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Measuring Human Comfort in Human-Robot
Collaboration via Wearable Sensing

Yuchen Yan, Haotian Su and Yunyi Jia

Abstract— The development of collaborative robots has
enabled a safer and more efficient human-robot collaboration
(HRC) manufacturing environment. Tremendous research efforts
have been conducted to improve user safety and robot working
efficiency after the debut of collaborative robots. However, human
comfort in HRC scenarios has not been thoroughly discussed but
is critically important to the user acceptance of collaborative
robots. Previous studies mostly utilize the subjective rating
method to evaluate how human comfort varies as one robot factor
changes, yet such method is limited in evaluating comfort online.
Some other studies leverage wearable sensors to collect
physiological signals to detect human emotions, but few of them
implement this for a human comfort model in HRC scenarios. In
this study, we designed an online comfort model for human-robot
collaboration using wearable sensing data. The model uses
physiological signals acquired from wearable sensing and
calculates the in-situ human comfort levels based on our developed
algorithms. We have conducted experiments in realistic human-
robot collaboration tasks, and the prediction results demonstrated
the effectiveness of the proposed approach in identifying human
comfort levels in HRC.

Index Terms—Wearable Sensing, Human Comfort, Human-
robot Collaboration

I. INTRODUCTION

THE Human-Robot Collaboration (HRC), known as "the
state of a purposely designed robotic system and operator
working in a collaborative workspace" [1], has gained growing
attention in its research field during the past few years.
However, the market share and industry-level applications of
these collaborative robots (COBOTS) are still limited and have
huge space for improvement. One of the customers’ concerns
for these COBOTs originates from user acceptance, which is
highly influenced by the perceived human comfort of the
worker. The comfort of human plays such a critical role that not
only does it affect the user acceptance but also has a significant
impact on the efficiency of manufacturing, which has become a
critical issue [2-4]. For example, Ye et al. [4] found that
workers’ performance varied significantly under different
thermal comfort conditions. The productivity would decrease
by 9% when the temperature changes from 25.0 to 35.0 °C.
Prior to discussing any human comfort evaluation method or
theory, the concept of comfort and some basic background
knowledge need to be clarified and introduced first. The
disappointing fact is that the academia has not come to a
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consensus on a universal definition of comfort yet, thus it still
remains a huge challenge to precisely evaluate human comfort
level [5]. Some researchers perceived comfort as two discrete
states: comfort presence and comfort absence, where comfort
has been simply defined as the absence of discomfort and vice
versa, while some others held the contrasting opinion which
claims that comfort and discomfort are two opposites on a
continuous scale, ranging from extreme discomfort through a
neutral state to extreme comfort [6][7]. Some researchers also
viewed comfort as an optimal state in which the person stops
taking actions to avoid discomfort [8]. Despite all the
arguments and disagreements in academia, people come to a
common agreement on several points: (1) comfort is
subjectively determined by each individual’s personal nature;
(2) comfort can be affected by a wide variety of factors from
multiple natures such as physical, physiological or
psychological; and (3) comfort is affected by one’s reaction to
the environment stimulus [6]. These statements were also used
as the guidelines in our study.

In recent years, some research efforts have been spent on
human comfort evaluation and adaptation in HRC
manufacturing tasks. For instance, Weitian. et al. [9] proposed
a computational approach to model and quantify the human
comfort during human-robot collaborative manufacturing. Ross.
et al. [10] found that human comfort has a direct and immediate
influence on the collaboration quality between the robot and its
human partner, is also a significant factor for the robot to be
aware of. Jessi. et al. [11] developed a method of evaluating
how the invasion of personal space by a robot affects human
comfort. Przemyslaw. et al. [12] examined human response to
motion-level robot adaptation to determine its effect on team
fluency, human satisfaction, and perceived safety and comfort.
Alami et al. [13] proposed a framework that allows the robot to
select and perform its tasks based on the human partner’s
presence, needs, and preferences. Ciccarelli et al. [ 14] proposed
a system to improve human postural comfort by optimizing
robot behavior.

However, most of these current research methods on human
comfort in HRC tasks merely utilize subjective ratings or
simple statistical comparison approaches. Thus, the results of
the papers above can only prove the qualitative or simple
quantitative relationship between human comfort levels and the
HRC factors. Limited research has fully leveraged the
advantage of comfort measurements by utilizing physiological
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signals, e.g., electroencephalography (EEG), electrodermal
activity (EDA), blood volume pulse (BVP), in a machine-
learning-based model to analyze the general human comfort in
HRC.

Some studies in the psychological field have already proved
the effectiveness and feasibility of implementing machine
learning-based or neural network-based methods to evaluate
human mental activities such as cognitive load and emotion
states, with either single type of physiological signal or
combined features from multiple types of signals [15][16]. Shan.
et al. [17] applied machine learning techniques in conjunction
with passive EEG measurement to classify occupants’ real-time
thermal comfort states. Performances of different machine
learning techniques were compared, and methods to select
linear continuous features for class interpolation were also
explored. The classification results with the linear discriminant
analysis classifier using the full-set features achieved an
accuracy above 90%. Maaoui’s work [18] used two methods,
support vector machine (SVM) and Fisher discriminant, to
recognize human emotions of amusement, contentment, disgust,
fear, neutral, and sadness with multiple physiological signals,
e.g., BVP, EDA, Skin Temperature (SKT). Recognition results
for different types of emotions turned out to be excellent with
the accuracy around 92%. Kang. et al. [19] studied visual
discomfort by applying the SVM approach and built a brain-
computer interface framework to optimize the stereoscopic 3D
content based on the viewer’s EEG response.

In summary, despite a great amount of research efforts
have been put into human comfort and physiological signal
studies, two major research gaps remain today. The first gap is
the lack of an approach to build an individual-based human
comfort model that can accurately predict human comfort. The
second gap is the lack of explorations of utilizing physiological
signals in measuring overall human comfort in HRC scenarios,
since most studies only focus on one specific feature. One thing
worth noting is that the exact definition of comfort is still under
debate within academia, since it is still considered as a highly
subjective feeling, which can not be simply considered the same
as stress or emotion. In this study, the motivation is to develop
an Al-model-based framework which predicts general human
comfort levels during HRC tasks based on physiological signals
and potentially use this model and comfort data to optimize
human comfort during future HRC tasks. The performance of
our model is determined by comparing the differences between
the physiological prediction model results and the human-
reported Likert Scale ratings, which are used as the ground truth.
A series of HRC tasks with five varying robot-motion factors
were designed and used in the experiment. We implemented
two comfort measurement approaches in our study — the
subjective method and the objective method. Two types of data,
subjective comfort ratings based on a Likert Scale and objective
physiological signals, were collected online in this study as the
experiment progressed. Then, we tested the effectiveness of our
developed model which uses multiple machine learning/deep
learning techniques by training and testing the model with the
data we collected. Previous studies mostly adopt SVM-based
feature extraction method only, we introduced and validated
three types of feature extraction methods, including the

autoencoder-based method, which has been rarely applied in
physiological signal-based human factor studies before. Since
the data used for the comfort model is physiological signal
during human-robot collaboration, the solution is independent
of human-robot collaboration tasks and scalable to the
application of detecting human comfort levels in any physical
human-robot collaboration contexts. In addition, the comfort
models are built based on individual-dependent physiological
data instead of mixing all subjects’ comfort data for model
training.

II. EXPERIMENT AND DATA ACQUISITION

A. Experimental Platform

The experimental platform is shown in Fig. 1. The
collaborative robot used in this study is an ABB-14000 YUMI
model. The Yumi robot is installed and centered on the backside
of the black experiment platform, while two small cubes which
are used for interaction tasks are placed on two farther corners
of the platform respectively. The test subject will be standing in
front of the experiment platform with a horizontal distance of
20cm. The Yumi robot is controlled by our built control system
in ROS [20]. The higher-level YUMI motions for both arms are
generated and executed in ROS.

B. Human-Robot Collaboration Tasks Design

In this study, we adopted a simple robot-delivery action as
the interactive task. In total, we created 58 robot-delivery tasks,
each consisting of a unique combination of factor levels. As
shown in Table 1, there are totally five factors used in our study,
while four of them are robot motion-based factors such as robot
moving speed, final delivery distance, final delivery height and
delay/waiting time. Delay period refers to the time length of the
stagnation between robot’s pickup and delivery actions. Robot
speed refers to the linear moving speed of the robot tool center
point (TCP). Final delivery distance refers to the shortest
horizontal distance between the tip of the robot TCP and the
human subject. Final delivery height refers to the vertical
distance between the robot's TCP and the working platform.
The fifth factor is unique in our study, which is the Left/Right
Working Arm of Yumi. This is enabled by the unique double-
arm design of Yumi [21]. Different robot arm selection will
affect the selection of human arm for interaction by the human
subject, we believe such differences could also induce human
comfort variation.

As shown in Table 1 below, each factor has seven levels to
choose from, except for robot arm selection has only left/right
options. Different values for each factor were chosen and
combined into a factor set which forms one experiment task.
Each task only tunes one robot motion factor at a time, while
keeping other motion factors at their medium levels. For each
formed combination set, there are two mirrored scenarios
generated by the left and right arms used in the task, which
doubles the total number of tasks. There are also two extra
reference cases which take the medium levels from all factors,
one case for the left arm, the other one for the right arm.
Eventually, 58 combination sets were created, and each one was
used as the robot motion planner inputs for the task. The focus
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of the experimental designs is to generate the physiological
signals of humans under different comfort levels during human-
robot collaboration. Thus, the tasks we designed are sufficient
to generate enough physiological data under different comfort
levels to conduct the training and testing of our proposed
approaches. This will benefit a wide range of human-robot
collaboration tasks in various manufacturing contexts.
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Fig. 1. Pressing Force Collection Device and its Diagrém

TABLE1l. THE FACTOR COMBINATION SET TABLE

Factors / Delay Robot Distance Height Robot
Levels Period (s) Speed (cm) (cm) Arm
1 0 0.1 25 15
2 1 0.2 35 20
3 2 0.3 45 25
1 3 0.4 55 30 ]ﬁffgi
5 4 0.5 65 35 &
6 5 0.6 75 40
7 6 0.7 85 45

C. Subjective Comfort Level Acquisition

To evaluate the subjective comfort levels of the participants
for each HRC task, a 5-point Likert Scale was used in this study.
After completing each HRC task, the participant would report a
score scaling from 1 to 5 as the comfort level evaluation
feedback. A score of 5 indicates that the test subject feels
completely comfortable, while a score of 1 indicates the subject
feels completely uncomfortable. These subjective ratings were
the ground truth labels for the training process of the machine
learning model. Training sessions were carried out before the
official experiment started in order to let test subjects get a
rough concept of what the extreme condition scenarios feel like.
Also, test subjects will be instructed to try their best ignoring
any other factors that they found distracting or irrelevant to the
experiment design.

D. Physiological Data Collection

Physiological data collected in this study include EDA, heart
rate (HR), BVP, SKT, and EEG. Two wearable sensing devices

were used in this study. The first device, Empatica E4
wristband, was used to measure EDA, HR, BVP and skin
temperature signals, and the second device, Emotiv EpocX
headset, was used for EEG signal collection.

EEG signals provide us with useful information in analyzing
the high-level emotions of the test subjects [22]. The portable
EEG device used in this study is the Emotiv EpocX headset. As
shown in Fig. 2, it is equipped with 16 non-invasive electrodes
which touch against a person’s scalp to measure the electric
potential values at corresponding locations. Note that there are
two reference electrodes which do not directly provide EEG
data, but are only used as the “ground.” The EmotivPro
Software, developed by the Emotiv Epoc Manufacturer, is
integrated with online EEG data monitoring, data post-
processing and high-level feature extraction functions. In this
study, we used the EmotivPro for data recording and results
exporting. The output measurement results include raw EEG
data from 14 channels, frequency domain analysis data, and
high-level emotion states, e.g., excitement, stress, and focus.
We took advantage of the high-level emotion extraction
function of the software and utilized the excitement and stress
performance data [34] in our later analysis since excitement
reflects the positive psychological and physiological arousal of
the human body, while stress reflects the negative human
reactions to the environment. Both signals have 0.1-Hz
sampling rate and require interpolation during the data
preprocessing stage. Details about data preprocessing will be
introduced in a later section.

Emotiv EpocX Headset

Empatica E4 Wristband

Fig. 2. Wearable Sensing Devices

EDA, also known as electrodermal activity, is the property of
the human body that causes continuous variation in the
electrical characteristics of the skin. Skin resistance varies with
the state of the sweat glands in the skin. The arousal of the
sympathetic autonomic nervous system activity can result in the
increase of sweat gland, which leads to greater skin
conductance. Thus, the EDA signal is widely used as another
important index in evaluating a person’s psychological or
physiological arousal in response to an external stimulus [23].
The EDA signal collection device we used in this study is the
Empatica E4 wristband, which is equipped with two AgCl
plated electrodes on the strap. During the experiment process,
the AgCl electrodes firmly touch against the skin of the inside
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of the participant’s wrist, in the meantime, the wristband passes
a minuscule amount of current between two electrodes in
contact with the skin, thus obtains the skin resistance values.
The data was measured from test subject’s non-dominant hand
with a 4-Hz sampling rate.

BVP, which stands for blood volume pulse, measures heart
rate based on the volume of blood that passes through the
tissues in a localized area with each beat of the heart. BVP
measurement is achieved with the photoplethysmography (PPG)
sensor embedded in the Empatica E4 wristband. This
component measures changes in blood volume in the arteries
and capillaries that correspond to changes in the heart rate and
blood flow. The sampling frequency of the BVP data is 64Hz.

SKT measures the thermal changes on the skin. Variations in
SKT mainly result from localized changes in blood flow caused
by vascular resistance or arterial blood pressure. Local vascular
resistance is modulated by smooth muscle tone, which is
mediated by the sympathetic nervous system. The SKT
variation reflects autonomic nervous system activities and is an
indicator of a person’s psychological state [24]. The SKT had a
4-Hz sampling rate.

E. Experiment Procedure

As mentioned earlier, we created 58 robot delivery tasks
based on the five factors. Each delivery task lasts between 18-
25 seconds, depending on the selected robot speed and
stagnation time. The general procedure of each task in concise
is that the robot picks up a cube first, either from the left or
right-hand side, and delivers it to the participant, then the
participant takes the cube from the robot arm and reports the
subjective comfort level rating for the finished task.

Fifteen healthy (thirteen males and two females) with a mean
age of 27.7 (SD = 3.68) years old graduate students participated
in the experiment. All participants had engineering
backgrounds. Before the experiment, the participants were
introduced to the experimental protocols and signed on the
consent form for taking part in the study. After that, the
experimenter would help them put on the physiological
measurement devices. Then, the procedures of the experiment
and the tasks for the participants were introduced in detail to
them. Before the actual experiment process started, participants
first undertook a thorough training session familiarizing
themselves with Yumi and its delivering actions with all the
sensing devices on their bodies. These training tasks are highly
similar to the HRC tasks in the actual experiment. Participants
should get fully accustomed to the feeling with all the wearable
sensors on their bodies before starting the actual experiment.
Several extreme condition scenarios with the highest levels of
factors would be experienced by participants during the training
session, and participants would be instructed to ignore any other
factors that they found distracting or irrelevant to the
experiment design. This training session was repeated until
participants announced well-prepared for the experiment.

During the official experiment, the order of executing 58
HRC scenarios was shuffled to guarantee that the participant
would not be affected by learning effects. All 58 scenarios were
executed one by one in a non-stopping manner. The entire
experiment process took approximately 20 minutes. We did not
set up a break time for the test subjects due to the concern that

a break time might break the consistency in the subject’s
judgment for comfort. Besides, none of our subjects claimed
that they felt exhausted without a break after the experiment
finished.

F.  Data Preprocessing

It is critical to implement preprocessing on the raw data
obtained from the experiment before the feature extraction. The
very first step was to clean the data, which means eliminating
all the data recorded before the starting timestamp marker and
after the ending timestamp marker. All the physiological data
were then synchronized based on the starting marker and then
divided into 58 pieces, corresponding to 58 scenario tasks
respectively. Next, the data of each task was sliced into 2-
second-long window samples. The window size, two seconds,
was determined based on the characteristics of the
physiological signals. A two-second duration is long enough to
capture a clear phasic skin conductance response, EEG
response and also BVP changes. Since each HRC task lasts
around 18-25 seconds, each task is composed of 9-13 serialized
small samples, as shown in Fig. 3.

Task #5 Data

Task #6 Data
\
:
:
.
.

Task data
divided into
2s window
samples

Task #7 Data

Fig. 3. Data Preprocessing and Window Sample Slicing

Skin conductance is typically characterized into two types —
tonic skin conductance level (SCL, also known as the tonic
component) and phasic skin conductance response (SCR, also
known as the phasic component) [25]. Both components are
widely used in most recent emotional change detection studies
[26][27].

Ledalab, a Matlab-based software, was used in this study for
tonic and phasic components extraction from the raw EDA
signal.

G. Feature Extraction

With all the preprocessed data available in our hands, one last
step before the machine learning model training process was to
extract valuable features from the data.
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Feature extraction process was executed within each 2-
second data sample. Normalization was performed on the data
to mitigate the influence of individual differences in
physiological signals. The collected physiological data were
normalized based on the average value within the
corresponding task. The average value of a certain task and the
normalized data was calculated using the following formula:

_ 2 Xcom
0 eom .
Xraw — favg
Xnorm = B (2)
avg

where X, 1s the normalized signal, x,.,,, is the raw signal,
Xavg 18 the average value of the signal within all samples after
noise filtering, x.,n, is the signal within samples after noise
filtering, n.op, is the number of samples within the 2-second
window.

Raw physiological data itself does not possess much useful
information without proper feature extractions. According to
Picard’s work [29], there are several statistical features which
are effective in emotion detection. Besides the raw signal x,
other statistical features include the mean value 1, the standard
deviation o, , the mean of the absolute values of the first
differences J,, and the mean of the absolute values of the
second differences y,,. We also add several other statistical
features which include the maximal value max,, the minimal
value min,, the odds of the minimal value over the maximal
value ratio, [30], and the root mean square value M,.. All the
features mentioned above were calculated within each 2-second
window sample for all types of physiological signals based on
their original raw data and normalized raw data. The calculation
formulas are listed below:
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where X (t) is the normalized raw signal x at sample t, while T
is the total number of samples within the corresponding 2-
second window. With seven sources of physiological signals,
eight statistical features for each signal, including original and

(10)

normalized data, a total of 112 features were extracted from
each 2-second window.

The last step of feature extraction was to unify the
dimensions of the datasets from each task. As mentioned in the
previous section, each HRC task lasts between 18 to 25
seconds, making each task composed of 9 to 13 serialized
window samples. Here we extended the dimensions of the
datasets with fewer than 13 window samples. The solution is to
duplicate the tail section of the data and append it to the end of
the original dataset. For instance, for a task dataset composed
of 10 window samples, we copied the last three window
samples and attached them to the end of the original dataset.

The entire feature extraction stage is finished up to this point,
with each feature vector of the task having a length of 1456,
which is a product of 112 and 13.

III. COMFORT LEVEL IDENTIFICATION METHOD

The overall structure of our approach consists of four major
components — raw data collection stage, physiological feature
extraction stage, feature reduction / compression stage, and
comfort level classification stage. The raw data is preprocessed
first and implemented with the feature extraction step,
generating a relatively large feature matrix. Then the feature
reduction step is carried out to shrink the original feature matrix
for higher classification efficiency and effectiveness. Lastly, the
classification process is implemented for final training. The first
two stages have been explained in the previous sections, the last
two stages are explained in this section.

A. Support Vector Machine

Support vector machine (SVM) is a powerful supervised
learning model which has been widely used for classification
tasks in various fields. In this study, we used a multi-class error-
correcting output codes (ECOC) SVM classifier which is
composed of multiple binary SVM learners to solve the
problem. The input of the classifier was a chronologically
ordered array of compressed or reduced physiological features
of all the window samples from an entire task, and the output of
the classifier was the predicted label of comfort level of the task.

An ECOC model leverages multiple binary SVM classifiers
by integrating a coding matrix design and a decoding scheme
[28]. The coding design determines the classes that the binary
learners train on, while the decoding scheme determines how
the results of the binary classifiers are aggregated. An example
of a coding matrix is shown below:

TABLE2. CODING MATRIX OF ECOC MODEL

Learner 1 Learner 2 Learner 3
Class 1 1 1 0
Class 2 -1 0 1
Class 3 0 -1 -1

The above example classification problem has three classes
and three binary learners. During the training session, for
learner 1, class 1 is treated as the positive class and class 2 is
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treated as the negative class, while all data from other classes is
ignored by learner 1. Other learners are trained in similar ways.
Based on the work from Escalera et al., in loss-weighted
decoding [29], the class producing the minimum average of the
binary losses over binary learners determines the predicted
class of an observation. The decoding scheme formula is given
below:

Yicalmiglg(my, s))
k ZzL=1|mkl|
g= max (0,21 YiS;) (12)
where my; is element(k, j)of the coding design matrix M (that
is, the code corresponding to class k of binary learner ). s; is
the score of binary learner j for an observation. g is the binary
loss function. k is the predicted class for the observation.
yj is a class label for a particular binary learner (in the set {—
1,1,0}), s; is the score for observation ;.

1D

B. Feature Selection & Compression Method

As mentioned in the previous section, the final feature vector
after preprocessing has a length up to 1456, which is extremely
long and unsuitable for the machine learning model training
process. Besides, the amount of training data is very small for
our experiment, which could easily lead to model underfitting.
Therefore, it is critical to apply feature reduction or feature
extraction before the official training process. In this study,
three different techniques, including the SVM Recursive
Feature Elimination (SVMRFE) algorithm, Autoencoder, and
Independent Component Analysis (ICA), were implemented
independently, and the results were compared.

SVMRFE can rank feature importance levels and remove
relatively insignificant feature variables in order to achieve
higher classification performance. Firstly, an SVM classifier is
trained, and then the SVMRFE algorithm uses the weight
magnitude as a ranking criterion, and computing and comparing
the ranking criteria of all features to eliminate the lowest
ranking features [30]. Then, the entire process is repeated
iteratively to obtain the required number of features. The
overall structure of SVMRFE is shown below:

Algorithm1 for SVM-RFE

Inputs: Training examples X, = [Xq, X5, ... X, -
Class labels ¥ = [y1,¥2, - Vi - V11T

Output: Feature ranked list r =[]

1: Initialize subset of surviving features s = [1,2, ... n]

2: Initialize feature ranked list 7 = [f3, f5, - fu]”

3: while s not empty do

4: Restrict training examples X « X, (:, s)

5:  Train the classifier & « SVM train(X,y)

6: Compute the weight vector of dimension length (s)

w = Z Ay YiXk
k

Compute the ranking criteria ¢; = (w;)?
8:  Find the feature with the smallest ranking criterion
f < argmin(c)

xl]T’

~

9:  Update feature ranked list r « [s(f), ]

10: Eliminate low ranking features
s<s(1:f—1,f + 1:length(s))

11: end while

12: return r

Algorithm?2 for Autoencoder

Inputs: Training examples X, = [xq, X3, ... X, -
Class labels ¥y = [y1,¥2, . Yir - V11T

Output: Extracted feature list r =[]

1: Initialize the dimension of the code layer

2: Train the autoencoder a < AE train(X,,y)

3: Encode the test samples with the trained encoder

4: Update the extracted feature list r « encoder_a (X;est)

5: return r

x]",

Algorithm3 for ICA
Inputs: Training examples X, = [xXq, X5, ... X, -
Class labels ¥y = [y, ¥2, . Yi» - V11T

Output: Extracted feature list r =[]

1: Generate the ICA model with a data matrix
Xirain = [X1, X2, . Xk, ... X;]7 with n rows of samples
and p rows of features

2: Initialize a random p-by-q weight matrix W

3: Objective function 0bjsy,, < minimizes ¥ g(X¢pqiW)

x]",

where g = %log(cosh(Zx)) is constrast function
4: Train the ICA model with all training samples
5. Obtain the resulting feature list 7 < XW ,,ima
6: return r

The second feature reduction/extraction method used in this
study is the Autoencoder. Comprised of an encoder and a
decoder, an autoencoder is an unsupervised artificial neural
network that compresses and encodes data and reconstructs the
data back from the reduced encoded representation to a
representation that is as close to the original input as possible
[32]. Due to this special working mechanism, the trained
encoder works as a great feature extraction/reduction tool. In
our study, autoencoders were trained for feature compression
so that the feature vector length could be significantly reduced.

The third feature extraction/reduction method is the ICA.
ICA is atechnique that allows the separation of a mixture of
signals into their different sources by assuming non-Gaussian
signal distribution [33]. The ICA extracts the sources by
exploring the independence underlying the measured data.
Firstly, a data matrix X4, With n rows of samples and p rows
of features is generated. Then initialize the p-by-q weight
matrix W. The objective function attempts to obtain a nearly
orthonormal weight matrix and to minimize Y, g(X;qin W) by
using a standard limited memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) quasi-Newton optimizer, where g =

%log(cosh(Zx)) is the contrast function. After training the

model with all training samples, the resulting optimal feature
list XW op,¢ima; is then obtained.
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C. Prediction Accuracy Evaluation Method

The prediction accuracy calculation approach used in this
paper is not ‘zero-sum’-like. Instead, we applied a multi-level
accuracy calculation method. The general equation for accuracy
calculation is shown as below:

X — Xpredi

| ground trz;th_l predtcted| (13)
This calculation method makes sense because a closer

prediction to the ground truth result should have higher

accuracy than those results which completely fall into the

opposite side.

Accuracy =1 —

IV. EXPERIMENT RESULTS AND ANALYSIS

In this study, we performed the feature selection/reduction
algorithms on the data from 15 different test subjects. Two
hyperparameters were tuned in this study, feature
reduction/extraction  methods and the number of
reduced/extracted features. For all participants, all three types
of feature reduction/extraction methods were used. As for the
number of reduced/extracted features, we used four different
options for each participant. The options were 25-features, 50-
features, 100-features and 200-features. For each
hyperparameter combination set, the prediction algorithm was
repeatedly executed 15 times for better statistically reliable
data.

The distribution of training samples and testing samples was
75% for training and 25% for testing. The datasets underwent a
10-fold cross-validation during the training process.

A. Results of Comfort Level Detection

Fig. 4-6 give us the prediction accuracy results of comfort
level detection when three different feature reduction/extraction
methods — SVMRFE, Autoencoder, ICA were used with four
different choices on the number of extracted features — 25, 50,
100 and 200. The curves represent the average accuracy of each
hyperparameter combination set for each participant. The
results of SVMRFE/AE/ICA feature reduction methods are
represented in Fig. 4, 5 & 6, respectively. Table 3-5 show the
average, minimum and maximum testing accuracies of the
classifier when trained with SVMRFE, Autoencoder-based and
ICA feature reduction/extraction methods, respectively.

a. Results of Different Feature Extraction Methods

As shown in Fig.4-6, for 10 out of 15 participants, the
Autoencoder-based feature extraction method yielded the
highest personal average prediction accuracy, while 3 out of 15
participants achieved their highest personal average accuracy
with the SVMRFE method and 2 participants obtained achieved
highest accuracy with the ICA method. And by using the
Autoencoder-based feature extraction method, the prediction of
comfort level achieved over 75% personal average accuracy
with 13 participants. By using the SVMRFE method, the
prediction of comfort level achieved over 75% personal average
accuracy with 9 participants. By using the ICA method, the
prediction of comfort level achieved over 75% personal average
accuracy with 7 participants.

As shown in Table3-5, among all the options of feature
reduction/extraction methods tested in the study, the
Autoencoder method achieved the highest total average
accuracy — 76.68% across all participants, while both SVMRFE
and Autoencoder methods yielded the highest maximum
accuracy — 92.85% at the same time, and ICA method yielded
the lowest minimum accuracy. The prediction results of
subjects #2, 6 and 10 from a test run are shown in Fig. 7.
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TABLE3. TESTING ACCURACY OF THE SVMRFE FEATURE REDUCTION
METHOD WITH 25-FEATURES, 50-FEATURES, 100-FEATURES, 200-FEATURES

# Reduced / Extracted Features

25 50 100 200
Avg. Accuracy (%) 75.01 73.97 74.32 74.92
Min. Accuracy (%) 59.52 57.14 57.14 60.71
Max. Accuracy (%) 89.29 92.58 89.28 88.09
Variance of Accuracy 0.00247 0.00221 0.00187 0.00244

TABLE4. TESTING ACCURACY OF THE AUTOENCODER FEATURE EXTRACTION
METHOD WITH 25-FEATURES, 50-FEATURES, 100-FEATURES, 200-FEATURES

# Reduced / Extracted Features
25 50 100 200
75.84 76.19 76.16 76.68

Avg. Accuracy (%)

b. Results of Different Numbers of Extracted Features

For 8 out of 15 participants, the 100-extracted features option
yielded the highest personal average prediction accuracy, while
3 participants achieved their highest accuracy with the 50-
extracted features option, 2 participants achieved highest
accuracy with 25-extracted features option, and another 2
participants achieved highest accuracy with the 200-extracted
features option. For all the options on the number of extracted
features, the numbers of participants achieved 75% accuracy or
higher were nine persons for 25-features, eight persons for 50-
features, twelve persons for 100-features, and ten persons for
200-features.

Among all the options of feature reduction/extraction
numbers tested in the study, the 200-extracted features option
yielded the highest average accuracy — 76.68.

It is easy to notice that different selections on the numbers of
extracted features do not make a huge impact on the final
performance of the algorithm. The reason behind this is
probably that although many features have been extracted,
those key features which actually play important roles in the
prediction process only take up a small portion within the entire
feature group. This is great news to us since the majority of the
running time of the algorithm falls in the feature extraction step.
Thus, in the future, the execution time of the algorithm can be
greatly reduced by shrinking the size of the extracted feature
array.

c. Summary of the Overall Performance

The personal best average accuracies of comfort level
prediction for all fifteen participants were above 80%
considering all hyperparameter combinations. There are 10 out
of 15 participants whose best average accuracies are above
78%. The best personal average accuracy of comfort level
prediction among all fifteen participants and hyperparameter
combinations was 92.86%, achieved from Participant 1 when

Min. Accuracy (%) 57.14 55.35 50.00 53.57
Max. Accuracy (%) 90.47 87.5 91.07 92.85
Variance of Accuracy 0.00273 0.00263 0.00254 0.00359

TABLES. TESTING ACCURACY OF THE ICA FEATURE REDUCTION METHOD
WITH 25-FEATURES, 50-FEATURES, 100-FEATURES, 200-FEATURES

# Reduced / Extracted Features

25 50 100 200
Avg. Accuracy (%) 74.44 73.21 72.59 73.69
Min. Accuracy (%) 50.00 50.00 51.78 52.31
Max. Accuracy (%) 90.47 92.75 89.28 89.28

Variance of Accuracy  0.00327  0.00309  0.00299  0.00333

the Autoencoder method and 200 extracted features option were
applied.

In this study, the overall comfort level prediction
accuracies achieved with SVMRFE, Autoencoder, ICA feature
extraction methods and SVM multi-class classifier were
75.01%, 76.68% and 74.44% respectively as shown in Table 3-
5. AE-based method not only yielded the best overall
performance among all participants, but also provided the best
average accuracies in 10 out of 15 participants. In addition, the
AE-based method yielded the highest maximum accuracy
across all participants. Based on these results, we can conclude
that AE-based method is superior with certain participants in its
performance, but lacks stability compared to the SVMRFE
method due to the fact that its minimum accuracies are lower
than the SVMRFE method. The reason AE method yields
higher overall prediction accuracy could be due to its powerful
feature compression capability. While SVM-based feature
reduction method only reduces the size of the feature set by
simply eliminating less useful features, the AE method
compresses and maps the original feature set to a smaller space.
And with such a smaller set, the classification algorithm can
achieve a higher performance. This study proves the potential
of the Autoencoder model for future wearable sensing studies.
According to the statistics results in Table 3-5, the performance
ranking from high to low is AE-based method, SVMRFE, and
then ICA. In terms of choices on feature reduction numbers, the
results demonstrated that the influence of this number is much
less critical than the choice on different feature extraction
methods. We also compared the accuracy results of the 58
scenarios with three different methods and four feature number
setups, as shown in Fig. 8-10. The performance gaps of
different methods and feature number setups are negligible
compared to the gaps among different scenarios. It is easy to
notice that the accuracy curves drop into a valley region
between scenarios #15-16 and #20-28, which correspond to the
delivery distance factor group. These results demonstrated that
the difficulty of predicting distance-related comfort is much
higher than other factors.
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There are three participants whose subjective ratings are

Scenario #

extremely unbalanced among the range [1,5], one of them

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 26,2024 at 20:08:36 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.




This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2024.3383296

mostly falls in the range between [2-4], the other two were too
biased to one side of the range. Such an unbalanced dataset will
negatively impact the result performance. More pre-test
training will be provided to the participants in the future to
guarantee the quality of the collected data. The good side is that
all subjects provided overall comfort ratings within the range
from 2 to 4 for the two reference cases, which means no one has
overly concentrated and biased ratings near the two borders of
the range.

The approach we proposed in this study demonstrated its
value in competitive performance, which also focuses on
human emotion prediction. Furthermore, considering the fact
that human comfort prediction, which involves a variety of
factors and states, is a much more complicated problem than
emotion detection, the results achieved in our study validate the
feasibility and effectiveness of the proposed approach in using
physiological signals to detect the comfort levels of humans
during physical human-robot collaborations.

Considering that physiological signals are susceptible to
noises and uncertainties which could be affected by many
unknown factors and random events such as body movements,
environment noises, etc., the physiological-based approach can
be combined with an analytical model to make corrections to
the results from the physiological-data prediction model in
order to reduce the negative effects from these uncertainties.

V. CONCLUSION

In this paper, a physiological-data-based general human
comfort prediction model is proposed under human-robot
collaboration scenarios. Previous related studies mostly utilize
subjective ratings method to evaluate how human comfort
varies as one robot factor changes, yet such methods are limited
in evaluating comfort online. The proposed method in this
paper tackled these two limitations at the same time, measuring
and evaluating human comfort under the effects of multiple
factors online.

In this study, an ABB Yumi robot is used as the
collaborative robot for the HRC tasks. A sequence of 58 robot
delivery tasks were designed with five varying robot factors.
Wearable sensing system was used in the experiment to collect
physiological data and the subjective comfort level of the
participants was collected with self-reporting forms.
Additionally, we developed an SVM-based machine-learning
model to predict general human comfort levels based on the
data acquired during the experiment. Based on the prediction
accuracy results, the method proposed in this study was proved
to be effective in HRC scenarios. The overall comfort level
prediction accuracies achieved with SVMRFE, Autoencoder,
ICA feature extraction methods and SVM multi-class classifier
were 75.01%, 76.68% and 74.44% respectively, thus proving
that SVMRFE, Autoencoder-based and ICA feature
reduction/extraction methods are effective in bio-signal
applications. Among the three methods, the AE-based method
yields the highest prediction accuracy.

In the future, we aim to further improve the accuracy of
prediction by combining the analytical prediction model with
physiological model to refine the results from physiological-
data-based model, or by using new physiological feature

extraction methods to improve current framework’s accuracy.
In addition, force/haptic/tactile interactions with different
parameter settings could be designed and the outcome in this
paper could be used to assess human comfort levels from a
physiological perspective while humans are conducting such
tasks. In future works, we will also try to reduce the feature
processing lag of EEG and test its effectiveness in real-time
applications.
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