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Abstract

Subglacial seismicity presents the opportunity to monitor inaccessible glacial beds at the epicentral
location and time. Glaciers can be underlain by rock or till, a first order control on bed mechanics.
Velocity-weakening, necessary for unstable slip, has been shown for each bed type, but is much stron-
ger and evolves over more than an order of magnitude longer distances for till beds. Utilizing a de-
stiffened double direct shear apparatus, we found conditions for instability at freezing temperatures
and high slip rates for both bed types. During stick—slip stress-drops, we recorded acoustic emissions
with piezoelectric transducers frozen into the ice. The two populations of event waveforms appear
visually similar and overlap in their statistical features. We implemented a suite of supervised
machine learning algorithms to classify the bed type of recorded waveforms and spectra, with pre-
diction accuracy between 65-80%. The Random Forest Classifier is interpretable, showing the
importance of initial oscillation peaks and higher frequency energy. Till beds have generally higher
friction and resulting stress-drops, with more impulsive first arrivals and more high frequency con-
tent compared to rock emissions, but rock beds can produce many till-like events. Seismic signatures
could enhance interpretation of bed conditions and mechanics from subglacial seismicity.

1. Introduction

Future sea-level rise will largely be determined by fast-slipping polar glaciers, known as ice
streams (Cuffey and Paterson, 2010). Since motion is mostly concentrated at their beds, con-
ditions there have an outsized effect on the entire system’s mass-balance and evolution. Glacial
beds are commonly separated, to first order, into hard bedrock or soft sediment (till), and then
as either ‘wet’ (melting temperature and undrained) or ‘dry’ (frozen or drained) (Clarke,
2005). Water and sediment can flow and evolve on much shorter time scales than ice deforms,
so the bed is one of the most dynamic parts of the ice sheet system, assumed to be responsible
for recent changes in ice flow configurations (Bougamont and others, 2015) and ongoing
responses to the changing climate (Parizek and others, 2013).

Although the basal system is difficult to directly access, growing observations of subglacial
seismicity offer the opportunity to monitor changes with high temporal and spatial resolution
(Aster and Winberry, 2017). Recent studies have used subglacial seismicity observations to infer
differences in bed strength (Guerin and others, 2021), failure mechanism (Kufner and others,
2021), fine-scale asperity interactions (Gréff and others, 2021), basal water pressure (Graff
and Walter 2021), local basal shear-stresses and slip-rates (Hudson and others, 2023), and tem-
poral transients in slip tied to fluctuations in meltwater supply (Stevens and others, 2024).

Seismic observations are particularly useful since there are limited glacial bed conditions
that have been shown to exhibit the requisite conditions for seismic failure (Iverson, 2010;
Lipovsky and others, 2019). Classically, ice deformation, and thus slip due to regelation and
viscous creep, is assumed to be rate-strengthening (Weertman, 1957). Till deformation was
also first treated as viscous but later shown to be Coulomb plastic, essentially rate-neutral
(Iverson, 2010, Zoet and Iverson, 2020). Nucleation of the slip instability that produces seismic
waves requires rate-weakening resistance, allowing feedback between accelerating slip and
decreasing friction. Earthquake mechanics have long used an empirical formulation to describe
the rate dependence of frictional resistance and its evolution with the state of the sliding inter-
face, known as rate-state friction (Dietrich, 1979; Ruina, 1983). Within this formalism, the
degree of rate-weakening is given by the amplitude of the positive stability parameter (b - a),
while rate-strengthening gives a negative value (e.g., Marone, 1998). This friction law has
recently been used to model dynamic subglacial drag, such as during stick—slip seismicity
(Graff and Walter, 2021; Hudson and others, 2023), tremor (Lipovsky and Dunham, 2016)
and surge behaviors (Thegersen and others, 2019; Minchew and Meyer, 2020). Stick-slip can
also be modeled by a simple decrease in friction from its stuck, static value (f) to a kinetic
value (f) over some slip displacement (d;) (Sergienko and others, 2009; Goldberg and others,
2014), referred as slip-weakening friction in earthquake modeling (Ida, 1972).

The ability to produce seismic, unstable acceleration, is controlled by the balance between
the elastic stiffness (k) of the surrounding material (ice for glaciers or wall rock in the case of
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faults), which transmits the driving stress to the interface and the
frictional evolution of resistance on the interface, captured by the
rheological critical stiffness (k.), which can be expressed using
rate-state friction parameters (Zoet and others, 2020). To build
up and release elastic energy with unstable stick—slip cycles, the
elastic driving stress must be released more slowly than the fric-
tional resistance decreases during acceleration, as described by
the following inequality:

k< ky= (%), ork < ko= (@T) (1)

where o is effective normal stress, overburden minus pore pres-
sure, and D, is the critical slip distance over which friction evolves
in the rate-state law; the second relation is for a slip-weakening
type friction law. The stiffness control on stability has been
demonstrated for fault (e.g., Marone, 1998) as well as glacial
bed materials (Zoet and others, 2020). This situation provides
the opportunity for seismic observations to present a strong con-
straint on the conditions at their epicentral location and origin
time, but each potential stick—slip mechanism and characteristics
of resulting seismicity must be thoroughly understood to deter-
mine what conditions recorded seismic events represent.

Laboratory simulations provide the opportunity to directly
observe slip behavior under controlled conditions. To date, seis-
mically required rate-weakening has been reported for
debris-laden ice on impermeable rock at sub-freezing temperature
and permeable rock at the pressure melting point (Zoet and
others, 2013), pure ice on impermeable rock at sub-freezing tem-
perature (McCarthy and others, 2017), and pure ice on till at sub-
freezing temperature (Saltiel and others, 2021), with stick—slip
stress-drops reported for debris-laden ice on impermeable rock
at sub-freezing temperature (Zoet and others, 2020). These find-
ings suggest that seismicity is largely associated with dry (frozen
or drained) conditions. Although fast-slipping glaciers are com-
monly assumed to occur on wet, temperate till beds, which have
been shown to be velocity strengthening (Lipovsky and others,
2019; Zoet and Iverson, 2020; Saltiel and others, 2021), local
mechanisms could freeze bed regions, for example around obsta-
cles (de Robin, 1976). Experiments have also shown rate-
weakening is possible due to cavity formation behind hard bed
obstacles (Zoet and Iverson, 2016) and pore-pressure feedback
from clast plowing (Thomason and Iverson, 2008). Although
each of these mechanisms, and the bed conditions which enable
them, show rate-weakening drag, their frictional evolution can
differ dramatically. For example, the critical slip distance (D,)
over which friction evolves to a new steady-state after a change
in slip rate varies by more than an order of magnitude between
rock and till beds under similar conditions in the same apparatus
(McCarthy and others, 2017; Saltiel and others, 2021). These
mechanisms’ different frictional mechanics and applicable scales
likely contribute to aspects of the resulting seismicity, which
could further constrain epicentral bed conditions.

We report here, for the first time, experimental stick—slip
stress-drops for pure ice on impermeable rock and till at
sub-freezing temperatures. In addition, we measured acoustic
emissions (AEs) from these settings and analyze the measured
waveforms using machine learning (ML) classification algorithms
to find the characteristics associated with each bed type. By
improving our understanding of the mechanisms of unstable
slip in glacial settings and their expression in seismic emissions,
these experiments and analysis techniques provide the opportun-
ity to extract more information on conditions/source mechanics
of subglacial or other seismic settings.
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2. Experimental methods and materials

Experiments were conducted using an ambient pressure, cryogenic
temperature, servo-hydraulic biaxial friction apparatus (McCarthy
and others, 2016), with modifications to the insulating cryostat and
loading procedure to allow measurement of till (Saltiel and others,
2021). In this double-direct-shear configuration, a central ice block
slides against two stationary side blocks, with 10 mm thick layers of
pre-compacted and frozen Matanuska till or Barre granite rock on
opposite sides of the ice, such that applied horizontal load is
resolved as normal stress (horizontal force over the surface area
of each side block, 50 mm x 50 mm) and vertical load as shear
stress on the two sliding interfaces (vertical force over the surface
area of both side blocks, 2 x 50 mm x 50 mm).

As in Saltiel and others (2021), we control temperature with
Peltier thermoelectric coolers in front and behind the ice block, as
well as circulation of chiller fluid through the side blocks where
both temperature and flow rate of chiller fluid were actively controlled
to reach and sustain the desired temperature. Resistance Temperature
Detectors (RTDs) ported directly behind the till or rock monitor the
temperature as close to the sliding interfaces as possible.

In this study, all experiments used ~50kPa of normal stress
with displacement control using a load point velocity of 100
pums™™ (the slope of the black line on the bottom of Fig. 1b),
just over 3kmyr™", around the surface velocity of the fastest ice
streams (Zoet and others, 2020). Since the load point Linear
Variable Differential Transformer (LVDT) only has 20 mm of
stroke, the load point was stopped halfway through each experi-
ment and then LVDT was reset to complete the rest of the experi-
mental displacement. In this way, every experiment included a
hold of about 60s during which the shear stress relaxed and
then reloaded, usually resulting in the largest stress-drop and
AE of each experiment (see Fig. 2). This also provides a measure-
ment of the interface’s degree of healing. The cryostat and sample
assembly are diagramed in Figure 1a, while additional experimen-
tal details are described in supplementary text S1.

We made three additional modifications to the apparatus from
Saltiel and others (2021). A Linear Variable Inductance
Transducer (LVIT) position sensor measures the sample displace-
ment separate from the loading point’s preset displacement. This
allowed measurement of displacement in each stress-drop ‘slip’
event as well as slip occurring during ‘stuck’ periods and the tim-
ing coincident with stress-drops (Fig. 1b). Here we refer only to
mechanical or bulk stress-drops, the stress change over a slip
event as measured by our vertical load cell, not to be confused
with seismologically derived stress-drops. A piece of rubber was
inserted into the loading geometry that effectively reduced the
stiffness of the apparatus, reaching critical stiffness and allowing
stick—slip instability (Zoet and others, 2020). We estimate the
effective apparatus stiffness using the mechanical data’s reloading
slope between stress-drops, relative to the compression of the
loading train including rubber, the load point displacement
minus sample displacement (Fig. 1b), giving the apparatus stiff-
ness with the rubber to be ~0.1 kPaum™", significantly less stiff
than was estimated without the rubber ~1 kPaum™ (Saltiel and
others, 2021). Additionally, commercial piezoelectric transducers
were frozen into the central ice block, facing the right ice-bed
interface, to measure AEs. The sensor has a directionality, meas-
uring waves incident on the transducer face, but waves could also
arrive after bouncing around the sample. Recorded later arrivals
(Video 1 in supplement) likely represent reflections from the
other interface. We tried four different transducer types of varying
size and frequency sensitivity, settling on Physical Acoustic’s
Nano 30™ miniature AE sensor due to its small size and 125-
750 kHz response, covering most of our measured frequency con-
tent. All AEs analyzed here were recorded with a single Nano-30.
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Figure 1. (a) Schematic of biaxial cryostat with additions of rubber spring, to decrease loading stiffness, AE sensor frozen into central ice bock (pictured within ice
in inset on left) and sample displacement measurement. For more details about apparatus see Saltiel and others (2021) and supplementary text S1. (b) An example
experiment of measured friction drops (in black on top) and stick-slip sample displacement (in red on the bottom) with the steady load point displacement (in
black) for reference. Orange arrow shows an example of how friction drop is measured, stress drop is calculated by multiplying friction drop by the constant normal
stress of 50 kPa. Instability was induced by apparatus reaching subcritical stiffness (k). (c) An example AE waveform before processing, from a single stress-drop.

AEs were recorded using a preamplifier and TiePie™ HS6 dif-
ferential digital oscilloscope. To ensure we recorded all relevant
spectral content in the waveforms, they were recorded at a sample
rate of 100 MHz for 1ms time windows around each event
(Fig. 1c). These oscilloscope settings provided the optimal
real-time viewing of waveforms as they were being recorded
(Video 1 in supplement), but subsequent analysis showed most
of the energy was under 1 MHz, and waveforms were down
sampled to 10 MHz. Recordings of continuous acoustic signal
without applied shear found electrical noise above 3 MHz, so fil-
tering also helped remove persistent noise sources. The oscillo-
scope was set in rising-limb trigger mode with trigger
amplitude set just above the noise level before slip initiates,
such that it did not trigger without an audible stress-drop.
Since electrical and other sources of noise can vary, this trigger
level was adjusted throughout the experiment to maximize the
number of captured events and minimize waveforms of purely
noise, but some events were missed, and some events triggered
by noise or other AE sources were saved.

3. Stick-slip instability at frozen conditions

Both rock and till experiments were undertaken over a range of
temperatures, showing the temperature dependence of instability.
Analyzing the temperature dependence of AE characteristics is
outside of the scope of this article and will be explored in future
work. We found stress-drops only at frozen temperatures, < ~0°C
for rock and <~—2.5°C for till beds (Fig. 2). It must be noted that
temperatures are approximate since they are measured behind the
till/rock. This is accurate for stable temperatures, but there is an
unknown time lag before the temperature on the sliding interface
reaches the recorded temperature. Additionally, when the tem-
perature probe goes above the pressure melting point, ~0°C, the
ice will remain at its pressure melting point. The rock or till layer
is 10 mm thick and given thermal diffusivities ~1 mm?s™", we esti-
mated the lag time to be ~100 s, given by the yellow region after the
recorded temperature in Figure 2. The observed temperature
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dependent stability is consistent with rate-weakening friction
shown for till beds at~ —3°C, but not at the pressure melting
point (Saltiel and others, 2021). We estimate (Eqn (1)) the appar-
atus stiffness with rubber to be the same order of magnitude as
the critical stiffness estimated from separate velocity-step experi-
ments under similar conditions ~0.02 kPaum™" (Saltiel and others,
2021). The factor of five difference is consistent with the error
inherit in applying estimations of rate-state friction parameters (b
- a, D,) from a single experiment, as well as in our rough estimation
of apparatus stiffness. Past studies of ice on rock friction did not find
rate-weakening until lower temperatures, <~—18°C for McCarthy
and others (2017). In that study, experiments above —18°C which
exhibited slight rate-strengthening were undertaken at less than
half the slip rate, which could affect the rate-dependence (Zoet
and others, 2013; Saltiel and others, 2021) as well as stability
more broadly (Schulson and Fortt, 2012). It is also possible to
reach instability at nominally stable conditions given the strong elas-
tic contrast between ice and rock beds (Rice and others, 2001). This
highlights the range of factors that contribute to seismic instability,
and why further experiments and analysis are needed to fully map
the conditional dependence of stability.

4, Data processing and machine learning analysis

Each experiment starts with an elastic loading ramp, after which
we observe abrupt and audible stress drop events (Supplementary
Video 1 and Figs 1b and 2). Most events directly correspond to
bulk mechanical stress drops (see Fig. 1b), but to remove AEs
associated with other types of sources (such as smaller patches
of slip), noisy events, nonevents triggered by noise, and to nor-
malize the waveforms in a way that focuses on the initial wave
arrivals (removing secondary wave arrivals), we implemented a
data cleaning and normalization approach based on that imple-
mented by Nolte and Pyrak-Nolte (2022).

First, waveforms were trimmed to a total of 1200 data points,
including 400 sample points before the trigger point, giving a total
window of 120 microseconds. Waveforms were then normalized
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Figure 2. Example experiments of the temperature effect on slip stability for (a) rock and (b) till beds. Each experiment begins with stress-drops but, after a hold
(described in section 2 above), with increasing temperature the ice starts to slide stably without sudden friction drops or audible stick-slips. The transition to stable
sliding occurs ~ 0°C for the rock experiment. In the till experiment, the stability temperature is reached during the hold, but as it is re-cooled stress-drops do not
resume until the temperature is below about —2.5°C. Each estimated transition temperature is highlighted with a thin black horizontal line, but temperature is not
measured directly at the ice-bed interface, so the temperature at the interface lags that recorded. The lag time (estimated to be ~100 s) is represented by the yellow
region right of the measured temperature. It is also apparent that the till experiment has a higher friction and healing rate (as the friction rose more after hold

times of similar duration).

by the sum of the squared amplitudes of the first 400 sample
points after the trigger, multiplied by a cosine taper (effectively
weighting the earlier data points using a cosine shape, see
Figure S2 in the supplement of Nolte and Pyrak-Nolte [2022]).
Zero and large amplitude waveforms were removed, defined as
having a sum of the first 400 normalized sample points greater
than 15. This threshold was found to give the best catalog of non-
noise events without greatly diminishing the catalog. 325 events
were then removed that have high amplitude low frequency
noise component. Finally, the waveforms were realigned to the
first maximum peak after the trigger, which refined alignment
by a few samples or less in most cases. From this catalog of nor-
malized, filtered, and aligned 1200-sample point waveforms, we
used a trial-and-error approach to determine how much of the
pre- and post-trigger waveforms to use for training the models
and found a total length of 150 sample points, with 45 before
the trigger, was optimal, giving a 15-microsecond window. This
subsample of the waveforms emphasizes the first arrivals of
each AE, which are more dependent on source effects, while
ignoring the coda (later wave arrivals), which depend more on
path effects. Although the original, unprocessed catalog was
able to produce as high prediction accuracies (supplementary
text S2), not surprisingly since they contain more information,
the processed waveforms were clearer to interpret, which is the
main point of this study.

After removing noisy waveforms, we end up with 2817 total
events, including 1547 waveforms from 6 till experiments and
1270 waveforms from 6 rock experiments, relatively balanced
between bed types. With this labeled catalog (Fig. 3), we system-
atically explored the ability of numerous supervised classification
ML algorithms to predict the bed type for each event based on
their waveform and spectra. Classification ML models take a
training dataset made up of feature vectors, each of which is
labeled with a particular ‘ground truth’ class, and the model’s
parameters are optimized to predict the class of new, previously
unseen feature vectors. In our case the features are the normalized
amplitudes of each individual sample point in the event’s AE
waveform or log spectra, and the labels are the origin of the wave-
form, either a till or rock-bed. Each classification algorithm uses a
different mathematical model to map the event to a specific class.
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Since our analysis focuses on results for the Random Forest
Classifier model (Breiman, 2001) we briefly describe the under-
lying architecture of random forests.

A random forest is an ensemble learning model that incorpo-
rates the results of multiple decision trees. Each decision tree is a
hierarchical, branching structure that splits a dataset into sub-
groups at each of several decision nodes based on the value of spe-
cific features. Random forests average the results of multiple trees,
each of which is trained using a random sample of the data (boot-
strap aggregating, or bagging) and a random sample of the feature
space (feature bagging). This bagging procedure reduces overfit-
ting the model on the training data. Since each decision is
made based on a feature of the data, in this case the normalized
amplitude at a certain time in the time series or power at a certain
frequency in the spectrum of each event, we can inspect the tree to
identify which parts of the waveform or which frequencies are
most predictive. These ‘feature importances’ therefore allow us
to interpret the model from a physical perspective.

In order to train and test the ML algorithms, we choose the most
interpretable input features, the normalized waveform amplitudes at
each time step or the log;o power at each frequency for the spectra,
using the entire 15 microsecond time series. The waveforms and
spectra were independently broken into train and test datasets
and randomly assigned, containing 70 and 30% of the events,
respectively. The trained models select the most important temporal
portions of the waveforms or frequencies in the spectra for discrim-
inating between bed labels. We tested a suite of six basic ML algo-
rithms commonly used for classification problems. They are
available with the scikit-learn python package (see Open Research
section for github page with Jupyter notebook for all processing
and analysis steps, as well as supplementary text S2 for more
details). The algorithms we tested (and the mean prediction accur-
acy of each) are Naive Bayes (~66%), XGBoost (~74%), support
vector machines (~77%), random forests (~77%), fully connected
neural networks (~75%) and K-nearest Neighbors (~75%).
Hyperparameters were tuned for each algorithm and input data
type (time or frequency domain) using 5-fold cross validation,
and the highest-accuracy model for each algorithm was then used
for prediction on the test set. The results of all our tests are summar-
ized in supplementary text S2, but here we focus our analysis on the
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Figure 3. (a) Waveforms plotted in chronological order
along y-axis, colored by (normalized) amplitude (red is
positive and blue negative). Rock events are plotted on
the left and till on the right. (b) Waveforms plotted
together for each experiment (labeled on upper left).
Sensors exhibit resonance, with waves at the resonant fre-
quency present throughout the recording, even before the
arrival, and thus should not affect the prediction. Each
waveform (rock in red and till in teal) is plotted with a
thin line, so the darker parts show many waveforms
aligned on top of each other, and broader lines show
less alignment. Since experiments vary significantly by
number of events (94-465), that also contributes to the
plot of each experiment’s appearance. Number of events
and bed temperature for each experiment, as well as
experiment by experiment training and testing, in order
to discount the possibility that experimental differences
are being used in the prediction, are explored in supple-
mentary text S3. Although there are subtle visual differ-
ences, it is not obvious that the two beds can be
deciphered, making it a useful dataset to explore
ML-based classification.

Random Forest Classifier model (Breiman, 2001) applied to the pro-  in making its prediction (Figs 4a and b), feature importance visually
cessed catalog, since it obtained some of our highest prediction  highlights the subtle differences between different event sources.
accuracies, but, most importantly, the algorithm provides the feature ~ The purpose of this study is to understand how bed differences
importance needed to interpret how the model obtains its results. ~ manifest in the resulting emissions, not to find a black-box algo-
By showing the weighting of each waveform sample or frequency  rithm which best differentiates them.
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Figure 4. (a) Feature importance (black), showing the weighting of each waveform sample to the model prediction, highlights the importance of the initial, post-
trigger, wave arrivals. The superimposed normalized waveforms show till (teal) events are higher amplitude than rock (red) in these first oscillations. (b) Feature
importance (black) of each frequency in the model prediction, show till (teal) and rock (red) spectra partially separate from each other above about 1 MHz, with till
having more energy at these higher frequencies. It is not clear why the model finds certain frequencies more important for prediction. (c) Distribution of largest
repeated mechanical stress-drop amplitude from 23 till and 22 rock experiments at similar conditions show till has overall higher stress-drops, although the two
populations overlap significantly. (d) Stress-drops vs recurrence interval for till and rock experiments shows till’s greater healing (higher slope) contributes to higher

stress-drops, while rock healing varies more, but is generally lower.

5. Bed type classification from acoustic emissions

Using a wide range of classification algorithms, we consistently
find prediction accuracy above 50%, mostly between 65 and
80% (supplementary Figure S3), showing it is possible to tell if
a population of AEs was emitted by a till or rock-bed. This is
not clear by visually examining the waveforms (Fig. 3), so the
algorithms successfully extract subtle waveform and spectral fea-
tures corresponding to the different bed types.
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To be able to apply our findings from laboratory AEs to
field-scale seismicity, it is vital that we can interpret how the algo-
rithms make their prediction. Although transfer learning methods
offer the potential to train with labeled laboratory or modeled
datasets and ‘transfer’ the model to more limited field or labora-
tory data (e.g., Wang and others, 2021), clear differences in the
spectral content, travel path effects, and scale of field seismic
data make this a difficult task. By isolating and interpreting the
features the algorithms are using to make their successful
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each bed show how much the event populations overlap. The higher variance in the till waveform distributions is due to their more impulsive nature, but there are

many rock events with just as high variance.
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predictions, we can identify and quantify predictive features to
closely examine for in field data. The feature importance for the
Random Forest Classifier model shows that it focuses on the
peak and valley of the first full oscillation of the initial wave
arrival (Fig. 4a). Plotting all the normalized waveforms (color
coded by bed type) together, we can see that the till (teal)
waves tend to have higher amplitude in these first peaks.
Similarly, log spectra show more energy at higher frequencies
for the till in comparison to rock spectra (Fig. 4b). Analyzing
the mechanical data from 23 till and 22 rock experiments (includ-
ing experiments where AEs were not recorded), we find that the
stress-drops of stick—slip events on till beds are generally higher
(Fig. 4c). The more impulsive arrivals and higher frequency con-
tent is consistent with till’s higher stress-drops, since seismo-
logical stress-drop is calculated by the corner frequency where
energy starts to fall off (e.g., Zoet and others, 2012). This, in
turn, can be explained by till’s higher healing (Figs 2 and 4d), fric-
tion (Fig. 2), as well as the rougher till surface (with its larger
grain sizes).

It is likely that obtaining much higher prediction accuracies is
impossible given the similarity between waveforms. The stress-
drop and healing rates of the two populations clearly overlap
(Fig. 4c and d); spectra and waveform characteristics do as well.
How these similarities affect prediction can be most clearly seen
with the log spectra since the visual separation is clearest
(Fig. 4b). Figure 5a and b show that misclassified events are in
the region between the event types, while Figure 5c shows that
the waveform statistical attributes also greatly overlap. Although
correctly predicting every event is unrealistic, given a sufficient
sample size, our results suggest it could be possible to predict
the bed type of a group of events from the same source conditions
(see supplementary text S4).

6. Conclusions

This study presents stick—slip stress-drops and resultant AEs for
ice on rock and till beds at sub-freezing temperatures, a labeled
dataset with which we explore how ML can decipher the bed
from AE characteristics. We found that instability, and thus seis-
micity, only occurs for each bed below a certain temperature (~0°
C for rock and ~—2.5°C for till), sliding stably as the temperature
warms above and stick-slipping again when frozen below these
temperatures, not precise due to limitations in our temperature
measurement. Although the different bed types exhibit stick—
slip behaviors at similar conditions, the mechanics of their drag
are very different, demonstrated by friction that evolves over an
order of magnitude more distance (D,), significantly more rate-
weakening (b - a), higher friction, and healing rates in frozen
till compared to rock beds (Fig. 2 and Saltiel and others
[2021]). Resultant emissions have subtle differences, difficult to
decipher visually, but which ML-based classification was able to
identify; successfully predicting the bed type of a given waveform
about 65-80% of the time, depending on the classification algo-
rithm, processing steps, and data type used. The Random Forest
Classifier was particularly successful (~77% mean prediction
accuracy) and interpretable, since it provides feature importance
of each waveform sample or frequency, showing the models
focus on the initial wave arrivals and certain frequencies where
till events are higher amplitude. This is consistent with till’s
more impulsive failure, higher stress-drops, and friction, in turn
due to a rougher and faster healing interface.

Given how different the slip mechanics of these two beds are, it
is somewhat surprising how similar the resultant AEs are, but the
interpretability of our ML results offers a path forward for classi-
fication. The findings are also counter to our original hypothesis
based on the much longer frictional evolution distances (D,)
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found in velocity-step experiments, which suggest less impulsive,
lower frequency emissions. It is likely that different aspects of the
frictional mechanics counter each other, for example more heal-
ing has been associated with higher frequency emissions in
laboratory and natural faults (McLaskey and others, 2012),
which could cancel out the spectral effect of longer D,. In a simi-
lar way, till experiments’ higher D, and b - a balance each other
to produce a critical rheological stiffness (Eqn (1)) of the same
order as rock (Saltiel and others, 2021). In the sense of a linear
slip weakening law, the two beds would evolve with the same
weakening slope, till friction just drops further over more dis-
tance, thus the stress-drops vary but the emission characteristics
seem to be controlled by that slope and thus remain remarkably
similar.

Our findings suggest that supervised ML-based classification
and unsupervised correlation studies could find unknown and
nonintuitive relationships between seismic emission characteris-
tics and the mechanics/conditions of rupture in subglacial, as
well as tectonic, volcanic, or induced seismicity settings.
Laboratory experiments offer the opportunity to obtain well-
controlled, labeled datasets, but results need to be interpretable.
Although challenges remain for transferring models trained in
the lab directly to field-scale data, the understanding gained
though interpretable models can be used to infer characteristics
of field-scale seismic sources.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/a0g.2024.11.
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