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Abstract

QR factorization is a key tool in mathematics, computer science, opera-
tions research, and engineering. This paper presents the roundo�-error-
free (REF) QR factorization framework comprising integer-preserving
versions of the standard and the thin QR factorizations and associated
algorithms to compute them. Speci�cally, the standard REF QR fac-
torization factors a given matrix A ∈ Zm×n as A = QDR, where
Q ∈ Zm×m has pairwise orthogonal columns, D is a diagonal matrix,
and R ∈ Zm×n is an upper trapezoidal matrix; notably, the entries of Q
and R are integral, while the entries of D are reciprocals of integers. In
the thin REF QR factorization, Q ∈ Zm×n also has pairwise orthogonal
columns, and R ∈ Zn×n is also an upper triangular matrix. In contrast
to traditional (i.e., �oating-point) QR factorizations, every operation
used to compute these factors is integral; thus, REF QR is guaranteed
to be an exact orthogonal decomposition. Importantly, the bit-length of
every entry in the REF QR factorizations (and within the algorithms
to compute them) is bounded polynomially. Notable applications of our
REF QR factorizations include �nding exact least squares or exact basic
solutions, x ∈ Qn, to any given full column rank or rank de�cient lin-
ear system Ax = b, respectively. In addition, our exact factorizations
can be used as a subroutine within exact and/or high-precision quadratic
programming. Altogether, REF QR provides a framework to obtain
exact orthogonal factorizations of any rational matrix (as any ratio-
nal/decimal matrix can be easily transformed into an integral matrix).
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2 Exact QR Factorizations of Rectangular Matrices

1 Introduction

QR factorization is widely used throughout mathematics, engineering, and
computer science. Speci�cally, QR is regularly used to solve linear least squares
problems [1, 2], reveal the rank of matrices [3�5], solve highly ill-conditioned
linear systems [6, 7], compute Eigenvalues [8�10], and as a subroutine in
quadratic programming [11�13].

In the context of quadratic programming, QR factorization was shown to
be an e�cient tool for solving quadratic programs with high (�oating-point)
accuracy [12]. Likewise, on a parallel e�ort, [14] developed and implemented
an exact quadratic programming algorithm for computational geometry prob-
lems; notably, this exact QP solver was based on an extension of an exact
linear programming solver, not on QR factorization. This paper bridges the
gap between these two disjoint approaches by presenting an exact QR factor-
ization, which may be subsequently used to develop an exact QP algorithm.
Speci�cally, we present a general-purpose roundo�-error-free (REF) QR fac-
torization framework that can be used out-of-the-box to exactly and reliably
solve any numerically-challenging application.

That said, the bene�ts of REF QR extend well beyond quadratic pro-
gramming because general-purpose (�oating point) QR factorizations have
been shown to su�er from numerical issues in some applications. For exam-
ple, if A is very ill-conditioned, the Q matrix, when computed with traditional
�oating-point approaches, tends to lose orthogonality and thus may lead to
incorrect solutions [6, 15]. Indeed, in practice, a previous implementation of
(�oating-point) QR factorization in LAPACK was shown to numerically fail
in rank-revealing computations [16]. Though this shortcoming was successfully
addressed therein, another far more recent example, in the context of deep
neural networks, illustrates that state-of-the-art, out-of-the-box �oating-point
QR factorization lacks accuracy when solving some least-square problems [17].
Again, though the issue was addressed in that context (via QR code spe-
cialized for their application), the authors state, �Our experience seems to
suggest that presently with neural engines, matrix factorizations (QR, LU,
Cholesky) are best to be co-designed with their applications (linear solver, least
square, orthogonalization, SVD, etc.) to achieve high performance and ade-
quate accuracy and reliability.� While this suggestion is worthwhile, our REF
QR factorization may be directly used to benchmark specialized �oating-point
matrix factorizations after they are �ne-tuned for speci�c applications.

In pursuit of this, we introduce two new QR factorizations of the form A =
QDR, where the columns of Q are pairwise orthogonal, D is diagonal, and R is
upper trapezoidal. Notably, both Q and R are comprised of exclusively integer
entries with polynomially-bounded bit-lengths, while D (whose entries are all
reciprocals of integers with also polynomially-bounded bit-lengths) never needs
to be explicitly computed or applied when using the REF QR factorization.
Given a matrix A ∈ Zm×n, with m ≥ n, we present two variants of the REF
QR factorization: (1) the �thin REF QR Factorization� in which Q ∈ Zm×n

and R ∈ Zn×n is the REF Cholesky [18, 19] factor of ATA, and (2) the
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�standard REF QR Factorization� in which Q ∈ Zm×m and R ∈ Zm×n is the
REF Cholesky factor of ATA appended by m − n rows of zeros. In addition
to proving the existence of the REF QR factorizations, we derive several of
their properties, which are analogous to the properties of the traditional QR
factorizations as well as derive the algorithms to compute them. Moreover,
when A has full column rank, we show that solving the linear system Ax = b
using the REF QR factorization provides the exact least squares solution (i.e.,
the exact minimizer of the two-norm of Ax− b). Conversely, when A is rank
de�cient, we show that REF QR can be used to compute an exact basic solution
to the system Ax = b.

We note that Zhou and Je�rey [20] were the �rst to present an exact thin
QR factorization called fraction-free QR. The contributions highlighted above
signi�cantly expand on their work; as we develop both thin and standard
QR factorizations, prove that they have properties analogous to traditional
QR factorizations, and show how to use them to solve both full-rank and
rank-de�cient linear systems. Thus, another contribution of this work is to
generalize the ideas of [20] and relate them to the broader linear algebra body
of knowledge.

2 Background

This section brie�y reviews the theoretical background needed to derive REF
QR. Hereafter, it is assumed that A ∈ Zm×n with m ≥ n. Note that if n > m,
the derived properties apply to AT , while if A is decimal or rational, it can
be made integral by multiplying by the appropriate power of 10 or the least
common multiple, respectively. Lastly, as in several authoritative matrix linear
algebra and numerical analysis textbooks (e.g., [6, 15, 21]), we utilize the
MATLAB notation, where the (i, j) element of A, the ith row of A, and the ith
column of A are denoted as A(i, j), A(i, :), and A(:, i) respectively; while the
submatrix at the intersection of (consecutive) rows i1 to i2 and (consecutive)
columns j1 to j2 is denoted as A(i1 : i2, j1 : j2). Sections 2.1, 2.2, 2.3, and 2.4
review the traditional QR factorizations, the Pursell & Trimble algorithm to
compute the traditional QR factorizations via Gaussian elimination, integer-
preserving Gaussian elimination, and REF Cholesky, respectively.

2.1 Traditional QR Factorization

Given a matrix A ∈ Rm×n, a QR factorization factors A into the product
A = QR, where Q is orthonormal and R is upper trapezoidal. There are two
classes of QR factorization: thin QR and standard QR. Thin QR factorization
is typically computed via Gram-Schmidt orthogonalization [15, 22] and results
in a rectangular Q ∈ Rm×n and a square R ∈ Rn×n. On the other hand, the
standard QR factorization, which is typically referred to just as QR factoriza-
tion, is computed via either Givens rotations [23] or Householder re�ections
[24] and results in a square Q ∈ Rm×m and a rectangular R ∈ Rm×n. These
traditional QR factorizations have several properties of interest to this paper:
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1. Q is an orthonormal matrix. In thin QR, Q is left orthonormal; i.e., QTQ =
I. While, in standard QR, Q is fully orthonormal; i.e., QQT = QTQ = I
and thus Q−1 = QT .

2. R contains the Cholesky factor of ATA. Speci�cally, in thin QR, R is square
and the Cholesky factor of ATA; i.e., RTR = ATA. While, in standard QR,
R is rectangular, and its �rst n rows are the Cholesky factor of ATA (its
last m− n rows of R are zeros).

For an in-depth look at QR factorization, we refer the reader to [15].

2.2 QR Factorization via Gaussian Elimination

The three standard approaches to computing a QR factorization (Gram-
Schmidt, Givens, and Householder) are orthogonalization algorithms that
construct the orthogonal matrix Q̂. Pursell and Trimble present a totally di�er-
ent approach to computing a QR factorization [25], which is based on Gaussian
elimination. Speci�cally, they show that performing Gaussian elimination on
the matrix [ATA | AT ] to obtain its row echelon form yields [R̂ | Q̂T ], where
A = Q̂R̂ is a scaled version (because the columns of Q̂ are not normalized)
of the thin (�oating-point) QR factorization of A. While the computational
complexity of this approach is not competitive with that of the other three
approaches, Pursell and Trimble's approach is quite useful in proving several
of the theorems in this paper.

2.3 IPGE

Integer-preserving Gaussian elimination (IPGE) is an exact variant of Gaus-
sian elimination used for solving a system of linear equations Ax = b. Given
a full rank matrix A ∈ Zn×n and right hand side vector b, denote the kth
iteration IPGE matrix as A(k) for k = 0, . . . , n (where A(0) ≜ A)1. Then,

assuming there are no row permutations, let a
(k)
i,j and ρk ≜ a

(k−1)
k,k denote the

individual entries of A(k) and the kth pivot element for 1 ≤ i ≤ n, 1 ≤ j ≤ n,
and 0 ≤ k ≤ n (with ρ0 ≜ 1), respectively. Then, at iteration k, the IPGE

algorithm computes the entries a
(k)
i,j as follows:

a
(k)
i,j =

a
(k−1)
i,j if i = k,

ρka
(k−1)
i,j −a

(k−1)
k,j a

(k−1)
i,k

ρk−1 otherwise
(1)

Note that Equation (1) di�ers from traditional Gaussian elimination only
in the denominator (in traditional Gaussian elimination, the division is by
the current pivot, ρk, instead of the previous pivot). This seemingly minor
modi�cation leads to the following two key properties:

Lemma 2.1. Throughout all of the IPGE algorithm, the divisions in Equation
(1) are guaranteed to be integral (have a zero reminder) [26�28].

1Throughout the paper, the symbol ≜ means �is de�ned as.�



Springer Nature 2021 LATEX template

Exact QR Factorizations of Rectangular Matrices 5

Lemma 2.2. Given a matrix A, with σ ≜ max
i,j

| a
(0)
i,j |, the maximum bit

length to store any IPGE entry, βmax, is upper-bounded polynomially as follows
[18, 29]: {

βmax ≤ ⌈n log(σ)⌉ if A is SPD,

βmax ≤ ⌈n log(
√
nσ)⌉ if A is not SPD

This polynomial bound on IPGE entries is generally pessimistic and is tight
if and only if A is diagonal (when A is SPD) or A has orthogonal columns
(when A is not SPD). [18, 29�31]

2.4 REF Cholesky

The REF Cholesky factorization [18], based on IPGE, factors an SPD matrix
A into the product A = LDLT , where L is a lower triangular matrix com-
prised of integer entries and D = diag(ρ0ρ1, ρ1ρ2, . . . , ρn−1ρn)−1. Notably,
D is never needed to compute the factorization or when using the factor-
ization to solve an SPD linear system. Along with associated REF forward
and backward substitution algorithms, REF Cholesky can exactly solve the
SPD linear system Ax = b exclusively in integer arithmetic. Additionally,
the left-looking and up-looking sparse REF Cholesky factorization algorithms
were derived in [19]. Notably, these algorithms solve a sparse SPD linear
system Ax = b in asymptotically e�cient time complexity, meaning that
the dominant cost in these algorithms' complexities is that of the arithmetic
operations and do not have ancillary operations such as greatest common
divisor operations�required by rational-arithmetic algorithms. Accordingly,
these exact factorizations outperform competitor rational-arithmetic LDL and
unsymmetric exact factorizations [19].

3 Roundo�-Error-Free QR Factorizations

This section derives two REF QR factorizations, with which a given matrix A
is factored as A = QDR, and proves their key properties. Speci�cally, Sections
3.1 and 3.2 formally present the thin REF QR factorization (i.e., where Q ∈
Zm×n and R ∈ Zn×n) and the standard REF QR factorization (i.e., where
Q ∈ Zm×m and R ∈ Zm×n), respectively. Lastly, Sections 3.4 establishes the
relationship between the REF QR factorizations and the traditional (�oating-
point) QR factorizations.

3.1 Thin REF QR Factorization

Theorem 3.1 presents the thin REF QR factorization and its key properties.

Theorem 3.1. Every full column rank integral matrix A ∈ Zm×n has a unique
integral factorization A = QDR with the following properties:

(a) Q and R are both integral matrices; speci�cally, Q ∈ Zm×n and R ∈ Zn×n.
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(b) DR is the REF Cholesky factorization of ATA; that is RTDR = ATA,
where R is an upper triangular integral matrix, and D is a diagonal matrix.
Moreover, D = diag(ρ0ρ1, ρ1ρ2, . . . , ρn−1ρn)−1, where ρi is the ith pivot
element of the REF Cholesky factorization of ATA, and thus D−1 ∈ Zn×n.

(c) R can be computed as R = QTA (just like in the traditional QR
factorization A = QR).

(d) The columns of Q are pairwise orthogonal. Namely, QTQ = D−1.
Proof We prove this by constructing the matrices Q and R and showing that they
satisfy properties (a)-(e) and that A = QDR. First, we obtain R by performing
the REF Cholesky factorization on the SPD matrix ATA. Speci�cally, we factorize
ATA = RTDR where R is the upper triangular integral REF Cholesky factor of ATA
and D = diag(ρ0ρ1, ρ1ρ2, . . . , ρn−1ρn)−1. Since this factorization can be computed
by performing IPGE operations on ATA in order to reduce it to an upper triangular
matrix, R; these IPGE operations on ATA are equivalent to left-multiplying a matrix
by (RTD)−1. Next, by left multiplying [ATA | AT ] by (RTD)−1 we obtain the
integral matrix [R | (RTD)−1AT ]. Again, note that this matrix, [R | (RTD)−1AT ],
is an integral matrix because multiplying by (RTD)−1 is equivalent to performing
the associated IPGE operation on the full matrix [ATA | AT ] which are guaranteed
to be integral [26, 27]. Now letting QT = (RTD)−1AT (i.e., Q = A(DR)−1), it
follows that QDR = A(DR)−1(DR) = A. We next show that the R and Q integral
matrices, which satisfy properties (a) and (b), also satisfy properties (c) and (d).

Property (c) is proved by expanding the product QTA as (RTD)−1ATA, then
since ATA = RTDR, we obtain:

QTA = (RTD)−1RTDR = R.

In a similar fashion, property (d) is proved by expanding the product QTQ as
(RTD)−1ATA(DR)−1, then since ATA = RTDR, we obtain:

QTQ = (RTD)−1RTDR(DR)−1 = D−1.

Finally, the uniqueness of the thin REF QR follows from the following observa-
tions: (1) DR is unique (because it is the REF Cholesky factorization of ATA) and
(2) Q = AR−1D−1 is a unique product (because A has full column rank). □

3.2 Standard REF QR Factorization

Similar to the thin REF QR factorization, the standard REF QR constructs
the factorization A = QDR whereQ and R are comprised of exclusively integer
entries. In contrast to the thin REF QR, the standard REF QR results in a
square Q ∈ Zm×m and an upper trapezoidal R ∈ Zm×n. Theorem 3.2 formally
introduces this version of REF QR and proves some of its properties.
Theorem 3.2. Given a full column rank integral matrix A ∈ Zm×n, there
exists an integral factorization A = QDR with the following properties:

(a) Q and R are both integral matrices. Speci�cally Q ∈ Zm×m and R ∈ Zm×n.
(b) The REF Cholesky factorization of ATA, ATA = R̃T D̃R̃, is embedded in

DR. Speci�cally, the �rst n rows of R and D(1 : n, 1 : n) are the REF
Cholesky factors R̃ and D̃.

(c) R can be computed as R = QTA (just like in the traditional QR
factorization A = QR).
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(d) The columns of Q are pairwise orthogonal. Namely QTQ = D−1 (note that
D−1 is a diagonal integral matrix).

(e) Q resembles an orthogonal matrix in that Q−1 = DQT (whereas, in a truly
orthogonal matrix, Q−1 = QT ).

Proof To prove this theorem, we de�ne several useful matrices. Without loss of
generality, since A is full column rank, assume the �rst n rows of A are linearly inde-
pendent. Construct the matrix Ā ≜ [A 0

Im−n
] ≜ [A Ī] where 0 is the zero matrix of

the appropriate size. Let the thin REF QR decompositions of A and Ā be given as
A = Q̃D̃R̃ and Ā = Q̄D̄R̄, respectively.

From the sequence of equations[
A Ī

]
= Ā = Q̄D̄R̄ =

[
Q̄1 Q̄2

] [D̄11 0
0 D̄22

] [
R̄11 R̄12

0 R̄22

]
=

[
Q̄1D̄11R̄11 Q̄1D̄11R̄12 + Q̄2D̄22R̄21

]
we make the following observations:

1. Comparing the �rst and last terms, we obtain A = Q̄1D̄11R̄11. Furthermore,

Q̄1 = Q̃, D̄11 = D̃, and R̄11 = R̃ because the thin REF QR factorization of

A = Q̃D̃R̃ is unique.

2. Let R =
[
R̄11
0

]
. Then, A = Q̄D̄R (this can be observed by ignoring the second

column in the decomposition of R̄, and performing the matrix multiplication

yielding Q̄1D̄11R̄11, which in turn equals A).

The second observation establishes that A can always be factorized as A = Q̄D̄R.
With this factorization in hand, we now proceed to prove properties 3.2(a) to 3.2(e).

Observing how the matrices Q̄ and R were obtained (via thin QR factorizations
of A and Ā), we conclude that the matrices Q̄ and R are integral matrices of the
sizes speci�ed in Theorem 3.2; i.e., Q̄ ∈ Zm×m and R ∈ Zm×n. This proves Property
3.2(a).

Since A = Q̃D̃R̃ and Property 3.1(b), we have that R̃T D̃R̃ is the Cholesky
factorization of ATA. Thus, Property 3.2(b) follows from Observation 2 above.

Since Q̄T Ā = R̄, the following sequence of equations shows how Property 3.2(c)
follows from Property 3.1(c).

Q̄T Ā =

[
Q̄T

1

Q̄T
2

] [
A Ī

]
=

[
R̄11 R̄12

0 R̄22

]
⇒ Q̄TA =

[
R̄1,1

0

]
= R

Thereby showing that Q̄TA = R.
Next, Property 3.2(d) Q̄T Q̄ = D̄−1 follows from Property 3.1(d).
Finally, to show Property 3.2(e), we utilize Property 3.1(d) again. Speci�cally,

since QTQ = D−1, we can left multiply by D to obtain DQTQ = I. Finally, since
Q is a full rank m × m matrix, which follows from Property 3.1(d), we can right
multiply by Q−1 and we obtain Q−1 = DQT thereby completing the proof.

□

3.3 Computing REF QR and Theoretical Bounds

The proofs above, as well as Pursell & Trimble [25] and Zhou & Je�rey [20],
give a method to compute thin REF QR based on performing IPGE on [ATA |
AT ]. By exploiting the properties of our REF QR factorizations, this section
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presents (1) a slightly modi�ed yet expedited version of the algorithm for
thin REF QR, (2) a new algorithm for standard REF QR, (3) proof that the
bit-length of each entry is bounded polynomially, and (4) the computational
complexity of both algorithms.

Thin REF QR Algorithm: Perform the REF Cholesky factorization of
[ATA], carrying the row operations throughout AT . By using REF Cholesky,
this approach e�ciently exploits the symmetry in ATA and thus requires about
n3/2 fewer operations than Zhou and Je�rey because they compute a full LU
factorization on [ATA | AT ]. The total number of operations required to com-
pute thin REF QR with our algorithm is O(m2n+ n3), as one must compute
ATA (O(n2m)), perform REF Cholesky on ATA (O(n3)) and, concurrently,
carry on the row operations on AT (O(n2m)). This algorithm returns the
unique thin REF QR factorization A = QDR. Note that D does not need to be
explicitly calculated as its entries are known directly from R, and, furthermore,
as the ensuing sections describe, D is not needed to use the QR factorization.

Standard REF QR Algorithm: Convert A to an appropriate full-rank
square matrix Ā = [AĪ] where Ī is the lastm−n columns of them×m identity
matrix (note that the augmented matrix needs only be one which guarantees
Ā has full rank). Then, perform thin QR on Ā to obtain A = Q̄D̄R̄. The
standard REF QR is then A = Q̄D̄R where R comprises the �rst n columns
of R̄. This approach requires O(m3) operations (it simply performs thin QR
discussed above with n = m). While Standard REF QR is not necessary for
the applications discussed in the next section, this approach gives a method
to obtain it if desired.

Theorem 3.3 gives the maximum bit-length required to store (and compute)
any entry in REF QR.
Theorem 3.3. Given a matrix A ∈ Zm×n, let σ denote the absolute value of
the largest entry in A. The maximum bit-length of every entry in the REF QR
factorizations of A, denoted βmax, is bounded above by:{

βmax ≤ ⌈2n log(mσ)⌉ for thin REF QR,

βmax ≤ ⌈2m log(mσ)⌉ for standard REF QR.
(2)

Proof For thin QR, R and Q can be obtained by applying IPGE on [ATA | AT ].
Every entry in [ATA | AT ] is of at most size mσ2, which would occur only if A has
a fully dense row of entries of magnitude σ. Though this matrix is of size n×n+m,
Edmonds [26] showed that every entry throughout IPGE is the determinant of a
square submatrix (in this case, at most a n× n matrix); thus, using Lemma 2.2, we
obtain:

βmax ≤ n log(
√
nmσ2) ≤ n log(m2σ2) = 2n log(mσ).

The proof is complete by noting that the standard QR bound applies by just
changing the dimension of the matrix to be m×m instead of m× n. □

Theorem 3.3 gives a pessimistic bound for two reasons: (1) Hadamard's
bound itself is pessimistic, and (2) it assumes A contains a fully dense row
comprised of the largest entries in A. Despite these drawbacks, Theorem 3.3 is
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valuable as it shows that every entry in REF QR and within their computation
is polynomially bounded.

Finally, we present the complexity of computing each factorization.
Corollary 3.1. Let A ∈ Zm×n and let βmax be the maximum bit-length of
any entry in the REF QR factorization of A. Then, the worst-case complexity
of computing REF QR is:{

O(n2m(βmax log βmax log log βmax)) for thin REF QR,

O(m3(βmax log βmax log log βmax)) for standard REF QR.
(3)

The above result follows directly from combining Theorem 3.3 with the
number of operations within each algorithm discussed above.

3.4 Relationship of REF QR and Traditional QR

This section gives the mathematical relation between the thin REF QR factor-
ization and the traditional thin QR factorization. Through this relation, one
can obtain, from the REF QR, the traditional QR factorization in �oating-
point to any desired level of precision. Note that this section focuses solely on
the thin QR factorization as it is the only unique QR factorization.
Theorem 3.4. Let A ∈ Zm×n be factored via the thin REF QR as A = QDR
and via the traditional thin QR factorization as A = Q̂R̂. Then, Q̂ = Q

√
D

and R̂ =
√
DR.

Proof Recall that, given a matrix A ∈ Zm×n and its traditional QR factorization
(A = Q̂R̂), R̂ is the (unique) Cholesky factor of ATA; namely, R̂T R̂ = ATA. Like-
wise, given the REF QR factorization of A, A = QDR, and RTDR = ATA. Thus,√
DR = R̂. Therefore, A = QDR = Q

√
DR̂. Furthermore, since Q̂ and Q are full

rank and unique, it must be the case that Q̂ = Q
√
D. □

Interestingly, due to the square root operations, Theorem 3.4 implies that
it is e�ectively impossible for a matrix to have a rational QR factorization (at
least without some diagonal matrix akin D to �hide� the square roots).

4 Solving Linear Systems with REF QR

The linear system Ax = b where A ∈ Zm×n and b ∈ Zm is not guaranteed
to have an exact solution because the product Ax lies in the span of the
columns of A which is a proper subspace of Qm (since n < m). In spite of
this, several techniques exist to �nd an acceptable solution to such systems.
Speci�cally, if A has full column rank, the typical strategy is to �nd the least
squares solution to the system Ax = b; i.e., to �nd the vector x which uniquely
minimizes the two-norm of Ax − b. Alternatively, if A does not have full
column rank, the least squares problem has an in�nite number of solutions;
thus, a common QR factorization-based approach is to �nd a basic solution.
This section describes how to use REF QR to obtain either an exact solution to
the least squares problem (full rank A) or a basic solution (rank de�cient A).
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4.1 Full-Column-Rank Linear Systems

Given a linear system Ax = b where A ∈ Zm×n, n < m, b ∈ Zm, and A
has full column rank, the typical strategy is to �nd the unique least squares
solution of the given system, x, which is the unique vector minimizing the
two-norm of Ax−b. Theorem 4.1 and Corollary 4.1 show how to use the thin
and standard REF QR factorizations, respectively, to obtain the unique least
squares solution to Ax = b.

Theorem 4.1. Given a full column rank matrix, A ∈ Zm×n, and a vector,
b ∈ Zm, the unique least squares solution to Ax = b can be obtained by solving
Rx = QTb, where R and Q are the thin REF QR factors of A.

Proof First, note that the system Rx = QTb has a unique solution because R has a
full rank (as it is the REF Cholesky factor of ATA).

Second, we show that the solution to Rx = QTb is the exact least squares
solution to Ax = b. In particular, we give below a series of equivalent systems that
show that Rx = QTb is equivalent to the �normal equations� ATAx = ATb, whose
solution is well-known to be the unique least squares solution to Ax = b [15].

Per Theorem 3.1, using the thin REF QR factorization on A yields A = QDR
and ATA = RTDR; moreover since D is diagonal, AT = RTDTQT = RTDQT .
Substituting these expressions for ATA and AT into the normal equations ATAx =
ATb, we obtain the equivalent system:

RTDRx = RTDQTb

The proof is completed by left multiplying both sides by (RTD)−1 (note that
both R and D have full rank and thus are invertible), thereby yielding:

Rx = QTb □

Corollary 4.1. Given a full column rank matrix A ∈ Zm×n and vector b ∈
Zm, the exact least squares solution to Ax = b can be obtained by solving
R(1 : n, 1 : n)x = [QTb](1 : n), where R and Q are the standard REF QR
factors of A.
Proof The proof follows directly from Theorems 3.2 and 4.1. Speci�cally, Theorem
3.2 states that R and Q contain as submatrices the R and Q from the thin REF QR
factorization. Using this, this proof follows directly from Theorem 4.1. □

Given the relationship between the QR matrices of the thin and standard
QR factorizations used in the above proof and in Theorem 3.2, for simplicity,
the remainder of this section uses only the matrices from thin QR factorization.

Theorem 4.1 and Corollary 4.1 establish that the solution to Rx = QTb
is the least squares solution to Ax = b. Next, Theorem 4.2 shows how to
solve the system Rx = QTb exactly, and thus how to obtain the unique least
squares solution to Ax = b exactly (free of roundo� errors). Speci�cally, by
scaling the right-hand side vector, one can obtain the exact rational solution
to Rx = QTb almost entirely in integer arithmetic, using rational numbers
only in a �nal division.
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Theorem 4.2. The exact solution to the linear system Rx = QTb can be
obtained entirely in integer arithmetic.
Proof The proof follows from Theorem 4.1, Cramer's rule, and REF backward sub-
stitution [18]. From Theorems 4.1 and 4.1, we know that the systems Rx = QTb and
ATAx = ATb are equivalent. By Cramer's rule and since the determinant of ATA is
R(n, n) [18], the system Rx = R(n, n)QTb has an integral solution vector. Therefore,
applying REF backward substitution [18] to this scaled system, one can obtain its
solution entirely in integer arithmetic. Then, the exact solution of the original system
is given as an integral numerator vector x and integral denominator R(n, n). □

Note that as a consequence of Theorem 4.2, one can obtain the exact two-
norm solution either as the above rational vector or to any level of precision.
To conclude this subsection, we note that solving the normal equations directly
with Cholesky would have an equivalent worst-case computational complexity
to QR factorization. Yet, depending on the application and structure of the
matrix, one method can be preferred over the other, and it is not always trivial
to determine in advance which method would be better (see, for example, the
detailed discussion in [15, 32] comparing both approaches in the �oating-point
case). Examining the same nuances computationally in the exact case would
be an interesting problem, but it is beyond the scope of this paper.

4.2 Rank-De�cient Linear Systems

Given a linear systemAx = b whereA ∈ Zm×n, n < m, b ∈ Zm, andA is rank-
de�cient, there are an in�nite number of solutions to the linear least squares
problem Ax = b. Several approaches exist, including �nding the minimum
norm solution, the truncated SVD solution, or a basic solution [15]. The �rst
approach relies on performing either a complete orthogonal decomposition or
�nding a pseudoinverse (see [33, 34]), the second approach is SVD based, and
the third approach uses QR factorization. This subsection shows how to use
the third approach and REF QR to �nd an exact basic solution of Ax = b.

The QR-based approach is to perform QR with column pivoting; that is,
the factorization QR = AP is performed, where P is a permutation matrix
chosen during factorization (speci�cally if a rank-de�cient column is found�
i.e., a column where one cannot �nd an eligible non-zero element to pivot�,
the rank-de�cient column is replaced with a di�erent column; this process is
repeated until no more linearly independent columns exist). Given a matrix A
with rank r such that r < n, without loss of generality, assume that the �rst r
columns of A are linearly independent. Then, the following lemma shows the
structure of the thin REF QR factorization of A.

Lemma 4.1. Given a rank-de�cient matrix A ∈ Zm×n with rank r < n, the
thin REF QR decomposition of A has the following structure:

A = QDR =

[
Q11 0
Q21 0

] [
D11 0
0 0

] [
R11 R12

0 0

]
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where Q11, D11, R11 are all of dimension r × r.
Proof Consider performing IPGE on the matrix [ATA | AT ]. Since A has column
rank r, ATA ∈ Zn×n has rank r and AT has row rank r. The result follows trivially
from the fact that IPGE on this matrix will lead to a row of n − r zeros on both
ATA and AT , giving the factorization shown above. □

Thus, a basic solution is found by solving the system Rx = QTb, which
expands to: [

R11 R12

0 0

] [
x1

x2

]
=

[
QT

11 QT
21

0 0

] [
b1

b2

]
Thus, a unique exact basic solution is found by setting x2 = 0, and solving

the square linear system R11x1 = QT
11b1. Note that Golub & Pareyra [35] show

that such a solution minimizes the two-norm if and only if R12 = 0. Finding
exact two-norm minimizers of rank-de�cient systems which have R12 ̸= 0 is an
important topic but requires methods outside the scope of this paper.

5 Conclusion

This paper presents and thoroughly analyzes a comprehensive REF QR factor-
ization framework to obtain exact factorizations of any matrix. Speci�cally, this
paper presents the thin and standard REF QR factorizations, which exactly
factorize the matrix A into the product A = QDR where Q has pairwise
orthogonal columns, D is diagonal, and R is upper trapezoidal. Matrices Q
and R comprise exclusively integer entries, while the diagonal matrix D, whose
entries are reciprocal of integers, is never explicitly needed (nor computed by
the algorithms). Importantly, we derive properties of our REF QR factoriza-
tions that are analogous to those of the �oating point QR factorizations and
illustrate how our exact factorizations are related to the traditional (inexact)
�oating-point QR factorizations�speci�cally, we show how to obtain the inex-
act factorizations from our REF QR factorizations. Furthermore, we present
algorithms to compute each factorization and prove that the size of each entry
in REF QR (and throughout their computation) is bounded polynomially.
Finally, we discuss solving the system Ax = b for both full-column rank and
rank-de�cient systems. Speci�cally, if A has full column rank, REF QR �nds
the exact least squares solution to Ax = b. Conversely, if A is rank de�cient,
utilizing column pivoting, REF QR can �nd an exact basic solution of Ax = b.

Declarations

� The �rst author was partially supported by the USNA JR NARC. The sec-
ond author was partially supported by NSF under Grant No OAC-1835499.

� Data sharing does not apply to this article as no datasets were generated or
analyzed during this study.



Springer Nature 2021 LATEX template

Exact QR Factorizations of Rectangular Matrices 13

References

[1] Bauer, F.L.: Elimination with weighted row combinations for solving lin-
ear equations and least squares problems. Numerische Mathematik 7(4),
338�352 (1965) https://doi.org/10.1007/BF01436528

[2] Golub, G.H., Wilkinson, J.H.: Note on the iterative re�nement of least
squares solution. Numerische Mathematik 9(2), 139�148 (1966)

[3] Chan, T.F.: Rank revealing QR factorizations. Linear algebra and its
applications 88(C), 67�82 (1987) https://doi.org/10.1016/0024-3795(87)
90103-0

[4] Chan, T.F., Hansen, P.C.: Some applications of the rank revealing QR
factorization. STAT. COMPUT 13(3), 727�741 (1992)

[5] Higham, N.J.: QR factorization with complete pivoting and accurate
computation of the SVD. Linear Algebra and its Applications 309(1-3),
153�174 (2000)

[6] Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn.
Siam, Philadelphia, PA, USA (2002)

[7] Fukaya, T., Kannan, R., Nakatsukasa, Y., Yamamoto, Y., Yanagisawa, Y.:
Shifted Cholesky QR for computing the QR factorization of ill-conditioned
matrices. SIAM Journal on Scienti�c Computing 42(1), 477�503 (2020)
https://doi.org/10.1137/18M1218212 arXiv:1809.11085

[8] Francis, J.G.F.: The QR Transformation A Unitary Analogue to the
LR Transformation�Part 1. The Computer Journal 4(3), 265�271 (1961)
https://doi.org/10.1093/comjnl/4.3.265

[9] Kublanovskaya, V.N.: On some algorithms for the solution of the complete
eigenvalue problem. USSR Computational Mathematics and Mathemat-
ical Physics 1(3), 637�657 (1962) https://doi.org/10.1016/0041-5553(63)
90168-X

[10] Parlett, B.N., Poole Jr, W.G.: A geometric theory for the QR, LU and
power iterations. SIAM Journal on Numerical Analysis 10(2), 389�412
(1973)

[11] Gill, P.E., Murray, W.: Numerically stable methods for quadratic pro-
gramming. Mathematical Programming 14(1), 349�372 (1978) https://
doi.org/10.1007/BF01588976

[12] Arioli, M.: The use of QR factorization in sparse quadratic programming

https://doi.org/10.1007/BF01436528
https://doi.org/10.1016/0024-3795(87)90103-0
https://doi.org/10.1016/0024-3795(87)90103-0
https://doi.org/10.1137/18M1218212
https://arxiv.org/abs/1809.11085
https://doi.org/10.1093/comjnl/4.3.265
https://doi.org/10.1016/0041-5553(63)90168-X
https://doi.org/10.1016/0041-5553(63)90168-X
https://doi.org/10.1007/BF01588976
https://doi.org/10.1007/BF01588976


Springer Nature 2021 LATEX template

14 Exact QR Factorizations of Rectangular Matrices

and backward error issues. SIAM Journal on Matrix Analysis and Applica-
tions 21(3), 825�839 (2000) https://doi.org/10.1137/S0895479898338147

[13] Weber, T., Sager, S., Gleixner, A.: Solving quadratic programs to high
precision using scaled iterative re�nement. Mathematical Programming
Computation 11(3), 421�455 (2019)

[14] Gärtner, B., Schönherr, S.: An e�cient, exact, and generic quadratic
programming solver for geometric optimization. In: Proceedings of the
Sixteenth Annual Symposium on Computational Geometry, pp. 110�118
(2000)

[15] Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th
edn. Johns Hopkins Studies in the Mathematical Sciences,
vol. 3. Johns Hopkins University Press, Baltimore (2013).
http://books.google.com/books?id=mlOa7wPX6OYC

[16] Drma£, Z., Bujanovi¢, Z.: On the failure of rank-revealing QR factor-
ization software - A case study. ACM Transactions on Mathematical
Software (TOMS) 35(2), 1�28 (2008) https://doi.org/10.1145/1377612.
1377616

[17] Zhang, S., Baharlouei, E., Wu, P.: High accuracy matrix computations
on neural engines: A study of qr factorization and its applications. In:
Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, pp. 17�28. Association for Com-
puting Machinery, Inc, New York, USA (2020). https://doi.org/10.1145/
3369583.3392685

[18] Escobedo, A.R., Moreno-Centeno, E.: Roundo�-Error-Free Algorithms for
Solving Linear Systems via Cholesky and LU Factorizations. INFORMS
Journal on Computing 27(4), 677�689 (2015) https://doi.org/10.1287/
ijoc.2015.0653

[19] Lourenco, C.J., Moreno-Centeno, E.: Exactly Solving Sparse Rational
Linear Systems via Roundo�-Error-Free Cholesky Factorizations. SIAM
Journal on Matrix Analysis and Applications 43(1), 439�463 (2022)
https://doi.org/10.1137/20M1371592

[20] Zhou, W., Je�rey, D.J.: Fraction-free matrix factors: new forms for LU and
QR factors. Frontiers of Computer Science in China 2(1), 67�80 (2008)
https://doi.org/10.1007/s11704-008-0005-z

[21] Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadel-
phia, PA, USA (2006)

[22] Rice, J.R.: Experiments on gram-schmidt orthogonalization. Mathematics

https://doi.org/10.1137/S0895479898338147
https://doi.org/10.1145/1377612.1377616
https://doi.org/10.1145/1377612.1377616
https://doi.org/10.1145/3369583.3392685
https://doi.org/10.1145/3369583.3392685
https://doi.org/10.1287/ijoc.2015.0653
https://doi.org/10.1287/ijoc.2015.0653
https://doi.org/10.1137/20M1371592
https://doi.org/10.1007/s11704-008-0005-z


Springer Nature 2021 LATEX template

Exact QR Factorizations of Rectangular Matrices 15

of Computation 20(94), 325�328 (1966)

[23] Givens, W.: Computation of plain unitary rotations transforming a gen-
eral matrix to triangular form. Journal of the Society for Industrial and
Applied Mathematics 6(1), 26�50 (1958)

[24] Householder, A.S.: Unitary Triangularization of a Nonsymmetric Matrix.
Journal of the ACM (JACM) 5(4), 339�342 (1958)

[25] Pursell, L., Trimble, S.Y.: Gram-Schmidt Orthogonalization by Gauss
Elimination. The American Mathematical Monthly 98(6), 544�549 (1991)
https://doi.org/10.1080/00029890.1991.11995755

[26] Edmonds, J.: Systems of distinct representatives and linear algebra. J.
Res. Nat. Bur. Standards Sect. B 71(4), 241�245 (1967)

[27] Bareiss, E.H.: Sylvester's identity and multistep integer-preserving Gaus-
sian elimination. Mathematics of computation 22(103), 565�578 (1968)

[28] Montante-Pardo, R.M., Méndez-Cavazos, M.A.: Un método númerico
para cálculo matricial. Revista Técnico-Cientí�ca de Divulgación 2, 1�24
(1977)

[29] Lourenco, C., Escobedo, A.R., Moreno-Centeno, E., Davis, T.A.: Exact
Solution of Sparse Linear Systems via Left-Looking Roundo�-Error-Free
LU Factorization in Time Proportional to Arithmetic Work. SIAM Jour-
nal on Matrix Analysis and Applications 40(2), 609�638 (2019) https:
//doi.org/10.1137/18M1202499

[30] Hadamard, J.: Résolution d'une question relative aux déterminants. Bull.
sci. math 17(1), 240�246 (1893)

[31] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press,
New York, NY, USA (2012)

[32] Davis, T.A., Rajamanickam, S., Sid-Lakhdar, W.M.: A survey of direct
methods for sparse linear systems. Acta Numerica 25, 383�566 (2016)
https://doi.org/10.1017/S0962492916000076

[33] Foster, L., Kommu, R.: Algorithm 853: An e�cient algorithm for solving
rank-de�cient least squares problems. ACM Transactions on Mathemati-
cal Software (TOMS) 32(1), 157�165 (2006)

[34] Foster, L.V., Davis, T.: Reliable Calculation of Numerical Rank, Null
Space Bases, Basic Solutions and Pseudoinverse Solutions using SuiteS-
parseQR. In: Householder Symposium XVIII on Numerical Linear Alge-
bra, p. 79 (2011)

https://doi.org/10.1080/00029890.1991.11995755
https://doi.org/10.1137/18M1202499
https://doi.org/10.1137/18M1202499
https://doi.org/10.1017/S0962492916000076


Springer Nature 2021 LATEX template

16 Exact QR Factorizations of Rectangular Matrices

[35] Golub, G., Pereyra, V.: Di�erentiation of pseudoinverses, separable non-
linear least squares and other tales. Generalized Inverses and Applications
pp. 303-324. Academic Press, New York (1976)


	Introduction
	Background
	Traditional QR Factorization
	QR Factorization via Gaussian Elimination
	IPGE
	REF Cholesky

	Roundoff-Error-Free QR Factorizations
	Thin REF QR Factorization
	Standard REF QR Factorization
	Computing REF QR and Theoretical Bounds
	Relationship of REF QR and Traditional QR

	Solving Linear Systems with REF QR
	Full-Column-Rank Linear Systems
	Rank-Deficient Linear Systems

	Conclusion



