+

23√
2N

)

+
(
s̄{2} + s̄{1,2}

)
log

(
M−

23√
2N

)

.

Regrouping terms gives

ℓ(θ) = s̄∅ log

(
M+

13M
+
23

N 2

)

+ s̄{1} log

(
M−

13M
+
23

N 2

)

+ s̄{2} log

(
M+

13M
−
23

N 2

)

+ s̄{1,2} log

(
M−

13M
−
23

N 2

)

− N log 2.

(46)

To apply Theorem 4.7, it is first necessary to verify that

(
M+

13M
+
23

N 2 ,
M−

13M
+
23

N 2 ,
M+

13M
−
23

N 2 ,
M−

13M
−
23

N 2

)

∈ '3.

Since the entries of this vector are clearly nonnegative, it suffices to show that they
sum to 1. Indeed, using M+

13 + M−
13 = N and M+

23 + M−
23 = N , we have

M+
13M

+
23

N 2 + M−
13M

+
23

N 2 + M+
13M

−
23

N 2

+ M−
13M

−
23

N 2 = M+
23

(
M+

13 + M−
13

)

N 2 + M−
23

(
M+

13 + M−
13

)

N 2

=
(
M+

13 + M−
13

) (
M+

23 + M−
23

)

N 2

= 1.

Therefore by applying Theorem 4.7 to the right hand side of Eq. (46),

ℓ(θ) ≤
∑

α⊆[2]
s̄α log

(
s̄α
N

)
− N log 2

= ℓ(θ∗)

where the last equality follow from Eq. (24). ⊓⊔

A similar application of Theorem 4.7 can be used to prove the following theorem; the
details of the proof can be found in Appendix A.
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Lemma 4.9 (Eint vs Gπ ) Assume that A.1 holds. If θ∗ ∈ Eint then

ℓ(θ∗) > ℓ(θ)

for all θ ∈ Gπ and all π ∈ Alt(3).

The next lemma compares the likelihoods of elements in Fπ and Gπ̃ when π, π̃ ∈
Alt(3) are distinct.

Lemma 4.10 (Fπ vs Gπ̃ for π ̸= π̃ ) Assume thatA.1 holds. Let π1,π2 and π3 denote
the three distinct elements of Alt(3). If θ ∈ Fπ1 then

ℓ(θ̃) < ℓ(θ)

for all θ̃ ∈ Gπ2 ∪ Gπ3 .

Proof Suppose θ ∈ Fπ1 , and suppose that θ̃ ∈ Gπ̃ for some π̃ ∈ Alt(3)\ {π1}. Without
loss of generality, assume π̃ = π3. Then by Eqs. (38) and (43)

ℓ(θ) − ℓ(θ̃) =
3∑

i=2

M+
πi
log

(
1+ Bπi

)
+ M−

πi
log

(
1 − Bπi

)

− M+
π3

log(1+ Bπ3) − M−
π3

log(1 − Bπ3)

= M+
π2

log
(
1+ Bπ2

)
+ M−

π2
log

(
1 − Bπ2

)
.

(47)

Since M+
π2

= N Bπ2+N
2 and M−

π2
= N Bπ2−N

2 , it follows that

ℓ(θ) − ℓ(θ̃) = N
2

[(
1+ Bπ2

)
log

(
1+ Bπ2

)
+
(
1 − Bπ2

)
log

(
1 − Bπ2

)]
. (48)

As a function of Bπ2 , the right-hand side is strictly increasing on (0, 1), which can
be seen by differentiating and observing that the derivative is positive on this interval.
Moreover, we note that Bπ2 ∈ (0, 1), a fact which follows from the hypothesis that
Fπ1 ̸= ∅ (see Table 3). Therefore, since the right-hand side of Eq. (48) is strictly
increasing on (0, 1), and since Bπ2 ∈ (0, 1), it follows that

ℓ(θ) − ℓ(θ̃) > 0.

This completes the proof of the lemma. ⊓⊔

The next lemma compares the likelihoods of elements in Fπ and Fπ̃ when π, π̃ ∈
Alt(3) are distinct.

Lemma 4.11 (Fπ vs Fπ̃ , π ̸= π̃ ) Let π, π̃ ∈ Alt(3) be distinct, and suppose that
θ ∈ Fπ and θ̃ ∈ Fπ̃ . Then

ℓ(θ̃) < ℓ(θ)
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if and only if

Bπ < Bπ̃

Proof By Eq. (38)

ℓ(θ) − ℓ(θ̃) = M+
π log (1+ Bπ )+ M−

π log (1 − Bπ ) − M+
π log (1+ Bπ )

− M−
π log (1 − Bπ ) .

= N
2
[ f (Bπ ) − f (Bπ̃ )] (49)

where f (x) := (1+ x) log (1+ x)+ (1 − x) log (1 − x). Note that

f ′(x) = log
(
1+ x
1 − x

)
= log

(
1+ 2x

1 − x

)

which is positive for all x ∈ (0, 1). Therefore f is increasing on (0, 1). Moreover,
Bπ , Bπ̃ ∈ (0, 1) since Fπ ,Fπ̃ ̸= ∅ (see Table 3). Taken together, these facts along
with Eq. (49) imply that ℓ(θ) − ℓ(θ̃) > 0 if and only if Bπ > Bπ̃ . ⊓⊔

The next lemma compares the log-likelihods of elements in Gπ and Gπ̃ , for distinct
elements π, π̃ ∈ Alt(3). The proof is similar to that of Lemma 4.11 and can be found
in Appendix A.

Lemma 4.12 (Gπ vs Gπ̃ for π ̸= π̃ ) Let π, π̃ ∈ Alt(3) such that π ̸= π̃ , and let
θ ∈ Gπ and θ̃ ∈ Gπ̃ . Assume that A.1 holds. If

0 < Bπ < Bπ̃ (50)

then

ℓ(θ) < ℓ(θ̃).

The next lemma shows that elements of Gπ ,π ∈ Alt(3) have greater log-likelihood
than elements in Eind. The proof is straightforward and can be found in Appendix A.

Lemma 4.13 (Gπ vs Eind) If θ ∈ Gπ for some π ∈ Alt(3) then

ℓ(θ) > −N log 8.

4.4 Final Analysis

Using the lemmas from Sects. 4.1, 4.2 and 4.4, we are now ready to prove Theorem
2.4.
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Proof of Theorem 2.4 We claim that θ '→ ℓ(θ) is upper semicontinuous on its domain
[0, 1]3. To see this, first observe that the function L : [0, 1]3 → [0,∞) defined by

L(θ) :=
∏

α⊆[2]

(
p̄α(θ)

2

)s̄α

is continuous since for all α ⊆ [2], θ '→ p̄α(θ) is a polynomial in the variables
θ1, θ2, θ3 ∈ [0, 1] by Eq. (12). Therefore, since ℓ = log ◦L and since log(·) is increas-
ing and upper semicontinuous on [0,∞), it follows that ℓ is upper semicontinuous on
[0, 1]3. This proves the claim.

Since ℓ is upper semicontinuous, it has at least one maximizer on [0, 1]3. In order
to find the maximizer(s), observe that since

[0, 1]3 = (0, 1)3 ⊔ Etriv ⊔ Eind ⊔

⎛

⎝
⊔

π∈Alt(3)
Gπ

⎞

⎠ ⊔

⎛

⎝
⊔

π∈Alt(3)
Fπ

⎞

⎠ ,

it suffices to consider the maximizers of ℓ on each of these sets. By Lemma 4.3,

ℓ(θ) = −∞

whenever θ ∈ Etriv. Therefore if θ̂ ∈ [0, 1]3 is a global maximum of ℓ, then

θ̂ ∈ Eint ⊔ Eind ⊔

⎛

⎝
⊔

π∈Alt(3)
Gπ

⎞

⎠ ⊔

⎛

⎝
⊔

π∈Alt(3)
Fπ

⎞

⎠ . (51)

In Lemmas 4.2, 4.4, 4.6, and 4.5, we computed the log-likelihood of the points in each
of the eight sets in this disjoint union (see Table 3 for a summary of these results),
so the rest of the proof will simply be a comparison of the likelihoods of elements of
these sets.

We start by proving that if B ∈ D, then the maximum is given by Eq. (21). Suppose
B ∈ D. Then by Lemma 4.2, Eint is nonempty and consists of a single element

θ∗ =
(√

B12B13

B23
,

√
B12B23

B13
,

√
B13B23

B12

)

.

Moreover, Lemmas Lemma 4.8, 4.9, 4.10, and 4.13 together imply that θ∗ is the global
maximizer of ℓ. This proves Eq. (21).

Henceforth assume B /∈ D, so that Eint = ∅ by Lemma 4.2. Therefore

θ̂ ∈ Eind ⊔

⎛

⎝
⊔

π∈Alt(3)
Gπ

⎞

⎠ ⊔

⎛

⎝
⊔

π∈Alt(3)
Fπ

⎞

⎠ . (52)
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Next we will prove part (i) in the statement of the lemma. Suppose that Bπ3 , Bπ2 >

0. It will suffice to show that θ̂ ∈ Fπ1 .
By the criteria shown in Table 3, it holds that Gπ3 ̸= ∅ and Fπ1 ̸= ∅. Let θ ′ ∈ Gπ3

and θ ′′ ∈ Fπ1 . By Lemmas 4.13 and 4.12,

ℓ(θ) < ℓ(θ ′) (53)

whenever θ ∈ Eind ∪ Gπ1 ∪ Gπ2 . In addition, since π1 ̸= π3, Lemma 4.10 implies

ℓ(θ ′) < ℓ(θ ′′). (54)

Therefore by Eqs. (53) to (52),

θ̂ ∈ Fπ1 ⊔ Fπ2 ⊔ Fπ3 . (55)

Finally, observe that by Lemma 4.11,

ℓ(θ) < ℓ(θ ′′) (56)

whenever θ ∈ Fπ1 ⊔ Fπ2 . By Eqs. (55) and (56), we conclude that θ̂ ∈ Fπ1 . This
proves part (i) of the lemma.

Next, suppose that Bπ3 > 0 and Bπ2 < 0. In order to prove part (ii) in the statement
of the lemma, it will suffice to show that θ̂ ∈ Gπ3 . By the criteria in Table 3, Fπ = ∅
for all π ∈ Alt(3), and Gπ = ∅ for all π ∈ Alt(3)\ {π1,π2}. Therefore by Eq. (52),

θ̂ ∈ Eind ⊔ Gπ3 .

ByLemma4.9, the elements ofGπ3 have strictly larger log-likelihood than the elements
of Eind. Therefore θ̂ ∈ Gπ3 . This proves part (ii) of the lemma.

It remains to prove part (iii) in the statement of the lemma. Suppose Bπ3 < 0. By
the criteria in Table 3, Fπ = ∅ and Gπ = ∅ for all π ∈ Alt(3). Therefore by Eq. (52),
θ̂ ∈ Eind. This proves part (iii), which completes the proof of the theorem.

Appendix A: Omitted Proofs

A.0.1 Proof of Lemma 4.6

Proof of Lemma 4.6 Let θ ∈ Gπ . For simplicity, write i = π(1), j = π(2), and
k = π(3). Since θk = 0, Eq. (12) implies that

P [X = σ ] = 1
8

(
1+ σiσ jθiθ j

)
. (57)
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Since the distribution depends only on the product θiθ j , and not on θi or θ j indepen-
dently, the log-likelihood restricted to the set Gπ may thus be regarded as function of
the single variable x := θiθ j ∈ (0, 1). Plugging Eq. (57) into Eq. (8), we obtain

ℓ(θ) =
∑

σ∈{1,−1}3
sσ log

(
1
8
(1+ σiσ j x)

)

=
∑

σ∈{1,−1}3
sσ log

(
1+ σiσ j x

)
− N log 8

where the second equality follows from
∑

σ∈{1,−1} sσ = N . Regrouping terms,

ℓ(x) = −N log 8+ M+
i j log(1+ x)+ M−

i j log(1 − x). (58)

Differentiating gives

ℓ′(x) =
M+

i j

1+ x
−

M−
i j

1 − x

Solving the equation ℓ′(x) = 0, we find that f has at most one critical point on (0, 1),
which is the point

x = Bi j ,

provided that Bi j ∈ (0, 1). If this is the case, then x is a local maximum by the second
derivative test, since

ℓ′′(x) = −
(

M+
i j

(1+ x)2
+

M−
i j

(1 − x)2

)

< 0.

Plugging x = Bi j into Eq. (58) implies Eq. (43), since M±
i j = B±

π and Bi j = Bπ .
Equation (44) then follows from Eq. (43) along with the observations that M+

π +
M−

π = N , 1+ Bπ = 2M+
π

N , and 1 − Bπ = 2M−
π

N . ⊓⊔

A.0.2 Proof of Lemma 4.9

Proof of Lemma 4.9 We prove the case with π = (1), as the proofs for the cases with
π ∈ {(123), (132)} are similar. If Eint = ∅ then there is nothing to show, so henceforth
assume Eint ̸= ∅. By Lemma 4.2, Eint = {θ∗} and

ℓ(θ∗) =
∑

α⊆[2]
s̄α log

(
s̄α
N

)
− N log 2. (59)
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Also by Lemma 4.2 it must be the case that

B12, B13, B23 > 0. (60)

Moreover since B12 > 0, it follows that G(1) ̸= ∅ by Lemma 4.6.
Let θ ∈ Gπ . By Eq. (44),

ℓ(θ) = M+
12 log

(
M+

12

4N

)

+ M−
12 log

(
M−

12

4N

)

= s̄∅ log

(
M+

12

2N

)

+ s̄{1,2} log

(
M+

12

2N

)

+ s̄{1} log

(
M−

12

2N

)

+ s̄{2} log

(
M−

12

2N

)

− N log 2.

Therefore by Theorem 4.7 and by Eq. (59),

ℓ(θ) ≤
∑

α⊆[3]
s̄α log

(
s̄α
N

)
− N log 2

= ℓ(θ∗).

Suppose that equality holds in the above, i.e., that ℓ(θ) = ℓ(θ∗). Then by Theorem
4.7,

M+
12

2
= s̄∅ = s̄{1,2} and

M−
12

2
= s̄{1} = s̄{2}.

Therefore,

B23 =
M+

23 − M−
23

N

= 1
N

(
s̄∅ + s̄{1} − s̄{1,2} − s̄{2}

)

= 0,

but this contradicts Eq. (60). We conclude that ℓ(θ) < ℓ(θ∗). ⊓⊔

A.0.3 Proof of Lemma 4.12

Proof Since Bπ = 2M+
π −N and Bπ̃ = 2M+

π̃
−N , therefore Eq. (50) can be rewritten

0 < 2M+
π − N ≤ 2M+

π̃
− N
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and therefore it holds that

N
2

< M+
π ≤ M+

π̃
< N , (61)

where the last inequality holds by A.1.
If π̂ ∈ {π, π̃} and θ̂ ∈ Gπ̂ , then Eq. (44) implies

ℓ(θ̂) = M+
π̂
log

(
M+

π̂

4N

)

+ M−
π̂
log

(
M−

π̂

4N

)

= M+
π̂
log

(
M+

π̂

4N

)

+
(
N − M+

π̂

)
log

(
N − M+

π̂

4N

)

. (62)

The right-hand side has the form f (x) := x log
( x
4N

)
+ (N − x) log

( N−x
4N

)
. Since

f ′(x) = log
(

x
N − x

)
,

which is positive for all x ∈ (N/2, N ), it follows that f is strictly increasingon ( N2 , N ).
Combining this fact with Eqs. (61) and (62) implies ℓ(θ̃) ≥ ℓ(θ), with equality only
if M+

π = M+
π̃
, or equivalently Bπ = Bπ̃ . ⊓⊔

A.0.4 Proof of Lemma 4.13

Proof of Lemma 4.13 If θ ∈ Gπ ′ then Lemma 4.6 implies Bπ > 0. Therefore since

Bπ = M+
π −M ̸=

π

N and M+
π + M−

π = N , it follows that

M+
π >

N
2
. (63)

Let x := M+
π = N − M−

π . By Eq. (44),

ℓ(θ) = M+
π log

(
M+

π

4N

)
+ M−

π log
(
M−

π

4N

)

= x log (x)+ (N − x) log (N − x) − N log (4N ) . (64)

The function x '→ x log (x)+(N−x) log (N − x) is strictly increasing on the interval
( N2 , N ), which can be seen by observing that its derivative is x '→ log

(
x

N−x

)
, which

is positive on this interval. Since x ∈ ( N2 , N ) by Eq. (63), it follows that

ℓ(θ) >
N
2
log

(
N
2

)
+ N

2
log

(
N
2

)
− N log (4N )

= N log (N ) − N log (2) − N log (4) − N log (N )
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= −N log (8) .

⊓⊔

A.0.5 Proof of Lemma 1.3

Proof of Lemma 1.3 Let A := (Xi : i ∈ Ae) and B := (Xi : i ∈ Ae). Write e =
(eA, eB), and without loss of generality assume that eA and eB are labeled such that
any path from a leaf in Ae to eA does not contain eB . Let ZA, ZB denote the nucleotide
states of vertices eA and eB respectively. It follows by Eq. (2) and symmetry of the
process that ZA and ZB are independent.

Let a ∈ {1,−1}|Ae| and b ∈ {1,−1}|Be|. Then using the Markov property,

P [A = a, B = b] =
∑

i, j∈{−1,1}
P [A = a, B = b | ZA = i, ZB = j]P [ZA = i, ZB = j]

=
∑

i, j∈{−1,1}
P [A = a | ZA = i]P [B = b | ZB = j]P [ZA = i, ZB = j]

=
∑

i, j∈{−1,1}
P [A = a | ZA = i]P [B = b | ZB = j]P [ZA = i]P [ZB = j]

=

⎛

⎝
∑

i∈{−1,1}
P [A = a, ZA = i]

⎞

⎠

⎛

⎝
∑

j∈{−1,1}
P [B = b, ZB = j]

⎞

⎠

= P [A = a]P [B = b] .

Appendix B: Code

Tocompute the characteristic polynomial ofHF inLemma4.2,we utilize the following
Julia (v1.8.5) code:

using HomotopyContinuation , LinearAlgebra @var x y z λ
c[1:4] t[1:4] v = [1+x+y+z,1-x-y+z,1-x+y-z,1+x-y-z] \pg{\break}
# dummy variable
logL = c’log.(v) # the log -likelihood (up to a constant) H =
differentiate(differentiate(logL ,[x,y,z]),[x,y,z])’ P_char =
det(λ*I-H) P_simplified = expand(subs(P_char ,v=>t))
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