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ABSTRACT

Functional mixed models are widely useful for regression analysis with dependent functional data, including
longitudinal functional data with scalar predictors. However, existing algorithms for Bayesian inference with
these models only provide either scalable computing or accurate approximations to the posterior distri-
bution, but not both. We introduce a new MCMC sampling strategy for highly efficient and fully Bayesian
regression with longitudinal functional data. Using a novel blocking structure paired with an orthogonalized
basis reparameterization, our algorithm jointly samples the fixed effects regression functions together with
all subject- and replicate-specific random effects functions. Crucially, the joint sampler optimizes sampling
efficiency for these key parameters while preserving computational scalability. Perhaps surprisingly, our
new MCMC sampling algorithm even surpasses state-of-the-art algorithms for frequentist estimation and
variational Bayes approximations for functional mixed models—while also providing accurate posterior
uncertainty quantification—and is orders of magnitude faster than existing Gibbs samplers. Simulation stud-
ies show improved point estimation and interval coverage in nearly all simulation settings over competing
approaches. We apply our method to a large physical activity dataset to study how various demographic and
health factors associate with intraday activity. Supplementary materials for this article are available online.
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1. Introduction

Functional data analysis (FDA) refers to the statistical analy-
sis of data objects observed over a continuum, such as time
or space, typically at high resolutions. FDA has been applied
in a variety of important areas, including climate data (Besse,
Cardot, and Stephenson 2000), electricity prices (Liebl 2013),
COVID-19 dynamics (Boschi et al. 2021), and many others.
FDA is particularly challenging when the functional data are
dependent, which requires more sophisticated statistical mod-
els and more intensive computations. We focus on regression
analysis with longitudinal functional data, which presents the
simultaneous challenges of (i) within-curve dependencies, (ii)
groupings among repeated (functional) measurements, and (iii)
associations with (possibly many) scalar covariates.

To meet these challenges, functional mixed models (FMMs)
have emerged as a powerful modeling tool. FMMs combine
FDA and traditional mixed effects models to provide regression
analysis of functional data in the presence of structured depen-
dence. However, longitudinal functional datasets are often mas-
sive, with millions or billions of high-resolution measurements
(Doherty et al. 2017; Lee et al. 2019). Thus, recent work has
increasingly prioritized the computational scalability of FMMs.
Naturally, the attendant computational burdens are exacerbated
by the complexity of the statistical model, including various
covariance structures and (possibly many) scalar covariates. Asa
result, there is high demand for inferential algorithms for FMMs

that both (i) scale to massive datasets and (ii) maintain these
essential modeling capabilities.

These challenges are exemplified in our motivating applica-
tion, the 2005-2006 National Health and Nutrition Examination
Survey (NHANES) physical activity (PA) dataset. High resolu-
tion (minute-by-minute) PA data (Figure 1) are recorded across
multiple days for each participant using hip-worn accelerometry
devices and linked to a questionnaire that contains subject-
level demographic and health information (Table 2). Figure 1
shows the PA levels of two randomly chosen subjects for every
day they wore the device. Key aspects of the data become evi-
dent from this plot: the observations are high-resolution, noisy,
autocorrelated, and exhibit considerable variation both between
subjects and between days for a given subject. Notably, there are
more than 72 million PA measurements on more than 10,000
participants in the study (Leroux et al. 2019). The goal is to
link time-of-day PA with important health and demographic
variables, while appropriately accounting for the prominent and
complex dependencies among these high-dimensional data.

To enable statistical modeling and inference, we represent
the PA as longitudinal functional data: the PA measurements
are functions of time-of-day and the days are repeated mea-
surements of these functional data for each subject. More gen-
erally, let Y;;(t) denote functional observations on a compact
domain v € T (ie., time-of-day) for within-subject replica-
tions j = 1,...,m; (ie, days) and subjects i = 1,...,n,
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Figure 1. Minute-by-minute physical activity (PA) measurements for two subjects in the NHANES study. The PA observations are noisy, autocorrelated, and exhibit

considerable variation both between subjects and between days for a given subject.

with M = "', m;. The functional data are linked to L scalar
covariates x;; = (xij1, . . .,X;jr)’ for subject i and replicate j. We
study the following FMM for longitudinal functional regression:

L
Yij(r) = &o(r) + Y xijede(t) + 7i(0) + @3j(7) + €3 (1),
=1
€ij (1) “ N(0,02). (1)

Model (1) extends traditional mixed effects models for longitu-
dinal data to the functional data setting by allowing the fixed
effects {a¢(-)} and the random effects {yi(-), @;;(-)} to vary as
functions of . First, the fixed effects {¢,(-)} are regression coef-
ficient functions and describe the linear associations between x;
and Y;;(7) at each 7. Next, the random effects {y;(-)} are shared
among all functional observations for subject i, and thus account
for subject-specific effects and dependencies among repeated
(functional) observations. The replicate-specific random effects
{@i;(-)} account for within-curve dependencies (or “smooth”
errors) that are unexplained by the fixed effects or subject-
specific random effects. These effects are especially important
for functional regression, even without repeated measurements
(Reiss, Huang, and Mennes 2010; Kowal and Bourgeois 2020).
Finally, the errors {€;;(-)} describe any (non-smooth) measure-
ment errors that remain. The random effects functions and
errors {i(-), ®;j(-), €;j(-)} are mean zero and mutually indepen-
dent, with additional modeling assumptions discussed subse-
quently.

The FMM (1) is widely applicable and has appeared in many
previous studies (Zipunnikov et al. 2014; Cederbaum et al. 2016;
Zhu et al. 2019; Li et al. 2022), including both special cases
without replications (m; = 1; Guo 2002) or covariates (Park
and Staicu 2015) as well as generalizations for additive (Scheipl,
Staicu, and Greven 2015) or non-Gaussian responses (Scheipl,
Gertheiss, and Greven 2016). However, computational consid-
erations are paramount, and often preclude the use of these
generalized models even for moderately-sized datasets (Sergazi-
nov et al. 2023). In response, Cui et al. (2022) proposed Fast

Univariate Inference (FUI) for (1), which seeks to dramatically
simplify estimation by (i) fitting separate linear mixed models
pointwise for each 7, (ii) applying a smoother to the estimated
pointwise fixed effects, and (iii) using asymptotic arguments or
bootstrapping to obtain confidence bands for {&(-)}. Such a
deconstruction sacrifices estimation efficiency and is difficult
to apply for sparsely or irregularly sampled functional data.
Like other frequentist approaches, FUI requires selection of tun-
ing (smoothing) parameters and provides limited uncertainty
quantification for certain parameters and predictions. Yet most
important, we show subsequently that such a decomposition is
not necessary to achieve scalable computing—and in fact that
FUI is slower than our fully Bayesian approach (see Section 4).
In general, Bayesian approaches for FMM:s are highly appeal-
ing due to the consolidated interpretation of fixed and random
effects, as well as convenient uncertainty quantification of all
model parameters and predictions. Morris and Carroll (2006)
introduced Bayesian FMMs using a wavelet basis expansion for
fixed and random effects. This approach has been extended and
applied broadly (Morris et al. 2006; Zhu, Brown, and Morris
2011; Morris 2017; Lee et al. 2019), but relies on unique features
of the wavelet basis—which may not be suitable for smoother
functional data, cannot easily handle missing values, and is diffi-
cult to apply when the number of functional observations is non-
dyadic. Bayesian FMMs commonly rely on Markov chain Monte
Carlo (MCMC) sampling for posterior inference, typically using
Gibbs sampling (Morris and Carroll 2006; Goldsmith and Kitago
2016; Lee et al. 2019) or Hamiltonian Monte Carlo (Goldsmith,
Zipunnikov, and Schrack 2015). Advantageously, these algo-
rithms provide exact (up to Monte Carlo error) inference, but are
prohibitively slow, with running times in the hours or days even
for moderately sized datasets (see Section 4). Further, certain
MCMC sampling strategies are vulnerable to slow mixing and
convergence: for example, Goldsmith and Kitago (2016) applied
a Gibbs sampler that alternates sampling blocks for the fixed
effects and the random effects, which is sensitive to the model



parameterization (i.e., centered vs. noncentered; Yu and Meng
2011) and can lead to poor exploration of the joint target distri-
bution. Our analyses confirm the MCMC inefficiencies of this
blocking strategy, which compounds the impact of the extremely
lengthy computing times.

To reduce this computational burden, there has been recent
development for variational Bayes (VB) approximations for
Bayesian FMMs. VB substantially reduces computation times
compared to existing MCMC algorithms (Goldsmith and Kitago
2016; Huo, Morris, and Zhu 2022). However, VB often provides
poor uncertainty quantification, and thus Goldsmith and Kitago
(2016) recommend it primarily as a tool to obtain quick initial
estimates for model-building. Our simulations (Section 4) show
that VB is adequate for point estimation, but falls considerably
short in interval estimation. Thus, there is urgent demand for
algorithms that can provide both accurate and scalable Bayesian
inference for the FMM (1).

We address this significant gap in the literature. Specifically,
we design an MCMC sampling algorithm for the FMM (1)
that offers several unique features. First, we jointly sample
all fixed and random effects functions {a,(-), yi(-), wi;(-)},
which delivers superior Monte Carlo efficiency for these
critical quantities. Second, we design this joint sampler using a
careful blocking structure paired with an orthogonalized basis
reparameterization, which leads to exceptionally fast sampling
steps. The accompanying variance components are sampled in a
separate block, yielding a convenient Gibbs sampler that is both
computationally and Monte Carlo efficient. Perhaps surprisingly,
our new MCMC sampling algorithm even surpasses state-
of-the-art algorithms for frequentist estimation (Cui et al.
2022; Li et al. 2022) and VB approximations (Goldsmith and
Kitago 2016) and is orders of magnitude faster than existing
Gibbs samplers for FMMs. This superior scaling persists across
number of subjects n, number of replicates m; per subject, and
number of covariates L, and is accompanied by more accurate
point estimation and uncertainty quantification across nearly
all tested scenarios. Applying our methods to the NHANES PA
dataset, we demonstrate the significant practical impacts of our
improved MCMC algorithm and provide posterior uncertainty
quantification for key parameters. Compared to existing MCMC
algorithms, we reduce the computation time from two weeks to
only a few minutes.

The rest of this article is organized as follows. Section 2
presents the Bayesian FMM for longitudinal data. Section 3
describes the MCMC algorithm. Section 4 provides simulation
analyses. We apply our model on the NHANES dataset in Sec-
tion 5. We conclude with a discussion in Section 6. R code to
implement our approach is available on GitHub at https://github.
com/thomasysun/FLFOSR.

2. Basis Expansions and Prior Distributions

FMMs (1) are most commonly implemented using basis expan-
sions, including splines (Guo 2002; Goldsmith and Kitago 2016),
functional principal components (Park and Staicu 2015; Li et al.
2022), and wavelets (Morris and Carroll 2006; Huo, Morris, and
Zhu 2022). The general basis representation of (1) is

K .o
Yi(0) = Y b0y + €0, € (1) CN©O,62) ()
k=1
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L

Brij = Qo + Y Xijttke + Vii + Ok 3)
=1

where {bk(-)}kK:1 are known basis functions and {a ¢, Vk,i» 0k, j}
are unknown basis coefficients. Model (2)—(3) induces (1) under
the identification @g(t) = Zle br(v)akp and similarly for
the remaining fixed and random effects functions. The coef-
ficients {B,;} are completely determined by {ak e, Yk @k.ij}>
and merely serve as a placeholder for notational convenience.
Because the basis functions {b;} are known, estimation and
inference for the coefficients {o ¢, yi,i» @k,i;} is sufficient for
estimation and inference of the functions {a,(-), yi(-), @i j(-)}.

The choice of basis functions {b;} must be paired carefully
with the choice of prior on the coefficients {ok ¢, Vk.i> ki)l
which together induce a prior for functions {&,(-), yi(-), @;;(-)}.
Typically, we select the prior on the coefficients to encourage
certain properties for the functions, such as smoothness (Gold-
smith, Zipunnikov, and Schrack 2015; Goldsmith and Kitago
2016; Kowal and Bourgeois 2020) or sparsity (Morris and Car-
roll 2006). Here, we also prioritize the resulting computational
implications.

To motivate the general approach, suppose that we are
interested in specifying a prior for a generic function under
a basis expansion Z(r) = Zle bi(t)k. A common strat-
egy is to assume a prior of the form ¢ = (¢1,...,¢x) ~
Nk (0, ogP_), where P is a known (roughness) penalty matrix

and agz is a (smoothness) parameter. For instance, suppose P is
the matrix of integrated squared second derivatives, [Pl =
f by (t)b,(r)dt, where bj/(-) denotes the second derivative of
b (-). Then the prior for ¢ may be expressed as

¢ —2 ./ — 7 2
~2logp(¢ o) <o Py = o [ o) ar

and = denotes equality up to an additive constant. Thus, the
log-prior on ¢ reproduces the classical roughness penalty on the
function (-). Ina Bayesian framework, we further may place a
prior on 0{2 to learn the smoothness parameter; these details are
discussed below in the context of model (2)-(3).

Although this approach is advantageous due to its gen-
erality and smoothness-inducing properties, it is unfavorable
for computing, especially within the basis-expanded FMM
(2)-(3). Suppose we observe data at t1,...,77 € 7T and
let By = (by,...,bx) be the T x K basis matrix with
by = (bi(t1), . .., bx(tT)) . We proceed generally with any basis
matrix By and penalty matrix P, with the minimal require-
ment that P~ is positive semidefinite. We seek to reparamater-
ize these terms (By, P)—at a one-time cost for all subsequent
MCMC sampling—for more amenable computing. Specifically,
we apply the orthogonalization strategy from Scheipl, Fahrmeir,
and Kneib (2012), which uses the spectral decomposition of
BoP B, to form a basis matrix B such that (i) B'B =
diag({dk}le) is a diagonal matrix and (ii) C(T),...,l(tr) =
Bo¢ has the same distribution as B¢™*, where ¢* ~ N(O, afl).
Here Y;j(7) and the unknown coefficient functions are assumed
to lie in the same function space and are thus representable
under the same set of basis functions. Notably, this strategy
applies for any basis {b;} and penalty matrix P~; in our empirical
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examples, we use B-splines with a penalty on the second-order
differences of the coefficients.

Revisiting the FMM basis expansion (2)-(3), we henceforth
assume, without loss of generality, that B'B is diagonal and
that arbitrary (roughness) penalties may be incorporated via
independent Gaussian priors. Thus, we specify the priors

indep indep
[eke | 0g] ~ N©,0g), [vkilop]l ~ N(O,0)),

indep
[wkij | 051 ~ N(0,02) (4)

> Yw;

and assume that the reparameterization has already been com-
pleted. The variance parameters are shared across k, but this can
be relaxed to allow adaptive shrinkage for the basis coeflicients
(Gao and Kowal 2024). In conjunction with the basis expan-
sions, the priors (4) induce a Gaussian process prior for each
fixed and random effect function, for example,

K
&0 ~ GP(0,Cay)s  Cag(T,1) = 0y Y br(1)bi(u)
k=1

and similarly for the remaining terms.
Finally, we assume conditionally conjugate Gamma priors for
the precision parameters,

"
(0,720, %, 0,7) ~ Gamma(a, b) X

along with a Jeftreys’ prior for the observation error variance,
[02] o« 1/02. These parameters determine both the smoothness
of the corresponding functions as well as the various sources of
variability within a function, between replicates for a subject,
and between subjects. Other priors are available for variance
parameters (Gelman 2006), and may be substituted into the
proposed framework with minimal impact on the core MCMC
sampling approach. However, we find that (5) offers excellent
modeling performance and MCMC efficiency, and is not highly
sensitive to the choice of (a, b) (see the supplementary material
for a sensitivity analysis).

In practice, we observe the functional data Y; () at discrete
points 71,...,7r € 7. For simplicity, we assume that these
observation points are common for all (i, j), but it is straightfor-
ward to accommodate sparsely or irregularly sampled functional
data within a Bayesian framework (Kowal, Matteson, and Rup-
pert 2019). The likelihood implied under (2) with observed data
Yij = (Yij(t),..., Yij(rr))  is

iid
Yij=BB;j+€ij €ij~ Nr(0, olIr) (6)

where Bij = (Biji>---> Bijx) is modeled via (3)-(4).

We emphasize that the modeling choices in (2)-(5) are meant
to be broadly applicable—including generic basis expansions,
penalty matrices, and variance components (or smoothness
parameters) for each fixed and random effects function. The
main contributions of this paper are not found in the uniqueness
of this modeling strategy, but rather in our MCMC sampling
algorithm for the general Bayesian FMM (1), which is presented
in the next section. The essential features of our FMM specifica-
tion are (i) the basis expansions (2) and (ii) the conditionally
Gaussian priors (4), in conjunction with the aforementioned
basis orthogonalization strategy (Scheipl, Fahrmeir, and Kneib
2012).

3. MCMC Algorithm

The primary challenge is to construct a sampling algorithm for
the joint posterior distribution of the fixed and random effects
functions {a,(-), 7i(-), @;j(-)} under the FMM (1). This task
requires simultaneous consideration of (i) MCMC efficiency,
including convergence and autocorrelation of the Markov chain,
and (ii) computational scalability across all dimensions of the
data: the number of subjects n, the number of replicates m; per
subject, number of covariates L, and the number of observation
points T along each curve. We focus on the sampling steps for
the fixed and random effects basis coeflicients {ok ¢, Vk,i» ki)
which are sufficient for posterior inference for the fixed and
random effects functions {a,(-), yi(-), @;j(-)} under (2)-(3).
The variance components {0'3/,0’]%, 03)1_} are sampled in a sep-
arate block, resulting in a two-block Gibbs sampling algorithm
(Algorithm 1).

We propose a joint sampler for all fixed and random effects
functions {a(-), yi(-), @;;(-)} by carefully decomposing the joint
posterior distribution of the corresponding basis coefficients.

First, let o = (k0,15 > %0)s Yk = Vkio-- > Vin) s
and wx = (@} },...,@;,), where ok = (ki1 .- Okim)’s
and let « = (ay,...,0x) and similarly for y and . Sim-
ilarly, define the diagonal variance matrices £, = 02l

¥, = diag ({Ujg}%:l)’ Y, = diag ({03 ?:1) = 031,,, and
%, = diag ({02 }ij), where the set of variances are first iterated
throughj=1,...,m; fori = 1andsoonto yield M terms along
the diagonal. Let ¥ = {X4, X, X, X} contain all variance
components.

The joint fixed and random effects posterior (conditional on
¥) is decomposable as

ple,y,w | Y, %) =pla|Y,Z)p(y | Y,a, %) p@ | Y,et,p, X)
7)

where ¥ = ({Y;;} denotes all observed data. Our Gibbs
sampler iterates between joint sampling blocks from (7) and
[X | Y, «, y,w]; the latter sampling step is straightforward (see
Algorithm 1), so we focus on (7).

We sample from the joint posterior (7) by iteratively drawing
from the three constituent terms: (i) the marginal posterior
of the fixed effects @, (ii) the partial conditional posterior of
the subject-specific random effects y given the fixed effects o,
and (iii) the full conditional posterior of the replicate-specific
random effects w. In contrast to a Gibbs sampler that draws
from the three full conditional distributions [¢ | Y,p,w,X],
[y | Ya,w, 2], and [® | Y,a,y,X] (e.g., Goldsmith and
Kitago 2016), or Gibbs samplers that sequentially draw each
fixed effect ax (e.g. Morris and Carroll 2006), our approach
delivers a direct Monte Carlo (not MCMC) sample from the
joint posterior (conditional on X), and thus offers the potential
for large gains in sampling efficiency (see Figure 2). Further, the
joint sampler requires no consideration of centered versus non-
centered parameterizations of the mixed effects model, which
eliminates a recurring nuisance for Bayesian implementations of
mixed and hierarchical models (Yu and Meng 2011). However,
we must also carefully consider the resulting computational bur-
den of these sampling steps. In particular, a sampling algorithm
that offers Monte Carlo efficiency may nonetheless be infeasible
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proposed FLFOSR sampler shows consistently excellent and superior MCMC efficiency, while refund : Gibbs is extremely inefficient when aaz)* or 073*

in practice, if the raw computing times scale poorly in n, m;, L,
orT.

Our key innovation is that we provide convenient, closed-
form, and highly scalable sampling steps for the constituent
distributions in (7). First, observe that {8 ;;} in (2)-(3) contains
all fixed and random effects coefficients, and thus may be viewed
as a placeholder for each of the random variables in (7). Since the
reparameterized basis matrix satisfies B'B = dlag({dk}k > we
compute (B'B)"!B'Y ij = WLijs--->YK.ij)> where {yg;;} are
the coefficients from projecting the functional observations onto

2
the basis matrix. Thus H Yij— BﬁiJHz =5, Ak Okij — Bri)’
and the joint likelihood (6) for {By;;} may be written

2
mmmamaﬂﬂm{ HW—WMJ ®
i=1 j=1
1 n mj K
XEXpP1T5 5 Z Z Ak (kij — ﬁk,z‘,j)z
%¢ il j=1 k=1

(9)

up to constants that do not depend on {;;}. Thus, the only
dependence on T is via this projection step, which is a one-time
cost for all subsequent MCMC sampling. In addition, the joint
posterior factorizes across the basis coefficients,

K
P(“s y,w | Y>Z) = HP(“k: Yo Wk | Y)E)’

k=1

is large.

and we may sample the fixed and random effects coeflicients
separately for each k = 1,..., K. This strategy is parallelizable
across k yet still maintains a joint sampler for all fixed and ran-
dom effects coefficients. This offers a substantial simplification
from the functional data likelihood in (8), which features T-
dimensional terms Y, especially since K < T in general.
Finally, the likelihood (9) for {By.;,} is proportional to the likeli-
hood for {By;;} implied by the simple working model

indep 2
Vkij = Brij + €kijp  €kij ~ N(0,07/dk) (10)
L
= o+ Y Xij bkt + Vii + Okij + €kije (11)
=1

It is typically easier to derive the posterior distributions for
{0k,0> Vi,i> k,ij} in (7) using (10)-(11) instead of (6) or (8), yet
the results are equivalent.

We describe the three sampling steps in ascending complex-
ity, which reverses the actual sampling order from (7). Let y, =
k1,1 - - > YLy - - -» Yionm,) denote the projected functional
data ordered by replicates for each subject, X be the M x (L+1)
design matrix with a column of ones for the intercept, and Z =
bdiag { L, }?=1’ a block diagonal matrix with n columns and m;-
dimensional vectors of ones.

The simplest sampling step is the full conditional distribution
for the replicate-specific coeflicients:
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indep 1 1
[k | Yoy, ] ~ Nm(Q,, Ly Q)
Q,, = diag ({dkaé_2 + aa;Z}iJ)
Loy, = dxo % {yy — (Xex + Zyy) )

fork = 1,..., K. Most important, the posterior precision matrix
Q. is diagonal, and thus all the replicate-specific coefficients
® may be sampled independently (and in parallel) in O(MK)
computing time.

Next, we provide the sampling step for the partial conditional
of the subject-specific random effects, [y, | Y,a, 2], which
marginalizes over . Under the prior (4), it is easy to see that
the marginalized version of (11) is simply yx;; = axo +

(12)

L indep
D i—1 Xijeke + Yii + Vkij, where v = wgij + €xij  ~

N(0, af)i + 0 2/dy). The requisite distribution is then

indep _ _
k| Vo, 21~ Na(Q), 4. Q)
Q, = ;' + ZViZ = diag ({(ay—2 + dymi(o? + dkaji)_l)}?zl)

Ly, = dZ Vi (yk — Xc(k)

(13)
where Vi = X' — 47N (I + 2;1)71 o=
diag ({((762 + dkcrji)_l}i,j) for k = 1,...,K. Crucially, the pos-
terior precision matrix Q,, is diagonal, and thus all subject-
specific coefficients y may be sampled independently (and in
parallel) in O(nK) computing time.

While the posterior precision matrices for [wy | Y, o, p, X]
and [y, | Y,a,X] are diagonal and easy to construct, we
must also consider computation of the vectors £, and £,,. An
important observation is that, for arbitrary matrix ®,x,, the
operations Z®,x, (or ©,x,Z') repeat row i (or column i) of
Onxn m; times, while Z'O®pp (or OprxmZ) sums over the
columns (or rows) for all rows (or columns) corresponding to
the same subject i. The matrix notation obscures the simplicity
of these computations, which are vectorizable and thus offer
additional efficiency gains in R.

The remaining sampling step is the marginal posterior of the
fixed effects, [aty | Y, X], which requires marginalization over
all random effects coefficients {y, w}. Once more, the working
model (10)-(11) is particularly convenient for these derivations,
and yields the distribution

(x| ¥, 21" NL(Q ey, Q)

k | > ] L(Qak oo Q‘xk )

Q=X +dX (Vi —WpX
Lo, = diX' (Vi — Wi)

(14)

where Wy = (Z'Vy)/'(E,' + dZ'Vi2)"'Z'Vy and Vi —
Wy = diag ({(ae2 + dkaaz)i + dkm,-o)f)’l},-,j) fork =1,...,K.
Unlike for the random effects coeflicients, the posterior pre-
cision for a is not diagonal; indeed, Q,, is the only non-
diagonal posterior precision matrix in our joint sampler for
all {atk ¢, Yi,i» wk,ij}- To alleviate this potential bottleneck when
the number of covariates L is large, we apply the O(L?) sam-
pling algorithm from Rue (2001) when L < M and the
O(M?L) sampling algorithm from Bhattacharya, Chakraborty,
and Mallick (2016) when L > M. This sampling strategy
has been successful in (non-longitudinal) function-on-scalars
regression (Kowal and Bourgeois 2020). More generally, (14)

has the same structure as in (nonfunctional) Bayesian linear
regression models, and thus we may adapt and apply new sam-
pling strategies for that setting as the state-of-the-art advances
(Nishimura and Suchard 2022).

In aggregate, we present our full MCMC sampling algorithm
in Algorithm 1. The joint sampling step for [, ¥, @ | Y, X]
is highly scalable, and in fact delivers the same computational
cost as a naive Gibbs sampler that instead use the three full
conditional draws [ | Y,y,®, 2], [y | Y,a,,X], and
[@ | Y,a,p, X]—while offering the potential for substantial
increases in MCMC efficiency.

Algorithm 1: MCMC sampling algorithm for the
Bayesian FMM (1)-(6): fast longitudinal function-on-
scalar regression (FLFOSR).

1. Sample the fixed and random effects coefficients
[, y, 0| Y,X]:

(a) Sample [& | Y, X] from (14)
(b) Sample [y | Y, &, X] from (13)
(c) Sample [w | Y, &, y, X] from (12)

and compute functions @ (-) = Y r_; bx(-)ag and
similarly for all {y;(-), @;;(-)}.
2. Sample the variance components [X | Y,a, y, w]:
(a) Sample [0 | Y, &, y, @] ~
Gamma (MT/2, Y"1 ijz’l H Yij— BB;; 2/2)
(b) Sample [UJgZ | Y,a,y, w] ~ Gamma (a +K/2,b+
She1@l,/2), t=1,...,L
(c) Sample [0},_2 | Yo, y,0] ~
Gamma (a +nK/2,b+ Zle Yo )’;ii/z)
(d) Sample [0, | Y, e, y, @] ~
Gamma (a + miK/2,b+ Yk, Z]m;l wi’i’j/Z),
i=1,...,n

From a practical perspective, we emphasize that many com-
putations are parallelizable, including the sampling steps for all
{y, ®}, while many constituent terms are highly vectorizable. For
instance, Vi and Wy, are diagonal, and computing (Vi — W) X
simply consists of multiplying each row of the matrix X by the
corresponding scalar value (062 + dkaaz)i + dkmiaf)_l. Within
R, we maximize computational performance by avoiding matrix
calculations wherever possible and opting for vectorized opera-
tions instead. This is in contrast to common FMM formulations
that utilize matrix operations with Kronecker products or large
block matrices, and thus face significant computational bottle-
necks.

Lastly, we reiterate that Algorithm 1 is applicable for any
Bayesian FMM that satisfies a basis expansion (2)-(3) and
assumes (conditionally) Gaussian priors (4). Thus, our approach
is broadly applicable for many choices of basis functions, and
remains valid for generic smoothness priors using the basis
orthogonalization strategy of Scheipl, Fahrmeir, and Kneib
(2012). We henceforth refer to our approach as fast longitudinal
function-on-scalar regression (FLFOSR).



4. Simulations

We conduct a series of simulation studies to evaluate the per-
formance of our approach against state-of-the-art Bayesian and
frequentist competitors. Specifically, we assess (i) the MCMC
efficiency and computational costs and (ii) the estimation accu-
racy and uncertainty quantification under various simulation
designs.

4.1. Simulation Design

Functional observations are generated from the FMM (1) using
the basis representation (2)-(3) using K* = 5 basis functions.

We fix o ; = 1 and simulate the coefficients o, ~ N(0, %%*)’

Yei ~ N, 05*), and oy ; i N(0,02*) independently, and

then compute 'Blt,i,j = o, + Ziﬁzl Xieof, + Vi + oof i
The covariates {x;¢} were generated from a standard normal
distribution. The variance components {o2*, o}%*, a2*,02%) are
varied in Sections 4.3 and 4.4 to evaluate performance under
different sources of variability. Finally, functional data Y; j(z;) are
generated from (2), where the basis functions are orthogonalized
B-spline basis functions and {t;}L_| isa grid of T = 144 equally-
spaced points in [0, 1], which emulates the PA data in Section 5.
We emphasize that although this data-generating process resem-
bles the proposed Bayesian FMM, the same model structure is
shared among all competing methods, and thus does not unfairly
favor our approach.

4.2. Competing Methods

We compare the proposed FLFOSR approach against several
Bayesian and frequentist methods for regression analysis with
longitudinal functional data. The Bayesian competitors come
from the widely-used refund package in R (Goldsmith et al.
2021), and feature both the Gibbs sampler (refund:Gibbs)
and the VB approximation (refund : VB) from Goldsmith and
Kitago (2016). Unlike FLFOSR, refund:Gibbs (i) uses the
full conditional draws for all fixed and random effects instead of
the joint sampler (Algorithm 1), (ii) does not orthogonalize the
basis functions, and (iii) sets the hyperparameters of the variance
components based on an initial estimate of the residual covari-
ance matrix. We expect that (i) will inhibit MCMC efficiency and
(ii) will decrease computational scalability.

Among frequentist approaches, there is a rich collection of
recent strategies and software. We focus on FUI (Cui et al.
2022), which specifically advertises computational scalability
for longitudinal function-on-scalar regression, and Li et al.
(2022), which provides fixed effects inference for a variety of
longitudinal correlation structures. We choose to work with the
exchangeable correlation model since this mirrors our model
assumptions. More general methods for FMMs or functional
additive mixed models could be considered for this problem.
However, the widely-used implementations (i.e., pf£r in the
refund package) are known to have severe bottlenecks for both
computing and memory (Cui et al. 2022; Sergazinov et al. 2023).
Thus, such methods were not included in the study.

For FLFOSR, we set the hyperparameters to be a = b =
0.1 and assess sensitivity in the supplementary material. All
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methods used K = 15 basis functions. Any remaining settings
were fixed at the default choices in the provided R functions.
Simulations were performed on a Windows desktop with a 3.60
GHz Intel Xeon CPU with 32 GB of RAM.

4.3. Evaluating MCMC Efficiency and Computational
Scalability

Among Bayesian methods, we measure MCMC efficiency using
effective sample sizes (ESS), which equivalently summarize the
autocorrelation in the Markov chain (Gelman et al. 2013). For
each MCMC sampler, we generate N = 1000 draws from a single
chain after discarding the initial Ny, = 1000 draws as burn-in,
and then compute the pointwise ESS Ng{&/, (t:)} of each fixed
effect regression coeflicient function & (-) for £ = 1,...,L and
t = 1,...,T. We also record sy and sy, , the total running
times (in seconds) to obtain N and Ny, draws, respectively.

First, we compute the average relative efficiency across all
covariates and observation points,

L T
Nei/N = (L) ) > " Nesrldie (z0}/N,

(=1 t=1

which exclusively measures MCMC efficiency (not computing
time). We compare this metric between the competing MCMC
samplers, FLFOSR and refund : Gibbs, using the simulation
design from Section 4.1. Figure 2 presents results across var-
ious settings for the variance components {62*,02*, 02*, 6.2}

y)o—w’
and n = 20, m = 5,and L =

5 (a smaller dataset is
necessary for refund:Gibbs; see Figure 3). FLFOSR is dra-
matically more efficient than refund:Gibbs, with consis-
tently excellent performance across all setting. By comparison,
the MCMC efficiency of refund:Gibbs deteriorates signifi-
cantly whenever o 2* or 62* is large. This result is unsurprising:
for Gibbs samplers that alternate between drawing the fixed
and the random effects from their respective full conditional
distributions (e.g., refund : Gibbs), it is well-known that the
model parameterization (centered vs. noncentered) is critical
for MCMC efficiency (Yu and Meng 2011). In particular, the
performance depends on the relative magnitudes of the variance
components, which in practice are unknown. By comparison,
FLFOSR samples the fixed and random effects functions jointly,
and thus requires no consideration of the parameterization—
and achieves excellent MCMC efficiency across a variety of
settings.

Next, we summarize aggregate computational performance
by measuring the time needed to generate 1000 effective samples,
averaged over all covariates and observation points,

L T
s1000 = (L)' Y N [SNbum + sy X

(=1 t=1

1000 ]
Neg{ae (to)}

~

which rewards both MCMC efficiency and computational scala-
bility. This quantity allows some comparison between Bayesian
and frequentist algorithms: although an MCMC algorithm may
be run arbitrarily long to secure greater accuracy, 1000 effec-
tive samples is a reasonable and conservative target for general
sampling-based inference.
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Using the simulation design from Section 4.1, we scale the
size of simulated datasets across three separate dimensions:
(i) the number of subjects n € {10,20, 50,100,200}, fixing
m 5and L = 5; (ii) the number of replicates or repeated
observations per subjects, m; = m € {5, 10,25, 50, 100, 150},
fixing n = 10 and L = 5; and (iii) the number of predictors
L € {5,10,25,33,50, 100,200}, fixing n = 30 and m = 5. Data
were generated using 0* = 0* = 0.* = 1,and o* = 10.
The computing times for each algorithm are averaged across 30
datasets in each simulation setting.

The computational performance of each method is sum-
marized in Figure 3 and detailed further in Table 1. Once
again, FLFOSR decisively outperforms the MCMC competitor
(refund:Gibbs): FLFOSR delivers more efficient exploration
of the posterior while reducing computational costs by sev-
eral orders of magnitude. These results highlight the mutual
importance of (i) the joint sampling step for {atk ¢, Vki» g, j} and
(ii) the careful construction of fast constituent sampling steps
(Algorithm 1). For instance, FLFOSR generates 1000 average
effective samples in under 10 sec for a dataset with 144,000
data points (T = 144, n 200, m 5). By comparison,
refund:Gibbs requires several minutes for only n 10
subjects, and is not feasible even for moderately-sized datasets.

2000 FLFOSR
1800 ~refund:Gibbs
1600 -+refund:VB
1400 =Li et al. 2022
21200 FUI
°E’1OOO
i= 800
600
400
200 —
O Ll g === -3
50 100 150 200
Number of subjects (n)
(a)
2500 = FLFOSR .
- refund:Gibbs 4
2000 -+ refund:VB 7
. - Lietal 2022,
L1500 FUI
£ A
i= 1000 =
/
500 %
- —/ — — - A
0 so—bper—ar = r——————————
0 50 100 150 200

Number of predictors (L)

()

Yet most surprisingly, FLFOSR attains 1000 effective samples
in less time than it takes for either the VB approximation or
state-of-the-art frequentist algorithms (Li et al. 2022; Cui et al.
2022) to terminate. These computing gains accelerate as each
dimension n, m, or L increases. Further, FUI scales poorly in
L and requires L < n, while FLFOSR has no such restrictions.
These results were obtained from a single machine without using
any parallel processing. Thus, further scalability is attainable for
FLFOSR.

These results are extraordinarily favorable: Bayesian infer-
ence for (1) is especially appealing due to the availability of
full posterior uncertainty quantification for all fixed and ran-
dom effects functions and predictions, yet is often eschewed in
favor of frequentist methods due to computational limitations.
FLFOSR obviates this tradeoft, and converts the computational
performance from a disadvantage into a clear advantage for
Bayesian FMMs.

4.4. Evaluating Model Accuracy and Uncertainty
Quantification

We assess the accuracy of each method by evaluating point and
interval estimation for the fixed effect functions {a,(-)}. We

28
- refund:Gibbs
1800 - refund:VB
_1600 - Lietal. 2022
» 1400 - FUI
o 1200
£ 1000
~ 800
600
400 _ -4
200 ——
0 so—t—=—a0=S= = o @ = = ]
0 50 100 150
Number of replicates per subject (m)
(b)
18000 = FLFOSR =3
1600 = refund:Gibbs P~
1400 - refund:VB
—~1200 e I|EiUe|t al. 2022
n
2 1000, "
£ 800
= 600
400
200
0 e ————t— === ———
250 500 75 100

Number of time points (T)

(d)

Figure 3. Run time comparison of algorithms for longitudinal function-on-scalars regression, scaling by (a) the number of subjects n, (b) number of repeated observations
per subject m;, and (c) number of scalar predictors L, reported in seconds. Empirical computing time for MCMC methods (solid lines) refers to average time to 1000 effective
samples, 51000, and other methods (dashed lines) report raw run time. Computing times were averaged across 30 replicate simulations. The proposed FLFOSR outperforms
all competitors as each dimension grows. refund : Gibbs was omitted for some designs due to lack of competitiveness and FUI requires L < n (dotted black line in (c)).
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Table 1. Evaluating algorithm performance via time to 1000 effective samples (51090), average relative efficiency (Neg/N), and raw computing time (s) (in seconds).

FLFOSR refund:Gibbs refund:VB Lietal. FUI
n m L T 51000 Nest/N 51000 Negt/N s s s
10 5 5 144 4.5 0.59 2571 0.57 0.7 0.4 12.9
50 5 5 144 4.5 0.86 2036.4 0.79 9.6 29 28.1
200 5 5 144 9.9 0.9 - - 149.9 82.6 99.6
10 10 5 144 4.5 0.65 564 0.65 2 0.7 13.9
10 50 5 144 6.9 0.75 - - 36.3 7.2 19
10 150 5 144 16 0.79 - - 4227 137.9 64.2
30 5 5 144 4 0.81 950.2 0.75 3.9 1.2 203
30 5 50 144 48.5 0.42 - - 7.2 30.7 -
30 5 200 144 68.2 0.46 - - 190.6 2417 -
30 5 5 50 37 0.80 880.6 0.73 3.6 1.1 49
30 5 5 200 42 0.80 993.6 0.76 43 1.5 356
30 5 5 1000 7.4 0.80 1777.2 0.76 9 3.2 778.1

NOTE: The proposed MCMC algorithm (FLFOSR) is orders of magnitude faster than the MCMC competitor (refund : Gibbs) and even surpasses state-of-the-art VB and
some frequentist competitors (Li et al. 2022; Cui et al. 2022) as each dimension grows. refund : Gibbs was omitted for some designs due to lack of competitiveness

and FUl requires L < n.

measure point estimation accuracy using root mean squared
error for the fixed effect functions,

1

T
LT {

D @ (m) — & ()P

1 t=1

M=

RMSE =

~
Il

where &, (7;) and @ (1) are the estimated and true fixed
effects functions, respectively, for the £th predictor at time ;.
For Bayesian methods, the estimator &(t;) is the posterior
mean. We evaluate uncertainty quantification using mean cred-
ible/confidence interval widths,

1 L
MCIW = — Z

=22 @ @ - @}

T
=1 (=1

paired with empirical coverage probability,

L
1 - (.025) ~ ~(.975)
BCP =7 ) ;H{a( () =a (=& @},

where (&é.ozs) (rg),&é'ws) (t¢)) are 95% credible/confidence

intervals. Ideal performance is achieved by nominal coverage
ECP > 0.95 (calibration) and small MCIW (sharpness).

We study the impact of differing sources of variability by
varying the variance components {02*, 05*, a2*,02%} between
1 and 10 and set n = 20, m = 5, and L = 5. The results
are summarized in Figure 4. Broadly, the proposed FLFOSR is
highly competitive across all scenarios for both point and inter-
val estimation. Point estimation accuracy is comparable across
all methods when between-subject variability is low (03* =
1), but FLFOSR offers substantial gains in point estimation
accuracy as between-subject variability increases (03* = 10).
Notably, FLFOSR achieves close to nominal coverage across all
simulation designs, while refund : Gibbs, refund: VB, and
Lietal. (2022) suffer from significant undercoverage. Clearly, the
VB approximation is reasonably accurate for point estimation
but unreliable for uncertainty quantification. FUI is the only
competitor that achieves close to nominal coverage, yet the FUI
intervals are much wider than the FLFOSR intervals and thus
sacrifices some power to detect important effects. Further, FUI

is the least accurate point estimator when o)f* = 10. When

measurement error dominates (62* = 10), the Bayesian point
estimates—including for FLFOSR—are less accurate. In such
high-noise settings, this performance might be improved by
replacing the priors (4) with more aggressive shrinkage priors
(Gao and Kowal 2024).

In aggregate, the computational (Figures 2-3) and inferential
(Figure 4) evaluations decisively favor FLFOSR. The proposed
MCMC sampling algorithm (Algorithm 1) is more scalable than
existing frequentist methods and more eflicient than existing
MCMC samplers, and delivers point and interval estimates that
outperform state-of-the-art Bayesian and frequentist competi-
tors. These significant gains amplify the additional benefits of
Bayesian inference for FMMs, including uncertainty quantifica-
tion for all fixed and random effects functions and predictions—
which was previously not accessible even for moderately-sized
datasets. By comparison, the competing frequentist approaches
provide inference only for the fixed effects functions, and not for
the random effects functions or predictions (Li et al. 2022; Cui
et al. 2022).

5. Application

We apply FLFOSR to analyze physical activity (PA) data mea-
sured from wearable accelerometry devices. These devices pro-
vide high resolution PA measurements for individual subjects
across multiple days. PA plays a major role in overall human
health, with lower PA levels linked to higher all-cause mortality
(Schmid, Ricci, and Leitzmann 2015; Smirnova et al. 2020).
However, statistical analysis of PA data often includes substantial
aggregation or averaging both within a day and across days for
a given subject (Kowal 2022b; Hilden et al. 2023). Such pre-
processing needlessly reduces the sample size and can obscure
important sources of variability. In response, functional data
analysis has become increasingly useful to analyze and model PA
data (Morris etal. 2006; Sera et al. 2017; Leroux et al. 2019; Kowal
and Bourgeois 2020; Kowal 2022a). Naturally, such approaches
must confront the significant computational challenges associ-
ated with high resolution data for many individuals.

Using data from the 2005-2006 NHANES cohort, we model
PA as a function of time-of-day 7 on days j = 1,...,m; for
subjects i = 1,...,n. Importantly, this representation allows
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Figure 4. Root mean squared errors (top row), mean credible/confidence interval widths (middle row), and empirical coverage probabilities (bottom row; horizontal line
denotes nominal coverage) for the fixed effects functions é; (-) across various designs (columns) and 30 simulated datasets (boxplots). The proposed FLFOSR consistently
delivers accurate point estimation and precise and well-calibrated uncertainty quantification.

for analysis of time-of-day PA patterns via a FMM (1), while
also accounting for within-day autocorrelations, within-subject
dependencies, and measurement errors. The raw activity data
contains the acceleration in the x, y, and z-axis measured every
1/80th of a second by the accelerometer, aggregated at the
minute level. We follow the pre-processing procedures outlined
in Leroux et al. (2019) and the accompanying nhanesdata
R package, which removes subjects with poor data quality or
too few days of measured activity, and restrict our analysis to
subjects aged 35-85. The functional data Y;;(t) are defined by
computing the square-root of 10-min PA averages over the win-
dow T = [4:00, 23:59], which focuses on the waking hours and
helps satisty the FMM assumptions (1). These functional data
are paired with important health and demographic variables
(Table 2). The continuous variables are standardized to have
mean 0 and standard deviation 1. The final dataset has n = 1723
subjects with median({m;}}_,) = 6 days of observations per
subject, for a total of M = 10,372 days of measurements, T =
144 measurements per day, and L = 20 predictors per subject.
First, we compare the proposed FLFOSR approach
with competing Bayesian methods (refund:Gibbs and
refund: VB). We adopt the same hyperparameter and MCMC

settings as in Section 4 and conduct a sensitive analysis in
the supplementary material. However, we are unable to run
refund:Gibbs or refund: VB due to memory limitations.
Instead, we fit these competing methods on a random subsample
of n = 278 subjects, the largest subsample our memory
could accommodate, solely for the purpose of computational
comparisons. Table 3 shows the computational costs and MCMC
efficiency for FLFOSR—fit to the whole dataset—compared to
refund:Gibbs and refund:VB. FLFOSR required only
about a minute to run, or about 5 min to generate 1000 effective
samples from the posterior of the fixed effects functions. By
comparison, refund:Gibbs required more than 21 hr to
run, and due to MCMC inefliciencies, would require almost two
weeks to generate 1000 effective samples—even on this much
smaller dataset. Similarly, the VB approximation is dramatically
slower than the FLFOSR MCMC sampling algorithm, again
on the smaller dataset. Thus, the Goldsmith and Kitago (2016)
strategy of (i) using VB to obtain initial estimates and (ii) using
Gibbs sampling for the final results is neither necessary nor
feasible: we instead should proceed exclusively with FLFOSR,
which provides fully Bayesian inference on the complete dataset
in a fraction of the time.



We summarize the FMM inference for select fixed effects
functions & (-) in Figure 5 (see supplementary material for the
remaining fixed effects functions). The results show interesting,
but not necessarily unsurprising relationships between certain
health factors and time-of-day PA. Age is a strong negative
predictor of activity, especially in the afternoon hours. Current

Table 2. NHANES variables used in the regression analysis of PA data.

Variable Values

Response variable:

Activity level [0,440.0]
Sociodemographic variables:

Gender Male (53%), Female (47%)
Age (years) [35,84.8]

Race White (54%), Black (21%),

Hispanic (22%), Other (4%)
Education level < HS (23%), = HS (53%), > HS (24%)
Alcohol and nicotine use variables:
Drinks per week
Smoke cigarettes

Health-related variables:

[0, 105]
Current (20%), Former, (30%), Never (50%)

Body Mass Index (kg/mz) [15.9,57.4]
HDL cholesterol (mg/dL) [23,188]
Total cholesterol (mg/dL) [92,458]
Systolic blood pressure (mmHg) [80,270]

Has congestive heart disease
Has congestive heart failure

Yes (4%), No (96%)
Yes (2%), No (98%)

Has cancer Yes (9%), No (91%)
Has diabetes Yes (10%), No (90%)
Has stroke Yes (2%), No (98%)
Other variables:

Is weekend Yes (28%), No (72%)
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cigarette smokers are less active, predominantly in the morning,
but this effect is not as strong later in the day. Individuals with
higher educational attainment are less active throughout the
daytime, but more active after in the early evening. Among
health variables, certain comorbidities like diabetes are associ-
ated with less activity. HDL cholesterol, commonly referred to as
“good cholesterol”, is associated with higher activity throughout
the day.

As an alternative visualization of these effects, Figure 6 shows
the predicted population-level mean activity for varying levels
of (a) age and (b) HDL cholesterol. The other predictors were
set to the baseline and the mean values for categorical and
continuous variables, respectively. As age increases from 35 to
55, there is a substantial overall decrease in predicted PA, which
is particularly pronounced in the afternoon. HDL cholesterol
levels in the data ranged from 23 mg/dL to 188 mg/dL, but levels
below 40 mg/dL are broadly classified as “at risk” of heart disease
and are generally recommended to be above 60 mg/dL (Expert
Panel 2001). The right hand plot shows the predicted activity
curves when raising HDL levels from the lower cutoff point up

Table 3. Computational comparisons among Bayesian algorithms for the NHANES
dataset.

Method Dataset Time (N = 10000 51000  Neg/N
FLFOSR Full (n = 1723) 1.3 min 4.8 min 0.27
refund:Gibbs Reduced (n = 278) 213 hr 333.5hr 0.06
refund:VB Reduced (n = 278) 7.5 min - -

NOTE: The range of observed values is reported for continuous variables and the per-
centage of each category is reported for categorical variables. Baseline categories
used for categorical variables are bolded. In Education Level, “HS" refers to high

NOTE: Performance is evaluated using time to N = 1000 MCMC samples, time
to 1000 effective samples (51009), and average relative efficiency (Ngsr/N). The
proposed FLFOSR requires only a fraction of the computing time for a much larger

school. dataset.
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Figure 5. Posterior inference for the fixed effects functions ¢y (-) for select covariates. The solid lines denote the posterior mean with 95% pointwise (dark band) and joint

(light band) credible intervals.
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Figure 6. Mean activity level for varying levels of (a) age and (b) HDL cholesterol with 95% credible intervals for a subject with baseline categorical covariate levels and

average values for continuous covariates.

into the recommended amount, where slightly heightened PA
throughout waking hours is predicted as HDL levels increase.

6. Discussion

We introduced a new MCMC algorithm for Bayesian regression
with longitudinal functional data. The algorithm applies for a
broad and widely useful class of functional mixed models that
include (i) basis expansions and (ii) fixed effects and subject-
and replicate-specific random effects. Most notably, our MCMC
sampler delivers unrivaled MCMC efficiency and unmatched
computational scalability, and is empirically faster than state-
of-the-art frequentist competitors—while also providing pos-
terior uncertainty quantification for all model parameters and
predictions. The scalability of our algorithm persists across
all dimensions—the number subjects, replicates per subjects,
covariates, and observation points—and thus establishes a new
state-of-the-art for (Bayesian or frequentist) computing with
longitudinal functional data. The proposed model showcases
excellent point estimation accuracy and uncertainty quantifica-
tion across a broad array of simulated data scenarios.

In practice, our MCMC algorithm enables complex Bayesian
model-fitting with large functional datasets without the need for
intensive computing resources. Indeed, we were able to perform
fully Bayesian inference on a large physical activity dataset in
about a minute using a personal desktop without any parallel
processing. As the usage of wearable devices continues to grow,
so does the need for highly scalable methods to study these
high-resolution and high-dimensional data. For example, the
UK Biobank study contains PA measurements of over 100,000
subjects across 7 days, measured in 5 sec intervals (Doherty et al.
2017), implying over 12 billion rows of PA measurements.

One computational aspect that we did not explore in this
article is the memory usage of each algorithm. For the NHANES
data, memory issues precluded use of the competing methods
in the refund package on the whole dataset, while the pro-
posed FLFOSR approach encountered no such problems. Thus,
efficient memory usage may be another advantage of FLFOSR,
but further analysis is needed.
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Additional results: A document containing a sensitivity analysis and addi-
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