Synthesis of Heterocycles by HNTf,-Catalyzed C-H Functionalization
of Vinyldiazo Compounds with 3-Phenyl-3-hydroxyisoindolinone

Ming Bao
Hadi Arman
Michael P. Doyle*

Department of Chemistry, The University of Texas at San Antonio,
San Antonio, Texas, 78249, USA
michael.doyle@utsa.edu

Published as part of the Special Issue
Recent Advancements in The Chemistry of Diazo Compounds

Received: 21.06.2024

Accepted: 04.07.2024

Published online: 04.07.2024 (Accepted Manuscript), 24.07.2024 (Version of Record)
DOI: 10.1055/a-2360-8359; Art ID: SS-2024-06-0276-OP

Abstract A Brensted acid catalyzed C-H functionalization of vinyldia-
zoacetates with 3-hydroxyisoindolinone is developed. This methodolo-
gy provides a general access to E-substituted isoindolinone vinyldiazo
compounds in good yields and excellent diastereoselectivities with
broad substrate generality under mild conditions, and with 4-substitut-
ed 2-diazo-3-butenoates produces fused bicyclic pyrrolidines. The reac-
tion generally involves addition of the N-acyl ketiminium electrophile,
formed from the 3-hydroxyisoindolinone, to the vinylogous position of
the vinyldiazo compound resulting in vinyldiazonium ion intermediates
that undergo deprotonation to new vinyldiazo compounds or ring clo-
sure to fused bicyclic pyrrolidines.

Key words Brgnsted acid catalysis, vinyldiazo compound, electrophil-
ic addition, C-H functionalization, heterocycles

Vinyldiazo compounds are easily accessible, versatile
and useful reagents for the construction of complex molec-
ular frameworks through a variety of metal carbene trans-
formations (Scheme 1a, path a), including C-H insertion,!
C-C bond formation,? and cycloaddition.> Meanwhile, their
dipolar nature makes them susceptible to addition by dif-
ferent electrophilic reagents at the vinylogous position
rather than the diazo carbon, affording diazonium ion inter-
mediates that undergo substitution or migration reactions
(Scheme 1a, path b).* Recently, we reported the HNTf,-cata-
lyzed electrophilic addition of quinone oxonium ions from
quinone Kketals® and quinone imine ketals,’ and isobenzopy-
rylium ions from 1H-isochromene acetals’ to the vinylo-
gous carbon of vinyldiazo compounds 1 to form vinyldiazo-
nium ion intermediates that result in the synthesis of sub-
stituted a-diazo esters and polycyclic compounds (Scheme
1b, path c). Using the stable Eschenmoser salt as the elec-
trophile, an alternative C-H functionalization occurs at the
y-position of vinyl diazo compounds to form y-substituted
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vinyldiazo esters (Scheme 1b, path d).? Inspired by these ad-
vances, we envisioned that a C-H functionalization process
of vinyldiazoacetates with in situ generated N-acyl ketimin-
ium electrophiles, which is well-known in nucleophilic sub-
stitution reactions,® might be facilitated by HNTf, catalysis
to synthesize structurally complex diazo compounds with a
quaternary carbon center. Herein, we report that highly se-
lective C-H functionalization of vinyldiazo acetates with 3-
phenyl-3-hydroxyisoindolinone provides a general meth-
odology for the synthesis of y-isoindolin-1-one-substituted
vinyldiazo esters. In addition, in the case of 4-substituted 2-
diazo-3-butenoates, a catalytic stepwise [3+2]-cycloaddi-
tion reaction occurred with the N-acyl ketiminium electro-
phile for the construction of fused bicyclic pyrrolidines
(Scheme 1c).
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Scheme 1 Catalytic transformations of vinyldiazo compounds

Effective construction of y-substituted vinyldiazoace-
tate 3a was realized via the HNTf,-catalyzed C-H function-
alization of ethyl 2-diazo-3-phenylbut-3-enoate (1a) with
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3-phenyl-3-hydroxyisoindolinone (2) in dichloromethane
(DCM) at room temperature (Table 1, entry 1). Surprisingly,
only 5 mol% of the very strong acid triflimide® was required
for complete reaction to occur within 5 hours. A series of
control experiments verified the necessity of each reaction
component. Other Brgnsted acid catalysts were tested, but
the outcome was either a low yield or no C-H functional-
ization product 3a (Table 1, entries 2-4). Furthermore, at-
tempts to optimize the yield of 3a by varying the solvent
and increasing the amount of catalyst were unsuccessful
(Table 1, entries 5 and 6). In addition, the yield of 3a was
significantly reduced when the reaction was performed at 0
°C because some vinyldiazo compound 1a remained unre-
acted over the same reaction time (Table 1, entry 7).

Table 1 Optimization of the C-H Functionalization Reaction Condi-
tions®

o o
;%(coza N @:/(«NH HNT#, (5.0 mol%) { =" °NH Ph
5 o DCM, rt 7 NG CO,Et
1a F;h s
Entry Variation from the standard conditions Yield (%)°

1 none 85
2 TfOH instead of HNTf, 32
3 CF;CO,H instead of HNTf, NR
4¢ chiral phosphoric acid (10 mol%) instead of HNTf, <10
5 CHCl; instead of DCM 84
6 HNTF, (10 mol%) 81
7 0 °Cinstead of rt 75

2 Unless otherwise noted, reactions were carried out on a 0.1 mmol scale.
To vinyldiazo compound 1a (21.6 mg, 0.1 mmol), 3-phenyl-3-hydroxyiso-
indolinone (2) (35.6 mg, 0.2 mmol, 2.0 equiv.), and 4 A MS (50 mg) in
anhydrous DCM (1.0 mL) was added a solution of HNTf, (5.0 mol%) in an-
hydrous DCM (1.0 mL) via a syringe pump over 1 h at room temperature
(rt).

b Isolated yields of 3a. NR = no reaction.

¢ Chiral phosphoric acid = (11bR)-2,6-bis(triphenylsilyl)-4-hydroxy-4-oxide-
dinaphtho(2,1-d:1',2'-f][1,3,2]dioxaphosphepin.

With the optimal reaction conditions established, the
substrate scope with respect to the vinyldiazoacetates was
investigated (Scheme 2). Vinyldiazoacetates with various
electron-withdrawing or electron-donating substituents on
the aryl ring at the para- or meta-position and naphthyl all
reacted with 3-phenyl-3-hydroxyisoindolinone smoothly
to form the E-substituted vinyldiazo products (3a-g and 3i)
in high yields and stereoselectivities (>72% yield, E:Z>20:1).
However, the ortho-chlorophenyl-substituted vinyldiazo
compound gave the desired product 3h in 79% yield but
with a 1:1 E:Z ratio. Notably, for the 3-methyl-substituted

vinyldiazo compound 1j, the addition/elimination product
3j was isolated in 75% yield. Also significant, the nucleophil-
ic substitution reaction occurred at the diazo carbon with
1-cyclohexenyldiazoacetate 1k to form product 3k in 65%
yield, the structure of which was confirmed by single-crys-
tal X-ray diffraction analysis.
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Scheme 2 Catalytic C-H functionalization of vinyldiazoacetates with
3-phenyl-3-hydroxyisoindolinone. Reaction conditions: vinyldiazo com-
pound 1 (0.1 mmol), 3-phenyl-3-hydroxyisoindolinone (2) (0.2 mmol,
2.0 equiv.), and 4 A MS (50 mq) in anhydrous DCM (1.0 mL) were
treated with a solution of HNTf, (0.9 mg, 5 mol%) in anhydrous DCM
(1.0 mL) using a syringe pump over 1 h at room temperature. Isolated
yields are given.

Based on the experimental data and previous re-
ports,>®10 a probable mechanism for electrophile-induced
transformations of these vinyldiazo compounds is proposed
in Scheme 3. Initially, the dehydration of 3-phenyl-3-hy-
droxyisoindolinone (2) in the presence of HNTf, affords the
corresponding N-acyl ketiminium ion A/A’. Subsequently,
selective addition of this species onto the vinylogous posi-
tion of vinyldiazo compound 1a gives the vinyldiazonium
ion intermediate B/B’, followed by deprotonation to deliver
the formal C-H functionalization product 3a.
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Scheme 3 Proposed reaction mechanism for the electrophilic C-H
functionalization of vinyldiazoacetates with 3-phenyl-3-hydroxyisoin-
dolinone

To our surprise, the reaction of styryldiazoacetate 4a
with 2 catalyzed by triflimide at room temperature gave cy-
clization products 5a and 6a, via presumed intermediates I
and II, in 57% and 29% yields, respectively (see Figure S1 in
the Supporting Information). However, only product 6b
from electrophilic addition to the diazo carbon of 4-substi-
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tuted 2-diazo-3-butenoate 4b was obtained in 67% yield
without evidence of the product 6a from the corresponding
addition to the vinylogous position (Scheme 4). These reac-
tions contrast with those of dirhodium(II)-catalyzed [3+2]-
cycloaddition transformations with indole.!!

To demonstrate the scalability and the practicality of
the current method, a 1.0 mmol scale reaction was carried
out from which 391 mg of 3b were isolated (0.78 mmol,
78% yield, E:Z >20:1) (Scheme 5a). A further transformation
of product 3b was performed. Rh,(0OAc),-catalyzed [3+2]-
cycloaddition occurred with nitrone 7 via the cyclopropene
intermediate formed from 3b by catalytic dinitrogen extru-
sion.'? Isoxazolidine 8 was formed under these mild condi-
tions in 72% yield with 1:1 dr (Scheme 5b).

In summary, we have developed a Bregnsted acid cata-
lyzed C-H functionalization of vinyldiazoacetates that pro-
vides a general access for the synthesis of y-isoindolin-1-
one-substituted vinyldiazo compounds in good yields, ex-
cellent diastereocontrol, and with broad substrate generali-
ty under mild reaction conditions. The reaction is initiated
by electrophilic addition of the in situ generated N-acyl ke-
timinium species to the vinylogous position of the vinyldi-
azo compound to afford a vinyldiazonium ion intermediate,
followed by deprotonation. Notably, polycyclic compounds
are obtained by formal [3+2]-cycloaddition of y-substituted
vinyldiazoacetates with 3-phenyl-3-hydroxyisoindolinone.

5a, 57% yield
5b, 0% yield

!

6a, 29% vyield
6b, 67% yield

MeO,C N2
I il

Scheme 4 Catalytic C-H functionalization of styryldiazoacetate 4a and 4-substituted 2-diazo-3-butenoate 4b
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Scheme 5 Scaled synthesis of vinyldiazoacetate 3b and a subsequent cycloaddition reaction
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Unless otherwise noted, all reactions were performed in oven-dried
(120 °C) glassware under a N, atmosphere. Solvents were dried using
a JC Meyer solvent purification system. Analytical thin-layer chroma-
tography was performed using glass plates pre-coated with 200-300
mesh silica gel impregnated with a fluorescent indicator (254 nm).
Column chromatography was performed on CombiFlash® Rf200 and
Rf+ purification systems using normal phase silica gel columns (300-
400 mesh). High-resolution mass spectrometry (HRMS) was per-
formed on a Bruker MicroTOF-ESI mass spectrometer with an ESI re-
source using Csl or an LTQ ESI positive ion calibration solution as the
standard. Accurate masses are reported for the molecular ions [M +
HJ* or [M + Na]*. Melting points were obtained uncorrected from an
Electro Thermo Mel-Temp DLX 104 device. '"H NMR spectra were re-
corded on a Bruker spectrometer (500 MHz and 300 MHz). Chemical
shifts are reported in ppm downfield from tetramethylsilane (TMS)
with the solvent resonance as the internal standard (CDCl;, 6 = 7.26).
Spectra are reported as follows: chemical shift (6 ppm), multiplicity
(s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp =
composite of magnetically non-equivalent protons), coupling con-
stant(s) (Hz), and integration. >*C NMR spectra were collected on
Bruker instruments (125 MHz and 75 MHz) with complete proton de-
coupling. Chemical shifts are reported in ppm from tetramethylsilane
with the solvent resonance as the internal standard (CDCl;, 6 = 77.16).
Enantioselectivities were determined by HPLC analysis at 25 °C using
an Agilent 1260 Infinity HPLC system equipped with a G1311B qua-
ternary pump, a G1315D diode array detector, a G1329B auto-sam-
pler, a G1316A thermostatted column compartment and a G1170A
valve drive. For instrument control and data processing, Agilent
OpenLAB CDS ChemStation Edition for LC & LC/MS Systems (Rev.
C.01.07 [26]) software was used. Chiralpak OD-H or (R,R-Whelk-01)
columns were employed.

C-H Functionalization of Vinyldiazo Compounds;
General Procedure

To a 10 mL oven-dried vial containing a magnetic stir bar, vinyldiazo
compound 1 (0.1 mmol), 3-phenyl-3-hydroxyisoindolinone (2) (0.2
mmol, 2.0 equiv.), and 4 A MS (50 mg) in anhydrous DCM (1.0 mL)
was added a solution of HNTf, (0.9 mg, 5 mol%) in anhydrous DCM
(1.0 mL) via a syringe pump over 1 h at room temperature. When the
reaction was complete (monitored by TLC), the crude reaction mix-
ture was purified by flash column chromatography on silica gel with-
out additional treatment (hexanes/EtOAc = 10:1) to give the C-H
functionalization product 3.

Ethyl (E)-2-Diazo-4-(3-o0xo-1-phenylisoindolin-1-yl)-3-phenylbut-
3-enoate (3a)

Yellow oil; yield: 36.0 mg (85%); E:Z >20:1.

'H NMR (500 MHz, CDCl,): & = 7.67 (d, J = 7.5 Hz, 1 H), 7.47 (t, ] = 7.5
Hz, 1 H), 7.41-7.33 (comp, 4 H), 7.30-7.23 (comp, 7 H), 6.92 (d, J = 7.5
Hz, 1H),5.66 (s, 1H),4.28(q,J=7.1Hz, 2 H), 1.28 (t,J = 7.1 Hz, 3 H).
13C NMR (125 MHz, CDCl;): & = 169.3, 165.1, 152.3, 144.1, 135.1,
132.8, 129.4, 129.2, 129.03, 128.95, 128.7, 128.4, 128.2, 127.9, 126.5,
125.9,124.0,122.9, 67.2, 61.2, 14.6.

HRMS (ESI Q-TOF): m/z [M + H]* calcd for C,gH,,N;50;5: 424.1656;
found: 424.1658.

Ethyl (E)-3-(4-Bromophenyl)-2-diazo-4-(3-oxo-1-phenylisoindo-
lin-1-yl)but-3-enoate (3b)
Yellow oil; yield: 41.6 mg (83%); E:Z >20:1.

H NMR (500 MHz, CDCl;): & = 7.65 (d, J = 7.5 Hz, 1 H), 7.47-7.35
(comp, 4 H), 7.35-7.30 (comp, 5 H), 7.29-7.23 (comp, 2 H), 6.76 (d, ] =
8.1 Hz, 2 H), 5.93 (s, 1 H), 427 (q,J = 7.1 Hz, 2 H), 1.28 (t,J = 7.1 Hz, 3
H).

13C NMR (125 MHz, CDCl;): 8 = 169.5, 164.9, 152.0, 143.9, 133.8,
132.8, 132.2, 1304, 129.4, 129.1, 128.3, 128.0, 127.8, 127.4, 125.7,
124.0,123.2,123.0,67.1,61.3, 14.6.

HRMS (ESI Q-TOF): m/z [M + HJ* calcd for C,gH,,BrN;0;: 502.0761;
found: 502.0765.

Ethyl (E)-3-(4-Chlorophenyl)-2-diazo-4-(3-o0xo-1-phenylisoindo-
lin-1-yl)but-3-enoate (3c)
Yellow oil; yield: 37.5 mg (82%); E:Z >20:1.

TH NMR (500 MHz, CDCL,): § = 7.65 (d, J = 7.5 Hz, 1 H), 7.44 (t, = 7.5
Hz, 1 H), 7.40-7.36 (comp, 2 H), 7.35-7.27 (comp, 5 H), 7.26-7.23 (m,
1H),7.19-7.17 (d, ] = 8.3 Hz, 2 H), 6.83 (d, ] = 8.3 Hz, 2 H), 5.87 (s, 1
H),4.28 (q,J = 7.1 Hz, 2 H), 1.28 (t,] = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCly): & = 169.5, 164.9, 152.1, 143.9, 135.0,
133.4, 132.8, 130.1, 1294, 129.3, 129.1, 128.3, 128.0, 127.8, 1274,
125.7,124.0,123.0, 67.1, 61.3, 14.6.

HRMS (ESI Q-TOF): m/z [M + H]* calcd for C,H,;CIN;05: 458.1266;
found: 458.1264.

Ethyl (E)-2-Diazo-4-(3-ox0-1-phenylisoindolin-1-yl)-3-(4-trifluo-
romethylphenyl)but-3-enoate (3d)
Yellow oil; yield: 42.2 mg (86%); E:Z >20:1.

'H NMR (500 MHz, CDCl;): 6 = 7.57 (d, ] = 7.5 Hz, 1 H), 7.42-7.38
(comp, 5 H), 7.32-7.23 (comp, 6 H), 6.99 (d,J = 7.7 Hz, 2 H), 6.13 (s, 1
H),4.28(q,J=7.1 Hz, 2 H), 1.28 (t,] = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl;): 8 = 169.6, 164.8, 151.7, 143.6, 138.5,
132.7,130.8 (q,J = 3.5 Hz), 130.0 (q,J = 272.5 Hz), 129.3, 129.1, 128.3,
128.10, 128.08, 127.7, 125.8, 125.7 (q,J = 5.0 Hz), 125.6, 124.0, 123.2,
67.0, 61.4, 14.5.

HRMS (ESI Q-TOF): m/z [M + HJ* calcd for C,;H,,F3N;05: 492.1530;
found: 492.1527.

Ethyl (E)-2-Diazo-4-(3-0x0-1-phenylisoindolin-1-yl)-3-(p-tolyl)-
but-3-enoate (3e)
Yellow oil; yield: 37.2 mg (85%); E:Z >20:1.

1H NMR (500 MHz, CDCl,): & = 7.68 (d, J = 7.5 Hz, 1 H), 7.46 (t, ] = 7.5
Hz, 1 H), 7.39-7.34 (comp, 4 H), 7.30-7.24 (comp, 4 H), 7.05 (d, J = 7.5
Hz, 2 H),6.81(d,J = 7.5 Hz, 2 H), 5.73 (s, 1 H), 4.27 (q, ] = 7.1 Hz, 2 H),
2.31(s,3 H), 1.28 (t,J = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl;): & = 169.5, 165.2, 152.5, 144.3, 139.0,
132.8, 132.1, 129.9, 129.3, 128.9, 128.6, 128.3, 128.2, 127.8, 1264,
125.9,123.9,122.8,67.3,61.1, 21.4, 14.6.

HRMS (ESI Q-TOF): m/z [M + H]" calcd for C,;H,4N30;5: 438.1812;
found: 438.1812.

Ethyl (E)-2-Diazo-3-(4-methoxyphenyl)-4-(3-oxo-1-phenylisoin-
dolin-1-yl)but-3-enoate (3f)
Yellow oil; yield: 32.6 mg (72%); E:Z >20:1.

H NMR (500 MHz, CDCl,): § = 7.69 (d, J = 7.5 Hz, 1 H), 7.50-7.43 (m, 1
H), 7.40-7.36 (comp, 3 H), 7.34 (d, J = 7.5 Hz, 1 H), 7.31-7.28 (comp, 3
H), 7.26-7.22 (m, 1 H), 6.84 (d, ] = 8.7 Hz, 2 H), 6.75 (d, ] = 8.7 Hz, 2 H),
5.78 (s, 1 H), 4.30-4.23 (comp, 2 H), 3.78 (s, 3 H), 1.28 (t, J = 7.1 Hz, 3
H).
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13C NMR (125 MHz, CDCly): & = 169.5, 165.2, 159.9, 152.5, 144.4,
132.8, 130.0, 129.5, 129.3, 128.9, 128.2, 127.8, 127.1, 126.7, 125.,
123.9,122.8, 114.6, 67.2, 61.1, 55.4, 14.6.

HRMS (ESI Q-TOF): m/z [M + Na]* calcd for C,;H,4N;0,: 454.1761;
found: 454.1763.

Ethyl (E)-3-(3-Chlorophenyl)-2-diazo-4-(3-0x0-1-phenylisoindo-
lin-1-yl)but-3-enoate (3g)
Yellow oil; yield: 35.6 mg (78%); E:Z >20:1.

'H NMR (500 MHz, CDCl;): 6 =7.63 (d,J=7.4Hz, 1 H),7.46 (t,J]=74
Hz, 1 H), 7.41-7.39 (comp, 2 H), 7.39-7.29 (comp, 5 H), 7.28-7.23 (m,
1H),7.21-7.11 (comp, 2 H), 6.84 (d,J= 7.1 Hz, 1 H), 6.71 (s, 1 H), 6.07
(s,1H),4.28(q,J=7.1 Hz,2 H), 1.28 (t,] = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl;): & = 169.5, 164.9, 151.8, 143.8, 136.5,
134.9, 132.7, 130.2, 129.5, 129.1, 129.0, 128.7, 128.4, 128.0, 127.8,
127.3,127.0,125.7, 124.0, 123.0, 67.0, 61.3, 14.6.

HRMS (ESI Q-TOF): m/z [M + HJ* calcd for C,gH,,CIN;0,: 458.1266;
found: 458.1270.

Ethyl 3-(2-Chlorophenyl)-2-diazo-4-(3-oxo-1-phenylisoindolin-1-
yl)but-3-enoate (3h)

Yellow oil; yield: 36.1 mg (79%); E:Z=1:1.

'H NMR (500 MHz, CDCl;): & (composite NMR signals of two isomers)
=7.62-7.57 (comp, 2 H), 7.51 (t,J = 7.5 Hz, 1 H), 7.45-7.36 (comp, 7
H), 7.34-7.24 (comp, 12 H), 7.24-7.16 (comp, 2 H), 7.09 (t, ] =7.5Hz, 1
H), 6.99-6.97 (comp, 2 H), 6.44 (d, J = 7.6 Hz, 1 H), 5.85 (s, 1 H), 5.71
(s, 1H),4.31-4.26 (comp, 4 H), 1.31-1.28 (comp, 6 H).

13C NMR (125 MHz, CDCl): & = 169.5, 168.9, 165.1, 151.8, 150.7,
143.5, 142.8, 133.8, 133.7, 1334, 132.63, 132.58, 132.5, 130.52,
130.50, 130.3, 130.1, 130.0, 129.9, 129.5, 129.05, 129.03, 128.3, 128.2,
128.1,128.0, 127.3, 127.2, 127.0, 126.4, 126.0, 125.9, 125.86, 125.84,
123.9,123.7,123.3,123.1,67.3,67.2, 61.24, 61.22, 14.6.

HRMS (ESI Q-TOF): m/z [M + HJ* calcd for C,gH,,CIN;0,: 458.1266;
found: 458.1267.

Ethyl (E)-2-Diazo-3-(naphthalen-2-yl)-4-(3-oxo-1-phenylisoindo-
lin-1-yl)but-3-enoate (3i)
Yellow oil; yield: 40.7 mg (86%); E:Z >20:1.

H NMR (500 MHz, CDCl,): & = 7.81-7.76 (comp, 2 H), 7.58 (d, ] = 7.5
Hz, 1 H), 7.51-7.48 (comp, 2 H), 7.47-7.36 (comp, 6 H), 7.32-7.25
(comp, 5 H), 7.10 (d, J = 8.4 Hz, 1 H), 5.76 (s, 1 H), 4.29 (q,] = 7.1 Hz, 2
H),1.29(t,J = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl3): & = 169.5, 165.1, 152.2, 144.5, 133.0,
132.9, 132.8, 132.4, 129.3, 129.2, 129.0, 128.7, 128.3, 128.23, 128.17,
128.0,127.8,127.3,127.1,126.9, 125.9,125.8, 123.9, 122.9, 67.2, 61.2,
14.6.

HRMS (ESI Q-TOF): m/z [M + H]* calcd for C3yH,4N;05: 474.1812;
found: 474.1815.

Ethyl 2-Diazo-3-(3-0x0-1-phenylisoindolin-1-yl)methylbut-3-
enoate (3j)
Yellow oil; yield: 27.1 mg (75%).

'H NMR (300 MHz, CDCl;): 6 = 7.80 (d, J = 7.5 Hz, 1 H), 7.53-7.49
(comp, 3 H), 7.44-7.39 (comp, 2 H), 7.36-7.33 (comp, 2 H), 7.28 (d, ] =
7.2 Hz, 1H),7.02 (s, 1 H), 4.73 (s, 1 H), 4.58 (s, 1 H), 4.18 (q,] = 7.1 Hz,
2 H),3.60(d,J=13.9Hz,1H),3.45(d,J=13.9Hz, 1 H), 1.25(t,J = 7.1
Hz, 3 H).

13C NMR (75 MHz, CDCl3): 8 = 170.3, 165.5, 150.3, 142.0, 132.1, 131.3,
129.0, 128.6, 128.5, 128.0, 125.4, 124.0, 122.8, 114.4, 66.6, 61.1, 41.3,
14.5.

HRMS (ESI Q-TOF): m/z [M + Na]* calcd for C,;H,oN;05: 362.1499;
found: 362.1500.

Ethyl (Z)-2-(Cyclohex-2-en-1-ylidene)-2-(3-0x0-1-phenylisoindo-
lin-1-yl)acetate (3k)
White solid, yield: 24.3 mg (65%); Z:E = 7:1; mp 101.0-103.0 °C.

H NMR (500 MHz, CDCl,): 8 = 7.81 (d, J = 7.3 Hz, 1 H), 7.53 (d, ] = 7.8
Hz, 2 H), 7.46-7.39 (comp, 2 H), 7.33-7.28 (comp, 3 H), 7.24 (d, ] = 7.2
Hz, 1 H), 6.71 (s, 1 H), 6.25 (d, ] = 10.2 Hz, 1 H), 6.13-5.95 (m, 1 H),
3.87-3.80 (m, 1 H), 3.68-3.62 (m, 1 H), 2.10-2.08 (comp, 2 H), 1.93 (¢,
J=62Hz, 2 H), 1.56-1.50 (m, 1 H), 1.49-1.45 (m, 1 H), 0.84 (t, ] = 7.1
Hz, 3 H).

13C NMR (125 MHz, CDCl;): 8 = 1704, 168.7, 150.4, 143.1, 139.7,
135.1, 132.5, 131.1, 130.1, 129.2, 128.6, 128.0, 126.3, 125.0, 124.2,
124.1,68.0, 61.0, 27.9, 25.5, 21.7, 13.8.

HRMS (ESI Q-TOF): m/z [M + H]* calcd for C,H,,NO5: 374.1751;
found: 374.1755.

Methyl 5-0x0-1,9b-diphenyl-5,9b-dihydro-3H-pyrrolo[2,1-aliso-
indole-3-carboxylate (5a)

Colorless oil; yield: 21.7 mg (57%).

'H NMR (300 MHz, CDCl;): 6 =8.08 (d,J=7.8 Hz, 1 H), 7.71 (d,] = 7.5
Hz, 1 H), 7.58 (t, ] = 7.5 Hz, 1 H), 7.51-7.39 (comp, 3 H), 7.39-7.34
(comp, 3 H), 7.34-7.27 (comp, 3 H), 7.21-7.20 (comp, 2 H), 7.03 (s, 1
H), 5.53 (s, 1 H), 3.86 (s, 3 H).

13C NMR (125 MHz, CDCly): & = 169.4, 163.6, 147.7, 147.0, 141.8,
136.3, 134.7, 133.9, 132.6, 1294, 129.0, 128.9, 128.8, 128.7, 128.2,
126.01, 125.99, 124.3, 80.9, 66.0, 52.3.

HRMS (ESI Q-TOF): m/z [M + Na]* calcd for C,sH,)NOs: 382.1438;
found: 382.1440.

Methyl 5-0x0-3,9b-diphenyl-5,9b-dihydro-3H-pyrrolo[2,1-aliso-
indole-1-carboxylate (6a)
Colorless oil; yield: 11.1 mg (29%).

'H NMR (300 MHz, CDCl3): 6 =7.90(d,J=7.5Hz,1H),7.85(d,J=7.7
Hz, 1H),7.58 (t,J=7.5Hz, 1 H), 7.51 (t,] = 7.4 Hz, 1 H), 7.35 (d,] = 2.7
Hz, 1 H), 7.26 (s, 1 H), 7.23-7.09 (comp, 6 H), 7.08-7.06 (comp, 3 H),
6.09 (d,J=2.7 Hz, 1 H), 3.84 (s, 3 H).

13C NMR (125 MHz, CDCl;): & = 175.4, 163.7, 150.5, 146.6, 1414,
137.5, 135.7, 133.2, 132.1, 129.2, 128.5, 128.3, 128.0, 127.6, 127.04,
127.02,126.7, 124.3, 80.6, 65.7, 52.3.

HRMS (ESI Q-TOF): m/z [M + H]" calcd for C,sH,oNO;: 382.1438;
found: 382.1439.

Methyl 3-Ethyl-5-0x0-9b-phenyl-5,9b-dihydro-3H-pyrrolo[2,1-a]-
isoindole-1-carboxylate (6b)
Colorless oil; yield: 22.3 mg (67%).

H NMR (500 MHz, CDCl,): 8 = 7.97 (d, J = 7.7 Hz, 1 H), 7.80 (d, ] = 7.5
Hz, 1 H), 7.55-7.52 (m, 1 H), 7.48-7.40 (m, 1 H), 7.33-7.32 (comp, 2
H), 7.29-7.26 (m, 1 H), 7.26-7.21 (comp, 2 H), 7.08 (d, ] = 1.2 Hz, 1 H),
4.47-4.45 (m, 1 H), 3.83 (s, 3 H), 2.76-2.67 (m, 1 H), 2.20-2.06 (m, 1
H), 1.00 (t, ] = 7.4 Hz, 3 H).
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13C NMR (125 MHz, CDCly): & = 170.4, 163.6, 147.7, 147.6, 141.3,
136.4, 133.8, 132.5, 128.78, 128.76, 128.2, 126.0, 125.9, 124.0, 81.1,
64.0,52.2,22.2,11.1.

HRMS (ESI Q-TOF): m/z [M + H]* calcd for C,;H,,NO;: 334.1438;
found: 334.1440.

Isoxazolidines 8

To a 10-mL oven-dried round-bottom flask containing a magnetic stir
bar, nitrone 7 (23.6 mg, 0.12 mmol, 1.2 equiv.), and 4 A MS (50 mg) in
anhydrous DCM (1.0 mL) was added a solution of vinyldiazo com-
pound 3b (50.1 mg, 0.1 mmol) in anhydrous DCM (1.0 mL) via a sy-
ringe pump over 1 h at room temperature. When the reaction was
complete (monitored by TLC), the reaction mixture was purified by
flash column chromatography on silica gel without additional treat-
ment (hexanes/EtOAc = 10:1) to give pure product 8.

Ethyl (1R,4R,5S)-5-(4-Bromophenyl)-6-(3-0xo-1-phenylisoindolin-
1-yl)-3,4-diphenyl-2-o0xa-3-azabicyclo[3.1.0]-hexane-1-carboxyl-
ate (8)

Colorless oil; yield: 24.1 mg (36%).

'H NMR (500 MHz, CDCl;): 6 = 7.62 (d, J = 6.8 Hz, 1 H), 7.53-7.52
(comp, 2 H), 7.41-7.37 (comp, 5 H), 7.36-7.25 (comp, 9 H), 7.16 (t, ] =
7.7 Hz, 2 H), 7.06-6.96 (comp, 2 H), 6.93 (d,J = 8.2 Hz, 2 H), 5.22 (s, 1
H), 5.06 (s, 1 H), 4.08-4.02 (m, 1 H), 3.98 (s, 1 H), 3.75-3.68 (m, 1 H),
0.77 (t,J=7.1 Hz, 3 H).

13C NMR (125 MHz, CDCl;): & = 170.8, 166.6, 150.9, 148.5, 143.1,
136.6, 133.9, 1324, 132.0, 1294, 129.1, 128.8, 128.7, 128.6, 128.4,
128.2,127.7,125.4, 124.8, 124.0, 123.3, 122.3, 118.0, 75.4, 74.1, 63.9,
62.0,47.3,34.9,13.5.

HRMS (ESI Q-TOF): m/z [M + H]* calcd for C3H5,BrN,0,4: 671.1540;
found: 671.1542.

Ethyl (1R,4S,5S)-5-(4-Bromophenyl)-6-(3-0x0-1-phenylisoindolin-
1-yl)-3,4-diphenyl-2-o0xa-3-azabicyclo[3.1.0]hexane-1-carboxyl-
ate (8')

Colorless oil; yield: 24.1 mg (36%).

'H NMR (500 MHz, CDCl;): & = 7.80 (d, J = 7.5 Hz, 1 H), 7.76-7.75
(comp, 2 H), 7.60 (t, ] = 7.5 Hz, 1 H), 7.57-7.53 (comp, 3 H), 7.52-7.40
(comp, 4 H), 7.13 (t,] = 7.8 Hz, 2 H), 7.01-6.92 (comp, 2 H), 6.88 (d, J =
8.2 Hz, 2 H), 6.83-6.80 (comp, 3 H), 6.77-6.75 (comp, 4 H), 5.59 (s, 1
H), 4.20-4.15 (comp, 2 H), 3.96 (s, 1 H), 1.20 (t, J = 7.1 Hz, 3 H).

13C NMR (125 MHz, CDCly): & = 169.2, 168.4, 152.0, 148.2, 142.2,
137.1, 133.0, 132.0, 131.6, 130.7, 129.5, 129.0, 128.8, 128.7, 1284,
127.7,127.2,124.9,124.2,124.0, 123.6, 122.8, 117.7, 78.1, 72.1, 63 4,
62.4,47.1,37.4,14.2.

HRMS (ESI Q-TOF): m/z [M + HJ* calcd for C39H3,BrN,0,4: 671.1540;
found: 671.1541.
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