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Semiparametric Functional Factor Models with
Bayesian Rank Selection∗

Daniel R. Kowal† and Antonio Canale‡

Abstract. Functional data are frequently accompanied by a parametric template
that describes the typical shapes of the functions. However, these parametric tem-
plates can incur significant bias, which undermines both utility and interpretabil-
ity. To correct for model misspecification, we augment the parametric template
with an infinite-dimensional nonparametric functional basis. The nonparamet-
ric basis functions are learned from the data and constrained to be orthogonal
to the parametric template, which preserves distinctness between the paramet-
ric and nonparametric terms. This distinctness is essential to prevent functional
confounding, which otherwise induces severe bias for the parametric terms. The
nonparametric factors are regularized with an ordered spike-and-slab prior that
provides consistent rank selection and satisfies several appealing theoretical prop-
erties. The versatility of the proposed approach is illustrated through applications
to synthetic data, human motor control data, and dynamic yield curve data. Rela-
tive to parametric and semiparametric alternatives, the proposed semiparametric
functional factor model eliminates bias, reduces excessive posterior and predictive
uncertainty, and provides reliable inference on the effective number of nonpara-
metric terms—all with minimal additional computational costs.
Keywords: factor analysis, nonparametric regression, shrinkage prior,
spike-and-slab prior, yield curve.
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1 Introduction
1.1 Setting and goals
As high-resolution monitoring and measurement systems generate vast quantities of
complex and highly correlated data, functional data analysis has become increasingly
vital for many scientific, medical, business, and industrial applications. Functional data
are (noisy) realizations of random functions {Yi}ni=1 observed over a continuous do-
main, such as time, space, or wavelength, and exhibit a broad variety of shapes. The
concurrence of complex and voluminous data prompts the common use of nonparametric
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models for functional data. Yet in many cases, there is valuable information regarding
the functional form of Yi. Template curves that describe the shape of Yi are derived
from fundamental scientific laws or motivated by extensive empirical studies, and often
are the focal point of the analysis. Prominent examples include human motor control
(Ramsay, 2000; Goldsmith and Kitago, 2016), interest rates (Nelson and Siegel, 1987;
Diebold and Li, 2006), and basal body temperature (Scarpa and Dunson, 2009, 2014;
Canale et al., 2017).

Our goal is to construct a functional data modeling framework that simultaneously
(i) incorporates parametric templates in a coherent and interpretable manner, (ii) main-
tains the modeling flexibility of nonparametric methods, and (iii) provides computation-
ally scalable inference with reliable uncertainty quantification. The approach is fully
Bayesian, accompanied by an efficient Markov chain Monte Carlo (MCMC) algorithm
for posterior and predictive inference, and equally applicable to both densely-observed
and sparsely- or irregularly-sampled functional data.

The parametric templates are represented as a spanning set
H0 = span{g1(·; γ), . . . , gL(·; γ)}

of functions {gℓ(·; γ)}Lℓ=1 known up to γ. Any function belonging to H0 is a linear com-
bination of {gℓ}; the corresponding coefficients and the parameters γ must be learned.
Important examples are presented in Table 1. The linear basis is routinely used for lon-
gitudinal data analysis and here is equivalent to a random slope model (Molenberghs
and Verbeke, 2000). A change in slope, (τ − γ)+ with (x)+ = max{0, x}, is useful for
modeling structural changes, such as a change in disease transmissions due to policy in-
terventions (Wagner et al., 2020). Cosinor functions model circadian rhythms (Mikulich
et al., 2003) and other periodic behaviors (Welham et al., 2006). Biphasic curves of-
fer utility in modeling basal body temperature of women during the menstrual cycle
(Scarpa and Dunson, 2009, 2014; Canale et al., 2017). In general, interest centers on
learning the linear coefficients associated with each gℓ, the nonlinear parameters γ, and
an adequate yet interpretable model for the functions Yi.

Linear Linear change Cosinor Biphasic
{1, τ} {1, τ, (τ−γ)+} {1, sin(2πτ/γ), cos(2πτ/γ)} {1, exp(γτ)/{1+exp(γτ)}}

Table 1: Examples of parametric templates, or spanning sets, for H0.

The advantages of the parametric templates are clear: they incorporate domain
knowledge, lend interpretability to the model, and often produce low-variance estimators
relative to nonparametric alternatives. These templates are restrictive by design, and
therefore can incur significant bias and other model misspecifications. Such effects erode
model interpretability and can induce variance inflation. For illustration, we present
model fits for two datasets in Figure 1 using a parametric model and our proposed
semiparametric alternative; details and analyses of these data are in Section 6. In both
instances, the templates capture the general shape of the data. However, regions of
substantial bias are present, which produce uniformly inflated prediction bands over
the domain. By comparison, the proposed approach preserves the essential shape of
the curves, yet corrects the bias and shrinks the prediction bands appropriately—and
crucially does so without overfitting.
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Figure 1: Posterior expectations and 95% simultaneous prediction bands for the para-
metric (PFFM, top) and semiparametric functional factor model (SFFM, bottom) for
one replicate of the pinch force data (left; see Section 6.1) and one yield curve (right; see
Section 6.2). The proposed SFFM corrects the bias of the PFFM and offers narrower
prediction bands with correct coverage.

1.2 Overview of the proposed approach
The semiparametric functional factor model (SFFM) bridges the gap between para-
metric and nonparametric functional data models. The SFFM augments a parametric
template H0 with a nonparametric and infinite-dimensional basis expansion for the
functions Yi ∈ L2(T ):

Yi(τ) =
L∑

ℓ=1
αℓ,igℓ(τ ; γ) +

∞∑

k=1
βk,ifk(τ), τ ∈ T , (1.1)

where {fk} are unknown functions, {αℓ,i} and {βk,i} are unknown factors for the para-
metric and nonparametric components, respectively, and T ⊆ Rd is the domain, usually
with d = 1 for curves or d = 2 for images. Without the nonparametric terms, (1.1) is a
parametric functional factor model (PFFM), which serves as our parametric baseline.

Our implementation of (1.1) is fully Bayesian and is based on three essential aspects.
First, the nonparametric basis {fk} is treated as unknown. The SFFM pools infor-

mation across all functions {Yi} to learn the key functional features in the data—in
particular, the systemic biases unresolved by H0. The functions {fk} are learned jointly
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with the parametric terms γ and {αℓ,i} and the nonparametric factors {βk,i}, so uncer-
tainty about {fk} is automatically absorbed into the joint posterior distribution.

Second, the nonparametric basis {fk} is constrained to be orthogonal to the paramet-
ric templates {gℓ}. While orthogonalization has demonstrated its advantages in similar
contexts (e.g., regression; Rossell and Rubio, 2023), our specific scenario introduces
additional complexities due to the presence of unknown basis functions {fk}. The con-
straint enforces distinctness between the parametric and nonparametric components of
the SFFM. We show that without such a constraint, inference on the parametric terms
becomes severely biased and loses interpretability due to functional confounding. The
constraint is also essential for valid inference on the effective number of nonparametric
terms, applies even in the challenging setting in which there is an unknown nonlin-
ear parameter γ, and produces computational simplifications that improve both the
algorithmic efficiency and the ease of implementation of the MCMC algorithm.

Third, the nonparametric factors {βk,i} are endowed with an ordered spike-and-
slab prior distribution similar to successful recent approaches for modeling multivariate
data via infinite factorizations (Legramanti et al., 2020; Schiavon et al., 2022; Frühwirth-
Schnatter, 2023). The proposed prior is critical for coherence of the infinite-dimensional
basis expansion in (1.1): it provides much-needed regularization, encourages selection
of a finite number of factors, and provides posterior inference for the effective number
of nonparametric terms—including an assessment of whether any nonparametric com-
ponent is needed at all. The prior admits a parameter expansion that offers substantial
improvements in MCMC efficiency and satisfies several key properties that broaden
applicability beyond the SFFM.

The SFFM in (1.1) is accompanied by an observation error equation to accom-
modate noisy and sparsely- or irregularly-sampled functional data. The observed data
yi = (yi,1, . . . , yi,mi)′ are modeled as noisy realizations of Yi on a discrete set of points
{τi,j}mi

j=1 ⊂ T for i = 1, . . . , n:

yi,j = Yi(τi,j) + ϵi,j , ϵi,j
indep∼ N(0,σ2

ϵ ), (1.2)

although non-Gaussian versions are available. We proceed using common observation
points τi,j = τj and mi = m for notational simplicity.

Although we focus on the parametric and semiparametric versions of (1.1), the pro-
posed modeling framework remains useful without any parametric template (L = 0). In
this case, (1.1) resembles a Karhunen-Loève decomposition and {fk} correspond to the
eigenfunctions of the covariance function of {Yi} (assuming the Yi have been centered).
The Karhunen-Loève decomposition provides the theoretical foundation for functional
principal components analysis (FPCA; e.g., Shang, 2014). With this perspective, our
model, priors, and algorithms for (1.1) also constitute a new Bayesian view of FPCA.

1.3 Review of related approaches
Semiparametric models for functional data are predominantly non-Bayesian. To model a
single function, L-splines combine a goodness-of-fit criterion with a penalty on deviations
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from H0 (Ramsay and Dalzell, 1991; Heckman and Ramsay, 2000). Although L-splines
guarantee the existence of basis functions {fk}mk=1 that describe the deviations from H0,
these functions are analytically intractable or highly challenging to derive for all but the
simplest choices of H0, which inhibits widespread practical use. In addition, L-splines
are not well-equipped to handle unknown γ and do not offer finite-sample inference on
the adequacy of the parametric templates H0. By comparison, the SFFM learns {fk}
directly from the data—which sidesteps the challenging derivations—and provides direct
posterior inference on the effective number of nonparametric terms. Other non-Bayesian
approaches for semiparametric functional data analysis seek to replace nonparametric
functions with parametric alternatives. Sang et al. (2017) attempt to simplify FPCA
by using polynomials for each FPC instead of splines or Fourier functions. In functional
regression analysis, Chen et al. (2019) develop hypothesis tests to determine whether
an unknown regression function deviates from a parametric template.

Bayesian semiparametric functional data models are less common. The “semipara-
metric” model of Lee et al. (2018) refers to additive rather than linear effects, but
does not include a parametric template like H0. Scarpa and Dunson (2009) construct
a Dirichlet process mixture of a parametric function and a Gaussian process contami-
nation, which is generalized by Scarpa and Dunson (2014) to include prior information
on the frequencies of certain functional features. These methods are designed primarily
for clustering: they identify individual curves Yi that deviate substantially from the
parametric model, while the remaining curves are presumably well modeled paramet-
rically. The SFFM is capable of modeling total deviations from H0 for a particular Yi,
but also captures—and corrects—partial deviations from H0 that persist for some or
many Yi. Unlike the mixture models, the SFFM is well-suited for including additional
layers of dependence, such as hierarchical (Section 6.1) or dynamic (Section 6.2) models,
while maintaining efficient posterior computing. Notably, these existing methods do not
address functional confounding.

The remainder of the paper is organized as follows. The model for the parametric and
nonparametric functions is in Section 2. The ordered spike-and-slab prior is introduced
and studied in Section 3. The MCMC algorithm is discussed in Section 4. A simulation
study is in Section 5. The model is applied to real datasets in Section 6. We conclude in
Section 7. Online supplementary material includes proofs of all results, the full MCMC
algorithm, additional simulations, and R code for reproducibility (Kowal and Canale,
2023a,b).

2 Modeling the nonparametric functions
2.1 The need for constraints
The error-free latent functions {Yi} belong to the space spanned by the template para-
metric curves {gℓ} and the nonparametric curves {fk}. Any systemic bias resulting from
the inadequacies of {gℓ} must be corrected by {fk}, which demands substantial flexibil-
ity of the nonparametric basis {fk}. However, interpretability of the parametric terms
{gℓ} and {αℓ,i} requires a strict distinction between the parametric and nonparametric
components. In conjunction, these points demand both flexibility and restraint from the
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nonparametric term. The challenges for modeling and computing are exacerbated when
the parametric nonlinear term γ is unknown.

To emphasize the importance of the distinction between {gℓ} and {fk}, consider a
seemingly reasonable alternative to (1.1) that replaces the nonparametric term with a
Gaussian process (PFFM+GP):

Yi(τ) =
L∑

ℓ=1
αℓ,igℓ(τ ; γ) + hi(τ), hi ∼ GP(0,Kh). (2.1)

The PFFM+GP is a special case of the SFFM (1.1), and implies that each latent
curve Yi is a Gaussian process centered at the parametric term. Naturally, it may be
expected that each hi corrects for the biases of the parametric component. However,
there is a significant cost: despite being centered at zero, the Gaussian processes {hi}
are not constrained to be sufficiently distinct from the parametric term. This introduces
a functional confounding that biases the parametric factors {αℓ,i}.

To illustrate this point, we fit the PFFM, PFFM+GP, and SFFM to the pinch
force data (see Section 6.1) with identical parametric models (see (6.1)). The result-
ing posterior expectations of each {αℓ,i} are presented in Figure 2. Most striking, the
point estimates of the parametric factors are nearly identical between the PFFM and
SFFM, while the PFFM+GP estimates are substantially different. The discrepancy
of the PFFM+GP is concerning: under mild conditions, the PFFM will produce (ap-
proximately) unbiased estimates of the linear coefficients {αℓ,i} even in the presence of
dependent errors, so the point estimates are a reliable benchmark. This is not an issue
of model inadequacy for PFFM+GP: its fitted values are nearly identical to those from
the SFFM. These results are also confirmed in the simulation study using the ground
truth values of {αℓ,i} (Section 5). We emphasize that despite this agreement between
the PFFM and the SFFM for point estimation of {αℓ,i}, the SFFM does identify in-
adequacies of the PFFM and provides key improvements in bias removal for {Yi} and
uncertainty quantification for both {Yi} and {αℓ,i} (see Sections 5–6).

The simple augmentation of a Gaussian process in (2.1) offers flexibility but lacks re-
straint: {hi} absorbs variability otherwise explained by {gℓ}, which ultimately corrupts
inference and interpretation of the parametric term. This functional confounding is not
simply an artifact of the PFFM+GP sampling algorithm, which uses a joint sampler for
{αℓ,i, hi} (see the supplement), and is robust to the choice of the covariance function
Kh. This issue is related to spatial confounding (e.g., Reich et al., 2006) but has not
been thoroughly explored or resolved for functional data.

2.2 Models and constraints for the nonparametric functions
The proposed SFFM achieves both flexibility and distinctness by (i) modeling each fk
in (1.1) as a smooth unknown function and (ii) constraining each fk to be orthogonal
to {gℓ}. The model for fk can be any Bayesian curve-fitting model, such as splines,
wavelets, or Gaussian processes, usually with a prior that encourages smoothness; our
specifications are discussed subsequently. Crucially, our choice of constraints not only
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Figure 2: Posterior expectations of {αℓ,i}ni=1 for ℓ = 1 (left) and ℓ = 2 (right) for the
pinch force data (see Section 6.1) comparing the PFFM estimates (x-axis) against both
the SFFM and PFFM+GP (y-axis). The point estimates of the parametric factors are
nearly identical between the PFFM and SFFM, while the PFFM+GP estimates are
substantially different, and near zero for α1. The dotted line denotes y = x.

ensure distinctness of {fk} from {gℓ}, but also offer key computational simplifications
that improve scalability and increase MCMC efficiency. These results maintain regard-
less of the specification of {gℓ} or {fk}, including when γ is unknown.

First, each unknown function fk expressed using known basis functions b, and a
prior is placed on the unknown coefficients to encourage smoothness:

fk(τ) = b′(τ)ψk, [ψk | λfk ] ∼ N(0,λ−1
fk

Ω−), λ−1/2
fk

∼ Uniform(0, 104), (2.2)

where Ω is the (known) matrix of integrated squared second derivatives, [Ω]j,j′ =∫
b̈j(τ)b̈j′(τ)dτ . This prior is a Bayesian analog of the classical roughness penalty

−2 log p(ψk | λfk) c= λfkψ
′
kΩψk = λfk

∫

T
{f̈k(τ)}2dτ

with a smoothing parameter λfk that is assigned a prior in (2.2) and learned jointly
with the model parameters. Although we proceed under general conditions, our default
specification uses low-rank thin plate splines for b, which are flexible, computationally
efficient, and defined on T ⊆ Rd.

Consider model (1.1)–(1.2) evaluated at the observation points {τj}mj=1:

yi = Gγαi + Fβi + ϵi, ϵi
iid∼ N(0,σ2

ϵIm), i = 1, . . . , n, (2.3)

where

• Gγ = (g1;γ , . . . , gL;γ) is the m× L parametric basis matrix, gℓ;γ = (gℓ(τ1; γ), . . . ,
gℓ(τm; γ))′;

• αi = (α1,i, . . . ,αL,i)′ is the vector of parametric factors;
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• F = (f1,f2, . . .) is the m×∞ nonparametric basis matrix with fk = (fk(τ1), . . . ,
fk(τm))′;

• βi = (β1,i,β2,i, . . .)′ is the vector of nonparametric factors.

By constraining each fk to be orthogonal to Gγ , the likelihood (2.3) factors into para-
metric and nonparametric terms:
Lemma 1. When G′

γfk = 0L for all k = 1, 2, . . ., the likelihood (2.3) factorizes:
p(y | γ, {αi},F , {βi},σ2

ϵ ) = p0(y | γ, {αi},σ2
ϵ ) p1(y | F , {βi},σ2

ϵ ),
where p0 is invariant of the nonparametric terms (F and {βi}) and p1 is invariant of
the parametric terms (γ and {αi}).

The primary implication of Lemma 1 is that, under prior independence between the
parametric and nonparametric factors, p({αi}, {βi}) = p({αi}) p({βi}), the parametric
factors {αi} and nonparametric factors {βi} are (conditionally) independent in the
posterior. Thus, the sampling steps for {αi} and {βi}—under orthogonality G′

γfk = 0L

for all k and conditional on γ, F , and σ2
ϵ—are completely decoupled: the sampling

steps for {αi} are identical to the fully parametric case, while the sampling steps for
{βi} proceed exactly as in a fully nonparametric setting (see Section 3). Further, these
separate sampling steps for {αi} and {βi} are equivalent to a joint sampler for {αi,βi}.
Joint sampling steps are typically preferred for greater MCMC efficiency, but often
increase the computational burden. For instance, a joint sampler for {αi, hi} under the
PFFM+GP requires either a large block sampler or marginalization over either αi or
hi, both of which become more challenging when the model for αi is complex. The
SFFM—with the proposed orthogonality constraint—completely avoids this tradeoff
and guarantees joint sampling even for complex models. Such a reduction is not available
in general, including for the L2-orthogonality constraint

∫
T gℓ(τ ; γ)fk(τ) dτ = 0 that

appears often in functional data analysis.
We enforce the orthogonality constraint G′

γfk = 0L by conditioning on it in the
model (2.2) for fk. Conditioning is a natural Bayesian mechanism for incorporating such
information into estimation and inference. This is especially useful when γ is unknown,
and thus the orthogonality constraint updates at every MCMC iteration. Samples from
the full conditional distribution of ψk conditional on G′

γfk = 0L can be obtained by
first sampling from the unconstrained distribution [ψk | −] and then applying a simple
shift. Specifically, [ψk | −] ∼ N(Q−1

ψk
ℓψk ,Q

−1
ψk

), where

Qψk = σ−2
ϵ (B′B)

n∑

i=1
β2
k,i + λfkΩ, ℓψk = σ−2

ϵ B′
n∑

i=1

{
βk,i

(
yi −Gγαi −

∑

ℓ̸=k

fℓβℓ,i

)}
,

and B = (b′(τ1), . . . , b′(τm))′, and the shift is applied as follows:
Lemma 2. Suppose Gγ is L × m with rank L. Let f0

k = Bψ0
k where ψ0

k ∼
N(Q−1

ψk
ℓψk ,Q

−1
ψk

). The shifted term

fk = Bψk, ψk = ψ0
k −Q−1

ψk
B′Gγ

(
G′

γBQ−1
ψk

B′Gγ

)−1
G′

γBψ0
k

satisfies fk
d= [f0

k | G′
γf

0
k = 0] and P(G′

γfk = 0) = 1.
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Lemma 2 provides a simple and effective mechanism to adapt any standard (basis)
regression sampling step for ψk to accommodate this crucial orthogonality constraint,
including when the nonlinear term γ is unknown. The computational cost to sample the
unconstrained coefficients is cubic in the length of ψk (i.e., the number of columns of B);
enforcing the constraints is cubic in the number of constraints. Although it is possible
to adapt Lemma 2 for the PFFM+GP, the resulting model still does not provide direct
inference on the necessity of the nonparametric factors (i.e., rank selection) or describe
the systemic biases of H0, which are captured by {fk} in the SFFM.

For further computational simplifications along with parameter identifiability, we
additionally constrain Gγ and F to be orthonormal, which implies that the joint basis
{g1, . . . , gL, f1, f2, . . .} in (1.1) is orthonormal. First, for each nonparametric term fk,
we incorporate the orthogonality constraints via conditioning on f ′

k′fk = 0 for all k′ ̸= k
and the unit-norm constraint by rescaling fk appropriately. These steps follow Kowal
(2021) and are described briefly. The linear orthogonality constraint is enforced using a
straightforward modification of Lemma 2, which augments the parametric orthogonality
of Gγ with the nonparametric terms fk′ for k′ ̸= k. The unit-norm constraint is enforced
by suitably rescaling ψk after sampling; we equivalently rescale βk,i to preserve the
product fkβk,i in the likelihood (2.3). This operation does not change the shape of the
curve fk nor the likelihood (2.3).

When paired with the orthogonality G′
γfk = 0L for all k, the orthonormality of F

offers convenient simplifications for posterior sampling:
Corollary 1. Under model (2.3) with prior independence between {αi} and {βi} and
subject to G′

γfk = 0L for all k and F ′F = I∞, the full conditional posterior for the
nonparametric factors is

p({βi} | y, γ,F , {αi}) ∝ p1,F (y | F , {βi}) p({βi}),

where p1,F is the likelihood defined by [f ′
kyi | −] indep∼ N(βk,i,σ2

ϵ ) for all k.

The likelihood from (2.3) reduces to a low-dimensional, independent Gaussian model,
which makes for convenient and efficient posterior sampling steps for {βk,i}. Thus, the
SFFM is capable of incorporating complex prior specifications for {βk,i}—which are
essential for inference in the SFFM with the infinite expansion in (1.1).

Next, we construct an orthonormal parametric basis Gγ using a QR decomposition.
For any value of γ, let G0

γ = QγRγ be the QR decomposition of the initial basis matrix
G0

γ = (g1;γ , . . . , gL;γ), where Qγ is orthogonal and Rγ is upper triangular. By setting
Gγ = Qγ , we ensure that G′

γGγ = IL and the columns of Gγ span the same space
as the columns of G0

γ . When γ is unknown and endowed with a prior distribution, the
QR decomposition is incorporated into the likelihood evaluations of (2.3) for posterior
sampling of γ, with computational complexity O(mL2−L3/3) (Boyd and Vandenberghe,
2004). Although this QR step is not strictly necessary for the SFFM, we include it
because (i) it places the parametric and nonparametric factors on the same scale; (ii) it
simplifies the likelihood for {αi} analogous to Corollary 1, thus providing modularity to
incorporate more complex models for {αi} (see Section 6); and (iii) orthonormal design
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matrices (Gγ) often improve MCMC efficiency for the corresponding coefficients ({αi}).
Since G0

γα
0
i = Gγαi for αi = Rγα0

i under the QR decomposition, we can recover the
parametric factors on the original scale by setting α0

i = R−1
γ αi, which can be computed

draw by draw within the MCMC sampler.

3 Models and rank selection for the nonparametric
factors

3.1 Ordered spike-and-slab priors
Regularization of the SFFM is critical: the infinite-dimensional nonparametric term in
(1.1) is clearly overparametrized for finite m. The nonparametric components increase
model complexity and should be removed whenever the added complexity is not sup-
ported by the data. This rank selection is complicated by the presence of the parametric
template with unknown {αℓ,i} and γ.

We focus on ordered spike-and-slab priors that apply joint shrinkage and selection to
the nonparametric factors {βk,i}ni=1 to remove unnecessary nonparametric terms from
the SFFM. Because of the proposed orthogonality constraints on {gℓ} and {fk} and
Corollary 1, we are able to introduce a sophisticated prior for {βk,i} within the broader
SFFM framework of (1.1)—and do so with minimal impact on computational cost and
MCMC efficiency relative to the PFFM (see Section 6).

We leverage the cumulative shrinkage process (CUSP; Legramanti et al., 2020), which
uses an ordered spike-and-slab prior for the factors [βk,i | θk]

indep∼ N(0, θk):

[θk | πk] ∼ Pk, Pk = (1 − πk)Pslab + πkPspike, (3.1)

πk =
k∑

h=1
ωh, ωh = νh

h−1∏

ℓ=1
(1 − νℓ), νℓ

iid∼ Beta(ι, ικ), (3.2)

where Pslab is the distribution of the active component and Pspike is the distribution
of the inactive component. The cumulative summation for πk ensures an increasing se-
quence of (spike) probabilities, πk < πk+1, that converges: limk→∞ πk = 1. The hyper-
parameters are determined by the distributions Pslab and Pspike and the scalars ι,κ > 0.
Legramanti et al. (2020) used Pspike = δθ∞ with θ∞ = 0.05, Pslab = Inv-Gamma(aθ, bθ)
with aθ = bθ = 2, and fixed ι = 1 and κ = 5.

By ordering the spike probabilities {πk}∞k=1 in (3.2), CUSP guarantees an ordering
for the parameters {θk}∞k=1 in (3.1).
Proposition 1. For ε > 0 and fixed θ0, let Bε(θ0) = {θk : |θk − θ0| < ε}. Prior
(3.1)–(3.2) implies that P(|θk − θ0| ≤ ε) < P(|θk+1 − θ0| ≤ ε) whenever Pslab{Bε(θ0)} <
Pspike{Bε(θ0)}.

The special case of Proposition 1 with Pspike = δθ∞ , ι = 1, and θ0 = 0 is proved
by Legramanti et al. (2020). Intuitively, for any θ0 that is favored under the spike
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distribution Pspike relative to the slab distribution Pslab, CUSP places greater mass
around θ0 as k increases.

For interpretability and efficient MCMC sampling, Legramanti et al. (2020) intro-
duced a convenient data augmentation. Let zk ∈ {1, . . . ,∞} denote a categorical vari-
able with P(zk = h | ωh) = ωh. Then

[θk | zk] ∼ (1 − I{zk ≤ k})Pslab + I{zk ≤ k}Pspike

induces (3.1) via marginalization over zk. The number of active (slab) terms is therefore

K∗ =
∞∑

k=1
I{zk > k}, (3.3)

with posterior inference available through the proposed MCMC sampling algorithm (see
Algorithm 1). For model (1.1), K∗ is the effective number of nonparametric terms, and
therefore is a key inferential target to assess the adequacy of the parametric model.

A subtle yet important limitation of CUSP is that spike-and-slab selection is applied
jointly to all n factors {βk,i}ni=1 via a single scalar θk. In a related setting, Scheipl et al.
(2012) showed that as the size of this collection increases (here, n), it becomes more
difficult for the MCMC algorithm to switch between the slab and spike components.
Thus, the uncertainty quantification for each factor’s activeness is invalidated, and in-
ference for the effective number of nonparametric factors K∗ is not reliable. To illustrate
this, consider the left panel of Figure 3 which displays the MCMC samples of K∗ across
five different MCMC runs with random initializations obtained with the standard CUSP
prior and sampling algorithm for model (1.1). In this case, the original sampler reported
in Legramanti et al. (2020) produces MCMC draws that are essentially stuck at a single
value: K∗ changes values in only 0.004% of the MCMC iterations.

Figure 3: MCMC samples of K∗ across 5 chains for Legramanti et al. (2020) (left)
compared to the proposed prior and algorithm (right). The horizontal black line denotes
the true value Ktrue = 6. The proposed approach provides substantial improvements in
mixing and produces more accurate estimates.

To address these limitations, we propose the following hierarchical representation

βk,i = ηkξk,i, (3.4)
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[ηk | πk] ∼ (1 − πk)t2a1(0,
√

a2/a1) + πkt2a1(0,
√
v0a2/a1), (3.5)

[ξk,i | mξk,i ] ∼ N(mξk,i , 1), mξk,i ∼
1
2δ1 + 1

2δ−1 (3.6)

where {πk} follows (3.2), td(m, s) denotes a t-distribution with mean m, standard de-
viation s, and degrees of freedom d, and v0, a1, and a2 are hyperparameters.

The prior (3.4)–(3.6) has several key properties. First, ordered shrinkage is applied
via {ηk}, which propagates to the nonparametric factors {βk,i} as desired.
Proposition 2. For ε > 0, P(|βk,i| ≤ ε) < P(|βk+1,i| ≤ ε) whenever v0 < 1.

The restriction v0 < 1 is self-evident, since it ensures that the spike distribution
is indeed more concentrated around zero. Proposition 2 requires only that {ξk,i} are
marginally independent and identically distributed. By a similar argument, the ordering
also is preserved across observations: P(|βk,i| ≤ ε) < P(|βk+1,i′ | ≤ ε).

Second, the prior on ηk can be equivalently represented as

[ηk | θk,σ2
k] ∼ N(0, θkσ2

k), [θk | πk] ∼ (1 − πk)δ1 + πkδv0 , [σ−2
k ] ∼ Gamma(a1, a2)

(3.7)
and referred to as the normal mixture of inverse-gamma (NMIG) prior. The NMIG prior
incorporates variable selection by assigning the variance scale parameter θk to the slab
component, θk = 1, or the spike component, θk = v0 ≪ 1. Although other spike-and-
slab priors are available (George and McCulloch, 1993; O’Hara and Sillanpää, 2009),
the prior in (3.7) produces a continuous distribution for the conditional variance of ηk,
which is preferable for variable selection and risk properties (Ishwaran and Rao, 2005).
The representation in (3.7) is also convenient for computing (Algorithm 1).

Third, (3.6) introduces a redundant parameter expansion to improve MCMC mixing.
Similar strategies have been applied for hierarchical models (Gelman, 2006), additive
models (Scheipl et al., 2012), and functional autoregression models (Kowal et al., 2019).
The Gaussian parameter expansion of ξk,i is centered around 1 or −1 with variance
1, so ηk assigns the magnitude and selection to {βk,i}ni=1. The impact is striking: Fig-
ure 3 (right) shows the MCMC samples of K∗ (again across five different MCMC runs
with random initializations). The proposed approach produces draws that are centered
at the true value with some variability: K∗ changes values in 32% of the MCMC it-
erations. Consistently, the MCMC-based uncertainty quantification from the proposed
approach is more plausible—which is essential for inference on the effective number of
nonparametric terms in the SFFM (1.1).

We additionally propose to put a hyperprior on κ as this parameter has the important
role of centering the prior on the number of slab terms, i.e., E(K∗) = κ. Specifically,
we let κ ∼ Gamma(aκ, bκ) for aκ, bκ > 0, which is conditionally conjugate to (3.2).
The hyperparameters may be selected to provide weak prior information regarding the
number of factors: in practice, we set aκ = 2 and bκ = 1 so that E(κ) = Var(κ) = 2.
Similarly, we select the default value ι = 1 for simplicity.
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3.2 Connections to Indian Buffet Processes
A key ingredient of CUSP is the stick-breaking construction for ωh in (3.2), which is also
commonly used for Dirichlet processes (DPs; Ferguson, 1973). A related nonparametric
Bayesian process is the so-called Indian buffet process (IBP; Griffiths and Ghahramani,
2011), which is widely used for (non-functional) Bayesian factor models (Rai and III,
2009; Ročková and George, 2016; Ohn and Kim, 2021). The IBP defines a prior over
binary matrices B = {bj,k} with m rows and infinitely many columns, and specifically
by establishing the independent conditional distributions

[bj,k | µk] ∼ Bernoulli(µk), [µk] ∼ Beta(ικ/K, ι), (3.8)

usually with ι = 1, and then integrating over {µk} with K → ∞ (the standard IBP
notation has been adapted to match (3.2)).

The distinctions between CUSP and IBP are illuminated by the comparative stick-
breaking representations. In contrast to the DP stick-breaking process for {ωh} in (3.2),
the IBP stick-breaking process is defined by Teh et al. (2007) for the ordered (slab)
probabilities µ(1) > · · · > µ(K):

µ(k) =
k∏

ℓ=1
ν′ℓ, ν′ℓ

iid∼ Beta(ικ, ι). (3.9)

The DP stick lengths {ωh} sum to one but are not decreasing, while IBP stick lengths
{µ(k)} do not necessarily sum to one but are decreasing.

By instead considering the cumulative summation in (3.2), we uncover a more direct
connection with IBPs. Unlike the DP stick-breaking process, the cumulative summation
for πk ensures an increasing sequence of (spike) probabilities, πk < πk+1, that converges:
limk→∞ πk = 1. Most interesting, the CUSP probability sequence {πk}∞k=1 has a simple
mapping to the IBP stick-breaking construction:
Proposition 3. The CUSP (3.2) satisfies (1 − πk) = µ(k) where µ(1) > · · · > µ(K) are
the ordered probabilities from the stick-breaking construction (3.9) of the IBP (3.8).

Conventionally, IBPs apply the multiplicative beta process to the slab probability
(1 − πk), which explains the complement in Proposition 3.

Despite these fundamental connections between {πk} and {µ(k)}, CUSPs and IBPs
remain distinct due to (3.1): CUSPs define a spike-and-slab prior for a sequence of pa-
rameters {θk}∞k=1, while IBPs define a prior over binary matrices B = {bj,k}. In the
context of (1.1), elementwise sparsity of F = (f1,f2, . . .) for fk = (fk(τ1), . . . , fk(τm))′
is unwarranted: although we are interested in rank selection, we prefer priors that en-
courage smoothness rather than sparsity in fk(τ) over τ ∈ T .

3.3 Consistent rank selection
To motivate the use of the NMIG and CUSP priors, we investigate their asymptotic
behavior in a simplified setting. Suppose we directly observe a noisy version of the
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parameters ηk in sequence:

yi = ηi + ϵi, ϵi
iid∼ N(0, 1), i = 1, 2, . . . . (3.10)

While this setting is quite far from the SFFM model in (1.1), we note that the likelihood
implied by (3.10) is equivalent to the likelihood defined in Corollary 1, with βk,i = ηk,i,
n = 1, and σ2

ϵ = 1. We assume that the true data generating process is

yi = η0i + ϵi, ϵi
iid∼ N(0, 1), i = 1, 2, . . . , (3.11)

where η01, . . . , η0n are “true” mean parameters. This setting is related to the problem
of estimating a high-dimensional mean vector from a single multivariate observation
(Castillo and van der Vaart, 2012; Rockova, 2018), but with ordered sparsity η0k ̸= 0
for k ≤ K0n and η0k = 0 for k > K0n. As such, K0n is the true number of nonzero means
and corresponds to the true rank in model (1.1). As customary in posterior asymptotics,
we allow K0n to grow with n.

We study the posterior of ηi under the CUSP (3.1)–(3.2) and NMIG (3.7) prior.
A key term is the “remainder” Rn =

∑
k≥K0n

ωk, which represents an upper bound for
the probability mass assigned to the slab for the parameters that are null. Under the
CUSP, we show that Rn is far from zero with vanishing probability a priori:

Lemma 3. Let εn → 0 with ε1/K0n
n > κ/(κ + 1). For the CUSP prior (3.1)–(3.2) and

a positive constant C > 1, the remainder term Rn =
∑

k≥K0n
ωk satisfies

P(Rn > εn) ≤ exp(−CK0n). (3.12)

According to Lemma 3, the prior probability that Rn exceeds a small threshold is
exponentially small. Such exponential decay in the prior is essential to obtain optimal
posterior behavior in sparse settings (Castillo and van der Vaart, 2012). This result does
not require the NMIG prior (3.7).

To connect the prior behavior in Lemma 3 to the posterior, first consider the follow-
ing mild conditions on the hyperparameters in (3.7):

(C1) a1/(a2v0) > n2/K0n;

(C2) AK0n/n < 1/2 with A > 1/2;

(C3) 1/2 < a1 ≤ a2.

Condition (C1) implies that the precision of the spike component is increasing with
n; condition (C2) requires that K0n is strictly less than the total number of elements
(or the truncation limit); and condition (C3) ensures that the variances of the slab
component are sufficiently large. Similar conditions appear in Castillo and van der
Vaart (2012) and in Rockova (2018). Now let P0 and E0 denote the probability and
the expectation, respectively, under the true distribution of the data (3.11). Under
(C1)–(C3), the posterior probability that the remainder exceeds a shrinking εn, for
n → ∞, goes to zero in expectation E0. This is formalized in the following result:
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Theorem 1. Let εn → 0 with ε1/K0n
n > κ/(κ+1) and assume (C1)–(C3) and C > 2Ae.

For the CUSP (3.1)–(3.2) and NMIG (3.7) priors, the posterior distribution satisfies

lim
n→∞

E0 {P (Rn > εn | y1, . . . , yn)} = 0.

4 MCMC for posterior inference
We design an MCMC algorithm for posterior inference. The proposed Gibbs sampler is
both computationally scalable and MCMC efficient (see Tables 3 and 5) due to two key
features: the orthogonality constraints on {fk}, which produce important model sim-
plifications, and the parameter-expanded sampler for the ordered spike-and-slab prior,
which substantially improves MCMC mixing (see Figure 3). We implement the fol-
lowing sampling steps, with details provided in the supplement: (i) impute yi(τ∗) for
any unobserved τ∗; (ii) sample the nonlinear parameter γ if unknown; (iii) sample the
constrained nonparametric factors {fk} (see Section 2) and the smoothing parameters
{λfk}; (iv) sample the ordered spike-and-slab parameters (Algorithm 1); (v) sample the
parametric factors {αℓ,i}; and (vi) sample any variance components, such as σ2

ϵ .
The implementation incorporates a truncation of the infinite summation in (1.1),

which provides simpler and faster computations. By applying Theorem 1 of Legramanti
et al. (2020), we confirm that finite approximations are accurate for sufficiently large
truncation K:
Proposition 4. Let θ(K) = {θk}Kk=1 denote the sequence {θk}∞k=1 truncated at K.
Under the CUSP (3.1)–(3.2) and NMIG (3.7) priors with 0 < v0 < ε < 1, we have
P
{
d∞(θ, θ(K)) > ε

}
≤ κ{κ/(1 + κ)}K .

The approximation error induced by truncating {θk}∞k=1 to K terms decreases rapidly
in K, which suggests that the proposed infinite-dimensional ordered spike-and-slab prior
is accurately approximated by a conservative truncation.

We emphasize that the sampling steps for the ordered spike-and-slab parameters,
detailed in Algorithm 1, consist of simple, fast, and closed form updates. Because of
the orthogonality constraints and Corollary 1, these distributions depend on the data
only through {f ′

kyi}. In addition, we retain posterior samples of K∗ in (3.3), which is
the effective number of nonparametric terms. If this posterior distribution places mass
on values near K, then the truncation level K should be increased. Adaptations of this
sampling algorithm for use of the ordered spike-and-slab prior with other models, such
as (non-functional) factor models, are available by appropriately replacing yFk,i.

5 Simulation study
A simulation study is performed to assess model performance for point and interval
estimation of Yi, yi, and {αi} and uncertainty quantification for the number of non-
parametric terms. We present results for the linear template H0 = span{1, τ} here and
include the Nelson and Siegel (1987) template with unknown γ (along with a misspeci-
fied example) in the supplementary material.
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Algorithm 1: MCMC sampling steps for the ordered spike-and-slab prior.
Let yFk,i = f ′

kyi for i = 1, . . . , n and k = 1, . . . ,K:
1. Sample [mξk,i | −] from {−1, 1} with P(mξh,i = 1 | −)=1/{1+exp(−2ξh,i)};
2. Sample [ξk,i | −] ∼ N(Q−1

ξk,i
ℓξk,i , Q

−1
ξk,i

) where Qξk,i = η2
k/σ

2
ϵ + 1 and

ℓξk,i = ηkyFk,i/σ
2
ϵ + mξk,i ;

3. Sample [ηk | −] ∼ N(Q−1
ηk

ℓηk , Q
−1
ηk

) where Qηk =
∑n

i=1 ξ
2
k,i/σ

2
ϵ +(θkσ2

k)−1 and
ℓηk =

∑n
i=1 ξk,iy

F
k,i/σ

2
ϵ ;

4. Rescale ηk → (
∑n

i=1 |ξk,i|/n)ηk and ξk → (n/
∑n

i=1 |ξk,i|)ξk and update
βk,i = ξk,iηk;

5. Sample [σ−2
k | −] ∼ Gamma

{
a1 + 1/2, a2 + η2

k/(2θk)
}
;

6. Sample [νk | −] ∼ Beta(1 +
∑K

h=1 I{zh = k},κ +
∑K

h=1 I{zh > k}) for
k = 1, . . . ,K − 1 and update πk and ωk from (3.2);

7. Sample [κ | −] ∼ Gamma{aκ + K − 1, bκ −
∑K−1

k=1 log(1 − νk)};
8. Sample [zk | −] from

P(zk = h | −) ∝
{
ωht2a1(ηk; 0,

√
v0a2/a1) h ≤ k

ωht2a1(ηk; 0,
√
a2/a1) h > k

9. Update θk = 1 if zk > k and θk = v0 if zk ≤ k.

Synthetic functional data with n = 100 curves and m = 25 equally-spaced observa-
tion points in [0, 1] are generated as follows. The parametric and nonparametric factors
are simulated independently as α∗

ℓ,i ∼ N(0, 1) and β∗
k,i ∼ N(0, 1/(k+ 1)2), respectively,

for k = 1, . . . ,Ktrue and Ktrue ∈ {0, 1, 3, 8}; results for Ktrue = 1 are nearly identical
to the Ktrue = 3 case and are omitted, while Ktrue = 8 is presented in the supple-
ment. By design, the variability in the parametric factors outweighs the variability in
the nonparametric factors, so the parametric model is at least partially adequate. The
parametric basis matrix G∗

γ is constructed by evaluating {gℓ} at each observation point
and QR-decomposing the resulting matrix as in Section 2. For the nonparametric func-
tions f∗

k , we use orthogonal polynomials of degree k + 1, which are orthogonal to the
linear template; the Nelson-Siegel version applies an additional orthogonalization step.
The error-free latent functions are Y ∗

i = G∗
γα

∗
i +F ∗β∗

i and the functional observations
are generated as yi = Y ∗

i +σ∗ϵ∗i where σ∗ = sd(Y ∗
i )/RSNR for sample standard devia-

tion sd(·), root signal-to-noise ratio RSNR = 3, and ϵ∗i ∼ N(0, Im) independently. This
process was repeated to create 100 synthetic datasets.

We focus primarily on the PFFM, PFFM+GP, and SFFM. Only the PFFM with
Ktrue = 0 is correctly specified; in the remaining cases, the nonparametric term is
misspecified for both Ktrue and {f∗

k}. For an additional competitor, we modify the
PFFM+GP (2.1) to use a spline basis expansion hi(τ) = b′(τ)χi, specifically with
b from Section 2.2 and [χi,r | σχ] ∼ N(0,σ2

χ),σχ ∼ C+(0, 1). To further distinguish
this model (PFFM+spline) from PFFM+GP, we orthogonalize the spline basis to the
parametric template Gγ . In effect, PFFM+spline replaces {fk} in the SFFM with b,
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and thus isolates the importance of the low-rank nonparametric functional data model.
However, PFFM+spline does not provide rank selection or inference for K∗, and thus
cannot directly assess the necessity of the nonparametric factors.

For all models, we assume the conditionally Gaussian likelihood (2.3) with the hier-
archical priors

[αℓ,i | σαℓ ]
indep∼ N(0,σ2

αℓ
), σαℓ

iid∼ C+(0, 1), p(σ2
ϵ ) ∝ 1/σ2

ϵ , (5.1)

and the SFFM hyperparameters a1 = 5, a2 = 25, and v0 = 0.001, with an upper bound
K = 10 on the number of nonparametric factors. Sensitivity analyses were conducted
for (a1, a2) ∈ {(5, 25), (5, 50), (10, 30)} and v0 ∈ {0.01, 0.005, 0.00025}. The results for
point and interval predictions and estimates of Y ∗

i and {α∗
ℓ,i} are highly robust to these

hyperparameters. Inference on K∗ is typically robust with the exception of v0 = 0.00025,
for which the posterior of K∗ becomes more sensitive to (a1, a2). Hence, we select a larger
value of v0.

First, we evaluate point prediction of the latent curves Y ∗
i and point estimation of

the parametric factors {α∗
ℓ,i}. Posterior expectations from each model are assessed using

root mean squared (prediction) error, and presented in Figure 4. Although the methods
perform similarly when the parametric model is true (Ktrue = 0), the SFFM offers
substantial improvements in the semiparametric setting (Ktrue > 0). Notably, when
Ktrue > 0, the PFFM+GP offers better prediction than the PFFM—as expected—
but conversely cannot estimate the parametric factors accurately. Comparatively, the
PFFM+spline improves upon PFFM+GP for coefficient estimation—due to the orthog-
onality constraint—yet underperforms for point prediction.

Next, we assess prediction and credible intervals for y∗
i and {α∗

ℓ,i}, respectively,
where y∗

i is distributed identically to yi. The 95% interval estimates are evaluated
using mean interval width and empirical coverage, which are presented in Figure 5. Most
notably, the SFFM provides uniformly narrower interval estimates—and therefore more
precise uncertainty quantification—with approximately the correct nominal coverage.
The PFFM prediction and credible interval estimates are excessively wide when Ktrue >
0, which is reflected in Figure 1 and subsequently in Figures 7–8. The PFFM+GP
interval estimates for {α∗

ℓ,i} are quite poor, especially for Ktrue > 0, where the interval
estimates are excessively wide yet still fail to contain the true parameters {α∗

ℓ,i} at close
to the nominal level. In conjunction with Figure 2, these results show that functional
confounding adversely impacts both point estimation and uncertainty quantification.

Lastly, we study the posterior distribution of K∗ for assessing the necessity of the
nonparametric terms. Since the competing methods are not competitors for rank selec-
tion, we include a finite mixture model variant of the SFFM (SFFM-fmm) that instead
assumes ω1:K ∼ Dirichlet(κ/K, . . . ,κ/K). We use the same choice of K as in the SFFM
and set the prior expected number of factors to be κ = 1 to encourage fewer factors.
Figure 6 compares the quality of the posterior distribution P(K∗ | y) for the SFFM
and this finite mixture alternative. Notably, the ordered spike-and-slab prior results in
much larger probabilities on the true rank Ktrue. Despite fixing κ = 1, the SFFM-fmm
repeatedly overestimates the ranks: the simulation average of P(K∗ > Ktrue | y) is
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Figure 4: Root mean squared (prediction) errors for Y ∗ (top) and {α∗
ℓ,i} (bottom) for

Ktrue = 0 (left) and Ktrue = 3 (right). All methods perform similarly for Ktrue = 0,
while the SFFM outperforms all competitors when Ktrue > 0. In this setting, the
PFFM+GP offers better prediction than the PFFM, but cannot accurately estimate
the parametric factors.

0.30 for Ktrue = 0, 0.23 for Ktrue = 3, and 0.22 for Ktrue = 8, while the comparable
values for the SFFM are 0.15, 0.16, and 0.15, respectively. Hence, this finite mixture
alternative introduces unnecessary parameters and relays deceptively strong evidence
for additional nonparametric terms.

Additional simulation results in the supplement include several additional exam-
ples, including the Nelson and Siegel (1987) template with unknown γ; cases of mis-
specification of the parametric template; cases with sparsely-observed functional data;
cases with larger number of nonparametric factors (Ktrue = 8); and further assess-
ments of P(K∗ | y), including ranked probability scores and nonparametric detection
via P(K∗ > 0 | y). These results broadly confirm the qualitative results presented here.

6 Applications
6.1 Pinch force data
Human motor control is a critical area of research with implications for human phys-
iology, monitoring and mitigating muscle degeneration, and designing robotic devices.
Motor control data are recorded at high resolutions and often modeled as functional
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Figure 5: Mean 95% prediction (top) and credible (bottom) interval widths for y∗
i and

{α∗
ℓ,i}, respectively, with empirical coverage (annotations) for Ktrue = 0 (left) and

Ktrue = 3 (right). The SFFM provides narrow interval estimates with (nearly) the
correct nominal coverage in all cases. The PFFM intervals are excessively wide for
Ktrue > 0, while the PFFM+GP performs poorly for {α∗

ℓ,i}.

Figure 6: Probability score P(K∗ = Ktrue | y) for Ktrue = 0 (left) and Ktrue = 3
(right). The proposed ordered spike-and-slab prior provides better rank selection and
inference than the finite mixture alternative.

data (Ramsay, 2000; Goldsmith and Kitago, 2016). Human physiology and the laws of
motion dictate a parametric template, which is crucial for understanding the underlying
process. However, these parametric models may not fully describe the observed data,
which undermines the interpretability of the key parameters.
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We analyze human pinching data from Ramsay et al. (1995), which reports the
force measured by pinching the thumb and forefinger on opposing sides of a 6cm force
meter. The subject was instructed to maintain a background level of constant force,
then increase the pinching force to a predetermined maximum level, and finally return
to the original background level of constant force. We use data from the fda package
in R, which consists of n = 20 replicate force curves over time each with m = 151
observations selected such that the maximum of each curve occurred at 0.076 seconds.
An example curve is in Figure 1.

To model the pinch force over time τ , we adapt a parametric model from Ramsay
et al. (1995):

g1(τ ; γi) = 1, g2(τ ; γi) = exp[−(log τ − ci)2/{2 exp(γi)}], (6.1)

where exp(ci) is the time of the maximum force and γi ∈ R is a shape parameter.
Ramsay et al. (1995) argue that the unnormalized log-normal density g2 matches the
shape of the observed data and offers plausible scientific explanations. For computational
convenience, we estimate ci as in Ramsay et al. (1995) by fitting a quadratic regression
in log(τ) for the response variable log(yi) restricted to observations yi(τ) > 0.5. The
estimate of each ci can be recovered from the estimated regression coefficients and is
subsequently treated as fixed.

We fit the PFFM, PFFM+GP, and SFFM to the data using the template (6.1). For
partial pooling among subjects, we specify a hierarchical prior on the shape parameters:

[γi | µγ ,σγ ] iid∼ N(µγ ,σ
2
γ), µγ ∼ N(0, 10), σγ ∼ C+(0, 1)

with the priors from (5.1) on the remaining parameters. Since the nonlinear parameters
γi are curve-specific, we construct each Gγi for i = 1, . . . , n using a QR decomposition
(Section 2) and modify the orthogonality constraints for the nonparametric basis {fk}:

n−1
n∑

i=1
G′

γi
fk = 0L, k = 1, 2, . . . ,

which enforces orthogonality on average across the subject-specific parametric basis
matrices. This constraint no longer preserves the posterior factorization (Lemma 1,
Corollary 1), but still maintains distinctness between the parametric and nonparametric
terms. The SFFM hyperparameters are set to a1 = 5, a2 = 25, v0 = 0.001, and K = 10
as in Section 5.

An example of the fitted values with 95% simultaneous prediction bands for the
PFFM and SFFM is in Figure 1. Although the PFFM captures the general shape of
the data, it suffers from clear bias around the peak and produces unnecessarily wide
prediction bands. The SFFM corrects both issues: the bias is removed and the prediction
bands are more precise. Notably, the fitted SFFM curve preserves the same general shape
as the PFFM and avoids overfitting despite the increase in modeling complexity.

Posterior uncertainty quantification is also more precise under the SFFM for the
parametric factors {αℓ,i}. Figure 7 presents the posterior standard deviations of {αℓ,i}ni=1
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for each ℓ = 1, . . . , L under the PFFM and SFFM. Although the posterior expectations
are similar (see Figure 2) and the prior variances for {αℓ,i}ni=1 are the same under the
PFFM and SFFM, the posterior standard deviations are substantially smaller under
the SFFM. This reduction is even more dramatic compared to the PFFM+GP, which is
omitted from Figure 7 due to excessively large posterior standard deviations that range
from 1.42 to 4.43. For model (6.1), the linear coefficients {αℓ,i} determine the maximum
of the force curve, which is the most prominent feature in the data. The SFFM provides
more precise posterior inference for these key parametric factors.

Figure 7: Posterior standard deviations of {αℓ,i}ni=1 for ℓ = 1, . . . , L in the parametric
(PFFM) and semiparametric functional factor model (SFFM) for the pinch force data.
The SFFM consistently reduces posterior standard deviations for the parametric factors
by about 30%.

Additional evidence in favor of the SFFM is presented in Table 2, which estimates
the posterior distribution of the effective number of nonparametric terms K∗. Clearly,
there is substantially posterior probability for at least two nonparametric terms, with
limited evidence that more than three terms are needed.

k 0 1 2 3 4 5 ≥ 6
P(K∗ = k | y) 0.003 0.147 0.707 0.135 0.007 0.001 0

Table 2: Posterior probabilities P(K∗ = k | y) for the pinch force data. There is strong
evidence for a nonparametric component.

Finally, we highlight both the model performance and the MCMC efficiency in
Table 3. Watanabe-Akaike/widely-applicable information criteria (WAIC; Watanabe,
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2010) is a comprehensive metric for Bayesian model fitness, and clearly favors the
SFFM over competing methods. For all models, we retain 10000 MCMC samples after
discarding 5000 iterations as a burn-in. Traceplots of {Yi}, {αℓ,i}, and K∗ (not shown)
demonstrate excellent mixing and suggest convergence. The SFFM rivals the simpler
PFFM in computing time and MCMC efficiency (measured by effective sample size),
while the PFFM+GP lags far behind in both.

Metric PFFM PFFM+GP SFFM
WAIC −922 −2693 −3005

Time (s) / 1000 iterations 1.59 4.35 1.98
Median ESS of {αℓ,i} 10000 2445 10000

Table 3: WAIC (negatively oriented), computing time (using R on a MacBook Pro,
2.8 GHz Intel Core i7), and median effective sample size (ESS) of {αℓ,i} for the pinch
force data. The SFFM delivers a superior model fit and excellent computational perfor-
mance.

6.2 Dynamic yield curves
Yield curves are fundamental in economic and financial analyses: they provide essential
information about current and future economic conditions, including inflation, business
cycles, and monetary policies, and are used to price fixed-income securities and construct
forward curves. The yield curve Yi(τ) describes how interest rates vary as a function of
the length of the borrowing period, or time to maturity τ , at each time i. Naturally,
yield curves can be modeled as functional data that evolve dynamically over time.

Yield curve models most commonly employ the Nelson and Siegel (1987) basis:

g1(τ ; γ) = 1, g2(τ ; γ) = {1−exp(−τγ)}/(τγ), g3(τ ; γ) = g2(τ ; γ)−exp(−τγ) (6.2)

where g1 is the level, g2 is the slope, and g3 is the curvature. The nonlinear parameter
γ > 0 is commonly treated as fixed, such as γ = 0.0609 (Diebold and Li, 2006), but
otherwise may be estimated. We use a weakly informative Gamma prior for γ with prior
mean 0.0609 and prior variance 0.5. Both the PFFM and the SFFM with this prior on
γ are favored by WAIC over their respective counterparts with fixed γ = 0.0609.

To capture the yield curve dynamics, we model the parametric Nelson-Siegel factors
as an AR(1):

αℓ,i = µℓ + φℓ(αℓ,i−1 − µℓ) + ζℓ,i, ζℓ,i
indep∼ N(0,σ2

ζℓ). (6.3)

The PFFM with (6.2) and (6.3) is also known as the dynamic Nelson-Siegel model
(Diebold and Li, 2006). The dynamic Nelson-Siegel factors {αℓ,i} may be viewed as the
state variables in a dynamic linear model. Using the orthogonality constraints on {gℓ}
and {fk}, we derive a convenient and low-dimensional state simulation algorithm for
efficient joint sampling of the dynamic factors {αℓ,i} (see the supplementary material).
Similar simplifications are not available for the PFFM+GP, which is omitted.
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The dynamic model (6.3) is accompanied by the priors

µℓ
iid∼ N(0, 106), (φℓ + 1)/2 iid∼ Beta(5, 2), σζℓ

iid∼ C+(0, 1), ℓ = 1, . . . , L,

where the prior on {φℓ} ensures stationarity of the dynamic factors {αℓ,i} and therefore
{Yi} and {yi}. In addition, we generalize (1.2) to accommodate stochastic volatility in
the observation error variance,

ϵi,j
indep∼ N(0,σ2

ϵi), log σ2
ϵi ∼ AR(1),

which is an essential component in many economic and financial models (Kim et al.,
1998). For these AR(1) parameters, we adopt the priors and sampling algorithm from
Kowal (2021).

We evaluate the suitability of the Nelson-Siegel model for monthly unsmoothed
Fama-Bliss US government bond yields (Dijk et al., 2014). These data are available
from 2000-2009 (n = 120) for maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60,
72, 84, 96, 108 and 120 months (m = 17). The inferential targets are the latent curves
Yi, the dynamic Nelson-Siegel factors {αi,ℓ}, and the effective number of nonparametric
terms K∗. The SFFM hyperparameter and MCMC specifications from Section 6.1 are
adopted here, again with excellent mixing and convergence for these key parameters.

Figure 1 shows the PFFM and SFFM fitted values and 95% simultaneous prediction
bands for the yield curve in September 2008 during the onset of the Great Recession.
As with the pinch force data, the PFFM produces a reasonable shape, yet suffers from
clear bias and overconservative prediction bands. The SFFM corrects these deficiencies
without distorting the general shape of the curve or overfitting to the data.

Similar results are obtained in Figure 8 for the dynamic Nelson-Siegel factors. The
SFFM offers substantial reductions in posterior standard deviation for all three dynamic
Nelson-Siegel factors. These factors are fundamental for describing the shape of the yield
curve; reducing the posterior uncertainty is a crucial advantage of the SFFM. Impor-
tantly, the simulation study confirms that the reduced posterior uncertainty quantifica-
tion from the SFFM nonetheless retains valid calibration, or more specifically, correct
nominal coverage of the posterior credible intervals.

We summarize the posterior distribution P(K∗ | y) of the effective number of non-
parametric terms in Table 4. The evidence for the nonparametric factors is moderate:
we estimate P(K∗ > 0 | y) = 0.09.

k 0 1 2 ≥ 3
P(K∗ = k|y) 0.910 0.087 0.003 0

Table 4: Posterior probabilities P(K∗ = k | y) for the yield curve data. There is moderate
evidence for a nonparametric component.

There are compelling reasons to include the nonparametric factors in a dynamic
Nelson-Siegel model. First, the uncertainty quantification for {Yi} and {αℓ,i} is more
precise in the SFFM (see Figures 1 and 8). Second, WAIC decisively prefers the SFFM
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Figure 8: Posterior standard deviations of {αℓ,i}ni=1 for ℓ = 1, . . . , L in the parametric
(PFFM) and semiparametric functional factor model (SFFM) for the yield curve data.
Despite only moderate evidence for a nonparametric component, the SFFM provides
about a 60% reduction in posterior standard deviation for these key parametric factors.

over the PFFM, which suggests potential improvements in out-of-sample predictive
capabilities (see Table 5). Third, the additional computational burdens of the SFFM
are minimal. Due to the orthogonality constraints, the sampling steps for {αℓ,i} and
associated parameters are identical for the PFFM and the SFFM, which permits full
and robust model development for the parametric factors. Table 5 showcases the com-
parable computational performance. Although the SFFM sacrifices some MCMC ef-
ficiency, the effective sample sizes nonetheless remain quite substantial for a model
of this complexity—including dynamic factors, unknown nonlinear terms, stochastic
volatility in the error variance, and an unknown nonparametric functional factor struc-
ture.

Metric PFFM SFFM
WAIC −5516 −10229

Time (s) / 1000 iterations 21 23
Median ESS of {αℓ,i} 10000 6788

Table 5: WAIC (negatively oriented), computing time (using R on a MacBook Pro,
2.8 GHz Intel Core i7), and median effective sample size (ESS) of {αℓ,i} for the yield
curve data. The SFFM delivers a superior model fit and excellent computational per-
formance.
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7 Discussion
We proposed a Bayesian semiparametric model for functional data. The semiparamet-
ric functional factor model (SFFM) augmented a parametric template with an infinite-
dimensional nonparametric functional basis. The nonparametric basis was treated as
unknown and learned from the data to correct the biases of the parametric template
while appropriately incorporating relevant uncertainties into the posterior distribution.
Distinctness between the parametric and nonparametric terms was achieved by con-
ditioning upon an orthogonality constraint, which simultaneously prevented functional
confounding and admitted highly convenient simplifications for efficient MCMC sam-
pling. The nonparametric component was regularized with an ordered spike-and-slab
prior that built upon CUSP (Legramanti et al., 2020), which implicitly provided rank
selection for infinite-dimensional models and satisfied appealing theoretical properties.
This prior was accompanied by a parameter expansion scheme customized to boost
MCMC efficiency, and is broadly applicable for Bayesian factor models. Our analyses
of synthetic data, human motor control data, and dynamic interest rates demonstrated
clear advantages of the semiparametric modeling framework relative to both paramet-
ric and Gaussian process alternatives. The proposed approach eliminated bias, reduced
excessive posterior and predictive uncertainty, and provided reliable inference on the
effective number of nonparametric terms—all with minimal computational costs.

There are several promising extensions that remain for future work. First, formu-
lation of the parametric template in (1.1) can be generalized, for example to include
a functional regression term with scalar or functional covariates. Second, the ordered
spike-and-slab prior currently uses independent and identically distributed variables in
the parameter expansion (3.6). Adaptations to include dependence among these vari-
ables, such as regression models, clustering, and spatio-temporal dependence, would
broaden the applicability of the prior. Lastly, we studied only a small subset of many
possible parametric templates. For applications that rely on such parametric models,
the proposed semiparametric modeling framework can directly assess the adequacy of
these models—and perhaps suggest improvements.

Supplementary Material
Proofs, Computing, and Simulations (DOI: 10.1214/23-BA1410SUPPA; .pdf). The sup-
plementary PDF includes proofs of all results, details on the MCMC algorithms, and
additional simulation results.

Code (DOI: 10.1214/23-BA1410SUPPB; .zip). R code to reproduce the analysis.
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