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Abstract. We study traveling fronts in a system of reaction–diffusion–
advection equations in one spatial dimension motivated by problems in
reactive flows. In the limit as a parameter tends to infinity, we construct
the approximate front profile and determine the leading order expansion
for the selected wavespeed. Such fronts are often constructed as transverse
intersections of stable and unstable manifolds of the traveling wave dif-
ferential equation. However, a re-scaling of the dependent variable leads
to a lack of hyperbolicity for one of the end states making the definition
of one such manifold unclear. We use geometric blow-up techniques to
recover hyperbolicity and following an analysis of the blown up vector
field are able to show the existence of a traveling front with a leading
order expansion of its speed.
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1. Introduction

The following system of reaction–diffusion–advection equations was recently
introduced in [6],

Tt = Txx − (uT )x + T (1 − T )
ut = νuxx − uux + ρT (1 − T ). (1.1)

Here T (t, x) models the temperature of a fluid and u(t, x) represents the ve-
locity of that fluid. The reaction term in the T component introduces growth
of the temperature field due to the occurrence of a chemical reaction. The
temperature increase also induces growth in the velocity profile with some
proportionality constant ρ. Both temperature and velocity also are influenced
by diffusion and advection. System (1.1) gives rise to traveling front solutions.
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Motivated by similar systems of coupled fluid and reaction–diffusion equations
such as [8,24] the goal of [6] is to understand how coupling between the two
variables affects the speed of these fronts. A more detailed description of model
(1.1) and its relation to other models of reactive flow can be found in [6].

1.1. Traveling wave equation

The authors in [6] study traveling fronts for (1.1) with a particular interest in
how the speeds of these fronts depend on the parameters ρ and ν. The purpose
of this paper is to study fronts in the inviscid problem (ν = 0) and in the limit
as ρ → ∞. When ν = 0 the traveling wave equations for (1.1) form a system
of three first-order ordinary differential equations,

T ′ = −c̃T + UT + V

U ′ =
ρ

U − c̃
T (1 − T )

V ′ = T (T − 1). (1.2)

This system has a conserved quantity; 1
2U2 − c̃U + ρV which after noting that

we are interested in solutions converging to zero can be used to reduce (1.2) a
planar system; see [6]

T ′ = −c̃T + UT +
1
2ρ

U(2c̃ − U)

U ′ =
ρ

U − c̃
T (1 − T ). (1.3)

1.2. Front and wavespeed selection

Traveling front solutions to (1.1) can be found by locating heteroclinic orbits
of (1.3). We are interested in fronts connecting the state (1, c̃+ ρ−

√
c̃2 + ρ2)

to the zero state (0, 0). Since the zero state is unstable as a solution of (1.1)
this is a problem in the study of fronts propagating into unstable states; see for
example [26]. These fronts and the corresponding heteroclinic orbits exist for
a continuum of wavespeeds. This is most easily observed in (1.3) after noting
that (0, 0) is a stable node while (1, c̃ + ρ −

√
c̃2 + ρ2) is a saddle. Therefore,

if a heteroclinic (equivalently front) exists for some wavespeed then it must
also exist for an open set of nearby speeds. Among this family of fronts one
is typically interested in identifying the selected or critical front (its speed is
called the selected wavespeed). This front is the one that attracts compactly
supported initial conditions of the PDE (1.1).1 Critical fronts are defined and
identified in the literature using several different criterion. In different settings
the critical front is defined as the slowest positive front, the slowest monotone
front, the marginally stable front, or directly as the front whose basin of attrac-
tion includes compactly supported initial conditions. Although not generally

1Such a front does not have to be unique. A simple example is Nagumo’s equation where
different speeds can be observed for non-negative and non-positive initial data. However,
even if one restricts to positive, but compactly supported initial data there can be multiple
fronts which can be selected by compactly supported initial data; see for example [13].
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the case, it happens to be true that for many systems of PDEs, these different
criterion all identify the same traveling front solution.

1.3. Pushed and pulled fronts

Typically the critical front can be classified as being of one of two types: pulled
or pushed. Pulled fronts are driven by the instability ahead of the front in-
terface and their spreading speed equals that of compactly supported initial
conditions for the equation linearized near the unstable steady state. Pushed
fronts are driven by nonlinear effects behind the front interface and propagate
at (typically, see [19]) faster-than-linear speeds. As we mentioned above, deter-
mining the front selected by compactly supported initial data can be associated
to stability properties of the fronts; see [4,9,26]. Pulled fronts have essential
spectrum that touches the imaginary axis in an optimally chosen exponentially
weighted function space while pushed fronts have a zero translational eigen-
value and stable essential spectrum in the weighted space. This translational
eigenvalue has an eigenfunction given by the derivative of the front profile and
so for this function to be in the weighted space requires strong exponential
decay of the front. We refer the interested reader to [26] for an in-depth dis-
cussion of pushed and pulled fronts and we note recent work on pushed and
pulled fronts and the transition between them; see [2,3].

Bringing the discussion back to the traveling wave Eq. (1.3), we note that
restricting our search to traveling fronts with strong decay near the origin is
equivalent to locating heteroclinic orbits involving intersections of the one-
dimensional unstable manifold of the saddle state at (1, c̃+ ρ−

√
c̃2 + ρ2) and

the one dimensional strong-stable manifold of the origin. Such a heteroclinic
connection is not structurally stable under perturbations and we expect to
identify a unique speed for which such a connection occurs.

1.4. Constructing pushed fronts: singular perturbations

The explicit construction of heteroclinic orbits for nonlinear ordinary differen-
tial equations is difficult. Most examples where pushed invasion speeds can be
calculated involve scalar reaction–diffusion equations where explicit solutions
can be obtained as in the classical Nagumo’s equation; see [16]. For systems
of reaction–diffusion equations the situation is more challenging still, but one
promising avenue is when one or more parameters in the system are asymptot-
ically small (or large). In these situations, methods from singular perturbation
theory (see [14,22]) can be employed to construct solutions and wavespeed
estimates are sometimes possible by analyzing a reduced planar system; see
for example [17,19,20].

1.5. Previous work

Among other results, the following estimate of the critical speed in the limit
as ρ → ∞ was obtained in [6].

Theorem 1.1. [6] System (1.1) with ν = 0 has traveling front solutions con-
necting the stable state (1, c̃ + ρ −

√
c̃2 + ρ2) to (0, 0) for any c̃ ≥ c̃∗(ρ). These
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fronts are monotonic and for ρ → ∞ the critical speed c̃∗(ρ) satisfies

3

√
3
2

≤ lim inf
ρ→∞

c̃∗(ρ)
ρ1/3

≤ lim sup
ρ→∞

c̃∗(ρ)
ρ1/3

≤
√

3 (1.4)

Numerical estimates of the critical speed were obtained in [6] using meth-
ods from [5] and suggest that the critical speed should scale like the lower
bound in (1.4). The purpose of the current research is to refine the estimate

in Theorem 1.1 and show that the critical speed does in fact scale with 3

√
3ρ
2

as ρ → ∞.

1.6. Proof strategy

We make the following changes of coordinates: ρ = 1
ε3 , c = c̃/ε, W = εU and

re-scale the independent variable so that (1.3) is transformed to the following
system of equations with small parameter ε,

Ṫ = −cT + WT +
1
2
Wε2(2c − W )

Ẇ =
1

W − c
T (1 − T ). (1.5)

A general framework for proving the existence of traveling waves (i.e. het-
eroclinic orbits) in systems such as (1.5) is as follows; see for example [22]. One
first sets the small parameter to zero and identifies a heteroclinic orbit in this
singular limit. In the case of (1.3) this heteroclinic involves the intersection of
two one-dimensional manifolds (namely a heteroclinic connecting the unstable
manifold of (1, c̃ + ρ −

√
c̃2 + ρ2) and the strong-stable manifold of (0, 0)). As

such, the system is not structurally stable and the heteroclinic is not expected
to persist when ε �= 0. However, if the system has a parameter (c in our case)
then one can add the parameter as a variable to increase the dimension of
the system and construct two dimensional center-stable and center-unstable
manifolds. If these manifolds intersect transversely and depend smoothly on
ε then the transverse intersection will persist for ε > 0 and the existence of
a heteroclinic follows without having to delve into the particular manner in
which ε appears in the equations.

The primary complication occurring in (1.5) is that the heteroclinic in
the singular limit involves a connection to a non-hyperbolic fixed point. Thus,
even the persistence of this fixed point when ε �= 0 is not apparent and it is
not possible to define stable or unstable manifolds of this fixed point without
explicitly considering ε dependent terms. To overcome this issue we will apply
geometric desingularization techniques to blow-up the non-hyperbolic fixed
point and regain hyperbolicity. We refer the reader to [11,23] for a description
of the method. Related to the problem of front propagation: blow-up has been
used to compute correction to wavespeeds due to cutoff in reaction terms;
see [12]. We also point to other examples where re-scalings of the dependent
variables lead to a lack of hyperbolicity—see for example [7,15,18].

The main result of this paper is the following.



NoDEA Pushed fronts in a Fisher–KPP–Burgers system Page 5 of 20 2

Theorem 1.2. Let ν = 0 in (1.1). Then there exists a ρ0 > 0 such that for any
ρ > ρ0 there exists a heteroclinic orbit for (1.3) corresponding to a traveling
front solution of (1.1) connecting the stable state (1, c̃+ρ−

√
c̃2 + ρ2) to (0, 0)

with speed c̃∗(ρ) and the following properties.
(i) The heteroclinic orbit lies in the strong-stable manifold of (0, 0) and the

traveling front is monotone decreasing and has steep exponential decay in
the sense that

|(T ∗(x), Q∗(x))| ≤ Ce−c̃∗(ρ)x/2 as x → ∞.

(ii) The speed c̃∗(ρ) satisfies limρ→∞
c̃∗(ρ)

3√ρ = 3

√
3
2 .

The remainder of the paper is dedicated to proving this Theorem and
is organized as follows. In Sect. 2 we change coordinates in the traveling wave
Eq. (1.5) and collect some facts about this transformed system. In Sect. 3 we set
ε = 0 and obtain a candidate traveling front. This front involves a heteroclinic
orbit involving a non-hyperbolic fixed point. In Sect. 4 we apply geometric
desingularization techniques to track invariant manifolds near this point. In
Sect. 5 we conclude the proof of Theorem 1.2. Finally, we present a short
discussion in Sect. 6.

2. Preliminaries

We begin our analysis by removing the singularity that occurs in (1.5) at
W = c. This is accomplished by rescaling the independent variable so that the
right hand side of (1.5) is multiplied by the non-zero factor c − W . Since we
are interested in the region where W < c then this quantity is always positive
and does not reverse the direction of the flow. We then arrive at the system

Ṫ = −T (W − c)2 − 1
2
Wε2(2c − W )(W − c)

Ẇ = −T (1 − T ). (2.1)

System (2.1) has fixed points at (0, 0), (1, c) and (1, w±(ε)). The fixed point
at (1, c) is an artifact of the re-scaling to remove the singularity at W = c. The
fixed points w±(ε) are fixed points of the original system (1.3) transformed to
(T,W ) variables. The w±(ε) are roots of the quadratic polynomial

h(w) = w − c +
1
2
ε2w(2c − w),

which can be expressed as

w±(ε) = c +
1
ε2

± 1
ε2

√
1 + ε4c2.

We are interested in fronts connecting (1, w−(ε)) to (0, 0) and note that

w−(ε) = c − ε2
c2

2
+ O(ε4). (2.2)

It will be consequential later that w−(ε) < c and w−(ε) → c as ε → 0.
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The linearization of (2.1) at (0, 0) has two negative eigenvalues

μ±(c, ε) = −c2

2
± c2

2

√
1 + 4ε2. (2.3)

The linearization at (1, w−(ε)) is
(−(w−(ε) − c)2 −(w−(ε) − c)h′(w−(ε))

1 0

)
.

Since the trace is negative and the determinant is negative (note h′(w−(ε)) >
0) we then see that the fixed point (1, w−(ε)) is a saddle with one stable and
one unstable eigenvalue. Regrettably, both these eigenvalues are close to zero
so that when ε = 0 the fixed point is no longer hyperbolic and its linearization
is nilpotent. We emphasize that this lack of hyperbolicity can be traced to the
fact that as ε → 0 the fixed point at (1, w−(ε)) coalesces with the fixed point
at (1, c) yielding a non-hyperbolic fixed point.

Nonetheless, for any 0 < ε � 1 the unstable manifold Wu(1, w−(ε))
is well defined and can be written as a graph (T, hu(c, ε, T )). Likewise, for c
fixed and 0 < ε � 1 the origin has a one dimensional strong stable manifold
W ss(0, 0) which can also be expressed as a graph (T, hs(c, ε, T )). We then
define the mismatch function

Φ(c, ε) = hs

(
c, ε,

1
2

)
− hu

(
c, ε,

1
2

)
. (2.4)

We will establish the following result.

Theorem 2.1. We have the following

• The function Φ(c, ε) is well defined for ε ∈ [0, ε0), for some ε0 > 0 and
continuously differentiable in both c and ε.

• Φ
(

3

√
3
2 , 0

)
= 0

• ∂cΦ
(

3

√
3
2 , 0

)
�= 0

By an application of the Implicit Function Theorem, Theorem 2.1 will
then imply Theorem 1.2. We remark that an important piece of establishing
Theorem 2.1 is verifying that the function Φ(c, ε) is well defined in the limit
as ε → 0.

Remark 2.2. In a broader context, we emphasize that pushed fronts are robust
with respect to small perturbations in the system. This is because pushed fronts
can typically be expressed as a transverse intersection of manifolds. These man-
ifolds depend smoothly on parameters and the intersection therefore persists
under small perturbations. The conditions laid out in Theorem 2.1 exactly
describe this transverse intersection: condition (ii) in Theorem 2.1 states that
these manifolds intersect and condition (iii) implies that this intersection is
transverse. To emphasize once more, the issue with (2.1) is the lack of hyper-
bolicity of the fixed point (1, c) making the definition of the unstable manifold
of (1, c) not well defined a priori.
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Figure 1. The heteroclinic orbit obtained for the reduced
(ε = 0) system connecting the fixed point (1, c) to the origin

with c = c∗(0) = 3

√
3
2

3. Reduction to the singular limit ε = 0

In this section we study (2.1) with ε = 0 and construct a heteroclinic orbit
that connects the fixed point (1, c) to the one at (0, 0). With ε = 0 the system
reduces to

Ṫ = −T (W − c)2

Ẇ = −T (1 − T ). (3.1)

For 0 < T < 1 solutions of this system are graphs with respect to the variable
T and their solution curves obey the scalar equation

dW

dT
=

1 − T

(W − c)2
. (3.2)

This equation is separable and can be integrated to find solution curves that
satisfy

1
3
(W − c)3 = T − T 2

2
+ k, (3.3)

where k is a constant of integration.
For the curve in (3.3) to pass through the origin it is required that k0 =

− c3

3 . For the curve to pass through the point (1, c) it is required that k1 = − 1
2 .

Therefore, the curves intersect if and only if c = c∗(0) with

c∗(0) = 3

√
3
2
. (3.4)

A plot of this solution curve is provided in Fig. 1.
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For future reference we define the functions

gs(c, T ) = c − 3

√

−3T +
3
2
T 2 + c3,

which gives the W component of the graph of the solution curve passing
through the origin while we define

gu(c, T ) = c − 3

√

−3T +
3
2
T 2 +

3
2
.

We make note of the following fact.

Lemma 3.1. For any T > 0
∂

∂c
(gs(c, T ) − gu(c, T )) �= 0.

Proof. We compute

∂

∂c
(gs(c, T ) − gu(c, T )) = − c2

(−3T + 3
2T 2 + c3)2/3

�= 0.

�

4. A quasi-homogeneous blow-up of the nilpotent fixed point
(1, c)

When ε = 0 the fixed point (1, c) is not hyperbolic. To prove Theorem 1.2
we need to show that the unstable manifold of (1, w−(ε)) is o(1) close to
the heteroclinic orbit computed in Sect. 3. To do this we will use geometric
desingularization to blow-up and then desingularize the flow near this fixed
point.

To begin, we first transform the fixed point at (1, c) to the origin using

W̃ = W − c, T̃ = T − 1,

from which we obtain the system of equations (appending an equation for the
parameter ε)

˙̃T ′ = −W̃ 2(T̃ + 1) − 1
2
W̃ε2(c2 − W̃ 2)

˙̃W = T̃ (T̃ + 1)

ε̇ = 0. (4.1)

The linearization at the origin is nilpotent with Jacobian

Df(0, 0, 0) =

⎛

⎝
0 0 0
1 0 0
0 0 0

⎞

⎠ .

The goal of this section is to blow-up the non-hyperbolic origin in (4.1)
to a sphere where—after desingularizing by a re-scaling of the independent
variable—the flow in a neighborhood of the origin can be analyzed by studying
the flow on the sphere. In the simplest case, blow-up techniques involve viewing
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(4.1) in spherical coordinates (ρ, θ, φ) where after desingularizing one obtains
non-trivial dynamics on the surface of the sphere (ρ = 0). However, use of such
coordinates for (4.1) reveals fixed points on the surface of the sphere which
remain non-hyperbolic.

We therefore employ a quasi-homogeneous blow-up where different scal-
ings are given to different variables; see [1,11,21,23] for examples and a general
discussion. The change of variables that we employ is defined as

ψ : S2 × [0,∞) → R
3, ψ

(
T̄ , W̄ , ε̄, r

)
=

(
r3T̄ , r2W̄ , rε̄

)
,

where (T̄ , W̄ , ε̄) ∈ S
2. We comment on the choice of weights. Since the fixed

point w−(ε) depends quadratically on ε then it is natural that the weight for
the W̃ component should be squared relative to the weight for ε. The cubic
scaling for the T̃ component can be determined as follows. Let T̃ = rαT̄ . Then
the leading order terms on the right hand side of (4.1) scale with r4 for T̃ ′

equation and rα for the W̃ ′ equation. Thus the scaling of the two equations
match only if 4 − α = α − 2 from which α = 3 is determined.

The variables
(
W̄ , T̄ , ε̄

) ∈ S
2 could be expressed in terms of spherical

coordinates; however in practice it is easier to use various coordinate charts in
which to view the dynamics. We will employ the following two charts for our
analysis

Kε : T̃ = r31T1, W̃ = −r21W1, ε = r1

KW : T̃ = r32T2, W̃ = −r22, ε = r2ε2,

where we will assume r1,2 ≥ 0, W1 ≥ 0, T1,2 ≤ 0 and ε2 ≥ 0.
Transition maps between the two charts are

r2 = r1W
1/2
1 , T2 =

T1

W
3/2
1

, ε2 =
1

W
1/2
1

, (4.2)

T1 =
T2

ε32
, W1 =

1
ε22

, r1 = r2ε2. (4.3)

4.1. Chart Kε

Chart Kε is referred to as the re-scaling chart. Equation (4.1) expressed in the
coordinates of chart Kε are

Ṫ1 = −r1W
2
1

(
1 + r31T1

)
+

1
2
r1W1

(
c2 − r41W

2
1

)

Ẇ1 = −r1T1 − r41T
2
1

ṙ1 = 0. (4.4)
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Dividing the right side of the equation by the common factor r1 through a
rescaling of the independent variable we obtain the desingularized equations

dT1

dt1
= −W 2

1

(
1 + r31T1

)
+

1
2
W1

(
c2 − r41W

2
1

)

dW1

dt1
= −T1 − r31T

2
1

dr1
dt1

= 0. (4.5)

The invariant subspace r1 = 0 corresponds to the flow on the surface of the
sphere in blown-up coordinates where

dT1

dt1
= −W 2

1 +
c2

2
W1

dW1

dt1
= −T1. (4.6)

Equation (4.6) has fixed points at (0, 0) (a center) and at
(
0, c2

2

)
(a saddle).

The saddle fixed point in this chart corresponds to the fixed point (1, w−(0))
while the fixed point at the origin is an artifact of the desingularization that
removed the singularity at (1, c) in the original coordinates. Thus, the blow-up
technique is able to differentiate between these two fixed points in the limit as
ε → 0 and the fixed point at (1, w−(0)) becomes hyperbolic when viewed in
this chart.

System (4.6) is also Hamiltonian with

H(T1,W1) =
W 3

1

3
− c2

4
W 2

1 − T 2
1

2
.

The unstable manifold of
(
0, c2

2

)
is contained in the level set of H(T1,W1) =

− 1
48c6. This level curve is plotted in Fig. 2 for c = 3

√
3
2 .

4.2. Chart KW

We now consider the dynamics in the chart KW . Equation (4.1) transformed
to the coordinates of this chart are given by

ṙ2 = −1
2
r22T2 − 1

2
r52T

2
2

ε̇2 =
1
2
r2ε2T2 +

1
2
r42ε2T

2
2

Ṫ2 = −r2(1 + r32T2) +
1
2
r2ε

2
2

(
c2 − r42

)
+

3
2
r2T

2
2 +

3
2
r42T

3
2 . (4.7)
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Figure 2. The dynamics in chart Kε for c = 3

√
3
2 . The sys-

tem is Hamiltonian and there exists an explicit expression for
the graph of the unstable manifold that exists for T1 < 0. The
unstable manifold in upper left quadrant will end up defining
the singular orbit in the blow-up system

The vector field can be desingularized by dividing the right side by the common
factor r2 after which (4.7) is transformed to

dr2
dt2

= −1
2
r2T2 − 1

2
r42T

2
2

dε2
dt2

=
1
2
ε2T2 +

1
2
r32ε2T

2
2

dT2

dt2
= −(1 + r32T2) +

1
2
ε22

(
c2 − r42

)
+

3
2
T 2
2 +

3
2
r32T

3
2 . (4.8)

4.2.1. The invariant subspace. r2 = 0 Restricting to the invariant subspace
r2 = 0 we obtain the system

dε2
dt2

=
1
2
ε2T2.

dT2

dt2
= −1 +

1
2
ε22c

2 +
3
2
T 2
2 . (4.9)

This system has four fixed points:
(
0,±

√
2
3

)
and

(
±

√
2
c2 , 0

)
. Using (4.3) we

see that the fixed point
(√

2
c2 , 0

)
is equivalent to (1, w−(0)) in the original

coordinates and
(

c2

2 , 0
)

in the chart Kε. The fixed point (0,−√
2/3) is stable

with eigenvalues −3
√

2/3 and − 1
2

√
2/3 (note the 6 : 1 resonance).
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4.2.2. The invariant subspace. ε2 = 0 The dynamics within the invariant ε2 =
0 subspace in chart KW are given by

ṙ2 = −1
2
r22T2(1 + r32T2)

Ṫ2 = r2

(
−1 +

3
2
T 2
2

)
(1 + r32T2).

Near the fixed point (r2, T2) = (0,−√
2/3) we can divide the right hand side

of the vector field by the quantity r2(1 + r32T2) and obtain the system

dr2
dt3

= −1
2
r2T2

dT2

dt3
=

(
−1 +

3
2
T 2
2

)
.

The fixed point (r2, T2) = (0,−√
2/3) is a saddle and the graph of the unstable

manifold is simply the line T2 = −√
2/3.

Converting this back to the coordinates (T,W ) this manifold is expressed
as the graph

T = 1 −
√

2
3
r32, W = c − r22.

Using these identities we then find an implicit equation relating T and W

(c − W )3 =
3
2
(1 − T )2. (4.10)

This is exactly the same implicit relation given in (3.3) with k = − 1
2 implying

that the unstable manifold of (0, 0,−√
2/3), when transformed back to the

original variables (T,W ) is described by the graph W = gu (c, T ).

4.2.3. The transition map. To analyze the transition map for (4.8) we divide
the vector field by the (locally) positive factor 1

2 (−T2 − r32T
2
2 ) effectively in-

troducing a new independent variable, σ. We then shift the fixed point to the

origin S2 = T2 +
√

2
3 after which (4.8) takes the form

dr2
dσ

= r2

dε2
dσ

= −ε2

dS2

dσ
= −6S2 + S2G1(r2, S2) + ε2G2(r2, ε2, S2), (4.11)

Here G1 and G2 are nonlinear functions that represent the nonlinearity after
the change of coordinates. In these coordinates the unstable manifold of the
origin is the r2 axis, so that there are no nonlinear terms in the equation for
S2 that depend only on r2. We further have that the function G1(0, 0) = 0
since it contains only nonlinear terms and G2(0, 0, 0) = 0 since the linear term
ε2 is absent from (4.11).



NoDEA Pushed fronts in a Fisher–KPP–Burgers system Page 13 of 20 2

For κ > 0 define the sections Σin and Σout as

Σin = {(r2, ε2, S2) | ε2 = κ}, Σout = {(r2, ε2, S2) | r2 = κ}.

We study the transition map

π : Σin → Σout, (r2(0), κ, S2(0)) → (κ, ε2(σout), S2(σout)),

for some transition time σout. Analysis of the map is possible using a Shilnikov
type analysis; see for example [10,25]. We have the following result.

Lemma 4.1. Consider (4.11) with r2(0) = εΓ(c, ε;κ) and S2(0) = Ω(c, ε;κ) for
some functions Γ(c, ε;κ) and Ω(c, ε;κ), both smooth in c and ε. Then if κ is
sufficiently small and |Ω(c, ε;κ)| < κ

2 then it holds that

π(εΓ(c, ε;κ), κ,Ω(c, ε;κ)) = (κ, εΓ(c, ε;κ), εΞ(c, ε;κ))

for some continuously differentiable function Ξ(c, ε;κ).

Remark 4.2. The fixed point in (4.11) is hyperbolic and so we could linearize
the system by a near-identity change of coordinates using Hartman–Grobman
Theorem. Resonances between the eigenvalues limit the smoothness of the con-
jugacy mapping and, even still, the mere existence of a near-identity conjugacy
is not sufficient to obtain the estimates that we desire.

Proof. Proofs for more general Shilnikov type problems of this form can be
found in [10,25]. We present some elements of the proof here. Take the integral
form of (4.11),

S2(σ) = e−6σS2(0) +
∫ σ

0

e−6(σ−τ)S2(τ)G1 (εΓ(c, ε)eτ , S2(τ)) dτ

+κ

∫ σ

0

e−6(σ−τ)e−τG2

(
εΓ(c, ε)eτ , κe−τ , S2(τ)

)
dτ. (4.12)

The transition “time” required for the solution to pass from Σin to Σout is

σ∗ = log
(

κ

εΓ(c, ε;κ)

)
.

We need estimates on the solution of this equation on the interval [0, σ∗].
Define Ψ : X → X as the right hand side of (4.12) and let X be the Banach
Space

X = C0([0, σ∗], [−κ, κ]), ||S||X = sup
0<σ<σ∗

|eσS(σ)|.

Then for any S ∈ X we have

|eσΨQ| ≤ ∣∣e−5σQ(0)
∣∣ +

∫ σ

0

e−5(σ−τ)||S||X |G1(τ)|dτ (4.13)

+κ

∫ σ

0

e−5(σ−τ)|G2(τ)|dτ. (4.14)

Thus

||ΨS||X ≤ |Ω(c, ε;κ)| + C1κ||S||X + C2κ
2,
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and there is a κ sufficiently small such that Ψ : X → X. Next we show that Ψ
is a contraction on X. Consider Sa and Sb, both in X. Then

|eσΨ(Sa − Sb)| ≤ L1κ

∫ σ

0

e−5(σ−τ)||Sa − Sb||Xdτ

+κL2

∫ σ

0

e−5(σ−τ)||Sa − Sb||Xdτ,

where L1 is the Lipschitz constant of G1 and L2 is the Lipschitz constant for
G2(r2, ε2, S2) − Gε(r2, ε2, 0). We then have

||Ψ(Sa − Sb)||X ≤ Cκ||Sa − Sb||X
and Ψ is a contraction for κ sufficiently small.

Now consider the S2 coordinate of the transition map π. Since S2 ∈ X
we have that

|S2(σ∗)| ≤ e−σ∗ ||S2||X
and thus S2(σ∗) = εΞ(c, ε;κ) for some function Ξ(c, ε;κ). By Theorem 8.1 of
[10] the solution of the boundary value problem (4.11) depends smoothly on
the parameters c and ε as well as the initial conditions. �

4.3. Tracking W u(1, w−(ε)) between charts

We now put together the analysis in the two charts above to track Wu(1, w−(ε));
see Fig. 3. In the re-scaling chart Kε the equilibrium point (1, w−(ε)) is mapped
to (for ε = 0 ) the fixed point

(
0, c2

2

)
. This fixed point is hyperbolic of saddle

type and has a one-dimensional unstable manifold. The fixed point and its
unstable manifold persist for ε > 0 and sufficiently small. Using the Hamilton-
ian function in chart Kε we find that the unstable manifold (when ε = 0) is
expressed as the graph

T1 = −
√

2
3
W 3

1 − c2

4
W 2

1 +
1
24

c6.

By smooth dependence on initial conditions and parameters the unstable man-
ifold for ε �= 0 can be described by the graph

T1 = −
√

2
3
W 3

1 − c2

4
W 2

1 +
1
24

c6 + εΔ(W1, c, ε),

for some smooth function Δ.
When W1 = 1

κ2 then

T1 = −
√

2
3

1
κ6

− c2

4
1
κ4

+
1
24

c6 + εΔ
(

1
κ2

, c, ε

)
.

Transforming to chart KW using (4.3) then we have ε2 = κ, r2 = εκ and

T2 = −
√

2
3

− c2

4
κ2 +

1
24

(κc)6 + εκ3Δ
(

1
κ2

, c, ε

)
.
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Figure 3. The relevant dynamics of the blown up fixed point
at (1, c). The ε = 0 subspace is invariant and we have shown
the existence of a heteroclinic connecting this fixed point to
the origin in Sect. 3. This is depicted by the red curve. On the
upper half of the sphere two fixed points are shown. The one
at the north pole is an artificial fixed point that arises when
the singularity occurring at W = c in (1.5) is removed. The
other fixed point corresponds to the steady state (1, w−(0)).
In the blown-up coordinates this fixed point is hyperbolic and
we are able to track its unstable manifold and show that it
is heteroclinic to the fixed point at the equator of the sphere.
Obtaining estimates on the dynamics for 0 < ε � 1 we are
able to show that the unstable manifold of (1, w−(ε)) is O(ε)
close to the reduced heteroclinic shown in red

Then

S2 =

√
2
3

−
√

2
3

− c2

4
κ2 +

1
24

(κc)6 + εκ3Δ
(

1
κ2

, c, ε

)
,

and we observe that S2 = Ω(c, ε, κ) with

Ω(c, ε, κ) =

√
1
6

c2

4
κ2 + κ3Π(κ, c, ε),

for some smooth function Π.
Now applying the transition map π : Σin → Σout in Lemma 4.1 we can

track Wu(1, w−(ε)) to Σout where it has the expansion

r2 = κ, T2 = −
√

2
3

+ εΞ(c, ε), ε2 = εΓ(c, ε).
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Remark 4.3. In theory, all of the analysis required in this section could have
been conducted solely in chart KW as both the relevant fixed points are visible
in that chart. However, identifying the heteroclinic connecting the two fixed
points is more straightforward in the re-scaling chart Kε and so we opt to
utilize both charts here.

5. Proof of Theorem1.2

In this section we prove Theorem 1.2 by verifying that the conditions of the
Implicit Function Theorem outlined in Theorem 2.1 are satisfied.

By the analysis in the previous section we have that the unstable manifold
of Wu(1, w−(ε)) is well defined and its graph is O(ε) close to (T, gu(c, T )); see
the discussion following (4.10). On the other hand, W ss(0, 0) is well defined
and depends smoothly on c and ε and for any 0 < T < 1 is O(ε) close to
(T, gs(c, T )). Thus, recalling the definition of Φ(c, ε) in (2.4) we have

Φ(c, ε) = gs

(
c,

1
2

)
− gu

(
c,

1
2

)
+ εR(c, ε)

where R(c, ε) is smooth.

When ε = 0 and c∗ = 3

√
3
2 then by the analysis presented in Sect. 3

we have that Φ(c∗, 0) = 0 and furthermore by Lemma 3.1 we have that
∂cΦ(c∗, 0) �= 0.

Thus Φ(c, ε) satisfies the three conditions set out in Theorem 2.1 nec-
essary for an application of the Implicit Function Theorem. This gives the
existence of a smooth function c∗(ε) such that (1.1) with ν = 0 has a trav-
eling front solution with steep exponential decay that propagates with speed
c = c∗(ε) and for ρ = 1

ε3 .
Monotonicity of the front was previously established in [6]. The decay

estimate in Theorem 1.2 follows since the front lies in W ss(0, 0). This decay
rate is specified in (2.3) and after twice re-scaling the independent variable—
first to divide the right hand side of the differential equation by a factor of
c − W and second to re-scale the independent variable back to x—then the
estimate is obtained.

6. Discussion

We have constructed traveling front solutions of the system of reaction–diffusion-
advection equations in (1.1) for ν = 0 and in the limit ρ → ∞. Our approach
was to construct fronts directly using singular perturbation techniques. In the
original traveling wave coordinates the profile of the u component becomes
asymptotically large necessitating a rescaling of this dependent variable. This
rescaling introduces a lack of hyperbolicity into the problem which can be
handled using geometric desingularization techniques.

Our results confirm a conjecture presented in [6] regarding the scaling of
the critical speed as ρ → ∞ in the inviscid case; ν = 0. We comment briefly
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on extensions to the viscid case. The traveling wave equations in this case
naturally comprise a system of four coupled ordinary differential equations.
This system again has a conserved quantity (see Section 4 of [6]) and therefore
the system reduces to a three-dimensional differential equation which we write
as follows:

Ṫ = T (W − c) + ε2Z

νẆ = −W

2
(2c − W ) + Z

Ż = T (T − 1). (6.1)

To see the connection with the reduced system (1.5) note that when ν = 0
we have Z = W

2 (2c − W ) and Ż = (c − W )Ẇ . We first consider the case of
ε (equivalently ρ) fixed and ν � 1. In this regime, Z = W

2 (2c − W ) is a slow
manifold which is normally hyperbolic when W < c. By Fenichel’s persistence
theorem; see [14], the manifold will persist for ν > 0 and sufficiently small.
Therefore, we would expect that any pushed or pulled fronts constructed in
the ν = 0 limit (and for finite ρ) should perturb smoothly to pushed or pulled
fronts in the case of ν > 0. Note that this does not include the case of ρ → ∞
as the fronts will limit on the non-hyperbolic point of the slow manifold at
W = c in this case.

Beyond the regime of ν small the challenge in the analysis of (6.1) lies
in the construction of fronts in the reduced system ε = 0. Recall that the
planar system obtained when ε = 0 in (3.1) could be simplified to a scalar
equation with explicit solution. We have not been able to obtain a similar
explicit solution in the case of ν > 0. It is interesting to note that for ν > 0
the linearization of (6.1) at the reduced fixed point (1, c, c2/2) is

Df

(
1, c,

c2

2

)
=

⎛

⎝
0 1 0
0 0 1

ν
1 0 0

⎞

⎠ ,

the eigenvalues of which are the cube roots of 1
ν and therefore the fixed point is

hyperbolic for ν > 0 with a one-dimensional unstable manifold. The fixed point
at the origin has two (strong)-stable eigenvalues. Therefore, while one piece of
the analysis of fronts for ν > 0 is significantly more difficult (the construction
of the reduced heteroclinic), the persistence of this front for ν > 0 is more
straightforward.

We have referred to the constructed front as a pushed front throughout
our analysis. Returning to the discussion of what it means for a front to be
selected in the introduction we note that the constructed front satisfies both
the slowest monotone/positive front criteria (at least locally in the wavespeed
parameter c). Another direction for possible future research would be into the
stability of the front constructed in Theorem 1.2. We anticipate that this front
is asympotically stable in an exponentially weighted function space with an
isolated marginally stable eigenvalue at zero due to translational invariance.
That this translational eigenvalue has steep enough decay to belong to the ex-
ponentially weighted space was the primary motivation for seeking fronts that
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lie in the strong-stable manifold of the origin. The spectral stability problem
can be studied via a system of three coupled non-autonomous linear differ-
ential equations depending both the front profile and the spectral parameter
λ. In contrast to the existence problem, we do not expect this equation to
have a conserved quantity so that a fully three dimensional analysis would be
required.
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[18] Holzer, M., Popović, N.: Wavetrain solutions of a reaction–diffusion–advection
model of mussel-algae interaction. SIAM J. Appl. Dyn. Syst. 16(1), 431–478
(2017)

[19] Holzer, M., Scheel, A.: A slow pushed front in a Lotka–Volterra competition
model. Nonlinearity 25(7), 2151–2179 (2012)

[20] Hosono, Y.: Traveling waves for a diffusive Lotka–Volterra competition model.
I. Singular perturbations. Discrete Contin. Dyn. Syst. Ser. B 3(1), 79–95 (2003)



2 Page 20 of 20 M. Holzer et al. NoDEA

[21] Jardón-Kojakhmetov, H., Kuehn, C.: A survey on the blow-up method for fast-
slow systems. In: Mexican Mathematicians in the World—Trends and Recent
Contributions, volume 775 of Contemporary Mathematics, pp. 115–160. Amer-
ican Mathematical Society, Providence, RI, [2021] (2021)

[22] Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Sys-
tems (Montecatini Terme, 1994), volume 1609 of Lecture Notes in Mathematics,
pp. 44–118. Springer, Berlin (1995)

[23] Kuehn, C.: Multiple Time Scale Dynamics. Applied Mathematical Sciences, vol.
191. Springer, Cham (2015)

[24] Malham, S., Xin, J.X.: Global solutions to a reactive Boussinesq system with
front data on an infinite domain. Commun. Math. Phys. 193(2), 287–316 (1998)
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