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Abstract— Linear-quadratic-Gaussian (LQG) optimal control
theory can be used to maximize the average electrical power
generated by a vibratory energy harvester subjected to random
disturbances. However, feedback controllers designed using the
LQG framework often require large peak power flows for
their successful implementation, which may be undesirable for
several reasons. In this paper, we propose using a risk-sensitive
performance measure to synthesize control laws for stochastic
vibratory energy harvesters. The proposed methodology is
applied in two examples, in which we show how the risk-
sensitive parameter can be systematically tuned to maximize
power generation and mitigate excessive power flows. The first
example involves a simple single-degree-of-freedom oscillator
subjected to a bandpass filtered noise excitation, and the second
pertains to ocean wave energy harvesting.

I. INTRODUCTION

The successful extraction of energy from vibratory phe-
nomena is a challenging problem, requiring efficient conver-
sion of mechanical energy to electrical energy. Depending
on the scale of the particular application, this harvested
energy can be delivered to a grid or stored and used locally.
For example, it is possible to generate utility-scale power
from ocean waves. On the other hand, it is advantageous
to scavenge energy directly from large civil infrastructure
in order to power sensing/control systems. Both of these
applications concern mechanical systems subjected to ran-
dom disturbances, and necessitate the use of optimal control
theory to maximize average power generation.

Over the past few decades, an immense amount of research
has been conducted on technologies to harvest energy from
mechanical vibrations. These efforts have mainly focused
on small-scale technologies, with power levels less than
1mW and frequencies greater than 25Hz [1]. In this setting,
several types of mechanical-to-electrical energy transducers
have been successfully implemented, including piezoelectric
[2], electromagnetic [3], and electrostatic [4] technologies.
Typically, the transducer is embedded within a resonant
mechanical system, which is designed such that its resonance
frequency coincides with the dominant excitation frequency
of the vibration energy to be harvested. The transducer is
connected to an isolated power bus or rechargeable storage
device, providing a conduit for energy conversion. One
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important application of low-level vibratory energy harvest-
ing is to power sensors embedded within civil structures,
which vibrate when subjected to vehicular and pedestrian
traffic loads (see e.g., [2], [5]–[7]). This allows the sensing
technologies to be operated in energy-autonomy, which is
desirable if it is difficult or costly to physically access the
sensors’ batteries.

Vibration energy harvesting is also useful at larger power
scales, and at lower frequencies. A principal application in
this regime is the generation of utility-scale power from
ocean waves. Wave energy converters (WECs) are emerging
as a promising alternative to other sources of renewable
energy [8]. WECs are typically operated at average power
levels greater than 50kW, and at frequencies between 0.05−
0.2Hz. As another example, large-scale transducers can be
used to capture energy from the dynamic responses of wind
or seismically excited buildings, at power scales above 1kW
and frequencies below 1Hz [9]. This harvested energy can, in
turn, be used to power feedback control systems for vibration
suppression, resulting in closed-loop systems that operate in
energy-autonomy [10], [11].

If the vibratory disturbance is a stationary stochastic
process, the plant is linear, and the main dissipative losses
are quadratic (i.e., I2R) losses, it has been shown that the
optimal energy-harvesting feedback law is the solution to
a sign-indefinite Linear-Quadratic-Gaussian (LQG) control
problem [12]. The theoretically-optimal feedback law typi-
cally requires that the transducer current be controlled con-
tinuously via a power-electronic drive using high-frequency
pulse-width-modulation. Several subsequent studies have de-
veloped related optimal control techniques which account for
nonlinearities in the harvester dynamics [13], non-quadratic
loss models [14], and non-stationary disturbances [15].

Unfortunately, optimal feedback controllers designed us-
ing the LQG framework often require significant bidirec-
tional power flows in order to provide the optimal mean
generated power. This is undesirable, as over-designed trans-
duction and power-electronic hardware becomes necessary
for the controllers’ successful implementation, leading to
increased system costs. Reducing so-called peak-to-average-
power ratios is a common goal in the wave-energy har-
vesting community (see e.g., [16]–[20]). In this paper, we
consider the use of the more general Linear-Exponential-
Quadratic-Gaussian (LEQG) [21], [22] or risk-sensitive [23],
[24] performance index to design feedback controllers for
vibratory energy harvesters. In this setting, one minimizes the
expectation of the exponential of an integral-quadratic cost
function multiplied by a risk-sensitivity parameter denoted ρ.
The sign of ρ determines if the optimizer is risk-seeking or



risk-averse. In the risk-averse case, statistical variation in the
cost function is penalized more heavily than in the standard
LQG formulation. In the context of energy harvesting, the
cost function is the integral of generated power over a given
time horizon (finite or infinite). Hence, we see risk-sensitive
control as a potential means to improve the consistency of
the quantity of harvested energy and consequently reduce
large peak power flows.

The paper is organized as follows. In Section II, we
provide the modeling assumptions for the plant and dis-
turbance. In Section III, we introduce the sign-indefinite,
risk-sensitive performance index and derive optimal full-state
feedback control laws for the finite-time and infinite-time
horizon cases. Importantly, we show that optimal controls
always exist in the risk-averse case. This is quite different
than in standard applications of risk-sensitive control, in
which the optimization “breaks down” and produces infinite
cost at some finite value of the risk-sensitive parameter ρ
[23]. Section IV provides two examples of risk-sensitive
energy harvesting: one involving a single-degree-of-freedom
(SDOF) oscillator subjected to filtered noise excitation, and
another related to ocean wave energy harvesting. Finally,
Section V contains some brief conclusions and a discussion
of future work.

II. MODELING AND ASSUMPTIONS

We assume that the vibratory energy harvester under con-
sideration can be adequately modeled as a finite-dimensional,
linear time-invariant (LTI) system P , with state-space real-
ization

P :

{
d
dtxp(t) = Apxp(t) +Bpuu(t) +Bpaa(t)

v(t) = Cpvxp(t)
(1)

where xp is the state vector and a is the disturbance vector. In
addition, u(t) is the vector of “flow” variables (e.g., current,
force, etc.) and v(t) is the corresponding vector of colocated
“effort” variables (e.g., voltage, velocity, etc.). As such, the
inner product uT (t)v(t) has units of power. We assume that
matrix Ap is Hurwitz and mapping u 7→ v is passive.

We model the exogenous disturbance a as stationary
Gauss-Markov process, with stochastic state-space

A :

{
dxa(t) = Aaxa(t)dt+Badw(t)

a(t) = Caxa(t)
(2)

where xa is the process state vector, w is a zero-mean Wiener
process with d

dt E{ww
T } = I , and matrix Aa is Hurwitz.

We augment P and A to obtain the composite stochastic
state-space model

S :

{
dx(t) = (Ax(t) +Buu(t)) dt+Bwdw(t)
v(t) = Cvx(t)

(3)

where the state vector x ≜
[
xT
p xT

a

]T
and

A =

[
Ap BpaCa

0 Aa

]
, Bw =

[
0
Ba

]
, Bu =

[
Bpu

0

]
(4)

Cv =
[
Cpv 0

]
. (5)

Since Ap and Aa are Hurwitz, it follows that A is Hur-
witz. Finally, we assume that (A,Cv) is observable and(
A,
[
Bu Bw

])
is controllable.

The dissipative losses in the transducers and power elec-
tronics can be approximately modeled as a quadratic form,
i.e., Ploss(t) = uT (t)Ru(t) where matrix R is diagonal
and positive definite. The instantaneous generated electrical
power is then given by

Pgen(t) = −uT (t)v(t)− uT (t)Ru(t) (6)

Over a finite-time horizon [0, T ], the harvested energy is
equal to the integral of the generated power, i.e.,

Eh(T ) =

∫ T

0

Pgen(t)dt. (7)

We conclude this section with a variant of the Positive
Real Lemma.

Lemma 1: If u 7→ v is passive, A is Hurwitz, and R =
RT > 0, it follows that the Riccati equation

0 = ATW +WA+
(
BT

uW − 1
2Cv

)T
R−1

(
BT

uW − 1
2Cv

)
(8)

has a unique solution W = WT > 0, for which A +
BuR

−1(BT
uW − 1

2Cv) is Hurwitz.
Proof: First note that if u 7→ v is passive, then its

transfer function is positive-real. But if this is the case, A
is Hurwitz, and R > 0, then it follows that the mapping
u 7→ v+ 1

2Ru has a transfer function that is strictly positive-
real. Next, assume the state space is partitioned so as to
isolate the subspace that is controllable from u, i.e.,

A =

[
A11 A12

0 A22

]
, Bu =

[
Bu1

0

]
, (9)

Cv =
[
Cv1 Cv2

]
(10)

Assume W is similarly partitioned. Then parameters
{A11, Bu1,

1
2Cv1,

1
2R} correspond to a minimal state space

realization, which is known to be strictly positive-real. It is
then a standard result of the Positive-Real Lemma that the
Riccati equation

0 = AT
11W11 +W11A11

+
(
BT

u1W11 − 1
2Cv1

)T
R−1

(
BT

u1W11 − 1
2Cv1

)
(11)

has a unique solution W11 = WT
11 > 0, and that A11 +

Bu1R
−1
(
BT

u1W11 − 1
2Cv1

)
is Hurwitz. To show that terms

W12 and W22 exist satisfying (8), we simply note that
the resultant partitioned equation for W12 is a Sylvester
equation which is guaranteed to have a unique solution
because A22 and A11−Bu1R

−1
(
BT

u1W11 − 1
2Cv1

)
are both

Hurwitz. The remaining equation for W22 is then a Lyapunov
equation, which is guaranteed to have a unique solution
because A22 is Hurwitz. This proves that W = WT exists.
The fact that A + BuR

−1(BT
uW − 1

2Cv) is Hurwitz can
be seen from the fact that it is block-upper-triangular, with
diagonal blocks equal to A11 + Bu1R

−1(BT
u1W11 − 1

2Cv1)
and A22, both of which are Hurwitz. The fact that W ⩾ 0
comes from the fact that A is Hurwitz, and consequently



all solutions to (8) must be positive-semidefinite. Positive-
definiteness can be proved by contradiction. Let Wη = 0
for η ̸= 0. Then it follows via a quadratic form on (8) that
Cvη = 0. If this is true then multiplying (8) from the right
by η gives that WAη = 0 which implies that Aη is also in
the null space of W . Consequently, we conclude that the null
space of W must be A-invariant. But if this is the case, then
it follows that there exists an eigenvector of A that is in the
null space of W , and for which is also in the null space of
Cv . This violates the assumption that (A,Cv) is observable,
leading to a contradiction.

III. CONTROL FORMULATION

A. Optimal power generation

Let P̄gen ≜ E{Pgen} denote the expected value of the
generated power in stationarity. We will first consider the
problem of synthesizing a full-state feedback controller such
that P̄gen is maximized in closed-loop. Equivalently, we seek
to minimize the quantity

−P̄gen = E
{
xTCT

v u+ uTRu
}

= lim
T→∞

1

T
E

{∫ T

0

xT (t)CT
v u(t) + uT (t)Ru(t)dt

}
.

(12)

This is an infinite-time horizon, LQ-optimal control problem,
with a sign-indefinite cost function. The optimal controller
in this case is given in the following theorem.

Theorem 1 ( [12]): Given composite system S , the op-
timal causal mapping x 7→ u (linear or nonlinear) that
maximizes P̄gen is feedback law

u(t) = Kx(t) = R−1
(
BT

uW − 1
2Cv

)
x(t) (13)

where W is as in (8). Furthermore, the matrix (A+BuK)
is Hurwitz and the optimal mean generated power is

P̄ ∗
gen = tr{BT

wWBw} (14)

We note that the controller given in (13) is agnostic to
the magnitude of the disturbance, i.e., matrix Bw does not
appear in (8). This is consistent with standard LQG theory.

B. Finite horizon, risk-sensitive energy harvesting

Next, we consider the minimization of the following risk-
sensitive performance objective function:

Jρ ≜
1

T

2

ρ
log

{
E

{
exp

{
ρ

2

∫ T

0

−Pgen(t)dt

}}}
(15)

where constant scalar ρ is the risk-sensitivity parameter. Here
we only consider the risk-averse case, i.e., when ρ > 0. In
this case, the exponential more heavily penalizes realizations
of Pgen that result in large energy injection.

To get a better sense of the meaning of metric Jρ,
recall that for an arbitrary random variable X , f(α) =
log{E{exp{αX}} is the cumulant-generating function of X

[25]. As such, (15) can be rewritten as the Taylor series
expansion

Jρ =
1

T

2

ρ

∞∑
n=1

κn

{∫ T

0

Pgen(t)dt

}
(−ρ)n

2nn!
(16)

=
1

T

∞∑
n=1

κn {Eh(T )}
(−1)nρn−1

2n−1n!
(17)

where κn {Eh(T )} is the nth cumulant of Eh(T ). Thus, Jρ
is a linear, weighted combination of the cumulants of Eh(T ),
where the even cumulants have positive weights and the odd
cumulants have negative weights.

Recalling that the first two cumulants are equal to mean
and variance, it follows that when ρ is small

Jρ ≈ 1

T

(
− E {Eh(T )}+

ρ

4
Var {Eh(T )}

)
(18)

Consequently, by minimizing Jρ we can approximately max-
imize the average energy harvested over the time horizon
while also penalizing statistical variation in Eh(T ). In some
sense, this allows us to achieve better consistency in the
quantity of harvested energy. Note that when ρ = 0, the
problem becomes equivalent to minimizing the finite-time
horizon version of (12). When ρ is large, Jρ becomes more
difficult to interpret, as importance is shifted to higher-order
cumulants of Eh(T ) in the optimization. However, as ρ is
increased, minimization of Jρ should yield feedback control
laws that result in decreasing power injection.

Theorem 2: Given composite system S with initial con-
dition x(0) = x0, loss parameter R, risk-sensitive parameter
ρ > 0, and time horizon T , Jρ has a finite minimum. The
optimal control that minimizes Jρ is given by

u(t) = −R−1
(
BT

u S(t) +
1
2Cv

)
x(t) (19)

where S(t) satisfies the Riccati equation

d
dtS(t) +ATS(t) + S(t)A

−
(
BT

u S(t) +
1
2Cv

)T
R−1

(
BT

u S(t) +
1
2Cv

)
+ ρS(t)BwB

T
wS(t) = 0 (20)

with final value S(T ) = 0. The optimal performance is equal
to

J∗
ρ =

1

T

(
xT
0 S(0)x0 +

∫ T

0

tr
{
BT

wS(t)Bw

}
dt

)
(21)

Proof: The first part of this proof is a variant of a
classical result. Similar derivations may be found in [21],
[26], and [27].

Expressions (19) – (21) are derived by solving a stochastic
Hamilton-Jacobi-Bellman (HJB) equation. First, define

V (ξ, t) ≜ E

{
exp

{
ρ

2

∫ T

t

−Pgen(τ)dτ

} ∣∣∣∣ x(t) = ξ

}
(22)



and then let V ∗(ξ, t) denote the optimal value of (22), i.e.,
V ∗(ξ, t) ≜ minu V (ξ, t). The pertinent HJB equation is

− ∂V ∗(ξ, t)

∂t
= min

u

{
ρ

2

(
ξTCT

v u+ uTRu
)
V ∗(ξ, t)

+

(
∂V ∗(ξ, t)

∂ξ

)T

(Aξ +Buu)+
1

2
tr

{
∂2V ∗(ξ, t)

∂ξ2
BwB

T
w

}}
(23)

Minimization of the right-hand-side of (23) implies that the
optimal control is given by

u∗ = −1

2
R−1

(
2

ρV ∗(ξ, t)
BT

u

∂V ∗(ξ, t)

∂ξ
+ Cvξ

)
(24)

We assume the value function to be of the form

V ∗(ξ, t) = exp
{ρ
2

(
ξTS(t)ξ + c(t)

)}
(25)

The relevant partial derivatives of (25) are

∂V ∗(ξ, t)

∂ξ
= ρ exp

{
1
2ρ
(
ξTS(t)ξ + c(t)

)}
S(t)ξ

∂2V ∗(ξ, t)

∂ξ2
= ρ exp

{
1
2ρ
(
ξTS(t)ξ + c(t)

)}
×
(
ρS(t)ξξTS(t) + S(t)

)
∂V ∗(ξ, t)

∂t
= ρ exp

{
1

2
ρ
(
ξTS(t)ξ + c(t)

)}
× 1

2

(
ξT d

dtS(t)ξ +
d
dtc(t)

)
After making the appropriate substitutions, (24) simplifies to
(19). In addition, (23) becomes

1
2

(
ξT d

dtS(t)ξ +
d
dtc(t)

)
− 1

2ξ
TCT

v R
−1
(
BT

u S(t) +
1
2Cv

)
ξ

+ 1
2ξ

T
(
BT

u S(t) +
1
2Cv

)T
R−1

(
BT

u S(t) +
1
2Cv

)
ξ

+ ξTS(t)
(
A−BuR

−1
(
BT

u S(t) +
1
2Cv

))
ξ

+ 1
2 tr

{
ρS(t)ξξTS(t)BwB

T
w + S(t)BwB

T
w

}
= 0

which may be simplified further to

ξT
(

d
dtS(t) + S(t)A+ATS(t) + ρS(t)BwB

T
wS(t)

−
(
BT

u S(t) +
1
2Cv

)T
R−1

(
BT

u S(t) +
1
2Cv

) )
ξ

+ d
dtc(t) + tr{BT

wS(t)Bw} = 0 (26)

For (26) to hold for all ξ, it must be the case that (20) and
d
dtc(t) = − tr

{
BT

wS(t)Bw

}
(27)

hold for all t ∈ [0, T ]. The boundary conditions S(T ) = 0
and c(T ) = 0 are imposed from the fact that V ∗(ξ, T ) =
1. Finally, the optimal performance (21) is computed by
substituting V ∗(x0, 0) into (15), with S(0) found via back-
ward integration of (20) and c(0) found by subsequently
integrating (27).

To show that (20) has a solution for all positive ρ, we
exploit the passivity of the mapping u 7→ v. First we show
that S(t) is monotonically decreasing in reverse-time. Next
we show that S(t) is bounded from below. These two facts
together ensure the existence of a bounded solution S(t) for
all t ∈ [0, T ].

To show that S(t) is monotonically decreasing in reverse-
time, we note that from Lemma 1, that there exists a matrix
W = WT > 0 satisfying (8). Define Ξ(t) = S(t) + W ,
noting that Ξ(T ) = W > 0. Then Ξ(t) obeys

− d
dtΞ(t) = ÃTΞ(t) + Ξ(t)Ã

+ Ξ(t)
[
ρBwB

T
w −BuR

−1BT
u

]
Ξ(t)

+ ρWBwB
T
wW (28)

where Ã ≜ A+BuR
−1
(
BT

uW − 1
2Cv

)
−ρBwB

T
wW. Define

Θ(t) = Ξ−1(t) and we have that

d
dtΘ(t) = Θ(t)ÃT + ÃΘ(t) + ρBwB

T
w −BuR

−1BT
u

+Θ(t)
[
ρWBwB

T
wW

]
Θ(t) (29)

Take a second derivative, to get that

d2

dt2Θ(t) = d
dtΘ(t)

[
Ã+Θ(t)ρWBwB

T
wW

]T
+
[
Ã+Θ(t)ρWBwB

T
wW

]
d
dtΘ(t) (30)

with final-value condition d
dtΘ(T ) =

− 1
4W

−1CT
v R

−1CvW
−1. Let interval t ∈ (t1, T ] be

the largest interval over which Ξ(t) is bounded. Then over
this interval we have that

d
dtΘ(t) = −Φ(t, T )W−1CT

v R
−1CvW

−1ΦT (t, T ) (31)

where Φ(t, T ) is the state transition matrix satisfying

d
dtΦ(t, T ) =

[
Ã+Θ(t)ρWBwB

T
wW

]
Φ(t, T ) (32)

with boundary condition Φ(T, T ) = I . We conclude that
d
dtΘ(t) ⩽ 0 on t ∈ (t1, T ], and consequently, that d

dtΞ(t) ⩾
0 on the same interval. As such, Ξ(t) is monotonically
decreasing in reverse-time. But Ξ(t) = S(t) + W , so we
conclude the same for S(t).

To show that S(t) is bounded from below, we first
decompose v(τ) for τ ∈ [t, T ] into components due to u(τ),
w(τ), and x(t) = ξ, as

vu(τ) =

∫ τ

t

Cv exp{A(τ − θ)}Buu(θ)dθ (33)

vw(τ) =

∫ τ

t

Cv exp{A(τ − θ)}Bww(θ)dθ (34)

vξ(τ) =Cv exp{A(τ − t)}ξ (35)

Then we have that because u 7→ v is passive, it is the case
that ∫ T

t

uT (τ)vu(τ)dτ ⩾ 0 (36)



and consequently∫ T

t

−Pgen(τ)dτ ⩾
∫ T

t

[
uT (τ)Ru(τ)

+ uT (τ)vw(τ) + uT (τ)vξ(τ)
]
dτ (37)

Completing the square,∫ T

t

−Pgen(τ)dτ ⩾
∫ T

t

∥u(τ) + 1
2R

−1(vw(τ) + vξ(τ))∥2Rdτ

−
∫ T

t

1
4∥vw(τ) + vξ(τ)∥2R−1dτ (38)

⩾ −
∫ T

t

1
4

(
∥vw(τ)∥2R−1 + ∥vξ(τ)∥2R−1

)
(39)

Because A is Hurwitz, there exists constant χ such that∫ T

0

∥vξ(τ)∥2R−1dτ ⩽ χ∥ξ∥2 (40)

Consequently we have that

V (ξ, t) ⩾ E

{
exp

{
−ρ

8

(∫ T

0

∥vw(τ)∥2R−1dτ + χ∥ξ∥2
)}}
(41)

= δ(ρ) exp
{
−ρχ

8
∥ξ∥2

}
(42)

where we have that

δ(ρ) = E

{
exp

{
−ρ

8

∫ T

0

∥vw(τ)∥2R−1

}}
. (43)

Because vw is Gaussian distributed with finite variance,
δ(ρ) > 0 for all ρ > 0. Consequently we have that

ξTS(t)ξ + c(t) ⩾
2

ρ
log δ(ρ)− χ

4
∥ξ∥2 (44)

That this must hold for all ξ assures that S(t) has a finite
lower bound, thus completing the proof.

C. Infinite horizon, risk-sensitive energy harvesting

Next, we consider the case in which the time horizon is
taken to be [0,∞), and the performance index is defined as

Jρ,∞ ≜ lim
T→∞

Jρ (45)

Theorem 3: Given composite system S , loss parameter R,
and risk-sensitive parameter ρ > 0, the optimal control that
minimizes Jρ,∞ is given by

u(t) = K̄x(t) = −R−1
(
BT

u S̄ + 1
2Cv

)
x(t) (46)

where S̄ = S̄T is the unique stabilizing solution to algebraic
Riccati equation

AT S̄ + S̄A−
(
BT

u S̄ + 1
2Cv

)T
R−1

(
BT

u S̄ + 1
2Cv

)
+ ρS̄BwB

T
w S̄ = 0. (47)

In addition, the optimal performance is

J∗
ρ,∞ = tr

{
BT

w S̄Bw

}
. (48)

m

k c

a

Power 

electronic

drive

u

y

Fig. 1. SDOF energy harvester

and
(
A+BuK̄

)
is Hurwitz.

Proof: In the proof to Theorem 2 it is shown that the
solution S(t) to (20) is monotonically decreasing in reverse-
time, starting from a final value of S(T ) = 0, and that it
is bounded from below. It follows from these two facts that
S(t) has a well-defined limit S̄ as t → −∞. Equivalently,
S(0) has a well-defined limit S̄ as T → ∞. It remains only
to show that S̄ satisfies algebraic Riccati equation (47), or
equivalently, that d

dtS(t) → 0 as t → −∞ for the solution
to (20). This can be proven through a continuity argument
identical to that used in [28] (Lemma 3.7.7).

IV. EXAMPLES

In this section, we explore the application of infinite-time
horizon, risk-sensitive control in two examples.

A. SDOF oscillator

Consider the SDOF vibratory energy harvester portrayed
in Figure 1. It consists of a mechanical oscillator, with mass
m, stiffness k, and viscous damping coefficient c, coupled
with an electromechanical transducer. The dynamics of the
oscillator are governed by the following differential equation

d2

dt2
y(t) + 2ζω0

d

dt
y(t) + ω2

0y(t) = −a(t) +
1

m
u(t) (49)

where y(t) is the relative displacement of the mass, a(t)
is the stochastic base acceleration, ω0 ≜

√
k/m is the

oscillator’s natural frequency, and ζ ≜ c/(2mω0) is the
damping ratio. The electromechanical force u(t) and relative
velocity v(t) = d

dty(t) are assumed to be proportional to the
transducer current and back-EMF voltage, respectively. The
transducer is connected to a power-electronic drive, which is
used regulate the current and track desired control forces at
high bandwidth. We note that the parasitic loss parameter R
has units of power/force2.

For this example, the plant state-space matrices are

Ap =

[
0 1

−ω2
0 −2ζω0

]
, Bpu =

[
0

1/m

]
(50)

Bpa =

[
0
−1

]
, Cpv =

[
0 1

]
. (51)



We assume disturbance a(t) has a second-order bandpass
spectrum, i.e., A has state-space matrices

Aa =

[
0 1

−ω2
a −2ζaωa

]
, Ba =

[
0

2σa

√
ζaωa

]
, Ca =

[
0 1

]
(52)

where ωa is the passband frequency of the spectrum, σa is
the disturbance intensity, and ζa is the damping ratio.

We consider the design of an infinite horizon, risk-
sensitive controller for this system, and study the effect of
ρ on the resulting feedback control law and the closed-loop
performance characteristics. We take the system parameters
to be m = 1, ω0 = ωa = 2π, ζ = 0.01, ζa = 0.1, σa = 1,
and R = 1

4 . Since the closed-loop dynamics are LTI, we can
directly compute P̄gen as follows

P̄gen = − tr{C̃X} (53)

where C̃ = CT
v K + KTRK and state covariance matrix

X = XT > 0 is the solution to Lyapunov equation

(A+BuK̄)X +X(A+BuK̄)T +BwB
T
w = 0 (54)

In addition, we define the root-mean-square (RMS) gen-
erated power as

RMS{Pgen} ≜
√

E{P 2
gen} (55)

This metric can be used to assess the magnitude of
fluctuation in Pgen. Ideally, we would like the ratio
RMS{Pgen}/P̄gen to be small, as that reduces the need for
overrated hardware. It is straightforward to show, via some
matrix algebra, that

RMS{Pgen} =

√
tr
{
C̃X

}2

+ tr
{
C̃X

(
C̃ + C̃T

)
X
}
(56)

We computed J∗
ρ,∞, P̄gen, and RMS{Pgen} for ρ ∈

[0, 1020], and report these results in Figure 2. There are some
obvious trends. First, note that for ρ = 0, we have −J∗

ρ,∞ =
P̄gen = P̄ ∗

gen, as expected. As ρ is increased −J∗
ρ,∞ and P̄gen

diverge, with J∗
ρ,∞ → 0 and P̄gen approaching a constant

value, which corresponds to the control law given in the
Theorem 4 below. Furthermore, in the bottom plot in Figure
2 we see that the ratio of RMS to mean generated power
decreases as ρ is increased, illustrating how tuning ρ can be
used to reduce large power fluctuations.

Theorem 4: Let u∗(t) denote the optimal feedback law
given in (46) for composite system defined by plant matrices
(50) – (51) and disturbance matrices (52) with ω0 = ωa and
loss parameter R. Then

lim
ρ→∞

u∗(t) =
[
0 − 1

2R 0 0
]
x(t) = − 1

2R
v(t). (57)

Proof: This result can be obtained by solving (47)
symbolically, taking the limit as ρ → ∞ which yields S̄ = 0,
and substituting this into (46). These calculations result in
intermediate expressions that are rather lengthy and thus are
omitted for the sake of the reader.

This result can be interpreted as follows: the most risk-
averse control law for this particular energy-harvesting sys-
tem is synthetic viscous damping with a coefficient which
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square (RMS) generated power to mean generated power for SDOF energy
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only depends on the loss parameter R, and does not take
into consideration the disturbance or plant dynamics. Fur-
thermore, control law (57) does not result in bidirectional
power flows, i.e., power is only absorbed, not injected.

Interestingly, it can also be shown for this particular
system that if ω0 = ωa, then for any ρ ≥ 0 the state feedback
gain has the form

K̄ =
[
0 k̄12 0 k̄14

]
(58)

as illustrated in Figure 3. This implies that the only measure-
ments needed to implement the controller are the transducer
velocity v(t) and the base acceleration a(t). Due to space
constraints, we do not include a proof of this statement but
note that this same result holds in the LQG case and direct
the reader to [29] for an analogous proof of that result. We
stress that K̄ does not generally have this special form if
ω0 ̸= ωa.

B. Wave energy harvesting

To demonstrate another application of risk-sensitive energy
harvesting, consider the wave energy converter (WEC) sys-
tem illustrated in Figure 4. The WEC consists of a floating,
slack-moored buoy, in which a tuned vibration absorber
(TVA) is housed. It is presumed that the mooring system
restrains the buoy motion to heave. The TVA is comprised of
a mass-spring-dashpot assembly, with the transducer (usually
referred to as the power take-off or PTO in the wave-
energy literature) located between the mass and the buoy.
The dynamics of the mass along the buoy’s vertical axis,
together with the heave motion of the buoy, constitute a
2DOF vibratory system.
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Fig. 4. Example WEC system

The masses of the buoy and TVA are such that the system
is in hydrostatic equilibrium in the configuration shown
in Figure 4 (with displacement d = 0). The fundamental
vibratory mode of the system (including the added mass of
the displaced fluid) has a natural period of approximately 9s,
and a damping ratio of 0.5%. The loss parameter of the PTO
was chosen as R = 50kW/MN2. This value is reasonable if
the PTO was a permanent-magnet synchronous machine.

We assume the free surface wave elevation a(t) is char-
acterized by a Pierson-Moskowitz spectrum [30], i.e.,

Sa(ω) = ca
∣∣ωp

ω

∣∣5 exp{− 5
4

(ωp

ω

)4}
(59)

which is parametrized by its significant wave height Hs and
peak wave period Tp, with these parameters determining ca
and ωp in (59). We have that Tp = 2π

ωp
and Hs = 4σa,

with σ2
a = 1

2π

∫∞
−∞ Sa(ω)dω. We presume that Tp = 9s

and Hs = 1m. The reader is directed to [31] for additional
information regarding the modeling of this system.

We conducted a similar sensitivity analysis for this system.
Figure 5 illustrates how ρ can be tuned to obtain controllers
that result in smaller peak power flows. For example, with
ρ = 335, we achieve more than a 50% reduction in RMS
generated power while only reducing the mean generated
power less than 10%. Simulated realizations of Pgen corre-
sponding to ρ = 0 and ρ = 335, over the span of one hour,
are shown in Figure 6. There is a clear reduction in power
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Fig. 5. Percent reduction in root-mean-square (RMS) generated power
compared to percent reduction in mean generated power parametrized by
increasing ρ values for WEC example

fluctuation as compared to the optimal LQG controller.

V. CONCLUSIONS

In this paper, we have examined the application of risk-
sensitive control theory to the problem of vibratory energy
harvesting. We showed that the corresponding risk-sensitive
Riccati equation always has a solution, and hence optimal
feedback controllers always exist, in the risk-averse case. We
provided two examples which demonstrated how the risk-
sensitive parameter ρ can be tuned to reduce the variance
of the generated power. A straightforward extension of this
work is to consider the output feedback case. In addition,
more extensive numerical studies should be performed to
better quantify the effect of ρ on other statistical quantities
related to power and energy beyond those discussed herein.
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