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Pollutant exposure during gestation is a known and adverse factor for
birth and health outcomes. However, the links between prenatal air pollution
exposures and educational outcomes are less clear, in particular, the critical
windows of susceptibility during pregnancy. Using a large cohort of students
in North Carolina, we study the link between prenatal daily PM2.5 exposure
and fourth end-of-grade reading scores. We develop and apply a locally adap-
tive and highly scalable Bayesian regression model for scalar responses with
functional and scalar predictors. The proposed model pairs a B-spline basis
expansion with dynamic shrinkage priors to capture both smooth and rapidly-
changing features in the regression surface. The model is accompanied by
a new decision analysis approach for functional regression that extracts the
critical windows of susceptibility and guides the model interpretations. These
tools help to identify and address broad limitations with the interpretability
of functional regression models. Simulation studies demonstrate more accu-
rate point estimation, more precise uncertainty quantification, and far superior
window selection than existing approaches. Leveraging the proposed model-
ing, computational, and decision analysis framework, we conclude that pre-
natal PM2.5 exposure during early and late pregnancy is most adverse for
fourth end-of-grade reading scores.

1. Introduction. Scalar-on-function regression (SOFR) has emerged as a critical model-
ing tool for elucidating the relationship between a scalar response variable and data collected
repeatedly over a continuous domain, such as time or space (Morris (2015)). The SOFR
model is formally expressed as

(1) yi = µ + z′
iα +

∫

Ti

Xi(t)β(t) dt + ϵi , ϵi
iid∼ N

(
0,σ 2)

, i = 1, . . . , n.

In this model the scalar response yi ∈ R is linked to the functional covariate Xi : Ti → R
and other scalar covariates zi ∈ Rp . The compact domains Ti ⊆ T ⊂ R are subject-specific,
which is important for our motivating application introduced below, and T denotes the max-
imal domain over which the functional covariates Xi may be observed. The integral term∫
Ti

Xi(t)β(t) dt represents the cumulative effect of Xi over its domain Ti , while the linear
term z′

iα (or additive generalizations, see Section 5) accounts for other scalar covariates that
may influence the response yi .

The main goal of fitting a SOFR model (1) is to estimate and characterize the unknown re-
gression function β , which describes the effects of the functional covariates Xi on the scalar
response yi . Further, we aim to identify any regions within the domain T —referred to as crit-
ical windows—that are predictive of yi , while adjusting for important confounding variables
zi . Given that the functional covariates Xi are usually high dimensional, highly correlated,
and often collected on irregularly-spaced locations over the domain, regularization of β is
a central focus in SOFR. Regularization is enforced via penalties or priors to guard against
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both overfitting β and the multicollinearities induced by the within-function correlations of
{Xi}. Classical approaches expand β , using a known basis expansion, and introduce a prior
or penalty that encourages smoothness, such as splines with penalties on the differenced co-
efficients (James (2002), Marx and Eilers (1999)) or wavelets with sparsity priors or penalties
(Brown, Vannucci and Fearn (1998), Morris et al. (2008), Morris and Carroll (2006)). Princi-
pal components analysis can be applied directly to (1) but does not account for the ordering
within the Xi curves (Cardot, Ferraty and Sarda (1999), Müller and Stadtmüller (2005)).

This paper highlights and addresses two fundamental and significant challenges for SOFR.
First, the performance and utility of model (1) hinges on the ability to estimate β . If the model
for β fails to capture the shape of the true regression function, which may vary smoothly or
exhibit rapid changes, then the estimates of β will be biased, the uncertainty quantification
for β will be poorly calibrated, and the predictions of y will be suboptimal. Existing methods
for SOFR commonly produce interval estimates for β that are far too conservative, which
limits the power to detect important covariate effects (see Section 4). Thus, it is critical to
produce estimation and inference tools for β that adapt to both smooth and rapid changes
and provide precise yet well-calibrated uncertainty quantification. At the same time, modern
high-dimensional datasets demand scalability in both the number of observations n and the
number of observation points along T . Our modeling and computing strategies emphasize
both adaptability and scalability.

The second and more subtle challenge is that of interpretability: given an estimate and
inference of the regression coefficient function β , how does one interpret the results? More
concretely, consider β(t∗) at a specific point t∗ ∈ T . In the context of (1), we may be tempted
to interpret the coefficient function as

β
(
t∗

) ≈
∫

N(t∗)

{
X(t) + 1

}
β(t) dt −

∫

N(t∗)
X(t)β(t) dt(2)

= E
[
y | zi ,

{
X(t) + 1

}
t∈N(t∗)

] − E
[
y | zi ,

{
X(t)

}
t∈N(t∗)

]
,(3)

where N(t∗) is a small neighborhood around t∗ and the expectations also condition on the
parameters (µ, α, β). Informally, (2)–(3) suggest that the regression function β at time t∗

corresponds to the change in the expected response variable for a one-unit increase of X in
a neighborhood of t∗, all else equal. Yet for functional covariates, this latter qualification
is usually not meaningful: given a trajectory {X(t)}t∈T , it is difficult to envision that same
trajectory but with X(t) replaced by X(t) + 1 only in a small neighborhood of t∗. Such
an abrupt and localized perturbation of the trajectory is typically not consistent with the
data-generating process, especially when the curves Xi are modeled as smooth functions.
These difficulties propagate more broadly, including effect directions and selection of critical
windows. In particular, the interpretation of β(t) > 0 for t ∈ T + and β(t) < 0 for t ∈ T −

for subdomains T +,T − ⊂ T is nontrivial, especially when the curves Xi exhibit structured
(e.g., seasonal) correlations; this issue is discussed in detail in Section 5. Similar warnings
regarding interpretability were issued by Dziak et al. (2019), although they did not suggest
general purpose tools to resolve these challenges. As such, we are motivated to produce model
summarization techniques that enable both interpretable estimation and powerful window
selection for SOFR.

In response to these challenges, we propose a new Bayesian adaptive scalar-on-function re-
gression (BASOFR) model paired with a decision analysis strategy to select critical windows
and deliver more interpretable model summaries. The BASOFR specifies a B-spline basis
expansion for β and a dynamic shrinkage prior (Kowal, Matteson and Ruppert (2019)) on
the (second differenced) basis coefficients. Crucially, this local and adaptive shrinkage prior
encourages smoothness yet can capture rapid changes in β , which produces better point esti-
mates and more precise uncertainty quantification, especially in the presence of both smooth
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and rapidly-changing features (see Section 4). Importantly, the proposed modeling structure
admits a highly scalable Gibbs sampling algorithm, which is essential for handling high-
dimensional datasets.

Leveraging the BASOFR output, we develop a decision analysis approach to select the
critical windows of T and provide interpretable model summaries. A crucial observation is
that estimation and uncertainty quantification for β is not sufficient for selecting critical win-
dows: some decision analysis or other selection criteria (see below) are required. We propose
to extract locally constant point estimates from the BASOFR model—or more generally,
any Bayesian SOFR model—which feature estimates of the form β̂(t) = δ̂k for t ∈ Tk and
{Tk} a learned partition of T . In conjunction, the estimated coefficients and partition {δ̂k,Tk}
identify effect sizes, effect directions, and critical windows. These locally constant estimates
also provide a partial resolution to the challenges raised by (2)–(3): namely, δ̂k estimates the
change in the expected response variable for a one-unit increase in the aggregated trajectory
X(Tk) := ∫

Tk
X(t) dt while holding {X(Tj )}j≠k constant. Here, the notion of all else equal

is more plausible and less restrictive: it refers to distinct regions of the domain—rather than
neighboring time points—and only requires the aggregated trajectories {X(Tj )}j≠k—rather
than the entire {X(t)}t∈T paths—to be held constant outside of Tk . These tools contribute
minimal computational cost and complement more traditional posterior summaries, such as
expectations and credible intervals.

The proposed decision analysis approach deviates from the vast majority of methods for
critical window selection, which rely on pointwise credible intervals for β (Bose et al. (2017),
Lee et al. (2018), Leon Hsu et al. (2015), Warren et al. (2012), Wilson et al. (2017)) or other
marginal criteria (Warren et al. (2020)) under a Bayesian SOFR. However, it has been shown
that variable selection based on credible interval—that is, variables are selected if the credible
intervals exclude zero—is severely underpowered and overconservative, especially compared
to recent decision analysis strategies (Kowal (2022a), Kowal (2022b), Kowal and Bourgeois
(2020)). We confirm this effect for window selection (Section 4.2), which implicitly warns
that popular existing methods may be erroneously omitting key windows of susceptibility.

Our decision analysis approach continues a line of research on posterior summarization of
Bayesian models, which has been directed primarily for variable selection, including linear
regression (Hahn and Carvalho (2015)), graphical models (Bashir et al. (2019)), seemingly-
unrelated regressions (Puelz, Hahn and Carvalho (2017)), and function-on-scalars regression
(Kowal and Bourgeois (2020)). The window selection problem is more closely related to
change point detection than variable selection but specific to the regression coefficient func-
tion β in (1) rather than observed data.

An intuitive and alternative Bayesian approach, BLISS (Grollemund et al. (2019)), places
a prior on β that constrains the regression function to be locally constant with unknown levels
and partitions. However, BLISS faces a substantial computational burden and does not scale
to moderate or large datasets such as ours (see Figure 3). In addition, BLISS requires careful
specification of multiple hyperparameters, including a fixed choice for the number of parti-
tions. Grollemund et al. (2019) proposed to fit separate models for each specified number of
partitions and then to compare them using BIC. Naturally, this exercise further increases the
computational cost. Regardless, we emphasize that the prior alone cannot select windows:
whether using BASOFR, BLISS, or any other Bayesian SOFR model, some decision anal-
ysis or selection criterion is still required. Our two step procedure—fitting the scalable and
adaptive BASOFR model and summarizing the output using customized decision analysis—
circumvents these computational challenges yet still provides posterior uncertainty quantifi-
cation, locally constant point estimates, and powerful window selection.

Among frequentist methods, Picheny, Servien and Villa-Vialaneix (2019) introduced a
semiparametric approach for window selection, which does not require the linearity in (1)
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TABLE 1
Variables in the NC dataset. Data are restricted to individuals with 30–42 weeks of gestation, zero to 104 weeks

of age-within-cohort, mother’s age 15-44, Blood_Lead ≤ 10, birth order ≤ 4, no current limited English
proficiency, and residence in NC at the time of birth and the time of fourth EOG test

Air quality during gestation
Prenatal_PM2.5 Daily PM2.5 level estimated at the 2010 census tract of the mother’s home address

(with length Gestation)

Birth information

mEdu Mother’s education group at the time of birth (NoHS = no high school diploma, HS =
high school diploma, higherHS = some college/associates or higher)

mRace Mother’s race/ethnicity group (Non-Hispanic (NH) White, NH Black, Hispanic)
mAge Mother’s age at the time of birth
Male Male infant? (1 = Yes)
Smoker Mother smoked? (1 = Yes)
Gestation Clinical estimate of the gestation length (days)
BirthMonth Birth month of the student

Education/End-of-grade (EOG) test information
Reading_Score Standardized score for the (chronologically first) fourth EOG reading test
Age_w_cohort Age-within-cohort: the relative age of each student within their cohort, see the online

Supplementary Material for details and summary statistics (Gao and Kowal (2024)).

Blood lead surveillance
Blood_lead Blood lead level (micrograms per deciliter)

Social/Economic status
EconDisadvantage Economically disadvantaged students are indicated by participation in the free/reduced

price lunch program (1 = Participation in the program)

and has been applied for datasets with a moderate to large number of observation points along
T . However, this approach requires specification of four tuning parameters, does not readily
adjust for scalar covariates zi , and does not provide estimation or inference for β , which is
essential to quantify the direction and magnitude of the effects within these critical intervals.
James, Wang and Zhu (2009) introduced an approach to SOFR that imposes sparsity on the
derivatives of β , but similarly, it requires multiple tuning parameters and does not provide
uncertainty quantification for β .

Our methods are motivated by a real-world study examining the impact of daily exposure
to PM2.5 during pregnancy on standardized fourth end-of-grade (EOG) reading test scores in
a large cohort of students in North Carolina (NC) (Section 5). The dataset is created by linking
multiple administrative datasets in NC that include birth and demographic information, blood
lead level measurements, socioeconomic status, and fourth EOG reading test scores on n =
98,159 mother-child pairs; see Table 1 for the primary variables and Bravo and Miranda
(2021) and Feldman and Kowal (2022) for additional details. Daily PM2.5 exposure at the
mother’s home address is computed using the Fused Air Quality Surface Using Downscaling
(FAQSD) data provided by the United States Environmental Protection Agency.

The goal of our analysis is to estimate and characterize the effects of prenatal PM2.5
exposure on educational outcomes and, in particular, to identify the time periods during
gestation—if any—that are predictive of adverse educational outcomes, while adjusting for
important confounding variables. Since PM2.5 is recorded as a function of days-in-gestation
and EOG reading scores are scalar outcomes, SOFR offers a natural modeling framework.
This analysis necessitates statistical methodologies capable of: (i) adapting to both smooth
and abrupt changes in the coefficient function β , (ii) scaling to handle n = 98,159 observa-
tions and approximately 300 observation points per function, and (iii) providing tools for in-
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ference to describe, interpret, and visualize the model-based results. Our proposed BASOFR
model and accompanying decision analysis effectively cater to these needs.

In the context of estimating the effects of cumulative exposures, the distributed lag model
(DLM) is a widely-used variant of (1) that replaces the integral with a multiple regression
equation featuring lagged exposure measurements (Schwartz (2000)). As in SOFR, the DLM
emphasizes flexible modeling of the regression surface along with regularization of the coeffi-
cients and has been generalized for spatiotemporal data (Warren et al. (2012)) and tree-based
regression models (Mork and Wilson (2022)). Despite the similarities between SOFR and
DLMs, we prefer the representation in (1) because it does not require the exposures Xi(t) to
be observed at the same time points for all subjects. In particular, gestational length ranges
from 30 to 42 weeks in our dataset, which requires careful consideration of the subject-
specific domain Ti in (1). Nonetheless, the proposed modeling, computational, and decision-
analysis strategies remain relevant for DLMs.

This article is outlined as followed. Section 2 presents the proposed BASOFR model. Sec-
tion 3 contains the decision analysis approach for window selection and model summariza-
tion. Section 4 contains a detailed simulation study. The methods are applied to the NC data in
Section 5. Section 6 concludes. The online Supplementary Material includes computational
details, additional simulation results, and supporting information about the NC data (Gao and
Kowal (2024)). An R package is available at https://GitHub.com/YunanGao/BaiSOFR.

2. Bayesian adaptive scalar-on-function regression. The core task in fitting the SOFR
model (1) is to learn the unknown regression coefficient function β , given observations
{(Xi, yi)}ni=1; here we omit the scalar covariates zi for simplicity. With real data the func-
tions are observed at discrete points: xi = (Xi(ti,1), . . . ,Xi(ti,mi ))

′, where the mi observa-
tion points may be unequally-spaced or differ from subject to subject. Although it is tempting
to apply (nonfunctional) linear regression models to {(xi , yi)}, there are several drawbacks
to this approach. First, the resulting model will be high dimensional with highly-correlated
covariates and, therefore, requires regularization. Second, such a model fails to account for
the ordering among the covariates with respect to the domain ti,j ∈ T , which is crucial in-
formation for both regularization and interpretation. Lastly, it is unclear how to apply this
approach when the functional covariates are not observed on a common grid, which occurs
for our application (Section 5).

We instead pursue a basis expansion strategy for both the functional predictors and the
regression coefficient function (Ramsay and Silverman (2005)). By expanding Xi(t) =∑KX

k=1 X∗
ikφk(t) and β(t) = ∑KB

k=1 B∗
k ψk(t) for known basis functions {φk(·)}KX

k=1 and
{ψk(·)}KB

k=1 and unknown coefficients {X∗
ik}KX

k=1 and {B∗
k }KB

k=1, the key term in (1) simplifies to

(4)
∫

Ti

Xi(t)β(t) dt = X∗
i Jφ,ψ

i B∗ = X∗∗
i B∗,

where X∗
i = (X∗

i1, . . . ,X
∗
iKX

), B∗ = (B∗
1 , . . . ,B∗

KB
), and Jφ,ψ

i = [∫Ti
φj (t)ψk(t) dt]jk . The

basis expansions resolve the difficulties with unequally-spaced or noncommon observation
points for the functional predictors {Xi}, since we instead work with the coefficients X∗

i . In
addition, the basis expansion of each Xi serves as a regularization tool to smooth over the
measurement errors associated with the direct observations xi . Lastly, the representation in
(4) shows that fitting the SOFR (1) can be made equivalent to fitting a multiple linear regres-
sion model with covariates X∗∗

i = X∗
i Jφ,ψ

i , which is known. Additional details regarding the
basis expansions are provided in the online Supplementary Material (Gao and Kowal (2024)).

Under these basis expansions, estimation and inference on the basis coefficients B∗ are
sufficient for estimation and inference on the regression function β . Thus, a prior on B∗

implies a prior on β . Yet despite the promise of the multiple linear regression interpretation

https://GitHub.com/YunanGao/BaiSOFR
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of (4), the prior on B∗ must be specified carefully. Common shrinkage priors for regression
are designed to shrink redundant linear coefficients to zero. However, sparsity in B∗ does
not guarantee smoothness or other desirable properties of β . More specifically, the choice of
prior on B∗ cannot be decoupled from the choice of basis. For instance, when B∗ is assigned
a Gaussian prior, the resulting coefficient function is a Gaussian process with covariance
function Cov{β(t),β(s)} = ∑

k,ℓ ψk(t)ψℓ(s)Cov(B∗
k ,B∗

ℓ ). Thus, the prior on β inherits key
properties from both the basis functions and the prior on B∗.

Our strategy marries a particular choice of basis functions with a locally adaptive shrink-
age prior. Specifically, we select a B-spline basis with a moderate number of equally-spaced
knots. B-splines are numerically stable with convenient computational properties, in part due
to the local compactness and ordering among the basis functions. These properties further
motivate and enable our prior specification for the basis coefficients. As an illustrative ex-
ample, consider the B-spline basis coefficients for the nonlinear function in Figure 1. The
function is smooth yet features two regions with rapid changes, which are highlighted by
the plot of β ′′. The B-spline basis coefficients B∗ (determined via least squares for this il-
lustration) offer several suggestions for an ideal prior. First, the coefficients inherit an or-
dering similar to that in the original domain T . Thus, neighboring coefficients should be
shrunk together to encourage smoothness. Next, the second differences of the coefficients,
(2B∗

k = (B∗
k − (B∗

k−1 with (B∗
k = B∗

k+1 − B∗
k , closely resemble the second derivatives

β ′′. This observation has motivated P-splines (Marx and Eilers (1999)), which imitate the
familiar roughness penalty

∫
T {β ′′(t)}2 dt with the coefficient analog

∑
k((

2B∗
k )2. However,

this global penalty ignores the final critical observation in Figure 1: the smooth periods of
β correspond to zeros in (2B∗

k , while the rapidly-changing periods exhibit volatility cluster-
ing, that is, consecutive sequences of large absolute values. More specifically, the shrinkage
in the peaked regions (around the 50–80th and the 120–150th coefficients) should not be as
aggressive as in the flat regions. Classical P-splines cannot capture this behavior: the rate of
shrinkage is global across all k and T . Thus, adequate B-spline modeling of functions with
both smooth and rapidly-changing features requires a prior that: (i) encourages smoothness
via near-sparsity of (2B∗

k and (ii) admits local adaptivity via dynamic volatility modeling.
Motivated by these considerations, we propose the following locally adaptive shrinkage

prior on the regression coefficient function:

β(t) =
KB∑

k=1

B∗
k ψk(t),(5)

(2B∗
k | λk

indep∼ N
(
0,λ2

k

)
, {λk} ∼ DHS,(6)

where {ψk}KB
k=1 is a collection of equally-spaced B-splines and DHS refers to the dynamic

horseshoe prior (Kowal, Matteson and Ruppert (2019)). The local scale parameters λk de-
termine the smoothness of the function over the (compact) support of ψk : when λk is small,
the function β is approximately locally linear; when λk is large, the function β admits large
changes in the slope. This local adaptivity is enabled by the basis-specific scales λk . By com-
parison, classical P-splines apply global smoothness via a common scale λk = λ.

Relative to the horseshoe prior (Carvalho, Polson and Scott (2010)), the dynamic horse-
shoe prior offers key advantages for adaptive function estimation. The horseshoe prior as-
sumes independent half-Cauchy priors for λk , which does not account for the volatility clus-
tering observed in Figure 1. Informally, nondynamic shrinkage priors do not incorporate in-
formation regarding the shrinkage behavior of neighboring regions, which produces inferior
estimates and uncertainty quantification (see Figure 2). The dynamic horseshoe prior resolves
these issues using a volatility model,

(7) hk := log
(
λ2

k

)
, hk+1 = µh + φ(hk − µh) + ηk+1, ηk

iid∼ Z(1/2,1/2,0,1),
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FIG. 1. The nonlinear function β(t) = 8{2 + exp(20 − 60x) + exp(60t − 20)}−1 − 12{2 + exp(40 − 60t) +
exp(60t − 40)}−1 (top left), the second derivatives β ′′ (top right), the (ordinary least squares) basis coefficients
using a dense B-spline basis with equally-spaced knots (bottom left), and the second differences of the basis
coefficients (bottom right).

where Z(a, b,0,1) denotes the Z-distribution with density [z] = {B(a, b)}−1 exp{z}a[1 +
exp{z}]−(a+b) and B(·, ·) is the beta function. The dynamic horseshoe prior models the
log-variances of the second-differenced basis coefficients with an autoregressive model of
order one, which resembles classical Bayesian volatility models for time series analysis
(Kim, Shephard and Chib (1998)). The key distinctions here are: (i) the presence of the Z-
distribution and (ii) the role of the coefficient indices k. First, Kowal, Matteson and Ruppert
(2019) showed that many common shrinkage priors expressed via λk can be represented on
the log-scale with a Z-distribution; see Table 2. When there is no autoregressive behavior
φ = 0, the prior (7) with a = b = 1/2 exactly reproduces the horseshoe prior. As such, the
dynamic horseshoe is capable of providing both aggressive shrinkage and persistence of large
signals, which here corresponds to local smoothness and rapidly-changing features in β , re-
spectively.

Second, the “time” index for the volatility model is k, which corresponds to the second
differenced basis coefficient (2B∗

k . This modeling structure is appropriate due to the local
compactness and ordering of the (equally-spaced) B-spline basis functions (Figure 1).

To demonstrate the importance of both the dynamic and shrinkage aspects of the prior for
SOFR, we consider a brief example with simulated data. Data from the SOFR model (1) are
generated for n = 500 observations with a moderate signal-to-noise ratio (SNR = 5) using
the nonlinear function from Figure 1 for the true regression coefficient function; additional
details are provided in Section 4. To compare with the proposed approach, we consider a vari-

TABLE 2
Each of these priors is reproduced by a Z-distribution on the log-variance

a = b = 1/2 Horseshoe Prior (Carvalho, Polson and Scott (2010))
a = 1/2, b = 1 Strawderman–Berger Prior (Berger (1980), Strawderman (1971))
a = 1, b = c − 2, c > 0 Normal-Exponential-Gamma Prior (Griffin and Brown (2005))
a = b → 0 (Improper) Normal-Jeffreys’ Prior (Figueiredo (2003))
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FIG. 2. True curve (thin line) with the posterior mean (dark line) and 50% (dark shade) and 95% (light shade)
credible intervals for the proposed method (left) and the local P-spline competitor (right). Both the dynamic and
shrinkage properties of the proposed prior are necessary for accurate point estimation and precise uncertainty
quantification.

ation of (5)–(6) that instead uses independent and diffuse inverse-Gamma priors on {λ2
k}. This

local P-spline competitor includes local scale parameters but fails to provide either the ag-
gressive shrinkage or the dynamics of the proposed approach. The posterior means and 50%
and 95% pointwise credible intervals for β are presented in Figure 2. Clearly, this example is
highly challenging: the nonlinear regression function includes both flat and rapidly-changing
features and is not directly observable and must be inferred via the regression model (1). Most
striking, the dynamic shrinkage provides better point estimation, especially in the smooth re-
gions, and significantly more narrow interval estimates. By comparison, the local P-spline
incorrectly estimates oscillations that are not present in the true function and produces credi-
ble intervals that are far too wide to be useful in practice.

The proposed Bayesian adaptive scalar-on-function regression (BASOFR) model (1) and
(4)–(7) is completed by specifying priors on the remaining parameters in (1) and (7). By de-
fault, we assume the diffuse priors [µ] ∝ 1 and [σ−2] ∼ Gamma(0.01,0.01). For the bound-
ary coefficients in (6), we include the prior [B∗

1 ,B∗
KB

| λ0] ∼ N (0,λ2
0) indepenently with

λ−2
0 ∼ Gamma(0.01,0.01), which guards against excessively wide interval estimates of β

near the boundaries of T . For the dynamic horseshoe parameters, we follow Kowal, Mat-
teson and Ruppert (2019) and assume [exp(µh/2)] ∼ C+(0,1), which corresponds to the
global scale parameter in the nondynamic horseshoe (φ = 0) and [(φ + 1)/2] ∼ Beta(10,2),
which encourages persistence in the log-volatility but maintains stationarity via |φ| < 1.

Posterior inference under this model is available using an efficient Gibbs sampler that
cycles through the basis coefficients {B∗

k } in (5), the log-volatilities {hk} in (7), the autore-
gressive parameters {µh,φ}, and the variance component σ 2 in (1). The crucial features of
our sampling algorithm are: (i) the full conditional distribution of {B∗

k } is KB -dimensional
Gaussian, which can be sampled efficiently and used to update β(t) = ∑KB

k=1 B∗
k ψk(t) for

any t ∈ T , and (ii) the log-volatilities {hk} can be sampled using a fast O(KB) algorithm
that relies on Gaussian parameter expansions and banded precision matrices; the details are
provided in the online Supplementary Material (Gao and Kowal (2024)).

To highlight the computational scalability, we compare the empirical computing time for
BASOFR against BLISS (Grollemund et al. (2019)) in Figure 3. We vary the sample sizes
n and use the true regression function from Figure 2. To ensure favorable conditions for
BLISS, we fix the number of local levels at two so that the computation time for BIC model
selection is not included; thus, these computing times underestimate the usual computational
burden of BLISS. Nonetheless, it is clear that BLISS does not scale to even moderate sample
sizes (n > 1000), while the proposed algorithm scales approximately linearly in n. Since our
application features n ≈ 100,000, such scalability is essential.
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FIG. 3. The empirical computational time for BASOFR and BLISS (left) and BASOFR (right) for
n ∈ {50,100,500,1000,10,000} in seconds per 2000 iterations (using R on a Windows PC, 2.79 GHz AMD
EPYC-Rome).

3. Decision analysis for window selection in SOFR. The BASOFR proposed in (1)
and (4)–(7) offers several key benefits for Bayesian SOFR, including more adaptive point
estimation, more precise uncertainty quantification, and scalable computing capabilities (see
Section 4). Despite these advantages the posterior distribution of β alone cannot select critical
windows of susceptibility: selection must be considered carefully and requires a decision
analysis. Further, the local adaptivity induced by the prior does not resolve the interpretability
issues noted in (2)–(3). This challenge permeates Bayesian SOFR and Bayesian inference
more broadly: models may produce accurate data-generating processes, yet the parameters of
those models do not necessarily offer the most convenient interpretations.

To address these challenges, we introduce posterior summarization tools for SOFR. In-
formally, the strategy adopts a two-stage approach: first, we estimate an adequate Bayesian
SOFR model, such as BASOFR; second, we extract more interpretable point summaries from
the model. These summaries are designed to replace more common point estimates, such as
the posterior mean of β(t), but customized to provide window selection and to mitigate the
challenges observed in (2)–(3). Specifically, we target locally constant (or stepwise) point
estimates of the form β̂(t) = δ̂k for t ∈ Tk and {Tk}Kk=1 a partition of T . Importantly, the key
SOFR term simplifies

(8)
∫

T
Xi(t)β̂(t) dt =

K∑

k=1

Xi(Tk)δ̂k,

where X(Tk) := ∫
Tk

X(t) dt is the aggregated trajectory over Tk . As a technical note, we de-
fine Xi(t) = 0 for t /∈ Ti , which allows the subject-specific domain in (1) to be expressed more
conveniently using the maximal domain T . The partition {Tk}Kk=1 provides window selection,
that is, the regions of T that are most important for predicting y. Hence, it directly targets our
goal of identifying the susceptible windows of PM2.5 exposure during gestation, specifically
linked to educational outcomes. These coefficients are also arguably more interpretable than
β(t): δ̂k estimates the change in the expectation of y for a one-unit increase in the aggregated
trajectory X(Tk) while holding the remaining aggregated trajectories {X(Tj )}j≠k constant.
As an added benefit, this representation significantly reduces storage requirements: point pre-
dictions can be computed using the aggregated trajectories {X(Tk)}Kk=1 instead of the entire
trajectories {X(t)}t∈T .

To extract these summaries, we adopt a decision analysis approach and use the acceptable
families of Kowal (2021) to compare partitions. Specifically, consider the following predictive
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loss function for δ, omitting the scalar covariates zi for now:

(9) L̃λ(δ) = n−1
n∑

i=1

∥∥∥∥∥(ỹi − µ) −
K∑

k=1

Xi(Tk)δk

∥∥∥∥∥

2

2

+ λ
K∑

k=2

|δk − δk−1|,

where each ỹi is a posterior predictive variable at Xi under the BASOFR model. The loss
function L̃λ(δ) combines a “goodness-of-fit” component with an ℓ1-penalty on the incre-
ments δk − δk−1 to encourage fewer change points in δk . The loss function may be further
augmented with an ℓ1-penalty on δk or other thresholding to encourage additional sparsity.

Since this loss inherits a posterior (predictive) distribution via {ỹi}ni=1 and µ, Bayesian
decision analysis proceeds by integrating over the posterior (predictive) distribution and min-
imizing the resulting quantity: δ̂λ := arg minδ E[ỹ,µ|y]L̃λ(δ), which simplifies to

(10) δ̂λ = arg min
δ

{

n−1
n∑

i=1

∥∥∥∥∥(ŷi − µ̂) −
K∑

k=1

Xi(Tk)δk

∥∥∥∥∥

2

2

+ λ
K∑

k=2

|δk − δk−1|
}

(assuming E[ỹ,µ|y]∥ỹi − µ∥2 < ∞; Kowal (2021)), where ŷi := E[ỹi |y]ỹi and µ̂ := E[µ|y]µ
are posterior predictive expectations under the BASOFR model. Crucially, the optimal Bayes
action δ̂λ is a “fit-to-the-fit” using pseudo-data ŷi −µ̂ = ∫

T Xi(t)β̂(t) dt for β̂(t) = E[β|y]β(t)

and covariates {Xi(Tk)}Kk=1. As such, δ̂λ seeks to simplify point estimation not by targeting
β̂(t) directly but rather optimizing for the point predictions generated by β̂(t) under the SOFR
model. Given these point predictions, the solution in (10) is readily computed using existing
software, such as the R package genlasso (Tibshirani and Taylor (2011)).

The decision-analytic optimality of δ̂λ is valid only for a fixed λ, which controls the number
of partitions (or steps) in the locally constant estimator {δ̂k}. Hence, further comparisons are
required across the path of λ values. We consider two metrics for each δ̂: the empirical mean
squared error

(11) Eλ = 1
n

n∑

i=1

{
(yi − µ̂) −

∫

Ti

Xi(t)δ̂λ(t) dt

}2

and the predictive mean squared error Ẽλ := L̃0(δ̂λ) via (9), which replaces yi with ỹi and µ̂
with µ in (11). Both metrics are important: Eλ provides an empirical point summary of the
predictive accuracy, while Ẽλ inherits a posterior predictive distribution under the BASOFR
model via ỹ and µ.

The uncertainty quantification provided by the predictive version Ẽλ is valuable for com-
paring across approximations of varying complexities λ. In particular, a primary drawback of
the locally constant representation (8) is the potential for instability, that is, distinct partitions
{Tk} and {T ′

k } that produce similar predictive performance yet differ in their identification of
the important windows of T . This issue is not unique to our posterior summarization strategy
but persists more broadly for estimators of the form (8). To address this instability, we lever-
age the uncertainty quantification from Ẽλ to construct the acceptable family (Kowal (2021)),
which collects the approximations δ̂λ that offer “near-optimal” predictive performance,

(12) Aε := {
λ : PM(D̃λ < 0) ≥ ε

}
, ε ∈ [0,1],

where D̃λ := 100 × (Ẽλ − Ẽλmin)/Ẽλmin is the percent increase in predictive mean squared
error relative to the empirical loss minimizer λmin := arg minλ Eλ. Informally, Aε collects
all approximations δ̂λ for which the predictive performance matches or exceeds that of δ̂λmin

with at least ε probability under the BASOFR model M. Equivalently, λ ∈ Aε if and only
if a lower (1 − ε) posterior prediction interval for D̃λ includes zero (Kowal (2021)). The
acceptable family has been applied for targeted prediction (Kowal (2021)), variable selection
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(Kowal et al. (2021)), subset selection (Kowal (2022a)), and selection in mixed effects models
(Kowal (2022b)). By default, we select ε = 0.10; smaller values expand the acceptable family,
but results are generally robust to moderate changes in ε (Kowal (2021), Kowal (2022a),
Kowal et al. (2021)). We focus on the simplest member of the acceptable family, that is, the
locally constant point estimate with the fewest changes in the local level (yet still satisfies
(12)).

To incorporate the scalar covariates zi in (1), we replace (ỹi − µ) with (ỹi − µ − z′
iα) in

(9) and Ẽλ and (ŷi − µ̂) with (ŷi − µ̂ − z′
i α̂) for α̂ := E[α|y]α in (10) and (11). The result-

ing optimal point estimates δ̂λ now account for the scalar covariates zi , while the posterior
predictive quantities (9) and Ẽλ include the uncertainty due to the model parameters α.

4. Simulation study. We conduct two simulation studies: one that evaluates the BA-
SOFR model against other SOFR models (Section 4.1) and one that assesses the decision
analysis approach for window selection (Section 4.2), both using simulated datasets that re-
semble the NC data in our application study. Since the daily PM2.5 trajectories are seasonal
(see Section 5), we generate functional covariates {Xi}ni=1 with a seasonal pattern: each Xi

follows a Gaussian process with mean function µi(t) = sin(2π t/T + φi ) and covariance
function Cov(Xi(t),Xi(t

′)) = σ 2
x exp{−(t − t ′)2/(2ℓ2)}. The period parameter T is fixed to

induce an annual pattern (T = 365/maximal gestational length in days = 365/295), the off-
set φi ∼ Unif(0,1) represents births at different times of year, and σx = 0.7 and ℓ = 0.01 are
chosen to visually resemble the PM2.5 exposure curves. Each functional covariate is evalu-
ated on a common and regular grid (0,0.01,0.02, . . . ,1). The online Supplementary Material
includes results for smooth yet nonseasonal functional covariates, which is an easier setting
for estimation and inference yet produces the same comparative results as those below (Gao
and Kowal (2024)).

4.1. BASOFR for point estimation and uncertainty quantification. For a challenging es-
timation and inference scenario, we adopt the regression coefficient function in Figure 1,
which presents both smooth and rapidly-changing features. The simulated datasets vary in
the sample sizes and signal-to-noise ratios (SNR), with the SNR decreasing as n increases:
(n,SNR) ∈ {(50,10), (100,7), (500,5), (10,000,0.5)}. Using the aforementioned seasonal
functional covariates, the response variables are simulated from (1) with µ = 0 and σ deter-
mined based on the SNR, and the process is repeated to generate 50 datasets.

To compete with the BASOFR, we include BLISS (Grollemund et al. (2019)) and two
Bayesian variations of the B-spline model (5)–(6). BLISS estimation follows the default rec-
ommendations to fit separate models with one to five levels and select the model with the
lowest BIC. Due to the high computational cost (see Figure 3), we only include BLISS for
n ∈ {50,100}. Next, we modify (5)–(6) to include a global smoothness parameter λk = λ
and a diffuse inverse-Gamma prior on λ2 (P-spline) and the local P-spline model from Fig-
ure 2 with independent and diffuse inverse-Gamma priors for each λ2

k . Each model provides
a point estimate of β via the posterior expectation and uncertainty quantification for β via
95% pointwise credible intervals. Unlike BLISS, the P-spline and local P-spline models are
designed for high-dimensional data and are natural Bayesian competitors for SOFR.

Point estimation is evaluated using L2-error (Figure 4) and uncertainty quantification is
evaluated using mean credible interval widths and empirical coverage (Figure 5). Most no-
tably, the proposed BASOFR model provides highly accurate point estimates and narrow
interval estimates that achieve the nominal coverage, with the most substantial gains over
competing methods occurring for larger sample sizes. By comparison, the P-spline and local
P-spline intervals are far too conservative. Thus, neither global scale parameters nor local but
independent scale parameters are sufficient for effective and adaptive inference: the depen-
dence induced by the DHS prior in (6) is critical. Lastly, the narrow intervals provided by
BLISS are far from achieving the nominal coverage and thus inadequate.
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FIG. 4. L2-error for estimating the true regression function. BASOFR offers the most accurate point estimation
with larger gains over competing methods as the sample size increases.

4.2. Decision analysis for selecting critical windows. Next, we evaluate whether the pro-
posed decision analysis approach (Section 3) is able to identify critical windows of suscep-
tibility. We simulate 50 datasets from the SOFR model (1) with n = 100,000 observations
with a low signal-to-noise ratio (SNR = 0.5) using a locally constant function for the true re-
gression coefficient (see Figure 6) and the seasonal functional covariates Xi(t). This design

FIG. 5. Mean credible interval widths (boxplots) and empirical pointwise coverage (blue annotations) for the
95% credible intervals computed under each model. BASOFR offers substantially more precise uncertainty quan-
tification that maintains the nominal coverage.
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FIG. 6. Left: True regression coefficient function (red) with the posterior mean (gray line), 95% credible interval
(shade), and locally constant estimate (blue) for β under BASOFR for simulated data. Right: For each λ in
the solution path of (10), expectations and 80% credible intervals for the percent difference in predictive mean
squared error D̃λ (black lines) and the analogous empirical version (x-marks) based on (11). The vertical lines
denote λmin (dotted gray) and the simplest acceptable λ (solid gray).

is constructed to mimic the output from the real data analysis (see Section 5, Figure 8) and
especially the large sample size and low SNR. After fitting the BASOFR model, we apply the
proposed decision analysis and select δ̂λ to be the simplest member of the acceptable family
A0.1, that is, the locally constant approximation with the fewest changes in the local level.

First, we summarize the results on a single simulated dataset in Figure 6. Most notably,
the posterior mean and credible intervals for β—as summaries of the BASOFR posterior—
offer limited ability to describe the true regression function, both in terms of shape and effect
direction. However, the decision analysis approach—which is based on the same BASOFR
posterior—adequately recovers the truth. Figure 6 (right panel) also shows that other locally
constant estimates are equally competitive, but the selected version is the simplest.

Next, we simulate 50 datasets from the same design and use the same two-stage procedure
to fit the BASOFR and extract δ̂λ. As a competing method, we select (positive or negative)
windows based on whether the 95% posterior credible intervals for β exclude zero. This
intuitive and popular strategy is based on the same BASOFR that is used in the decision
analysis approach and thus differs only in the selection criteria.

To evaluate these approaches, we compute the true positive (TPR) and true negative (TNR)
rates, defined here to be the correct detection of a truly positive (respectively, negative) win-
dow for the regression coefficient function β (Figure 7). Most notably, the proposed decision
analysis approach is significantly better at selecting the critical windows of susceptibility,
while selection based on credible intervals of β is far too conservative and thus underpow-
ered. We emphasize that this important result applies for the BASOFR posterior credible
intervals, which are substantially tighter (with the correct coverage) than competing interval
estimates (Figure 5). Thus, alternative Bayesian SOFR models with less precise (wider) inter-
val estimates would offer even less power to select these critical windows. We also compute
the L2-error of the point estimates from δ̂λ and β̂ , which confirms that the locally constant
estimator does not sacrifice point estimation accuracy compared to the posterior mean.

The key takeaway from Figures 6–7 is that, despite using a smooth B-spline basis for β , the
BASOFR posterior distribution does contain enough information to estimate a (true) locally
constant regression function,but requires a careful decision analysis (Section 3)—rather than
traditional posterior summaries (posteriors means and credible intervals)—to access it.

5. Prenatal PM2.5 exposure and educational outcomes. Prenatal exposure to air pol-
lution is related to a wide range of adverse birth, health, and behavioral outcomes in children.
These outcomes include smaller fetal growth measurements (Leung et al. (2022)), low birth
weight (Kloog et al. (2012), Srám et al. (2005)), infant negative affectivity (Rahman et al.
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FIG. 7. TPRs (left) and TNRs (center) show significantly better window selection for the proposed decision anal-
ysis (DA) approach, compared to credible interval-based selection (CI), with no apparent loss in point estimation
accuracy compared to the posterior mean (right).

(2021)), and childhood asthma (Hazlehurst et al. (2021), Leon Hsu et al. (2015)), among
many others. However, the link between air pollution exposure during pregnancy and later
educational outcomes is less clear. Previous studies have demonstrated the adverse effects of
prenatal air pollution exposure on neuropsychological development (Suades-González et al.
(2015)), brain structure (Guxens et al. (2018)), memory function and attention (Chiu et al.
(2016)), and autism diagnosis (Kalkbrenner et al. (2015)). These studies suggest a plausible
link between prenatal air pollution exposure and adverse educational outcomes, but they do
not directly consider educational outcomes or estimate the critical windows of susceptibility
during pregnancy.

To address these limitations, we apply the BASOFR model and accompanying decision
analysis to study the effects of prenatal exposure to PM2.5 on educational outcomes. Specif-
ically, we deploy the SOFR model (1) for standardized fourth EOG reading score yi ∈ R,
PM2.5 exposure during gestation Xi : Ti → R, and other scalar covariates zi ∈ Rp (see Ta-
ble 1) for a large cohort of mother-child pairs i = 1, . . . , n in NC.

The use of model (1) requires careful consideration of the domains Ti and the scalar co-
variates zi . First, each domain is subject-specific: Ti = [1, Ti], where Ti is the number of
days in the gestational period for mother-child pair i. The gestation lengths range from 30
to 42 weeks, so the maximal domain is T = [1, Tmax], where Tmax = 295 days is the longest
gestational period in the dataset. The B-spline basis is defined on this interval.

Next, the covariates zi are given in Table 1 (with the exception of Reading_Score
and PrenatalPM2.5). Each continuous covariate is centered and scaled, and the categorical
variables are encoded using dummy variables. We modify (1) to include nonlinear additive
effects for mother’s age (mAge), length of gestation Ti (Gestation), and age-within-cohort
(Age_w_cohort). The coefficients corresponding to both the linear and the nonlinear ef-
fects of the covariates zi (except Age_w_cohort, see below) are assigned a hierarchical
prior, [αj | σj ] ∼ N (0,σ 2

j ), with σ−2
j ∼ Gamma(0.01,0.01) to encourages shrinkage and

guard against the effects of multicollinearity among the correlated covariates zi (see the on-
line Supplementary Material; Gao and Kowal (2024)).

We motivate the additive terms as follows. Research has consistently shown that both
teenage pregnancies and pregnancies among older mothers as well as deviations from an
optimal gestational duration, whether shorter or longer, are linked with heightened health
risks for the child (Chen et al. (2007), Goisis et al. (2017), Goldenberg et al. (2008), Olesen,
Westergaard and Olsen (2003)). Since these health risks may also extend to the child’s educa-
tional outcomes, we seek to account for both maternal age (mAge) and length of gestation Ti

(Gestation) using more flexible additive models. To achieve this, we use piecewise con-
tinuous linear splines with knots carefully selected at maternal ages 18, 24, 29, and 34 and at
weeks gestation 34, 37, 39, and 41. These knots were chosen to reflect key life stages for ma-
ternal age: adolescence (≤ 18), early adulthood (18–24), late twenties (24–29), early thirties
(29–34), and advanced maternal age (≥ 34), as it is widely recognized that these life stages
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FIG. 8. Left: Posterior mean (gray line), 95% credible interval (shade), and locally constant estimate (blue) for
β under BASOFR for the NC data. Right: Expectations and 80% credible intervals for the percent difference in
predictive mean squared error D̃λ (black lines) and the analogous empirical version (x-marks) based on (11) for
each λ in the solution path of (10). The vertical lines denote λmin (dotted gray) and the simplest acceptable λ

(solid gray).

can correspond to varied health and social circumstances (Gogoi (2014), Huang et al. (2023),
Mirowsky and Ross (2002)). Similarly, for gestational length, the knots approximately delin-
eate the transitions between early preterm (≤ 34 weeks), late preterm (34–37 weeks), early
term (37–39 weeks), full term (39–41 weeks), and post-term (≥ 41 weeks) births, each stage
associated with different health risks for the child (Boyle et al. (2012), Zhang and Kramer
(2009)).

For age-within-cohort, we anticipate that older students may perform better on their stan-
dardized tests, but only up to a point: students who are more than one year older than their
classmates may have repeated a grade or enrolled in kindergarten later for developmental
reasons. Thus, we model Age_w_cohort as a nonlinear effect and, in particular, use the
proposed adaptive B-spline model with dynamic shrinkage processes (5)–(7) for this term (as
well as β in (1)). This specification encourages the nonlinear effect of Age_w_cohort to
be smooth but can capture rapid changes, such as those expected around 52 weeks. Addi-
tional details and summary statistics for Age_w_cohort are in the online Supplementary
Material (Gao and Kowal (2024)).

Posterior inference from the BASOFR model is based on 10,000 draws from the Gibbs
sampler (after discarding a burn-in of 10,000). Traceplots show no lack of convergence, and
effective sample sizes are sufficiently large.

First, we summarize our inference on the regression coefficient function β in Figure 8,
which includes traditional posterior summaries of β (posterior means and 95% credible inter-
vals) along with the proposed locally constant point estimate. We select δ̂λ to be the simplest
member (i.e., the locally constant estimate with the fewest changes in the local level) of the
acceptable family A0.1. Figure 8 (right panel) justifies this choice: the simplest member of
the acceptable family indeed provides near-optimal prediction, compared to the other point
estimators along the solution path of (10). Notably, the locally constant estimator substan-
tially simplifies the shape of β and selects the critical windows of susceptibility. We refer the
three locally constant regions in δ̂λ as R1, R2 and R3, which are similar but not identical to
trimesters one, two, and three, respectively.

Despite the simplifications offered by the decision analysis, the interpretation of the regres-
sion coefficient function estimates requires some care. At first glance, Figure 8 suggests that
PM2.5 exposure is detrimental in R1 and R3 yet favorable in R2. Such a contradictory effect
seems implausible. To investigate this outcome, we compute the estimated cumulative effect
of exposure to PM2.5,

∫
Ti

Xi(t)β̂(t) dt , for each mother-child pair i = 1, . . . , n (Figure 9),
using both the posterior mean and the locally constant point estimator for β . The cumulative
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FIG. 9. The estimated expected cumulative effects of PM2.5 exposure during pregnancy across mother-child
pairs i = 1, . . . , n using the posterior mean β̂ (left) and δ̂λ (right). The sample median (blue) and 95% intervals
(via sample quantiles; red) are annotated. The estimated cumulative effects agree and are significantly negative
for nearly all mother-child pairs.

effect of PM2.5 exposure during gestation is significantly negative for nearly all mother-child
pairs. Thus, as anticipated, exposure to PM2.5 during gestation is negatively associated with
fourth EOG reading scores (adjusting for zi).

We further investigate which students were assigned positive or negative estimated cu-
mulative effects

∫
Ti

Xi(t)β̂(t) dt (Figure 10). Notably, the students for which this effect is
(unexpectedly) positive were born almost exclusively in October–December. This result cor-
responds to a seasonal pattern in daily PM2.5 exposure, which is further confirmed in Fig-
ure 10 (right panel): the birth month determines the average PM2.5 exposure over each region
R1, R2, and R3, with October–December corresponding uniquely to high exposures during
R2 but low exposures during R1 and R3. Thus, the positive estimate in R2 is confounded
by low exposures during R1 and R3 (Figure 8). We emphasize that seasonality is already in-
cluded in the model via zi : both birth month and age-within-cohort are included as nonlinear
effects and capture overlapping yet mutually important notions of seasonality.

Our cumulative analysis—the estimated effects and windows selected (Figure 8), the over-
whelmingly negative cumulative effects across mother-child pairs (Figure 9), and the season-
ality patterns (Figure 10)—leads us to conclude that R1 and R3 represent the critical windows
of susceptibility that are adversely associated with fourth EOG reading scores.

It is biologically plausible that PM2.5 exposure has adverse effects on fetal development
during early (R1) and late (R3) pregnancy. This may be attributed to the distinctive devel-
opmental milestones that occur in these stages. R1, roughly the first trimester, is a period of
rapid cellular differentiation and organogenesis, with vital organs such as the heart, brain, and
spinal cord beginning to form, while R3, roughly the third trimester, is characterized by rapid
growth and maturation of organ systems, notably the central nervous system and the lungs
(e.g., Sadler (2022)). Thus, R1 and R3 may be particularly susceptible to the adverse effects
of harmful toxins. Additionally, our findings are consistent with other studies: Xiong et al.
(2019) and Cheng et al. (2023) provide evidence of the unfavorable effects of air pollutant
exposure during the first and third trimesters on birth defects. This research, coupled with
studies suggesting that PM2.5 exposure in the first and third trimesters are linked to lower in-
telligence quotient (IQ) as well as impaired behavioral and neuropsychological development
in children (Chiu et al. (2016), Kalkbrenner et al. (2015), McGuinn et al. (2020), Sun et al.
(2023)), underscores the significance of our results.

Lastly, we summarize the posterior inference for the scalar covariates zi . Among the
linear effects (Table 3), we find that lower fourth EOG reading scores are associated with
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FIG. 10. Distribution of the birth month for mother-child pairs with a negative (top left) or positive (bottom
left) estimated expected cumulative effect of PM2.5 exposure during pregnancy, along with the average PM2.5
exposures over the windows identified by δ̂λ (see Figure 9). The positive effects represent a small fraction of moth-
er-child pairs with birth months almost exclusively in October–December, which corresponds to high exposures
during R2 but low exposures during R1 and R3. This seasonality is vital for interpreting β .

lower mother’s education level, presence of economic disadvantages, higher blood lead lev-
els, smoking, and race/ethnicity and gender. The nonlinear effects are presented in Figure 11.
Mother’s age is positively associated with higher fourth EOG reading scores after age 24.
The negative association prior to age 24 is perhaps explained by strong correlations between
this younger age group and (lower) mother’s education levels (see the online Supplementary
Material; Gao and Kowal (2024)), which is already strongly associated with yi . Gestational
length is positively associated with fourth EOG reading scores until about 41 weeks, at which
point the pregnancy is considered late term and accompanied by other health complications.
Finally, age-within-cohort and birth month are highly correlated, and thus these effects must
be interpreted jointly. The larger effects for birth months October–March are likely explained,
in part, because those students are typically older within their cohort, which further explains
why the age-within-cohort effect has only a small positive slope prior to week 52. However,
for students at least one year older than their cohort, the age-within-cohort effect is signif-
icantly negative and includes rapid changes in the regression function, which justifies the
choice of the adaptive B-spline model with dynamic shrinkage processes (5)–(7).

6. Conclusion. We developed a fully Bayesian modeling, computational, and decision
analysis framework to study the effects of prenatal exposure to air pollution on educational
outcomes. The proposed Bayesian adaptive scalar-on-function regression (BASOFR) model
was designed to capture both smooth and abrupt changes in the association function, provide

TABLE 3
Posterior means and 95% credible intervals for the scalar regression coefficients α. Intervals that exclude zero

are annotated (**)

Covariate Regression coefficient estimates Covariate Regression coefficient estimates

noHS −0.14 (−0.16, −0.13)** Male −0.13 (−0.14, −0.12)**
higherHS 0.28 (0.26, 0.29)** EconDisadvantage −0.27 (−0.29, −0.26)*
NH Black −0.49 (−0.51, −0.48)** Smoker −0.07 (−0.09, −0.06)**
Hispanic −0.06 (−0.08, −0.04)** Blood_level −0.028 (−0.033, 0.022)**
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FIG. 11. The posterior mean (line) and 50% (red) and 95% (blue) credible intervals for the nonlinear effects
of mother’s age at birth (top left), gestational length (top right), age-within-cohort (bottom left), and birth month
(bottom right) on reading scores.

full posterior uncertainty quantification, and maintain computational scalability in both the
sample size and the number of observation points for each functional covariate. To comple-
ment the BASOFR model, we developed a decision analysis approach that produces locally
constant point estimates of the regression coefficient function, which simultaneously: (i) ex-
tracts the critical windows of the functional domain, (ii) partially resolves fundamental in-
terpretability issues for SOFR, and (iii) only adds minimal computational cost. Simulation
studies demonstrated substantial advantages of the proposed approach for point estimation,
uncertainty quantification, window selection, and computational scalability.

Using the proposed approach, we analyzed a large cohort (n ≈ 100,000) of mother-child
pairs in North Carolina to study the effects of PM2.5 exposure during gestation on fourth
end-of-grade reading scores. This analysis required careful consideration of the SOFR model
output—including effect directions, cumulative effects, and seasonality—to identify two crit-
ical windows of susceptibility around trimesters one and three that correspond to adverse ed-
ucational outcomes. Crucially, these results were enabled by our joint consideration of adap-
tive regression modeling, computational scalability, and interpretable posterior summaries
via customized decision analysis. Our analysis included adjustments for important confound-
ing variables and estimated nonlinear regression effects for mother’s age, gestation length,
birth month, and age-within-cohort.

We note that the estimated regression coefficient function (Figure 8), while complex, does
not exhibit the same rapidly-changing features as in other examples (Figures 2, 6, and 11).
However, the use of BASOFR remains justified: (i) the function shape was not known in
advance, so the more flexible modeling capability is reassuring, and (ii) our simulation stud-
ies decisively showed that BASOFR delivers more accurate estimates and more precise and
well-calibrated uncertainty quantification than competing methods. Regardless, the proposed
Bayesian specification for adaptive regression coefficient functions was highly useful for
inferring the nonlinear age-within-cohort effect, which exhibited both smooth and rapidly-
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changing features (Figure 11). Thus, our adaptive Bayesian approach is useful not only in
SOFR but also in function estimation and additive models more broadly.

The proposed functional regression model and accompanying decision analysis strategies
offer promising extensions. First, these methods may be generalized for multiple functional
predictors as well as functional response variables in function-on-function regression. Sec-
ond, our decision analysis approach is broadly applicable for Bayesian SOFR and related
distributed lag models, and thus is a useful addition to these models for more powerful win-
dow selection and interpretable model summaries. Furthermore, the decision analysis strat-
egy may be altered to induce other structured point estimates, such as sparse or locally linear
summaries, by varying the penalty term in (9). Lastly, our procedures may be applied to other
datasets to estimate the critical windows of susceptibility for various exposures or interven-
tions measured at high resolutions and paired with important outcomes of interest.
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SUPPLEMENTARY MATERIAL

Supplement to “Bayesian adaptive and interpretable functional regression for expo-
sure profiles” (DOI: 10.1214/23-AOAS1805SUPPA; .pdf). This supplement includes addi-
tional details about the computing, additional simulation results, and additional information
and summary statistics for the North Carolina (NC) dataset.

R code (DOI: 10.1214/23-AOAS1805SUPPB; .zip). This section includes R code to re-
produce the simulation analysis.
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