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Abstract A Brønsted acid catalyzed C–H functionalization of vinyldia-
zoacetates with 3-hydroxyisoindolinone is developed. This methodolo-
gy provides a general access to E-substituted isoindolinone vinyldiazo
compounds in good yields and excellent diastereoselectivities with
broad substrate generality under mild conditions, and with 4-substitut-
ed 2-diazo-3-butenoates produces fused bicyclic pyrrolidines. The reac-
tion generally involves addition of the N-acyl ketiminium electrophile,
formed from the 3-hydroxyisoindolinone, to the vinylogous position of
the vinyldiazo compound resulting in vinyldiazonium ion intermediates
that undergo deprotonation to new vinyldiazo compounds or ring clo-
sure to fused bicyclic pyrrolidines.

Key words Brønsted acid catalysis, vinyldiazo compound, electrophil-
ic addition, C–H functionalization, heterocycles

Vinyldiazo compounds are easily accessible, versatile

and useful reagents for the construction of complex molec-

ular frameworks through a variety of metal carbene trans-

formations (Scheme 1a, path a), including C–H insertion,1

C–C bond formation,2 and cycloaddition.3 Meanwhile, their

dipolar nature makes them susceptible to addition by dif-

ferent electrophilic reagents at the vinylogous position

rather than the diazo carbon, affording diazonium ion inter-

mediates that undergo substitution or migration reactions

(Scheme 1a, path b).4 Recently, we reported the HNTf2-cata-

lyzed electrophilic addition of quinone oxonium ions from

quinone ketals5 and quinone imine ketals,6 and isobenzopy-

rylium ions from 1H-isochromene acetals7 to the vinylo-

gous carbon of vinyldiazo compounds 1 to form vinyldiazo-

nium ion intermediates that result in the synthesis of sub-

stituted -diazo esters and polycyclic compounds (Scheme

1b, path c). Using the stable Eschenmoser salt as the elec-

trophile, an alternative C–H functionalization occurs at the

-position of vinyl diazo compounds to form -substituted

vinyldiazo esters (Scheme 1b, path d).5 Inspired by these ad-

vances, we envisioned that a C–H functionalization process

of vinyldiazoacetates with in situ generated N-acyl ketimin-

ium electrophiles, which is well-known in nucleophilic sub-

stitution reactions,8 might be facilitated by HNTf2 catalysis

to synthesize structurally complex diazo compounds with a

quaternary carbon center. Herein, we report that highly se-

lective C–H functionalization of vinyldiazo acetates with 3-

phenyl-3-hydroxyisoindolinone provides a general meth-

odology for the synthesis of -isoindolin-1-one-substituted

vinyldiazo esters. In addition, in the case of 4-substituted 2-

diazo-3-butenoates, a catalytic stepwise [3+2]-cycloaddi-

tion reaction occurred with the N-acyl ketiminium electro-

phile for the construction of fused bicyclic pyrrolidines

(Scheme 1c).

Scheme 1  Catalytic transformations of vinyldiazo compounds

Effective construction of -substituted vinyldiazoace-

tate 3a was realized via the HNTf2-catalyzed C–H function-

alization of ethyl 2-diazo-3-phenylbut-3-enoate (1a) with
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3-phenyl-3-hydroxyisoindolinone (2) in dichloromethane

(DCM) at room temperature (Table 1, entry 1). Surprisingly,

only 5 mol% of the very strong acid triflimide9 was required

for complete reaction to occur within 5 hours. A series of

control experiments verified the necessity of each reaction

component. Other Brønsted acid catalysts were tested, but

the outcome was either a low yield or no C–H functional-

ization product 3a (Table 1, entries 2–4). Furthermore, at-

tempts to optimize the yield of 3a by varying the solvent

and increasing the amount of catalyst were unsuccessful

(Table 1, entries 5 and 6). In addition, the yield of 3a was

significantly reduced when the reaction was performed at 0

°C because some vinyldiazo compound 1a remained unre-

acted over the same reaction time (Table 1, entry 7).

Table 1  Optimization of the C–H Functionalization Reaction Condi-
tionsa

With the optimal reaction conditions established, the

substrate scope with respect to the vinyldiazoacetates was

investigated (Scheme 2). Vinyldiazoacetates with various

electron-withdrawing or electron-donating substituents on

the aryl ring at the para- or meta-position and naphthyl all

reacted with 3-phenyl-3-hydroxyisoindolinone smoothly

to form the E-substituted vinyldiazo products (3a–g and 3i)

in high yields and stereoselectivities (>72% yield, E:Z >20:1).

However, the ortho-chlorophenyl-substituted vinyldiazo

compound gave the desired product 3h in 79% yield but

with a 1:1 E:Z ratio. Notably, for the -methyl-substituted

vinyldiazo compound 1j, the addition/elimination product

3j was isolated in 75% yield. Also significant, the nucleophil-

ic substitution reaction occurred at the diazo carbon with

1-cyclohexenyldiazoacetate 1k to form product 3k in 65%

yield, the structure of which was confirmed by single-crys-

tal X-ray diffraction analysis.

Scheme 2  Catalytic C–H functionalization of vinyldiazoacetates with 
3-phenyl-3-hydroxyisoindolinone. Reaction conditions: vinyldiazo com-
pound 1 (0.1 mmol), 3-phenyl-3-hydroxyisoindolinone (2) (0.2 mmol, 
2.0 equiv.), and 4 Å MS (50 mg) in anhydrous DCM (1.0 mL) were 
treated with a solution of HNTf2 (0.9 mg, 5 mol%) in anhydrous DCM 
(1.0 mL) using a syringe pump over 1 h at room temperature. Isolated 
yields are given.

Based on the experimental data and previous re-

ports,5,8,10 a probable mechanism for electrophile-induced

transformations of these vinyldiazo compounds is proposed

in Scheme 3. Initially, the dehydration of 3-phenyl-3-hy-

droxyisoindolinone (2) in the presence of HNTf2 affords the

corresponding N-acyl ketiminium ion A/A′. Subsequently,

selective addition of this species onto the vinylogous posi-

tion of vinyldiazo compound 1a gives the vinyldiazonium

ion intermediate B/B′, followed by deprotonation to deliver

the formal C–H functionalization product 3a.

Entry Variation from the standard conditions Yield (%)b

1 none 85

2 TfOH instead of HNTf2 32

3 CF3CO2H instead of HNTf2 NR

4c chiral phosphoric acid (10 mol%) instead of HNTf2 <10

5 CHCl3 instead of DCM 84

6 HNTf2 (10 mol%) 81

7 0 °C instead of rt 75

a Unless otherwise noted, reactions were carried out on a 0.1 mmol scale. 
To vinyldiazo compound 1a (21.6 mg, 0.1 mmol), 3-phenyl-3-hydroxyiso-
indolinone (2) (35.6 mg, 0.2 mmol, 2.0 equiv.), and 4 Å MS (50 mg) in 
anhydrous DCM (1.0 mL) was added a solution of HNTf2 (5.0 mol%) in an-
hydrous DCM (1.0 mL) via a syringe pump over 1 h at room temperature 
(rt).
b Isolated yields of 3a. NR = no reaction.
c Chiral phosphoric acid = (11bR)-2,6-bis(triphenylsilyl)-4-hydroxy-4-oxide-
dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepin. 
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Scheme 3  Proposed reaction mechanism for the electrophilic C–H 
functionalization of vinyldiazoacetates with 3-phenyl-3-hydroxyisoin-
dolinone

To our surprise, the reaction of styryldiazoacetate 4a

with 2 catalyzed by triflimide at room temperature gave cy-

clization products 5a and 6a, via presumed intermediates I

and II, in 57% and 29% yields, respectively (see Figure S1 in

the Supporting Information). However, only product 6b

from electrophilic addition to the diazo carbon of 4-substi-

tuted 2-diazo-3-butenoate 4b was obtained in 67% yield

without evidence of the product 6a from the corresponding

addition to the vinylogous position (Scheme 4). These reac-

tions contrast with those of dirhodium(II)-catalyzed [3+2]-

cycloaddition transformations with indole.11

To demonstrate the scalability and the practicality of

the current method, a 1.0 mmol scale reaction was carried

out from which 391 mg of 3b were isolated (0.78 mmol,

78% yield, E:Z >20:1) (Scheme 5a). A further transformation

of product 3b was performed. Rh2(OAc)4-catalyzed [3+2]-

cycloaddition occurred with nitrone 7 via the cyclopropene

intermediate formed from 3b by catalytic dinitrogen extru-

sion.12 Isoxazolidine 8 was formed under these mild condi-

tions in 72% yield with 1:1 dr (Scheme 5b).

In summary, we have developed a Brønsted acid cata-

lyzed C–H functionalization of vinyldiazoacetates that pro-

vides a general access for the synthesis of -isoindolin-1-

one-substituted vinyldiazo compounds in good yields, ex-

cellent diastereocontrol, and with broad substrate generali-

ty under mild reaction conditions. The reaction is initiated

by electrophilic addition of the in situ generated N-acyl ke-

timinium species to the vinylogous position of the vinyldi-

azo compound to afford a vinyldiazonium ion intermediate,

followed by deprotonation. Notably, polycyclic compounds

are obtained by formal [3+2]-cycloaddition of -substituted

vinyldiazoacetates with 3-phenyl-3-hydroxyisoindolinone.
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Unless otherwise noted, all reactions were performed in oven-dried

(120 °C) glassware under a N2 atmosphere. Solvents were dried using

a JC Meyer solvent purification system. Analytical thin-layer chroma-

tography was performed using glass plates pre-coated with 200–300

mesh silica gel impregnated with a fluorescent indicator (254 nm).

Column chromatography was performed on CombiFlash® Rf200 and

Rf+ purification systems using normal phase silica gel columns (300–

400 mesh). High-resolution mass spectrometry (HRMS) was per-

formed on a Bruker MicroTOF-ESI mass spectrometer with an ESI re-

source using CsI or an LTQ ESI positive ion calibration solution as the

standard. Accurate masses are reported for the molecular ions [M +

H]+ or [M + Na]+. Melting points were obtained uncorrected from an

Electro Thermo Mel-Temp DLX 104 device. 1H NMR spectra were re-

corded on a Bruker spectrometer (500 MHz and 300 MHz). Chemical

shifts are reported in ppm downfield from tetramethylsilane (TMS)

with the solvent resonance as the internal standard (CDCl3,  = 7.26).

Spectra are reported as follows: chemical shift ( ppm), multiplicity

(s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp =

composite of magnetically non-equivalent protons), coupling con-

stant(s) (Hz), and integration. 13C NMR spectra were collected on

Bruker instruments (125 MHz and 75 MHz) with complete proton de-

coupling. Chemical shifts are reported in ppm from tetramethylsilane

with the solvent resonance as the internal standard (CDCl3,  = 77.16).

Enantioselectivities were determined by HPLC analysis at 25 °C using

an Agilent 1260 Infinity HPLC system equipped with a G1311B qua-

ternary pump, a G1315D diode array detector, a G1329B auto-sam-

pler, a G1316A thermostatted column compartment and a G1170A

valve drive. For instrument control and data processing, Agilent

OpenLAB CDS ChemStation Edition for LC & LC/MS Systems (Rev.

C.01.07 [26]) software was used. Chiralpak OD-H or (R,R-Whelk-O1)

columns were employed.

C–H Functionalization of Vinyldiazo Compounds; 

General Procedure

To a 10 mL oven-dried vial containing a magnetic stir bar, vinyldiazo

compound 1 (0.1 mmol), 3-phenyl-3-hydroxyisoindolinone (2) (0.2

mmol, 2.0 equiv.), and 4 Å MS (50 mg) in anhydrous DCM (1.0 mL)

was added a solution of HNTf2 (0.9 mg, 5 mol%) in anhydrous DCM

(1.0 mL) via a syringe pump over 1 h at room temperature. When the

reaction was complete (monitored by TLC), the crude reaction mix-

ture was purified by flash column chromatography on silica gel with-

out additional treatment (hexanes/EtOAc = 10:1) to give the C–H

functionalization product 3.

Ethyl (E)-2-Diazo-4-(3-oxo-1-phenylisoindolin-1-yl)-3-phenylbut-

3-enoate (3a)

Yellow oil; yield: 36.0 mg (85%); E:Z >20:1.

1H NMR (500 MHz, CDCl3):  = 7.67 (d, J = 7.5 Hz, 1 H), 7.47 (t, J = 7.5

Hz, 1 H), 7.41–7.33 (comp, 4 H), 7.30–7.23 (comp, 7 H), 6.92 (d, J = 7.5

Hz, 1 H), 5.66 (s, 1 H), 4.28 (q, J = 7.1 Hz, 2 H), 1.28 (t, J = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl3):  = 169.3, 165.1, 152.3, 144.1, 135.1,

132.8, 129.4, 129.2, 129.03, 128.95, 128.7, 128.4, 128.2, 127.9, 126.5,

125.9, 124.0, 122.9, 67.2, 61.2, 14.6.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C26H22N3O3: 424.1656;

found: 424.1658.

Ethyl (E)-3-(4-Bromophenyl)-2-diazo-4-(3-oxo-1-phenylisoindo-

lin-1-yl)but-3-enoate (3b)

Yellow oil; yield: 41.6 mg (83%); E:Z >20:1.

1H NMR (500 MHz, CDCl3):  = 7.65 (d, J = 7.5 Hz, 1 H), 7.47–7.35

(comp, 4 H), 7.35–7.30 (comp, 5 H), 7.29–7.23 (comp, 2 H), 6.76 (d, J =

8.1 Hz, 2 H), 5.93 (s, 1 H), 4.27 (q, J = 7.1 Hz, 2 H), 1.28 (t, J = 7.1 Hz, 3

H).

13C NMR (125 MHz, CDCl3):  = 169.5, 164.9, 152.0, 143.9, 133.8,

132.8, 132.2, 130.4, 129.4, 129.1, 128.3, 128.0, 127.8, 127.4, 125.7,

124.0, 123.2, 123.0, 67.1, 61.3, 14.6.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C26H21BrN3O3: 502.0761;

found: 502.0765.

Ethyl (E)-3-(4-Chlorophenyl)-2-diazo-4-(3-oxo-1-phenylisoindo-

lin-1-yl)but-3-enoate (3c)

Yellow oil; yield: 37.5 mg (82%); E:Z >20:1.

1H NMR (500 MHz, CDCl3):  = 7.65 (d, J = 7.5 Hz, 1 H), 7.44 (t, J = 7.5

Hz, 1 H), 7.40–7.36 (comp, 2 H), 7.35–7.27 (comp, 5 H), 7.26–7.23 (m,

1 H), 7.19–7.17 (d, J = 8.3 Hz, 2 H), 6.83 (d, J = 8.3 Hz, 2 H), 5.87 (s, 1

H), 4.28 (q, J = 7.1 Hz, 2 H), 1.28 (t, J = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl3):  = 169.5, 164.9, 152.1, 143.9, 135.0,

133.4, 132.8, 130.1, 129.4, 129.3, 129.1, 128.3, 128.0, 127.8, 127.4,

125.7, 124.0, 123.0, 67.1, 61.3, 14.6.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C26H21ClN3O3: 458.1266;

found: 458.1264.

Ethyl (E)-2-Diazo-4-(3-oxo-1-phenylisoindolin-1-yl)-3-(4-trifluo-

romethylphenyl)but-3-enoate (3d)

Yellow oil; yield: 42.2 mg (86%); E:Z >20:1.

1H NMR (500 MHz, CDCl3):  = 7.57 (d, J = 7.5 Hz, 1 H), 7.42–7.38

(comp, 5 H), 7.32–7.23 (comp, 6 H), 6.99 (d, J = 7.7 Hz, 2 H), 6.13 (s, 1

H), 4.28 (q, J = 7.1 Hz, 2 H), 1.28 (t, J = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl3):  = 169.6, 164.8, 151.7, 143.6, 138.5,

132.7, 130.8 (q, J = 3.5 Hz), 130.0 (q, J = 272.5 Hz), 129.3, 129.1, 128.3,

128.10, 128.08, 127.7, 125.8, 125.7 (q, J = 5.0 Hz), 125.6, 124.0, 123.2,

67.0, 61.4, 14.5.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C27H21F3N3O3: 492.1530;

found: 492.1527.

Ethyl (E)-2-Diazo-4-(3-oxo-1-phenylisoindolin-1-yl)-3-(p-tolyl)-

but-3-enoate (3e)

Yellow oil; yield: 37.2 mg (85%); E:Z >20:1.

1H NMR (500 MHz, CDCl3):  = 7.68 (d, J = 7.5 Hz, 1 H), 7.46 (t, J = 7.5

Hz, 1 H), 7.39–7.34 (comp, 4 H), 7.30–7.24 (comp, 4 H), 7.05 (d, J = 7.5

Hz, 2 H), 6.81 (d, J = 7.5 Hz, 2 H), 5.73 (s, 1 H), 4.27 (q, J = 7.1 Hz, 2 H),

2.31 (s, 3 H), 1.28 (t, J = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl3):  = 169.5, 165.2, 152.5, 144.3, 139.0,

132.8, 132.1, 129.9, 129.3, 128.9, 128.6, 128.3, 128.2, 127.8, 126.4,

125.9, 123.9, 122.8, 67.3, 61.1, 21.4, 14.6.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C27H24N3O3: 438.1812;

found: 438.1812.

Ethyl (E)-2-Diazo-3-(4-methoxyphenyl)-4-(3-oxo-1-phenylisoin-

dolin-1-yl)but-3-enoate (3f)

Yellow oil; yield: 32.6 mg (72%); E:Z >20:1.

1H NMR (500 MHz, CDCl3):  = 7.69 (d, J = 7.5 Hz, 1 H), 7.50–7.43 (m, 1

H), 7.40–7.36 (comp, 3 H), 7.34 (d, J = 7.5 Hz, 1 H), 7.31–7.28 (comp, 3

H), 7.26–7.22 (m, 1 H), 6.84 (d, J = 8.7 Hz, 2 H), 6.75 (d, J = 8.7 Hz, 2 H),

5.78 (s, 1 H), 4.30–4.23 (comp, 2 H), 3.78 (s, 3 H), 1.28 (t, J = 7.1 Hz, 3

H).
© 2024. Thieme. All rights reserved. Synthesis 2024, 56, A–F
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13C NMR (125 MHz, CDCl3):  = 169.5, 165.2, 159.9, 152.5, 144.4,

132.8, 130.0, 129.5, 129.3, 128.9, 128.2, 127.8, 127.1, 126.7, 125.8,

123.9, 122.8, 114.6, 67.2, 61.1, 55.4, 14.6.

HRMS (ESI Q-TOF): m/z [M + Na]+ calcd for C27H24N3O4: 454.1761;

found: 454.1763.

Ethyl (E)-3-(3-Chlorophenyl)-2-diazo-4-(3-oxo-1-phenylisoindo-

lin-1-yl)but-3-enoate (3g)

Yellow oil; yield: 35.6 mg (78%); E:Z >20:1.

1H NMR (500 MHz, CDCl3):  = 7.63 (d, J = 7.4 Hz, 1 H), 7.46 (t, J = 7.4

Hz, 1 H), 7.41–7.39 (comp, 2 H), 7.39–7.29 (comp, 5 H), 7.28–7.23 (m,

1 H), 7.21–7.11 (comp, 2 H), 6.84 (d, J = 7.1 Hz, 1 H), 6.71 (s, 1 H), 6.07

(s, 1 H), 4.28 (q, J = 7.1 Hz, 2 H), 1.28 (t, J = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl3):  = 169.5, 164.9, 151.8, 143.8, 136.5,

134.9, 132.7, 130.2, 129.5, 129.1, 129.0, 128.7, 128.4, 128.0, 127.8,

127.3, 127.0, 125.7, 124.0, 123.0, 67.0, 61.3, 14.6.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C26H21ClN3O3: 458.1266;

found: 458.1270.

Ethyl 3-(2-Chlorophenyl)-2-diazo-4-(3-oxo-1-phenylisoindolin-1-

yl)but-3-enoate (3h)

Yellow oil; yield: 36.1 mg (79%); E:Z = 1:1.

1H NMR (500 MHz, CDCl3):  (composite NMR signals of two isomers)

= 7.62–7.57 (comp, 2 H), 7.51 (t, J = 7.5 Hz, 1 H), 7.45–7.36 (comp, 7

H), 7.34–7.24 (comp, 12 H), 7.24–7.16 (comp, 2 H), 7.09 (t, J = 7.5 Hz, 1

H), 6.99–6.97 (comp, 2 H), 6.44 (d, J = 7.6 Hz, 1 H), 5.85 (s, 1 H), 5.71

(s, 1 H), 4.31–4.26 (comp, 4 H), 1.31–1.28 (comp, 6 H).

13C NMR (125 MHz, CDCl3):  = 169.5, 168.9, 165.1, 151.8, 150.7,

143.5, 142.8, 133.8, 133.7, 133.4, 132.63, 132.58, 132.5, 130.52,

130.50, 130.3, 130.1, 130.0, 129.9, 129.5, 129.05, 129.03, 128.3, 128.2,

128.1, 128.0, 127.3, 127.2, 127.0, 126.4, 126.0, 125.9, 125.86, 125.84,

123.9, 123.7, 123.3, 123.1, 67.3, 67.2, 61.24, 61.22, 14.6.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C26H21ClN3O3: 458.1266;

found: 458.1267.

Ethyl (E)-2-Diazo-3-(naphthalen-2-yl)-4-(3-oxo-1-phenylisoindo-

lin-1-yl)but-3-enoate (3i)

Yellow oil; yield: 40.7 mg (86%); E:Z >20:1.

1H NMR (500 MHz, CDCl3):  = 7.81–7.76 (comp, 2 H), 7.58 (d, J = 7.5

Hz, 1 H), 7.51–7.48 (comp, 2 H), 7.47–7.36 (comp, 6 H), 7.32–7.25

(comp, 5 H), 7.10 (d, J = 8.4 Hz, 1 H), 5.76 (s, 1 H), 4.29 (q, J = 7.1 Hz, 2

H), 1.29 (t, J = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl3):  = 169.5, 165.1, 152.2, 144.5, 133.0,

132.9, 132.8, 132.4, 129.3, 129.2, 129.0, 128.7, 128.3, 128.23, 128.17,

128.0, 127.8, 127.3, 127.1, 126.9, 125.9, 125.8, 123.9, 122.9, 67.2, 61.2,

14.6.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C30H24N3O3: 474.1812;

found: 474.1815.

Ethyl 2-Diazo-3-(3-oxo-1-phenylisoindolin-1-yl)methylbut-3-

enoate (3j)

Yellow oil; yield: 27.1 mg (75%).

1H NMR (300 MHz, CDCl3):  = 7.80 (d, J = 7.5 Hz, 1 H), 7.53–7.49

(comp, 3 H), 7.44–7.39 (comp, 2 H), 7.36–7.33 (comp, 2 H), 7.28 (d, J =

7.2 Hz, 1 H), 7.02 (s, 1 H), 4.73 (s, 1 H), 4.58 (s, 1 H), 4.18 (q, J = 7.1 Hz,

2 H), 3.60 (d, J = 13.9 Hz, 1 H), 3.45 (d, J = 13.9 Hz, 1 H), 1.25 (t, J = 7.1

Hz, 3 H).

13C NMR (75 MHz, CDCl3):  = 170.3, 165.5, 150.3, 142.0, 132.1, 131.3,

129.0, 128.6, 128.5, 128.0, 125.4, 124.0, 122.8, 114.4, 66.6, 61.1, 41.3,

14.5.

HRMS (ESI Q-TOF): m/z [M + Na]+ calcd for C21H20N3O3: 362.1499;

found: 362.1500.

Ethyl (Z)-2-(Cyclohex-2-en-1-ylidene)-2-(3-oxo-1-phenylisoindo-

lin-1-yl)acetate (3k)

White solid, yield: 24.3 mg (65%); Z:E = 7:1; mp 101.0–103.0 °C.

1H NMR (500 MHz, CDCl3):  = 7.81 (d, J = 7.3 Hz, 1 H), 7.53 (d, J = 7.8

Hz, 2 H), 7.46–7.39 (comp, 2 H), 7.33–7.28 (comp, 3 H), 7.24 (d, J = 7.2

Hz, 1 H), 6.71 (s, 1 H), 6.25 (d, J = 10.2 Hz, 1 H), 6.13–5.95 (m, 1 H),

3.87–3.80 (m, 1 H), 3.68–3.62 (m, 1 H), 2.10–2.08 (comp, 2 H), 1.93 (t,

J = 6.2 Hz, 2 H), 1.56–1.50 (m, 1 H), 1.49–1.45 (m, 1 H), 0.84 (t, J = 7.1

Hz, 3 H).

13C NMR (125 MHz, CDCl3):  = 170.4, 168.7, 150.4, 143.1, 139.7,

135.1, 132.5, 131.1, 130.1, 129.2, 128.6, 128.0, 126.3, 125.0, 124.2,

124.1, 68.0, 61.0, 27.9, 25.5, 21.7, 13.8.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C24H24NO3: 374.1751;

found: 374.1755.

Methyl 5-Oxo-1,9b-diphenyl-5,9b-dihydro-3H-pyrrolo[2,1-a]iso-

indole-3-carboxylate (5a)

Colorless oil; yield: 21.7 mg (57%).

1H NMR (300 MHz, CDCl3):  = 8.08 (d, J = 7.8 Hz, 1 H), 7.71 (d, J = 7.5

Hz, 1 H), 7.58 (t, J = 7.5 Hz, 1 H), 7.51–7.39 (comp, 3 H), 7.39–7.34

(comp, 3 H), 7.34–7.27 (comp, 3 H), 7.21–7.20 (comp, 2 H), 7.03 (s, 1

H), 5.53 (s, 1 H), 3.86 (s, 3 H).

13C NMR (125 MHz, CDCl3):  = 169.4, 163.6, 147.7, 147.0, 141.8,

136.3, 134.7, 133.9, 132.6, 129.4, 129.0, 128.9, 128.8, 128.7, 128.2,

126.01, 125.99, 124.3, 80.9, 66.0, 52.3.

HRMS (ESI Q-TOF): m/z [M + Na]+ calcd for C25H20NO5: 382.1438;

found: 382.1440.

Methyl 5-Oxo-3,9b-diphenyl-5,9b-dihydro-3H-pyrrolo[2,1-a]iso-

indole-1-carboxylate (6a)

Colorless oil; yield: 11.1 mg (29%).

1H NMR (300 MHz, CDCl3):  = 7.90 (d, J = 7.5 Hz, 1 H), 7.85 (d, J = 7.7

Hz, 1 H), 7.58 (t, J = 7.5 Hz, 1 H), 7.51 (t, J = 7.4 Hz, 1 H), 7.35 (d, J = 2.7

Hz, 1 H), 7.26 (s, 1 H), 7.23–7.09 (comp, 6 H), 7.08–7.06 (comp, 3 H),

6.09 (d, J = 2.7 Hz, 1 H), 3.84 (s, 3 H).

13C NMR (125 MHz, CDCl3):  = 175.4, 163.7, 150.5, 146.6, 141.4,

137.5, 135.7, 133.2, 132.1, 129.2, 128.5, 128.3, 128.0, 127.6, 127.04,

127.02, 126.7, 124.3, 80.6, 65.7, 52.3.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C25H20NO3: 382.1438;

found: 382.1439.

Methyl 3-Ethyl-5-oxo-9b-phenyl-5,9b-dihydro-3H-pyrrolo[2,1-a]-

isoindole-1-carboxylate (6b)

Colorless oil; yield: 22.3 mg (67%).

1H NMR (500 MHz, CDCl3):  = 7.97 (d, J = 7.7 Hz, 1 H), 7.80 (d, J = 7.5

Hz, 1 H), 7.55–7.52 (m, 1 H), 7.48–7.40 (m, 1 H), 7.33–7.32 (comp, 2

H), 7.29–7.26 (m, 1 H), 7.26–7.21 (comp, 2 H), 7.08 (d, J = 1.2 Hz, 1 H),

4.47–4.45 (m, 1 H), 3.83 (s, 3 H), 2.76–2.67 (m, 1 H), 2.20–2.06 (m, 1

H), 1.00 (t, J = 7.4 Hz, 3 H).
© 2024. Thieme. All rights reserved. Synthesis 2024, 56, A–F
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13C NMR (125 MHz, CDCl3):  = 170.4, 163.6, 147.7, 147.6, 141.3,

136.4, 133.8, 132.5, 128.78, 128.76, 128.2, 126.0, 125.9, 124.0, 81.1,

64.0, 52.2, 22.2, 11.1.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C21H20NO3: 334.1438;

found: 334.1440.

Isoxazolidines 8

To a 10-mL oven-dried round-bottom flask containing a magnetic stir

bar, nitrone 7 (23.6 mg, 0.12 mmol, 1.2 equiv.), and 4 Å MS (50 mg) in

anhydrous DCM (1.0 mL) was added a solution of vinyldiazo com-

pound 3b (50.1 mg, 0.1 mmol) in anhydrous DCM (1.0 mL) via a sy-

ringe pump over 1 h at room temperature. When the reaction was

complete (monitored by TLC), the reaction mixture was purified by

flash column chromatography on silica gel without additional treat-

ment (hexanes/EtOAc = 10:1) to give pure product 8. 

Ethyl (1R,4R,5S)-5-(4-Bromophenyl)-6-(3-oxo-1-phenylisoindolin-

1-yl)-3,4-diphenyl-2-oxa-3-azabicyclo[3.1.0]-hexane-1-carboxyl-

ate (8)

Colorless oil; yield: 24.1 mg (36%).

1H NMR (500 MHz, CDCl3):  = 7.62 (d, J = 6.8 Hz, 1 H), 7.53–7.52

(comp, 2 H), 7.41–7.37 (comp, 5 H), 7.36–7.25 (comp, 9 H), 7.16 (t, J =

7.7 Hz, 2 H), 7.06–6.96 (comp, 2 H), 6.93 (d, J = 8.2 Hz, 2 H), 5.22 (s, 1

H), 5.06 (s, 1 H), 4.08–4.02 (m, 1 H), 3.98 (s, 1 H), 3.75–3.68 (m, 1 H),

0.77 (t, J = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl3):  = 170.8, 166.6, 150.9, 148.5, 143.1,

136.6, 133.9, 132.4, 132.0, 129.4, 129.1, 128.8, 128.7, 128.6, 128.4,

128.2, 127.7, 125.4, 124.8, 124.0, 123.3, 122.3, 118.0, 75.4, 74.1, 63.9,

62.0, 47.3, 34.9, 13.5.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C39H32BrN2O4: 671.1540;

found: 671.1542.

Ethyl (1R,4S,5S)-5-(4-Bromophenyl)-6-(3-oxo-1-phenylisoindolin-

1-yl)-3,4-diphenyl-2-oxa-3-azabicyclo[3.1.0]hexane-1-carboxyl-

ate (8′)

Colorless oil; yield: 24.1 mg (36%).

1H NMR (500 MHz, CDCl3):  = 7.80 (d, J = 7.5 Hz, 1 H), 7.76–7.75

(comp, 2 H), 7.60 (t, J = 7.5 Hz, 1 H), 7.57–7.53 (comp, 3 H), 7.52–7.40

(comp, 4 H), 7.13 (t, J = 7.8 Hz, 2 H), 7.01–6.92 (comp, 2 H), 6.88 (d, J =

8.2 Hz, 2 H), 6.83–6.80 (comp, 3 H), 6.77–6.75 (comp, 4 H), 5.59 (s, 1

H), 4.20–4.15 (comp, 2 H), 3.96 (s, 1 H), 1.20 (t, J = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl3):  = 169.2, 168.4, 152.0, 148.2, 142.2,

137.1, 133.0, 132.0, 131.6, 130.7, 129.5, 129.0, 128.8, 128.7, 128.4,

127.7, 127.2, 124.9, 124.2, 124.0, 123.6, 122.8, 117.7, 78.1, 72.1, 63.4,

62.4, 47.1, 37.4, 14.2.

HRMS (ESI Q-TOF): m/z [M + H]+ calcd for C39H32BrN2O4: 671.1540;

found: 671.1541.
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