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Multi-Objective Vector Control of a Three-Phase
Vibratory Energy Harvester

Connor H. Ligeikis and Jeffrey T. Scruggs

Abstract— In vibration energy harvesting technologies,
feedback control is required to maximize the average power
generated from stochastic disturbances. In large-scale ap-
plications it is often advantageous to use three-phase con-
version technologies for transduction. In such situations,
vector control techniques can be used to optimally control
the transducer currents in the direct-quadrature reference
frame, as dynamic functions of feedback measurements. In
this paradigm, converted energy is optimally controlled via
the quadrature current. The direct current is only used to
maintain control of the quadrature current when the ma-
chine’s internal back-EMF exceeds the voltage of the power
bus, a technique called field weakening. Due to increased
dissipation in the stator coil, the use of field weakening
results in a reduction in power conversion, relative to what
would theoretically be possible with a larger bus voltage.
This over-voltage issue can be alternatively addressed by
imposing a competing objective in the optimization of the
quadrature current controller, such that the frequency and
duration of these over-voltage events are reduced. How-
ever, this also results in reduced generated power, due to
the need to satisfy the competing constraint. This paper
examines the tradeoff between these two approaches to
over-voltage compensation, and illustrates a methodology
for determining the optimum balance between the two ap-
proaches.

Index Terms— Vibration, Energy harvesting, Power gen-
eration, Power electronics, Field weakening, Hardware-in-
the-loop testing

I. INTRODUCTION

Over the last two decades, an immense amount of research
has been conducted on technologies to harvest energy from
mechanical vibrations. The majority of this work has focused
on small-scale technologies, intended for power levels below
one milliwatt and frequencies above about 25Hz [1]. For
such applications, several modes of transduction have been
successfully demonstrated, including piezoelectric [2], elec-
tromagnetic [3], and electrostatic [4] technologies, as well
as others. Typically, the transducer is embedded within a
resonant mechanical assembly, which is tuned to resonate at
the dominant excitation frequency of the vibration energy to
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be harvested. This assembly is then dynamically coupled to
the vibratory phenomenon, and the transducer is interfaced
with an isolated power bus or rechargeable storage system,
thus facilitating a path for energy conversion. Such energy
harvesters enable sensing and computational technologies to
be operated in energy-autonomy [2], [5]–[7].

In theory, feedback control can be used to optimize the aver-
age power generated from stochastic vibrations [8]. However,
in the low-power and high-frequency regime, implementation
of such feedback laws is impractical. This is because the
theoretically-optimal feedback law typically requires that the
transducer current be controlled continuously using high-
frequency pulse-width-modulation (PWM). However, the level
of available mechanical power may be so low that it is less than
that which is necessary to switch a single MOSFET in PWM,
due to the parasitics consumed by the gate drive circuit [9],
[10]. Consequently, more favorable performance can therefore
be achieved with power-electronic circuits that switch at only
very low frequencies, or involve no controllable switching at
all (such as a simple diode bridge rectifier). Although such
circuits are theoretically sub-optimal under the assumption
of zero parasitic loss, their performance can be superior to
circuits requiring PWM switching when these losses are taken
into account.

Vibration energy harvesting is also useful at larger power
scales, and at lower frequencies. Arguably the most important
application in this regime concerns the generation of utility-
scale power from ocean waves. Wave energy conversion
(WEC) technologies are emerging as a promising alternative
to wind, solar, and geothermal sources of renewable energy
[11]. WECs often operate at average power levels in excess of
50kW, and at frequencies between 0.05 − 0.2Hz. As another
example, energy harvesting technology can be used to capture
power from the vibratory responses of wind-excited buildings,
at power scales above 1kW and frequencies below 1Hz [12].
The harvested energy in these applications can, in turn, be used
to power the feedback control systems that optimize vibration
suppression, resulting in closed-loop systems that operate
in energy-autonomy [13], [14]. Similar self-powered control
technologies can be implemented in high-performance vehicle
suspensions, for the purpose of minimizing cabin accelerations
[15], [16]. Typical power levels in such applications are on the
order of 10W, with vibratory frequencies of about 1Hz.

For these larger-scale energy harvesting technologies, the
time-averaged power available for generation far exceeds
parasitic power dissipation, even when PWM-controlled power
electronics are used to continuously regulate transducer cur-
rents. Consequently, optimal feedback control theory can jus-
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Fig. 1. Standard power-electronic drive interfaced with three-phase permanent-magnet synchronous machine

tifiably be used to maximize average power generation. It
has been shown that if the vibratory disturbance is stationary
stochastic, the dynamically-excited plant is linear, and if the
primary parasitic conductive losses are quadratic (i.e., I2R)
losses, then the optimal energy-harvesting feedback law is the
solution to a sign-indefinite Linear Quadratic Gaussian (LQG)
control problem [17].

At larger power scales, three-phase, permanent-magnet syn-
chronous machines (PMSMs) are often used as transducers
[18]. The use of three-phase machines is preferable, com-
pared to DC machines, because they typically have much
higher power density, they are more efficient, and they are
commercially-available in higher power ratings. The use of
PMSMs, specifically, is advantageous because they are effi-
cient and power-dense, and they are easy to control over a
wide dynamic operating regime. Although direct-drive linear
machines are sometimes used [19]–[21], rotary machines are
common, especially when it is important to economize mass
and size [22]–[28]. In such cases, the rotor is interfaced
with the rectilinear vibratory motion of the energy harvester
through one of a variety of mechanical mechanisms, such
as a ballscrew or planetary roller screw mechanism. When
designed with sufficiently-high lead angle, such linear-to-
rotational conversion mechanisms can achieve efficiencies in
excess of 90% in both forward-drive and backdrive operation
(see, e.g., [29], page B15-6). Note, that this efficiency does not
include dissipation due to rectilinear sliding friction, which can
be rather significant in many cases.

The standard power-electronic drive that interfaces a three-
phase PMSM with a DC power bus is illustrated in Figure 1.
In PWM operation, the six MOSFETs are switched on and
off at high frequency, so as to track desired phase currents ia
and ib, with ic = −ia − ib. If the velocity of the machine is
sufficiently large, the magnitudes of its line-to-line back-EMFs
can exceed the bus voltage Vs, in which case the phase currents
must be expressly controlled so as to counteract the field of
the rotor, in order to maintain controllability of the drive [30].
This technique, called field weakening, allows for a lower bus
voltage to be used for operation in a given dynamic response

regime, which can result in lower parasitic switching losses in
the drive. However, the use of field weakening also leads to
higher conductive losses in the stator coils. Consequently, for
a given dynamic response regime, the choice of Vs constitutes
a trade-off, and in general there exists an optimal value that
maximizes efficiency [18].

In the context of energy harvesting, the dynamic response
regime is affected by the manner in which the stator currents
are controlled. There is an optimal causal feedback law,
relating the dynamic output measurements of the harvester to
the stator currents, which maximizes average generated power
in stationary stochastic response. With this optimal feedback
imposed, the vibratory intensity of the harvester velocity
(and therefore the back-EMFs of the machine) is significant,
and under high excitation, field-weakening may be necessary.
Alternatively, in order to maintain back-EMF response ampli-
tudes at levels below the bus voltage Vs, a competing objective
may be imposed on the optimization of the feedback law,
which enforces a bound on the vibratory response intensity
of the harvester velocity. This multi-objective optimal control
approach can be used as an alternative to field weakening, or
in tandem with it, as a means of accommodating the finite
bus voltage. However, as with field-weakening, this approach
involves a compromise in power generation performance. This
is because, by imposing a competing vibration-suppression
objective in the optimization of the feedback controller, the
primary energy-harvesting objective is reduced from its un-
constrained optimum value.

The motivation for this paper is to characterize the trade-
off between these two techniques (i.e., field weakening and
velocity suppression) for accommodating a finite bus voltage
in a vibration energy harvesting application. Further, we es-
tablish and experimentally validate a procedure to determine
the optimal combination of the two techniques, to maximize
power generation. The specific contributions of the paper are
as follows. In Section II we provide an overview of the
nonlinear stochastic model for the dynamics of a vibration
energy harvester with a three-phase PMSM as a transducer. In
Section IIIA-C, we illustrate a systematic technique for multi-
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objective optimization of a dynamic output-feedback law for a
stochastically-excited energy harvester with linear dynamics,
such that the average power generation is maximized. In
Section IIID-E, we illustrate the extension of this methodology
to accommodate field weakening, given a finite bus voltage Vs.
In Section IIIF-H, we illustrate the further extension of the
methodology to accommodate nonlinearities in the harvester
dynamics, using the principle of stochastic linearization, re-
sulting in an iterative optimization procedure. In Section IV,
we use simulation to determine the optimal balance between
the two means of accommodating a finite bus voltage (i.e.,
field weakening vs. vibration suppression). In Section V, we
validate the optimized control design experimentally, in the
form of a Hardware-in-the-Loop (HiL) experiment. Finally,
Section VI provides some conclusions.

II. MODELING

A. Mechanical dynamic model
Consider the vibratory energy harvesting system shown in

Figure 2. It consists of a single-degree-of-freedom (SDOF)
oscillator coupled with an electromechanical transducer. The
transducer consists of a surface-mount rotary PMSM inter-
faced with a precision ballscrew via a timing belt to accom-
plish linear-to-rotational motion conversion. The motion of the
energy harvester evolves according to the following differential
equation

mẍ(t) + cẋ(t) + kx(t) = −ma(t) + f(t) (1)

where m is the SDOF mass, c is the viscous damping,
k is the stiffness, x(t) is the relative displacement of the
mass, a(t) is the stochastic base acceleration, and f(t) is
the force exerted on the mass by the transducer. We assume
that the linear-to-rotational conversion has negligible backlash,
and that the timing belt is infinitely stiff, resulting in static
linear relationship between x(t) and the PMSM’s mechanical
rotation angle θr(t). The resultant relationship between the
respective linear and rotational velocities is ẋ(t) = ℓθ̇r(t),
where ℓ is the effective screw lead length, which includes an
amplification factor due to belt drive ratio.

The transducer force f(t) is a consequence of several
interacting physical phenomena. The rotor has a finite rotary
inertia J > 0 and viscous damping B > 0, which contribute
apparent rectilinear inertia and damping terms to f(t). Ad-
ditionally, the rectilinear sliding between the ballscrew nut
and the guide produces a Coulomb friction force fc. The
electromechanical conversion of energy by the PMSM results
in an apparent rectilinear force fe(t) at the ballscrew nut.
And finally, the sliding of the bearings between the nut and
the screw produces an approximately-static linear-to-rotational
conversion efficiency η ∈ (0, 1). In [31], [32] it is shown that
these effects can be approximately modeled as

f(t) = h(p(t))

(
fe(t)−

J

ℓ2
ẍ(t)− B

ℓ2
ẋ(t)

)
− fcsgn(ẋ(t))

(2)
where p(t) is the mechanical power delivered to the nut, i.e.,

p(t) =

(
fe(t)−

J

ℓ2
ẍ(t)− B

ℓ2
ẋ(t)

)
ẋ(t), (3)

and where h(·) and sgn(·) are discontinuous functions, which
satisfy

h(p(t))


= η : p(t) > 0

∈ [η, 1/η] : p(t) = 0

= 1/η : p(t) < 0

(4)

sgn(ẋ(t))


= 1 : ẋ(t) > 0

∈ [−1, 1] : ẋ(t) = 0

= −1 : ẋ(t) < 0

(5)

Equation (2) is imprecise, because h(·) and sgn(·) are not
uniquely defined for the case in which their arguments are
zero. However, when (2) and (1) are combined, the value of
f(t) is a unique static function of {x(t), ẋ(t), fe(t), a(t)}.

To show this, first consider the case in which ẋ(t) > 0. In
this case, it follows that

J

ℓ2m
f(t)ẋ(t) =

J

ℓ2m
h(p(t))p(t)− J

ℓ2m
fcẋ (6)

=− p(t) + β (x(t), ẋ(t), fe(t), a(t)) ẋ(t) (7)

where

β (x(t), ẋ(t), fe(t), a(t)) ≜
J

ℓ2
a(t) +

Jk

mℓ2
x(t)

+

[
Jc

mℓ2
− B

ℓ2

]
ẋ(t) + fe(t). (8)

It follows that[
1 +

J

ℓ2m
h(p(t))

]
p(t) =[

β (x(t), ẋ(t), fe(t), a(t)) +
J

ℓ2m
fc

]
ẋ(t) (9)

The left-hand side is an invertible function of p(t), and
consequently the equation returns a unique solution for p(t),
for all {x(t), ẋ(t), fe(t), a(t)} ∈ R4. For this solution, denote

Φ+ (x(t), ẋ(t), fe(t), a(t))

≜
h(p(t))p(t)

ẋ(t)
− fc (10)

= g+

(
β (x(t), ẋ(t), fe(t), a(t)) +

J

ℓ2m
fc

)
− fc (11)

where
g+(u) ≜

h(u)u

1 + J
ℓ2mh(u)

(12)

is continuous for all u ∈ R. Then we have that f(t) can be
found uniquely as

f(t) = Φ+ (x(t), ẋ(t), fe(t), a(t)) (13)

An analogous process for the case in which ẋ(t) < 0 gives
that

f(t) = Φ− (x(t), ẋ(t), fe(t), a(t)) (14)

where

Φ− (x(t), ẋ(t), fe(t), a(t))

≜
h(p(t))p(t)

ẋ(t)
+ fc (15)

= g−

(
β (x(t), ẋ(t), fe(t), a(t))−

J

ℓ2m
fc

)
+ fc (16)
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Fig. 2. Single-degree-of-freedom energy harvester (left) and permanent-magnet synchronous machine (PMSM) transducer with internal
components illustrated (right)

and where

g−(u) ≜
h(−u)u

1 + J
ℓ2mh(−u)

(17)

is continuous for all u ∈ R. For {x(t), ẋ(t), fe(t), a(t)} ∈
R4 with ẋ(t) = 0, the Coulomb friction force constrains the
trajectory to slide on this subspace (i.e., enforces ẍ(t) = 0) if
the magnitude of the force required to do so is less than fc. It
is straight-forward to show that this is the case if and only if

fc ⩾ max
{
−ma(t)− kx(t) + h(fe(t))fe(t),

ma(t) + kx(t)− h(−fe(t))fe(t)
}

(18)

in which case it follows that

f(t) = ma(t) + kx(t) (19)

Otherwise, if

fc < −ma(t)− kx(t) + h(fe(t))fe(t) (20)

then the friction force is equal to its lower bound, and

f(t) =h(fe(t))

(
fe(t)−

J

ℓ2
ẍ(t)

)
− fc (21)

=Φ+ (x(t), 0, fe(t), a(t)) (22)

resulting in ẍ(t) > 0. Likewise, if

fc < ma(t) + kx(t)− h(−fe(t))fe(t) (23)

then the friction force is equal to its upper bound, and

f(t) =h(−fe(t))
(
fe(t)−

J

ℓ2
ẍ(t)

)
+ fc (24)

=Φ− (x(t), 0, fe(t), a(t)) (25)

resulting in ẍ(t) < 0. We note that both (20) and (23) cannot
simultaneously be true because the sums of the right-hand
sides of these inequalities is nonpositive for all fe(t) ∈ R and
all η ∈ (0, 1).

To summarize, we have the unique mapping
{x(t), ẋ(t), fe(t), a(t)} 7→ f(t), as

f(t) =



Φ+ (x(t), ẋ(t), fe(t), a(t))
: {x(t), ẋ(t), fe(t), a(t)} ∈ S+

Φ− (x(t), ẋ(t), fe(t), a(t))
: {x(t), ẋ(t), fe(t), a(t)} ∈ S−

ma(t) + kx(t)
: {x(t), ẋ(t), fe(t), a(t)} /∈ S− ∪ S+

(26)

≜Φ (x(t), ẋ(t), fe(t), a(t)) (27)

where sets S+ and S− are

S+ =
{
x(t), ẋ(t), fe(t), a(t) : ẋ(t) > 0

∨ (ẋ(t) = 0 ∧ (20))
}

(28)

S− =
{
x(t), ẋ(t), fe(t), a(t) : ẋ(t) < 0

∨ (ẋ(t) = 0 ∧ (23))
}

(29)

B. Electrical dynamic model

Electromechanical force fe(t) is determined by the PMSM’s
three-phase currents, which evolve according to

d

dt
iabc(t) =

1

L
(vabc(t)−Riabc(t) + eabc(t)) (30)

where iabc(t) ≜
[
ia(t) ib(t) ic(t)

]T
is the vec-

tor of three-phase line-to-neutral currents, vabc(t) ≜[
van(t) vbn(t) vcn(t)

]T
is the vector of three-phase line-

to-neutral stator voltages, L is the line-to-neutral winding
inductance, R is the line-to-neutral winding resistance, and
eabc(t) is the vector of line-to-neutral back-EMF voltages,
found as

eabc(t) ≜

ea(t)eb(t)
ec(t)

 =

 sin(θre(t))
sin
(
θre(t)− 2π

3

)
sin
(
θre(t) +

2π
3

)
ΛPM θ̇re (31)

where ΛPM is the permanent-magnet flux linkage and
θre(t) ≜ Npθr(t)/2 is the electrical rotor angle with Np being
the number of poles of the machine. A graphical representation
of the three-phase electrical model of the PMSM is provided
in Figure 1. For the purposes of analysis and control, it is
beneficial to project the three-phase variables onto a reference
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frame that rotates with θre(t). This is accomplished using the
combined Clarke/Park transformation [33] defined as

P (θre) ≜
2

3

 cos (θre) cos
(
θre − 2π

3

)
cos
(
θre +

2π
3

)
− sin (θre) − sin

(
θre − 2π

3

)
− sin

(
θre +

2π
3

)
1
2

1
2

1
2


(32)

with the corresponding inverse transformation

P−1 (θre) =

 cos (θre) − sin(θre) 1

cos
(
θre − 2π

3

)
− sin

(
θre − 2π

3

)
1

cos
(
θre +

2π
3

)
− sin

(
θre +

2π
3

)
1

 (33)

and where we have suppressed the time-dependency of θre(t).
Subsequently, we define vectors

irdq0(t) ≜

ird(t)irq(t)
ir0(t)

 = P (θre(t)) iabc(t) (34)

vrdq0(t) ≜

vrd(t)vrq(t)
vr0(t)

 = P (θre(t)) vabc(t) (35)

where the subscripts dq0 refer to the direct-axis, quadrature-
axis, and zero components, respectively and the superscript
r denotes the rotor reference frame. Multiplying (30) by
P (θre(t)) and using (34) gives

P (θre(t))
d

dt

(
P−1(θre(t))i

r
dq0(t)

)
=

1

L

(
vrdq0(t)−Rirdq0(t) + P (θre(t))eabc(t)

)
. (36)

Expanding (36) and making the substitution θ̇re(t) =
Np

2ℓ ẋ(t),
we obtain the following system of coupled differential equa-
tions

d

dt
ird(t) =

1

L

(
vrd(t)−Rird(t) +

Np

2ℓ
ẋ(t)Lirq(t)

)
(37)

d

dt
irq(t) =

1

L

(
vrq(t)−Rirq(t)−

Np

2ℓ
ẋ(t)(Lird(t) + ΛPM )

)
(38)

d

dt
ir0(t) =

1

L
(vr0(t)−Rir0(t)) (39)

We assume that the three-phase windings are connected in
an ungrounded wye configuration, implying that ir0(t) =
1
3 (ia(t) + ib(t) + ic(t)) = 0 ∀t, due to Kirchoff’s current
law applied to the neutral node. From this it follows that
vr0(t) = 0 ∀t.

Finally, it can be shown [34] that the electromechanical
force is proportional to the quadrature-axis current and is given
by

fe(t) =
3NpΛPM

4ℓ
irq(t) (40)

C. Power generation

The instantaneous electrical power delivered to the trans-
ducer is defined as

Pelec(t) ≜v
T
abc(t)iabc(t) (41)

= 3
2v

rT
dq0(t)i

r
dq0(t) (42)

= 3
2

(
vrd(t)i

r
d(t) + vrq(t)i

r
q(t)
)

(43)

where positive Pelec implies conversion of electrical to me-
chanical energy (motoring). Accordingly, the power generated
by the energy harvester is defined as Pgen ≜ −Pelec.

D. Combined electromechanical state space

Assembling (1), (27), (37), (38), (40) into state-space form
provides a complete representation of the nonlinear electrome-
chanical dynamics of the energy harvester, as

d

dt


x
ẋ
ird
irq

 =


ẋ

− k
mx− c

m ẋ− a+ 1
mΦ

(
x, ẋ,

3NpΛPM

4ℓ irq, a
)

−R
L i

r
d +

Np

2ℓ ẋi
r
q +

1
Lv

r
d

−NpΛPM

2Lℓ ẋ− R
L i

r
q −

Np

2ℓ ẋi
r
d +

1
Lv

r
q


(44)

where we have suppressed the time-dependency of the state
variables, and disturbance a.

E. Effect of finite bus voltage on current feasibility

We assume that the iabc currents (and consequently
irq and ird) are regulated at high-bandwidth (at least two
decades beyond the energy harvester’s natural frequency) via
proportional-integral (PI) feedback control. As discussed, the
power electronic drive in Figure 1 uses high-frequency PWM
of the PMSM line-to-line voltages to realize the PI commands.
Using a time-scale separation argument, it follows that {irq, ird}
may be viewed as control inputs from the perspective of the
mechanical system dynamics. However, at a given time t,
the feasibility of a desired {irq(t), ird(t)} pair depends on the
inverter’s bus voltage Vs. Assuming that a simple sinusoidal
PWM scheme is used by each of the drive’s three half-bridges,
it can be shown (see e.g., [35]) that the maximum magnitude
of any three-phase line-to-neutral voltage is Vs/2. In balanced
operation, we have that

van(t) = vph(t) sin(θre(t) + ϕ) (45)

vbn(t) = vph(t) sin(θre(t)−
2π

3
+ ϕ) (46)

vcn(t) = vph(t) sin(θre(t) +
2π

3
+ ϕ) (47)

where vph(t) is the voltage amplitude and ϕ is an arbitrary
constant phase angle. Consequently, this implies√

vTabc(t)vabc(t) =
√
v2an(t) + v2bn(t) + v2cn(t) (48)

=
√

3
2 |vph(t)| (49)

≤
√

3
2

Vs
2

(50)
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But √
vTabc(t)vabc(t) =

√
vTdq0(t)P

−T (t)P−1(t)vdq0(t)

=
√

3
2 (v

r2
d (t) + vr2q (t)) (51)

Combining (48) and (51) we see that the rotor reference frame
voltages must satisfy√

vr2d (t) + vr2q (t) ≤ Vs
2

∀t (52)

We note that if the more complex space vector modulation
(SVM) algorithm is used to perform PWM, the right-hand-side
of (52) would increase to Vs/

√
3 (see e.g., [34] for details).

Next, suppose ẋ(t), vrq(t), and vrd(t) are held constant. In
steady-state we have d

dt i
r
d(t) =

d
dt i

r
q(t) = 0 implying the static

relationships

vrd =Rird −
Np

2l
ẋLirq (53)

vrq =Rirq +
Np

2l
ẋ(Lird + ΛPM ) (54)

Substituting these expressions back into the left-hand side of
(52) and then simplifying, we obtain a feasibility condition for
the currents {irq, ird}(

R2 +
N2

pL
2

4ℓ2
ẋ2

)(
ir2q + ir2d

)
+
NpΛPM

ℓ
ẋ

×
(
Rirq +

NpL

2ℓ
ẋird

)
≤ 1

4

(
V 2
s −

N2
pΛ

2
PM

ℓ2
ẋ2

)
(55)

It is important to note that this constraint is quasi-static.
Following the approach taken in [18], we approximately
account for the dynamic behavior of ẋ(t), irq(t), and ird(t),
by tightening (55) using the safety factor δ < 1 as follows(

R2 +
N2

pL
2

4ℓ2
ẋ2

)(
ir2q (t) + ir2d (t)

)
+
NpΛPM

ℓ
ẋ(t)

(
Rirq(t) +

NpL

2ℓ
ẋ(t)ird(t)

)
≤ 1

4

(
(δVs)

2 −
N2

pΛ
2
PM

ℓ2
ẋ2(t)

)
(56)

Next, observe that (56) is equivalent to(
irq(t) +

2NpΛPMRℓẋ(t)

(2Rℓ)2 + (NpLẋ(t))2

)2

+

(
ird(t) +

(Npẋ)
2(t)ΛPML

(2Rℓ)2 + (NpLẋ(t))2

)2

≤ (δℓVs)
2

(2Rℓ)2 + (NpLẋ(t))2
(57)

In this form, it becomes clear that there exists an ird(t) that
satisfies the constraint if and only if irq(t) satisfies

irq(t) ∈
[
Imin
q (ẋ(t)), Imax

q (ẋ(t))
]

(58)

where

Imax
q (ẋ) =

δℓVs√
(2Rℓ)2 + (NpLẋ)2

− 2NpΛPMRℓẋ

(2Rℓ)2 + (NpLẋ)2

(59)

Imin
q (ẋ) =− δℓVs√

(2Rℓ)2 + (NpLẋ)2
− 2NpΛPMRℓẋ

(2Rℓ)2 + (NpLẋ)2

(60)

F. Current rating constraints
In addition to current constraint (57) arising from the finite

bus voltage, PMSMs (and electric machines in general) will
have continuous and peak current ratings denoted icont and
ipeak, respectively. In general, the former may be exceeded
briefly during operation, while the latter should not be ex-
ceeded to avoid damaging the device and creating a safety
hazard. Obviously, both ratings could be satisfied by imposing√

ir2d + ir2q ≤ icont < ipeak ∀t (61)

However, this would be overly conservative, and we will
discuss how it might be appropriately relaxed later in the paper.

G. Disturbance model
We assume the stochastic disturbance a(t) has a second-

order bandpass spectrum and is modeled the output of a filter
with state space representation

d
dt

[
d(t)
a(t)

]
=

[
0 1

−ω2
a −2ζaωa

] [
d(t)
a(t)

]
+

[
0

2σa
√
ζaωa

]
w(t)

(62)
where w(t) is a scalar, stationary, white noise process with
zero mean and unit spectral intensity (i.e., E{w(t)w(τ)} =
δ(t−τ)), d(t) is an internal dynamic state, ωa is the passband
frequency, σa is the disturbance intensity, and ζa is the
damping ratio.

H. Augmented state space
Proceeding with the assumption that {irq(t), ird(t)} may be

considered as control inputs, we combine the energy harvester
dynamics and the disturbance model to obtain the following
augmented system S , with state space representation

S :

{
d
dtξ(t) = Ψ

(
ξ(t), irq(t)

)
+Bww(t)

y(t) = Cyξ(t) + n(t)
(63)

where state vector ξ ≜
[
x ẋ d a

]T
, vector y contains the

measured outputs, and

Ψ
(
ξ, irq

)
≜


ẋ

− k
mx− c

m ẋ− a+ 1
mΦ

(
x, ẋ,

3NpΛPM

4ℓ irq, a
)

a
−ω2

ad− 2ζaωaa


(64)

Bw ≜
[
0 0 0 2σa

√
ζaωa

]T
(65)

where we have suppressed the time-dependency of ξ(t) and
irq(t). We assume that y(t) is corrupted by a white noise
vector n(t), which has zero mean and intensity Φn. We further
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assume that y(t) contains a noise-corrupted version of the
transducer velocity, which we denote ˙̃x(t); i.e., i.e., that there
exists a matrix Tvy such that

˙̃x(t) = Tvyy(t) = ẋ(t) + Tvyn(t). (66)

Beyond this assumption, our analysis can accommodate any
definition for y(t) which is linear in ξ(t) and n(t). For the
example considered later in the paper, we presume y(t) =
˙̃x(t), resulting in Tvy = I .

III. CONTROL SYNTHESIS

In this section, we present a heuristic method for designing
a dynamic output-feedback control law K : y 7→ {irq, ird}
that approximately maximizes the average power generated by
the energy harvester in stationarity and ensures the feasibility
constraint (57) is satisfied at all times. The proposed controller
K will actually consist of two distinct, but coupled, feedback
laws Kq : y 7→ irq and Kd : {y, irq} 7→ ird. We will first design
the quadrature-axis current controller Kq to maximize power
generation via a multi-objective convex optimization, and then
utilize the direct-axis current controller Kd to enforce (57)
through field-weakening.

A. Performance objective
Given the stochastic nature of the disturbance, we seek

to maximize the mean power generated by the harvester,
defined as P̄gen ≜ E{Pgen}, where E{·} denotes expectation
in stationarity. Expanding this we have

P̄gen =− E
{

3
2

(
vrdi

r
d + vrq i

r
q

)}
(67)

=− 3
2

(
R E

{
ir2d + ir2q

}
+ C E

{
ξirq
})

(68)

where matrix C ≜
[
0

NpΛPM

2ℓ 0 0
]
.

B. General optimization formulation
With the performance objective defined, we can now state

the control synthesis problem in terms of the following non-
convex optimization problem

OP1 :


Given : S, R, Vs, δ
Maximize : P̄gen

Over : K
Subject to : (57), (61)

Solving this problem exactly is extremely challenging and
remains an open research question. Here, we will only solve
it approximately.

C. Linear case with infinite Vs

First, consider the simplified case in which the transducer’s
linear-to-rotational conversion mechanism is perfectly effi-
cient, there is no Coulomb friction, and the drive bus voltage
is infinitely large (i.e., η = 1, fc = 0, and Vs = ∞). In this
scenario, S becomes a linear system, i.e.,

S :

{
d
dtξ(t) = Aξ(t) +Birq(t) +Bww(t)
y(t) = Cyξ(t) + n(t)

(69)

where

A =


0 1 0 0

− k
m̃ − c̃

m̃ 0 −m
m̃

0 0 0 1
0 0 −ω2

a −2ωaζa

 (70)

B =
[
0

3NpΛPM

4ℓm̃ 0 0
]T

(71)

and where

m̃ =m+
J

ℓ2
(72)

c̃ =c+
B

ℓ2
(73)

Because Vs = ∞, (57) is automatically satisfied for all
{irq, ird} currents. As ird has no effect on the energy harvester’s
mechanical dynamics, it is optimal to control ird = 0 ∀t, in
order to minimize resistive power losses. Consequently, (61)
is reduced to

|irq(t)| ≤ icont ∀t (74)

In practice it is physically possible to exceed icont for brief
periods without adverse effects. As such, we replace (74) with
a constraint on the variance of irq , i.e.,

E{ir2q } ≤ 1

4
i2cont (75)

We justify the use of (75) to approximately constrain the peak
values of irq as follows. Assume Kq is linear and let ψ be a
randomly-selected peak of the closed-loop, stationary response
of irq . If irq is a narrowband process, then ψ is Rayleigh-
distributed (for details see e.g., [36]). Then we have

Pr(ψ ≤ icont) = 1− exp

(
−i2cont
2σ2

i

)
(76)

≥ 1− exp

(
−i2cont

2(i2cont/4)

)
(77)

= 1− exp(−2) ≈ 0.86 (78)

where σ2
i ≜ E{ir2q }. It follows that any linear controller

adhering to (75) ensures that the majority (i.e., ≥86%) of the
current peaks are below the continuous current rating.

To further enhance the tractability of the control design
problem, we restrict the optimization domain of Kq to LTI,
strictly proper transfer functions, with state space realizations
of dimension equal to that of S . As such, we presume

Kq :

{
d
dtxK(t) = AKxK(t) +BKy(t)

irq = CKxK(t)
(79)

where dim(xK) = dim(ξ), and seek to optimize the triple
{AK , BK , CK}.

With these assumptions made, OP1 can be rewritten as
a convex, semi-definite program by applying the following
theorem. This theorem characterizes necessary and sufficient
conditions for the existence of a feedback law K that results in
power generation performance in excess of a given threshold γ.
Furthermore, if the existence criteria are met, the theorem also
provides an explicit parametrization of one such controller.

Theorem 1: Let η = 1, fc = 0, Vs = ∞, and ird(t) = 0 ∀t.
There exists a stabilizing LTI feedback law Kq : y 7→ irq as in
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(79), such that P̄gen > γ and σ2
i <

1
4 i

2
cont, if and only if there

exist dimensionally-compatible matrices X = XT , Y = Y T ,
Ã, B̃, C̃, and scalar β such that

∆1 +∆T
1 A+ ÃT Bw 0

⋆ ∆2 +∆T
2 Y Bw B̃

⋆ ⋆ −I 0
⋆ ⋆ ⋆ −Φ−1

n

 <0 (80)

 1
4 i

2
cont C̃ 0
⋆ X I
⋆ ⋆ Y

 >0 (81)

β C̃ −HX −H
⋆ X I
⋆ ⋆ Y

 >0 (82)

− 3
2

(
1
2B

T
wSBw + βR

)
>γ (83)

where ⋆ implies symmetry,

∆1 ≜ AX +BC̃, ∆2 ≜ Y A+ B̃Cy, (84)

H = − 1
2R

−1(BTS+C), and S = ST is the unique stabilizing
solution to Riccati equation

ATS + SA− 1

2
(SB + CT )R−1(BTS + C) = 0. (85)

Furthermore, if the above inequalities are feasible, then one
such controller is obtained via

AK =N−1
[
Ã− Y AX − B̃CyX − Y BC̃

]
M−T (86)

BK =N−1B̃ (87)

CK =C̃M−T (88)

and M and N are any matrices that satisfy XY +MNT = I .
Proof: See [37] for an analogous proof. It uses standard

linear matrix inequality (LMI) techniques described by [38].

We obtain the optimal Kq by solving the convex optimiza-
tion

OP2 :


Given : S, R
Minimize : −γ
Over : γ, β, Ã, B̃, C̃,

X = XT , Y = Y T

Subject to : (80), (81), (82), (83)

and then computing {AK , BK , CK} via the inversion of
equations (86), (87), and (88).

D. Accounting for finite Vs in the design of Kq

Next, we consider the case in which Vs is finite and con-
straint (57) must be satisfied. First, observe that as |ẋ(t)| be-
comes larger, the set of feasible {irq(t), ird(t)} currents shrinks.
It follows that one potential way to reduce the possibility of
Kq producing infeasible irq currents is to impose a constraint
on the closed-loop, mean-square response of the transducer
velocity, i.e.,

E{ẋ2} < ẋ2m (89)

where ẋm > 0 is some constant. Using the variables intro-
duced in Theorem 1, it can be shown (see e.g., [39]) that (89)
is equivalent to the following LMIẋ2m CvX Cv

⋆ X I
⋆ ⋆ Y

 > 0 (90)

where

Cv ≜
[
0 1 0 0

]
(91)

Obviously, any Kq adhering to (90) could still produce infeasi-
ble irq(t) commands that violate (59) and (60), compromising
the closed-loop system behavior. However, we can signifi-
cantly reduce the probability of this happening by introducing
another constraint into the optimization of Kq .

However, we begin by noting that (57) implies, through
multiplication by the denominator of its right-hand side, that

ir2q (t)
(
(2Rℓ)2 + (NpLẋ(t))

2
)
+ 4NpΛPMRℓẋ(t)i

r
q(t)

+
(2NpΛPMRℓẋ(t))

2

(2Rℓ)2 + (NpLẋ(t))2
≤ (δℓVs)

2. (92)

This constraint is unfortunately nonconvex. However, if
ẋ2(t) ⩽ ẋ2m then (92) is conservatively satisfied by imposing

ir2q (t)
(
4R2ℓ2 +N2

pL
2ẋ2m

)
+ 4NpΛPMRℓẋ(t)i

r
q(t)

+ Λ2
PMN

2
p ẋ

2(t) ≤ (δℓVs)
2 (93)

which in turn is equivalent to(
irq(t)R+ ẋ(t)

ΛPMNp

2ℓ

)2

+

(
irq(t)ẋm

NpL

2ℓ

)2

≤
(
δVs
2

)2

(94)
Using the same reasoning as in Section III-C, we enforce the
above constraint in a relaxed probabilistic sense, i.e.,

E

{(
irqR+ ẋ

ΛPMNp

2l

)2

+

(
irqẋm

NpL

2l

)2
}
<

1

4

(
δVs
2

)2

(95)
which is convex and again can be rewritten as an LMI

1
4 (

δVs

2 )2 RC̃ +
ΛPMNp

2ℓ CvX
ΛPMNp

2ℓ Cv
ẋmNpL

2ℓ C̃ 0
⋆ X I 0 0
⋆ ⋆ Y 0 0
⋆ ⋆ ⋆ X I
⋆ ⋆ ⋆ ⋆ Y


> 0 (96)

Incorporating (90) and (96) into the Kq optimization problem,
we obtain

OP3 :


Given : S, R
Minimize : −γ
Over : γ, β, Ã, B̃, C̃,

X = XT , Y = Y T

Subject to : (80), (81), (82), (83), (90), (96)

which maintains the convexity of OP2. By designing Kq to
adhere to both (90) and (96), we ensure that approximately
≥86% of the irq current peaks satisfy (94). Obviously, this is
not sufficient to guarantee irq(t) feasibility at all times, and
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TABLE I
OSCILLATOR AND DISTURBANCE CHARACTERISTICS

Parameter Value
SDOF mass (m) 3000 kg
SDOF stiffness (k) 1.1844×105 N-m−1

SDOF viscous damping (c) 942.47 N-s-m−1

Disturbance passband frequency (ωa) 2π rad-s−1

Disturbance damping ratio (ζa) 0.1

TABLE II
TRANSDUCER CHARACTERISTICS

Parameter Value
Resistance (R) 10.7 Ω
Inductance (L) 0.0219 H
Permanent-magnet flux linkage (ΛPM ) 0.1603 V-s
No. of poles (Np) 6
Rotational inertia (J) 3.54 ×10−5 kg-m2

Rotational viscous damping (B) 3.25 ×10−4 N-m-s
Coulomb friction (fc) 35 N
Lead length (l) 1.27 ×10−3 m-rad−1

Efficiency (η) 0.91
Continuous current rating (icont) 2 A

we therefore impose a secondary “clipping” action using the
upper and lower bounds on irq provided by (59) and (60).
Letting ir∗q (t) denote the control input produced by Kq , we
implement the dynamic saturation

irq(t) = sat
[Imin

q (ẋ(t)),Imax
q (ẋ(t))]

{ir∗q (t)} (97)

where Imax
q (·) and Imin

q (·) are defined by (59) and (60),
respectively.

We also note that OP3 does not consider the impact of the
ird current on the performance objective P̄gen. In fact, the
parameter γ serves only as an approximate lower bound on
the quantity

(
P̄gen + 3

2R E{ir2d }
)
. We say it is an approximate

bound because it does not account for the saturation introduced
by (97).

E. Design of Kd

We now turn our attention to the design of Kd. The direct-
axis current ird(t) has no effect on the mechanical dynamics of
the energy harvester. In addition, nonzero ird(t) reduces power
generation by increasing resistive power losses. It is therefore
optimal to control ird(t) = 0, unless this leads to violation of
(57). In this case, it is desirable to make the magnitude of
ird(t) as small as possible while still satisfying the constraint,
in order to minimize losses. Accordingly, we implement the
feedback law Kd : {y, irq} 7→ ird as

ird(t) = min

{
0, σ( ˙̂x(t), irq(t))−

(Np
˙̂x(t))2ΛPML

(2Rℓ)2 + (NpL ˙̂x(t))2

}
(98)

where ˙̂x(t) is a low-pass filtered version of the noise-
corrupted, measured transducer velocity ˙̃x(t) and

σ( ˙̂x, irq) ≜√√√√ (δℓVs)2

(2Rℓ)2 + (NpL ˙̂x)2
−

(
irq +

2NpΛPMRℓ ˙̂x

(2Rℓ)2 + (NpL ˙̂x)2

)2

(99)

and where we have suppressed the time-dependence of ˙̂x(t)
and irq(t). Low-pass filtering of ˙̃x(t) is performed to prevent
the introduction and amplification of high-frequency noise in
the ird commands. This filter should have a cutoff frequency
well beyond the harvester and disturbance dynamics to avoid
signal distortion in the frequency band of interest.

In effect, feedback law (98) is used to counteract the back-
EMF term NpΛPM

2l ẋ(t) in differential equation (38) for irq(t).
This strategy is known as field-weakening in the literature,
since a negative ird(t) current “weakens” the magnetic field
produced by the rotor magnets.

F. Linearization of transducer dynamics

Finally, we remove the assumptions that η = 1 and fc = 0.
To make the Kq controller design analytically tractable, we
first note that for the system considered here, it was found
that the optimal feedback law resulted in the transducer being
backdriven for the vast majority of the dynamic response,
resulting in p(t) < 0 for most t. As such, for the purposes
of control design, the function h(p(t)) can be approximated
by 1/η for all t. Doing so allows us to simplify Ψ(·) in (63)
by

Ψ(ξ(t), irq(t)) = Aξ(t) +Birq(t) + F sgn(ẋ(t)) (100)

where A and B are as in (70) and (71) respectively, but with

m̃ =m+
J

ηℓ2
(101)

c̃ =c+
B

ηℓ2
(102)

and F is
F =

[
0 − fc

m̃ 0 0
]T

(103)

The validity of this assumption was verified in both simulation
and experiment.

Next, we use stochastic linearization [40] to address the
Coulomb friction force. We assume that, in closed-loop, the
augmented state

ν =
[
ξT xTK(t)

]T
(104)

has a probability distribution ϕ(ν) that can be approximated
as Gaussian with zero mean and stationary covariance matrix
Σ = E{ννT }, i.e.,

ϕ(ν) ≈ 1√
(2π)n detΣ

exp

{
−1

2
νTΣν

}
(105)

and then find the value of Σ that brings about the weak
stationarity condition

d
dt E

{
ν(t)νT (t)

}
= 0 (106)
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This technique is also referred to as Gaussian closure, statis-
tical linearization, equivalent linearization, and quasilineariza-
tion in the literature. It can be shown (see [32] for details)
that this results in the solution to the nonlinear, Lyapunov-like
equation

Acl(Σ)Σ + ΣAT
cl(Σ) +BwclB

T
wcl = 0 (107)

where

Acl(Σ) ≜

[
Aeq(Σ) BCK

BKCy AK

]
, Bwcl =

[
Bw

0

]
(108)

and where

Aeq(Σ) = A+

√
2

π

FCv√
CvΣCT

v

(109)

We then have the stochastically-linearized plant model

Seq :

{
d
dtξ(t) = Aeq(Σ)ξ(t) +Birq(t) +Bww(t)
y(t) = Cyξ(t) + n(t)

(110)

G. Iterative multi-objective optimization of Kq

Linearized plant model Seq implicitly depends on Kq given
the relationship between Aeq and Σ, i.e., the square root in
the denominator of (109). Due to this dependence, the direct
optimization of Kq over domain {AK , BK , CK} is nonconvex,
with a nonquadratic objective. There does not appear to be a
coordinate transformation, as there was in Theorem 1 for the
case with linear dynamics, which converts the problem to a
convex one. Of course, this does not preclude the use of an
appropriate nonconvex optimization algorithm to search over
the {AK , BK , CK} domain. However, here we instead pro-
pose the following ad-hoc but much more numerically-efficient
procedure to design Kq for the stochastically-linearized system
model:

Step 0. Set Aeq = A, and solve OP3 to obtain
{AK , BK , CK}.
Step 1. Assemble Acl as in (108) and compute Σ by
solving Lyapunov equation (107).
Step 2. Compute Aeq(Σ) via (109).
Step 3. Re-solve OP3 for the updated Seq to obtain
{AK , BK , CK} and γ. Return to Step 1.

Steps 1-3 are repeated until some convergence criterion
on γ is satisfied. Specifically, we use the absolute value of
the change in γ to assess convergence and cease iterating
when |∆γ| < 10−5. Although we offer no proof that this
procedure is guaranteed to converge, we found that, for the
examples studied in this paper, it generally converged within
20 iterations.

H. Implementation of vector control scheme
Figure 3 provides an graphical representation of our vec-

tor control law K. In summary, the quadrature-axis current
controller Kq , designed using the procedure proposed in the
previous subsection, takes in feedback measurements y and
produces desired ir∗q commands. Then ir∗q is dynamically
saturated according to (97) using the filtered velocity measure-
ment ˙̂x to produce feasible irq . Subsequently, the direct-axis

Saturation

Eq. (97)

Eq. (98)

Eq. (78)

Low-pass

filter

Fig. 3. Block diagram of vector control law K

controller Kd given in (98) produces the ird current needed to
satisfy (57). Next, the corresponding three-phase currents iabc
are computed by applying the inverse Clarke/Park transform
P−1(θre) to irdq0 recalling that ir0 = 0 ∀t. Finally, a power
electronic drive facilitates high-bandwidth tracking of the iabc
commands, as described previously.

IV. SIMULATION

As indicated in Section III-D, the analytical evaluation mean
generated power P̄gen associated with K is only an approxi-
mation. This is because the transducer mechanical dynamics
are, in reality, nonlinear and our synthesis procedure exploits
an approximate, linearized model. In addition, (97) and (98)
introduce additional nonlinearity, making it intractable to
compute the expectations E{ir2q + ir2d } and E

{
ξirq
}

in (67)
analytically. Instead, it is necessary to assess the performance
of a given K via numerical simulation, which accounts for all
nonlinear effects.

In this section, we provide power generation results obtained
via simulation for an energy harvester with the parameters
listed in Tables I and II. We note that transducer characteristics
given in Table II correspond to an actual physical device,
which is described in detail in Section V-A. We assume that
only the transducer velocity is available for feedback (i.e.,
Cy = Cv). In addition, we presume the bus voltage Vs = 20
V and set the safety factor δ = 0.95.

We specifically examined the effect of the transducer veloc-
ity constraint ẋm and the disturbance intensity σa on P̄gen. The
convex programming software CVX [41] was used to perform
the iterative controller optimization described in Section III-
G for each {ẋm, σa} pair. The simulations were implemented
in MATLAB/Simulink. We simulated the dynamic response of
the full nonlinear system S over a time duration of 20 minutes,
assuming instantaneous tracking of the current commands
produced by K (i.e., we did not simulate the PWM switching
of the power electronic drive nor the dynamics of the low-level
PI current tracking loops). This assumption was validated by
comparing to experimental results, as will shown subsequently.
A running average was used to estimate the mean generated
power, i.e.,

ˆ̄Pgen(t) = −1

t

∫ t

0

3

2

(
vrd(τ)i

r
d(τ) + vrq(τ)i

r
q(τ)

)
dτ (111)

with the stationary value approximated as P̄gen ≈
ˆ̄Pgen(1200s).

Figure 4 shows a surface plot of P̄gen corresponding to
various {ẋm, σa} combinations. There are a few trends to note.
Clearly, there is a trade-off between velocity regulation and
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Fig. 4. Effect of velocity constraint ẋm and disturbance intensity σa

on simulated mean generated power (top); and comparison of optimal
mean generated power from simulation and corresponding γ parameter
from the iterative optimization of Kq (bottom)

power generation. For very small ẋm, it becomes unnecessary
to use field-weakening (i.e., controlling negative ird currents),
because constraint (57) is more easily satisfied. While this
does result in smaller ir2d R losses, power generation is actually
reduced in this case because more of the irq control effort
is used to satisfy the velocity constraint (89). In contrast, as
ẋm is made larger, ir2d R losses increase due to the increased
need for field weakening. Also in this case, constraint (95)
becomes excessively conservative, resulting in irq currents
that generate less power. Consequently, there is an optimal
tuning of the parameter ẋm, which occurs along the ridge
in the P̄gen surface. The optimal P̄ ∗

gen values located along
this ridge are plotted versus σa in the bottom of Figure 4.
For comparison, we also plot the corresponding optimal γ∗

parameter from the iterative optimization procedure. We note
that P̄ ∗

gen is less than γ∗, due to the ir2d R losses and the
dynamic saturation of irq , which are not accounted for in the
optimization algorithm. In practice, a look-up table could be
used to adapt the Kq controller according to the disturbance
intensity, so that performance remains on the ridge as σa
changes.

V. EXPERIMENT

The simulation results presented above were experimen-
tally verified via hardware-in-the-loop (HiL) testing. In this

section we provide a brief overview of the HiL method
and a description of our experimental setup. We then report
the HiL results. HiL testing is a cyber-physical experimental
method that interfaces numerical models with physical system
components in real time. In the civil engineering literature this
type of testing is known as real-time hybrid simulation [42],
and has been used extensively to study the performance of
both structural control devices (e.g., [43]–[47]) and vibratory
energy harvesting technologies (e.g., [48], [49]).

A. HiL testbed

A block diagram of the HiL scheme used in this research
is shown in Figure 5. The SDOF oscillator and stochastic dis-
turbance models, along with the corresponding vector control
algorithm are implemented in Simulink, and simulated on a
dSpace DS1103 board in real time at a sampling frequency
of 4096 Hz. The physical testbed is shown in Figure 6. It
is comprised of a 50 cm stroke, 30 kN electromechanical
linear actuator, which consists of a Exlar planetary roller screw
coupled to a 20 kW Lenze induction motor. The actuator
position is controlled using a digitally-programmable Lenze
drive, which is interfaced with the dSpace DS1103 unit via
the CAN protocol. The drive controller is highly configurable,
with nested position, velocity, and current feedback loops, each
having tunable gains. In addition, a model-based feed-forward
compensator [50] is used to further improve the actuator’s
dynamic response and minimize position-tracking error.

The transducer used in this study consists of a Kollmorgen
AKM24C PMSM, rated at 0.7 kW and 480 V, coupled
via ballscrew to a Kollmorgen EC2-series electric cylinder,
with a 3.6 kN maximum force rating. Additional transducer
data is listed in Table II. The PMSM is equipped with an
internal resolver that provides angular position and velocity
measurements. An Analog Devices AD2S1205 resolver-to-
digital converter chip is used to interface these measurements
with the dSpace DS1103 unit. The transducer is attached to
the actuator via a clevis connection, as shown in Figure 6.
An Interface Model 1210 load cell is used to measure the
transducer’s restoring force.

An Agilent N5749A power supply provides the 20 V bus
voltage to an Advanced Motion Controls S16A8 PWM servo-
drive, which controls the transducer’s iabc currents using
analog PI feedback loops. The PWM switching frequency of
the drive is 33 kHz. The drive also provides measurements of
the three-phase currents.

The three-phase voltages vabc are measured using a signal
conditioning circuit consisting of 11:1 attenuators and second-
order Sallen-Key low-pass filters, with cutoff frequency of
approximately 1000Hz. The measured currents and voltages
are sampled at a frequency of 4096Hz. Filtering of the PWM
voltages is necessary to obtain switch-averaged signals and
to prevent aliasing during analog-to-digital conversion. We
also note that the filter cutoff frequency is approximately 1.5
decades above the maximum fundamental frequency of the
three-phase voltage waveforms. As such, the filtering results in
minimal distortion of the underlying switch-averaged voltage
and power signals.
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Fig. 7. Generated power measured during experimental HiL test with
σa = 0.1 m/s2 and ẋm = 0.0286 m/s

B. Transducer mechanical parameter identification
Prior to HiL testing, the mechanical transducer model

parameters in (2) were identified using data from a series
of characterization experiments. The friction term fc was
determined by back-driving the transducer according to a
sinusoidal position profile with a frequency of 0.01 Hz and
an amplitude of 25 mm, resulting in extremely low linear
velocities and accelerations. It follows that the forces produced
during this test could be attributed almost entirely to Coulomb
friction. Subsequently, we conducted a 60-second, position
sine sweep with frequency content ranging from 0.2-2 Hz
and a velocity envelope ranging from 40-70 mm/s. We then
used a least squares approach to determine the inertia J
and viscous damping B parameters using the data from this
second test. For more information regarding the identification
of mechanical parameters J , B, and fc, the reader is directed
to chapter 7 of the first author’s Ph.D. dissertation [51].

C. HiL results

We conducted a total of 30 ten-minute long HiL experiments
for different combinations of the {ẋm, σa} parameters. The ex-
perimentally measured P̄gen for each of these cases are plotted
in Figure 8. Also shown in Figure 8 are the corresponding
“slices” of the P̄gen surface obtained via simulation shown
in Figure 4. Although the simulations slightly over-predict
mean power generation for the larger disturbance intensity of
σa = 0.12 m/s2, and slightly under-predict power generation
for the smaller disturbance intensity of σa = 0.08 m/s2, there
is, in general, very good agreement between the simulated and
experimental results. In addition, the experiments confirmed
that there is an optimal value of the parameter ẋm which
maximizes P̄gen. Out of the ten different velocity constraint
parameter values considered in the experiments, we found that
ẋm = 0.0286 m/s corresponded to the largest P̄gen for each
of the three disturbance intensities.

Figure 7 shows the full generated power time history asso-
ciated with disturbance intensity σa = 0.1 m/s2 and velocity
constraint ẋm = 0.0286 m/s. The generated power flow was
almost entirely positive implying that the mechanical power
delivered to the transducer ballscrew nut p(t) was negative for
almost all time, validating our assumption used to linearize the
efficiency function h(p(t)) ≈ 1/η for the synthesis of Kq . This
was also generally the case for the other HiL experiments.

Time histories of the measured irq and ird currents are shown
in Figure 9, as well as the difference between the desired
ir∗q produced by Kq and the dynamically saturated irq from
(97). We see that both saturation and field-weakening are
occasionally needed to maintain current feasibility in this case.
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More specifically, saturation of irq was only needed during 22
seconds of the 600-second long experiment, which is less than
4% of the time. This illustrates the usefulness of incorporating
probabilistic constraint (96) in the Kq controller optimization.
In addition, a nonzero ird current was commanded for ap-
proximately 32 seconds. This negative ird current introduced
approximately 0.088 W of additional resistive power loss,
which is approximately 4% of the mean generated power.

Finally, Figures 10-12 contain a variety of data comparing
the HiL and simulation results over a shorter time-span of 15
seconds. There was consistently good agreement between all
measured signals, again confirming the validity of using (2) to
model the transducer’s mechanical dynamics. One important
thing to note is that dynamic saturation of irq and negative ird
occur only when the transducer velocity is large, as expected
given constraint (57).

VI. CONCLUSIONS

In this paper, we presented a technique to design feedback
control laws that approximately maximize the power genera-
tion of a three-phase energy harvester. We assumed a stochastic
vibratory disturbance model, and utilized a vector control
framework. While our proposed synthesis method is heuristic,
it explicitly accounts for constraints imposed on the harvester’s
currents due to a finite power bus voltage. We first designed
the rotor reference frame quadrature-axis current controller Kq

via an iterative multi-objective optimization procedure using a
linearized transducer model. Subsequently, we implemented
field-weakening via the direct-axis current controller Kd.
The multi-objective optimization imposed competing, mean-
square constraints on the irq current and transducer velocity
ẋ. Through a simulation example, we determined that there
existed an optimal tuning of the velocity constraint parameter
ẋm, which produced the highest mean generated power for a
given disturbance intensity. The simulation results were then
confirmed experimentally via hardware-in-the-loop testing of
an actual PMSM transducer. Finally, we emphasize that the
methodology developed herein is suboptimal and future work
should focus on the parallel, rather than sequential, design
of Kq and Kd to both maximize P̄gen and ensure current
feasibility.
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Fig. 9. Quadrature-axis current (top); effect of saturation action (97)
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measured during the HiL experiment with σa = 0.1 m/s2 and
ẋm = 0.0286 m/s
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