
 

Abstract— The development of collaborative robots has 
enabled a safer and more efficient human-robot collaboration 
(HRC) manufacturing environment. Tremendous research efforts 
have been conducted to improve user safety and robot working 
efficiency after the debut of collaborative robots. However, human 
comfort in HRC scenarios has not been thoroughly discussed but 
is critically important to the user acceptance of collaborative 
robots. Previous studies mostly utilize the subjective rating 
method to evaluate how human comfort varies as one robot factor 
changes, yet such method is limited in evaluating comfort online. 
Some other studies leverage wearable sensors to collect 
physiological signals to detect human emotions, but few of them 
implement this for a human comfort model in HRC scenarios. In 
this study, we designed an online comfort model for human-robot 
collaboration using wearable sensing data. The model uses 
physiological signals acquired from wearable sensing and 
calculates the in-situ human comfort levels based on our developed 
algorithms. We have conducted experiments in realistic human-
robot collaboration tasks, and the prediction results demonstrated 
the effectiveness of the proposed approach in identifying human 
comfort levels in HRC. 
 

Index Terms—Wearable Sensing, Human Comfort, Human-
robot Collaboration 
 

I. INTRODUCTION 
HE Human-Robot Collaboration (HRC), known as "the 
state of a purposely designed robotic system and operator 

working in a collaborative workspace" [1], has gained growing 
attention in its research field during the past few years. 
However, the market share and industry-level applications of 
these collaborative robots (COBOTs) are still limited and have 
huge space for improvement. One of the customers’ concerns 
for these COBOTs originates from user acceptance, which is 
highly influenced by the perceived human comfort of the 
worker. The comfort of human plays such a critical role that  not 
only does it affect the user acceptance but also has a significant 
impact on the efficiency of manufacturing, which has become a 
critical issue [2-4]. For example, Ye et al. [4] found that 
workers’ performance varied significantly under different 
thermal comfort conditions. The productivity would decrease 
by 9% when the temperature changes from 25.0 to 35.0 °C. 
 Prior to discussing any human comfort evaluation method or 
theory, the concept of comfort and some basic background 
knowledge need to be clarified and introduced first. The 
disappointing fact is that the academia has not come to a 
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consensus on a universal definition of comfort yet, thus it still 
remains a huge challenge to precisely evaluate human comfort 
level [5]. Some researchers perceived comfort as two discrete 
states: comfort presence and comfort absence, where comfort 
has been simply defined as the absence of discomfort and vice 
versa, while some others held the contrasting opinion which 
claims that comfort and discomfort are two opposites on a 
continuous scale, ranging from extreme discomfort through a 
neutral state to extreme comfort [6][7]. Some researchers also 
viewed comfort as an optimal state in which the person stops 
taking actions to avoid discomfort [8]. Despite all the 
arguments and disagreements in academia, people come to a 
common agreement on several points: (1) comfort is 
subjectively determined by each individual’s personal nature; 
(2) comfort can be affected by a wide variety of factors from 
multiple natures such as physical, physiological or 
psychological; and (3) comfort is affected by one’s reaction to 
the environment stimulus [6]. These statements were also used 
as the guidelines in our study.  

In recent years, some research efforts have been spent on 
human comfort evaluation and adaptation in HRC 
manufacturing tasks. For instance, Weitian. et al. [9] proposed 
a computational  approach to model and quantify the human 
comfort during human-robot collaborative manufacturing. Ross. 
et al. [10] found that human comfort has a direct and immediate 
influence on the collaboration quality between the robot and its 
human partner, is also a significant factor for the robot to be 
aware of. Jessi. et al. [11] developed a method of evaluating 
how the invasion of personal space by a robot affects human 
comfort. Przemyslaw. et al. [12] examined human response to 
motion-level robot adaptation to determine its effect on team 
fluency, human satisfaction, and perceived safety and comfort. 
Alami et al. [13] proposed a framework that allows the robot to 
select and perform its tasks based on the human partner’s 
presence, needs, and preferences. Ciccarelli et al. [14] proposed 
a system to improve human postural comfort by optimizing 
robot behavior. 

However, most of these current research methods on human 
comfort in HRC tasks merely utilize subjective ratings or 
simple statistical comparison approaches. Thus, the results of 
the papers above can only prove the qualitative or simple 
quantitative relationship between human comfort levels and the 
HRC factors. Limited research has fully leveraged the 
advantage of comfort measurements by utilizing physiological 
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signals, e.g., electroencephalography (EEG), electrodermal 
activity (EDA), blood volume pulse (BVP), in a machine-
learning-based model to analyze the general human comfort in 
HRC.   

Some studies in the psychological field have already proved 
the effectiveness and feasibility of implementing machine 
learning-based or neural network-based methods to evaluate 
human mental activities such as cognitive load and emotion 
states, with either single type of physiological signal or 
combined features from multiple types of signals [15][16]. Shan. 
et al. [17] applied machine learning techniques in conjunction 
with passive EEG measurement to classify occupants’ real-time 
thermal comfort states. Performances of different machine 
learning techniques were compared, and methods to select 
linear continuous features for class interpolation were also 
explored. The classification results with the linear discriminant 
analysis classifier using the full-set features achieved an 
accuracy above 90%. Maaoui’s work [18] used two methods, 
support vector machine (SVM) and Fisher discriminant, to 
recognize human emotions of amusement, contentment, disgust, 
fear, neutral, and sadness with multiple physiological signals, 
e.g., BVP, EDA, Skin Temperature (SKT). Recognition results 
for different types of emotions turned out to be excellent with 
the accuracy around 92%. Kang. et al. [19] studied visual 
discomfort by applying the SVM approach and built a brain-
computer interface framework to optimize the stereoscopic 3D 
content based on the viewer’s EEG response. 

In summary, despite a great amount of research efforts 
have been put into human comfort and physiological signal 
studies, two major research gaps remain today. The first gap is 
the lack of an approach to build an individual-based human 
comfort model that can accurately predict human comfort. The 
second gap is the lack of explorations of utilizing physiological 
signals in measuring overall human comfort in HRC scenarios, 
since most studies only focus on one specific feature. One thing 
worth noting is that the exact definition of comfort is still under 
debate within academia, since it is still considered as a highly 
subjective feeling, which can not be simply considered the same 
as stress or emotion. In this study, the motivation is to develop 
an AI-model-based framework which predicts general human 
comfort levels during HRC tasks based on physiological signals 
and potentially use this model and comfort data to optimize 
human comfort during future HRC tasks. The performance of 
our model is determined by comparing the differences between 
the physiological prediction model results and the human-
reported Likert Scale ratings, which are used as the ground truth. 
A series of HRC tasks with five varying robot-motion factors 
were designed and used in the experiment. We implemented 
two comfort measurement approaches in our study – the 
subjective method and the objective method. Two types of data, 
subjective comfort ratings based on a Likert Scale and objective 
physiological signals, were collected online in this study as the 
experiment progressed. Then, we tested the effectiveness of our 
developed model which uses multiple machine learning/deep 
learning techniques by training and testing the model with the 
data we collected. Previous studies mostly adopt SVM-based 
feature extraction method only, we introduced and validated 
three types of feature extraction methods, including the 

autoencoder-based method, which has been rarely applied in 
physiological signal-based human factor studies before. Since 
the data used for the comfort model is physiological signal 
during human-robot collaboration, the solution is independent 
of human-robot collaboration tasks and scalable to the 
application of detecting human comfort levels in any physical 
human-robot collaboration contexts. In addition, the comfort 
models are built based on individual-dependent physiological 
data instead of mixing all subjects’ comfort data for model 
training.  

II. EXPERIMENT AND DATA ACQUISITION 

A. Experimental Platform 
The experimental platform is shown in Fig. 1. The 

collaborative robot used in this study is an ABB-14000 YUMI 
model. The Yumi robot is installed and centered on the backside 
of the black experiment platform, while two small cubes which 
are used for interaction tasks are placed on two farther corners 
of the platform respectively. The test subject will be standing in 
front of the experiment platform with a horizontal distance of 
20cm. The Yumi robot is controlled by our built control system 
in ROS [20]. The higher-level YUMI motions for both arms are 
generated and executed in ROS.  

 

B. Human-Robot Collaboration Tasks Design 
In this study, we adopted a simple robot-delivery action as 

the interactive task. In total, we created 58 robot-delivery tasks, 
each consisting of a unique combination of factor levels. As 
shown in Table 1, there are totally five factors used in our study, 
while four of them are robot motion-based factors such as robot 
moving speed, final delivery distance, final delivery height and 
delay/waiting time. Delay period refers to the time length of the 
stagnation between robot’s pickup and delivery actions. Robot 
speed refers to the linear moving speed of the robot tool center 
point (TCP). Final delivery distance refers to the shortest 
horizontal distance between the tip of the robot TCP and the 
human subject. Final delivery height refers to the vertical 
distance between the robot's TCP and the working platform. 
The fifth factor is unique in our study, which is the Left/Right 
Working Arm of Yumi. This is enabled by the unique double-
arm design of Yumi [21]. Different robot arm selection will 
affect the selection of human arm for interaction by the human 
subject, we believe such differences could also induce human 
comfort variation. 

As shown in Table 1 below, each factor has seven levels to 
choose from, except for robot arm selection has only left/right 
options. Different values for each factor were chosen and 
combined into a factor set which forms one experiment task. 
Each task only tunes one robot motion factor at a time, while 
keeping other motion factors at their medium levels. For each 
formed combination set, there are two mirrored scenarios 
generated by the left and right arms used in the task, which 
doubles the total number of tasks. There are also two extra 
reference cases which take the medium levels from all factors, 
one case for the left arm, the other one for the right arm. 
Eventually, 58 combination sets were created, and each one was 
used as the robot motion planner inputs for the task. The focus 
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of the experimental designs is to generate the physiological 
signals of humans under different comfort levels during human-
robot collaboration. Thus, the tasks we designed are sufficient 
to generate enough physiological data under different comfort 
levels to conduct the training and testing of our proposed 
approaches. This will benefit a wide range of human-robot 
collaboration tasks in various manufacturing contexts. 

 

 
Fig. 1.  Pressing Force Collection Device and its Diagram 

 
TABLE1.  THE FACTOR COMBINATION SET TABLE 

Factors / 
Levels  

Delay 
Period (s) 

Robot 
Speed 

Distance 
(cm) 

Height 
(cm) 

Robot 
Arm 

1 0 0.1 25 15 

Left / 
Right 

2 1 0.2 35 20 
3 2 0.3 45 25 
4 3 0.4 55 30 
5 4 0.5 65 35 
6 5 0.6 75 40 
7 6 0.7 85 45 

 

C. Subjective Comfort Level Acquisition 
To evaluate the subjective comfort levels of the participants 

for each HRC task, a 5-point Likert Scale was used in this study. 
After completing each HRC task, the participant would report a 
score scaling from 1 to 5 as the comfort level evaluation 
feedback. A score of 5 indicates that the test subject feels 
completely comfortable, while a score of 1 indicates the subject 
feels completely uncomfortable. These subjective ratings were 
the ground truth labels for the training process of the machine 
learning model. Training sessions were carried out before the 
official experiment started in order to let test subjects get a 
rough concept of what the extreme condition scenarios feel like. 
Also, test subjects will be instructed to try their best ignoring 
any other factors that they found distracting or irrelevant to the 
experiment design. 
 

D. Physiological Data Collection  
Physiological data collected in this study include EDA, heart 

rate (HR), BVP, SKT, and EEG. Two wearable sensing devices 

were used in this study. The first device, Empatica E4 
wristband, was used to measure EDA, HR, BVP and skin 
temperature signals, and the second device, Emotiv EpocX 
headset, was used for EEG signal collection.  

EEG signals provide us with useful information in analyzing 
the high-level emotions of the test subjects [22]. The portable 
EEG device used in this study is the Emotiv EpocX headset. As 
shown in Fig. 2, it is equipped with 16 non-invasive electrodes 
which touch against a person’s scalp to measure the electric 
potential values at corresponding locations. Note that there are 
two reference electrodes which do not directly provide EEG 
data, but are only used as the “ground.” The EmotivPro 
Software, developed by the Emotiv Epoc Manufacturer, is 
integrated with online EEG data monitoring, data post-
processing and high-level feature extraction functions. In this 
study, we used the EmotivPro for data recording and results 
exporting. The output measurement results include raw EEG 
data from 14 channels, frequency domain analysis data, and 
high-level emotion states, e.g., excitement, stress, and focus. 
We took advantage of the high-level emotion extraction 
function of the software and utilized the excitement and stress 
performance data [34] in our later analysis since excitement 
reflects the positive psychological and physiological arousal of 
the human body, while stress reflects the negative human 
reactions to the environment. Both signals have 0.1-Hz 
sampling rate and require interpolation during the data 
preprocessing stage. Details about data preprocessing will be 
introduced in a later section.   

 

 
Fig. 2.  Wearable Sensing Devices 

EDA, also known as electrodermal activity, is the property of 
the human body that causes continuous variation in the 
electrical characteristics of the skin. Skin resistance varies with 
the state of the sweat glands in the skin. The arousal of the 
sympathetic autonomic nervous system activity can result in the 
increase of sweat gland, which leads to greater skin 
conductance. Thus, the EDA signal is widely used as another 
important index in evaluating a person’s psychological or 
physiological arousal in response to an external stimulus [23]. 
The EDA signal collection device we used in this study is the 
Empatica E4 wristband, which is equipped with two AgCl 
plated electrodes on the strap. During the experiment process, 
the AgCl electrodes firmly touch against the skin of the inside 
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of the participant’s wrist, in the meantime, the wristband passes 
a minuscule amount of current between two electrodes in 
contact with the skin, thus obtains the skin resistance values. 
The data was measured from test subject’s non-dominant hand 
with a 4-Hz sampling rate. 

BVP, which stands for blood volume pulse, measures heart 
rate based on the volume of blood that passes through the 
tissues in a localized area with each beat of the heart. BVP 
measurement is achieved with the photoplethysmography (PPG) 
sensor embedded in the Empatica E4 wristband. This 
component measures changes in blood volume in the arteries 
and capillaries that correspond to changes in the heart rate and 
blood flow. The sampling frequency of the BVP data is 64Hz. 

SKT measures the thermal changes on the skin. Variations in 
SKT mainly result from localized changes in blood flow caused 
by vascular resistance or arterial blood pressure. Local vascular 
resistance is modulated by smooth muscle tone, which is 
mediated by the sympathetic nervous system. The SKT 
variation reflects autonomic nervous system activities and is an 
indicator of a person’s psychological state [24]. The SKT had a 
4-Hz sampling rate. 

 

E. Experiment Procedure 
As mentioned earlier, we created 58 robot delivery tasks 

based on the five factors. Each delivery task lasts between 18-
25 seconds, depending on the selected robot speed and 
stagnation time. The general procedure of each task in concise 
is that the robot picks up a cube first, either from the left or 
right-hand side, and delivers it to the participant, then the 
participant takes the cube from the robot arm and reports the 
subjective comfort level rating for the finished task. 

Fifteen healthy (thirteen males and two females) with a mean 
age of 27.7 (SD = 3.68) years old graduate students participated 
in the experiment. All participants had engineering 
backgrounds. Before the experiment, the participants were 
introduced to the experimental protocols and signed on the 
consent form for taking part in the study. After that, the 
experimenter would help them put on the physiological 
measurement devices. Then, the procedures of the experiment 
and the tasks for the participants were introduced in detail to 
them. Before the actual experiment process started, participants 
first undertook a thorough training session familiarizing 
themselves with Yumi and its delivering actions with all the 
sensing devices on their bodies. These training tasks are highly 
similar to the HRC tasks in the actual experiment. Participants 
should get fully accustomed to the feeling with all the wearable 
sensors on their bodies before starting the actual experiment. 
Several extreme condition scenarios with the highest levels of 
factors would be experienced by participants during the training 
session, and participants would be instructed to ignore any other 
factors that they found distracting or irrelevant to the 
experiment design. This training session was repeated until 
participants announced well-prepared for the experiment.  

During the official experiment, the order of executing 58 
HRC scenarios was shuffled to guarantee that the participant 
would not be affected by learning effects. All 58 scenarios were 
executed one by one in a non-stopping manner. The entire 
experiment process took approximately 20 minutes. We did not 
set up a break time for the test subjects due to the concern that 

a break time might break the consistency in the subject’s 
judgment for comfort. Besides, none of our subjects claimed 
that they felt exhausted without a break after the experiment 
finished.  

 

F.   Data Preprocessing 
It is critical to implement preprocessing on the raw data 

obtained from the experiment before the feature extraction. The 
very first step was to clean the data, which means eliminating 
all the data recorded before the starting timestamp marker and 
after the ending timestamp marker. All the physiological data 
were then synchronized based on the starting marker and then 
divided into 58 pieces, corresponding to 58 scenario tasks 
respectively. Next, the data of each task was sliced into 2-
second-long window samples. The window size, two seconds, 
was determined based on the characteristics of the 
physiological signals. A two-second duration is long enough to 
capture a clear phasic skin conductance response, EEG 
response and also BVP changes. Since each HRC task lasts 
around 18-25 seconds, each task is composed of 9-13 serialized 
small samples, as shown in Fig. 3.  

 

 
Fig. 3.  Data Preprocessing and Window Sample Slicing 

Skin conductance is typically characterized into two types – 
tonic skin conductance level (SCL, also known as the tonic 
component) and phasic skin conductance response (SCR, also 
known as the phasic component) [25]. Both components are 
widely used in most recent emotional change detection studies 
[26][27].   

Ledalab, a Matlab-based software, was used in this study for 
tonic and phasic components extraction from the raw EDA 
signal.   
 

G.   Feature Extraction 
With all the preprocessed data available in our hands, one last 

step before the machine learning model training process was to 
extract valuable features from the data.  
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    Feature extraction process was executed within each 2-
second data sample. Normalization was performed on the data 
to mitigate the influence of individual differences in 
physiological signals. The collected physiological data were 
normalized based on the average value within the 
corresponding task. The average value of a certain task and the 
normalized data was calculated using the following formula: 

𝑥̅𝑎𝑣𝑔 =  
∑ 𝑥𝑐𝑜𝑚

𝑛𝑐𝑜𝑚
                                 (1) 

𝑥𝑛𝑜𝑟𝑚 =  
𝑥𝑟𝑎𝑤 − 𝑥̅𝑎𝑣𝑔

𝑥̅𝑎𝑣𝑔
                        (2) 

where 𝑥𝑛𝑜𝑟𝑚 is the normalized signal, 𝑥𝑟𝑎𝑤  is the raw signal,   
𝑥̅𝑎𝑣𝑔 is the average value of the signal within all samples after 
noise filtering, 𝑥𝑐𝑜𝑚  is the signal within samples after noise 
filtering, 𝑛𝑐𝑜𝑚  is the number of samples within the 2-second 
window. 

Raw physiological data itself does not possess much useful 
information without proper feature extractions. According to 
Picard’s work [29], there are several statistical features which 
are effective in emotion detection. Besides the raw signal x, 
other statistical features include the mean value 𝜇𝑥, the standard 
deviation 𝜎𝑥 , the mean of the absolute values of the first 
differences 𝛿𝑥 , and the mean of the absolute values of the 
second differences 𝛾𝑥 . We also add several other statistical 
features which include the maximal value 𝑚𝑎𝑥𝑥, the minimal 
value 𝑚𝑖𝑛𝑥, the odds of the minimal value over the maximal 
value 𝑟𝑎𝑡𝑖𝑜𝑥 [30], and the root mean square value 𝑀𝑥. All the 
features mentioned above were calculated within each 2-second 
window sample for all types of physiological signals based on 
their original raw data and normalized raw data. The calculation 
formulas are listed below: 

𝜇𝑥 =  
1

𝑇
 ∑ 𝑋(𝑡)

𝑇

𝑡=1

=  𝑋̅𝑡                         (3) 

𝜎𝑥 =  √ 
1

𝑇
 ∑(𝑋(𝑡) − 𝜇𝑥)2

𝑇

𝑡=1

                      (4) 

𝛿𝑥 =  
1

𝑇 − 1
 ∑|𝑋(𝑡 + 1) − 𝑋(𝑡)|

𝑇−1

𝑡=1

             (5) 

𝛾𝑥 =  
1

𝑇 − 2
 ∑|𝑋(𝑡 + 2) − 𝑋(𝑡)|

𝑇−2

𝑡=1

             (6) 

𝑚𝑎𝑥𝑥 =  𝑚𝑎𝑥(𝑥)                             (7) 
𝑚𝑖𝑛𝑥 =  𝑚𝑖𝑛(𝑥)                              (8) 

𝑟𝑎𝑡𝑖𝑜𝑥 =  
𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)
                           (9) 

𝑀𝑥 =  √ 
1

𝑇
 ∑(𝑋(𝑡))2

𝑇

𝑡=1

                     (10) 

where 𝑋(𝑡) is the normalized raw signal 𝑥 at sample 𝑡, while 𝑇 
is the total number of samples within the corresponding 2-
second window. With seven sources of physiological signals, 
eight statistical features for each signal, including original and 

normalized data, a total of 112 features were extracted from 
each 2-second window.  

The last step of feature extraction was to unify the 
dimensions of the datasets from each task. As mentioned in the 
previous section, each HRC task lasts between 18 to 25 
seconds, making each task composed of 9 to 13 serialized 
window samples. Here we extended the dimensions of the 
datasets with fewer than 13 window samples. The solution is to 
duplicate the tail section of the data and append it to the end of 
the original dataset. For instance, for a task dataset composed 
of 10 window samples, we copied the last three window 
samples and attached them to the end of the original dataset.  

The entire feature extraction stage is finished up to this point, 
with each feature vector of the task having a length of 1456, 
which is a product of 112 and 13.  

III. COMFORT LEVEL IDENTIFICATION METHOD 
The overall structure of our approach consists of four major 

components – raw data collection stage, physiological feature 
extraction stage, feature reduction / compression stage, and 
comfort level classification stage. The raw data is preprocessed 
first and implemented with the feature extraction step, 
generating a relatively large feature matrix. Then the feature 
reduction step is carried out to shrink the original feature matrix 
for higher classification efficiency and effectiveness. Lastly, the 
classification process is implemented for final training. The first 
two stages have been explained in the previous sections, the last 
two stages are explained in this section. 

A. Support Vector Machine 
Support vector machine (SVM) is a powerful supervised 

learning model which has been widely used for classification 
tasks in various fields. In this study, we used a multi-class error-
correcting output codes (ECOC) SVM classifier which is 
composed of multiple binary SVM learners to solve the 
problem. The input of the classifier was a chronologically 
ordered array of compressed or reduced physiological features 
of all the window samples from an entire task, and the output of 
the classifier was the predicted label of comfort level of the task.   

An ECOC model leverages multiple binary SVM classifiers 
by integrating a coding matrix design and a decoding scheme 
[28]. The coding design determines the classes that the binary 
learners train on, while the decoding scheme determines how 
the results of the binary classifiers are aggregated. An example 
of a coding matrix is shown below: 

 
TABLE2.  CODING MATRIX OF ECOC MODEL 

 Learner 1 Learner 2 Learner 3 

Class 1 1 1 0 

Class 2 -1 0 1 

Class 3 0 -1 -1 

 
The above example classification problem has three classes 

and three binary learners. During the training session, for 
learner 1, class 1 is treated as the positive class and class 2 is 
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treated as the negative class, while all data from other classes is 
ignored by learner 1. Other learners are trained in similar ways.  
Based on the work from Escalera et al., in loss-weighted 
decoding [29], the class producing the minimum average of the 
binary losses over binary learners determines the predicted 
class of an observation. The decoding scheme formula is given 
below: 

𝑘̂ =  𝑎𝑟𝑔𝑚𝑖𝑛 
𝑘

∑ |𝑚𝑘𝑙|𝑔(𝑚𝑘𝑙 , 𝑠𝑙)
𝐿
𝑙=1

∑ |𝑚𝑘𝑙|𝐿
𝑙=1

                (11) 

𝑔 =  
max (0, 1 − 𝑦𝑗𝑠𝑗)

2
                             (12) 

where 𝑚𝑘𝑗 is element(𝑘, 𝑗)of the coding design matrix M (that 
is, the code corresponding to class k of binary learner j). 𝑠𝑗  is 
the score of binary learner j for an observation. g is the binary 
loss function. 𝑘̂ is the predicted class for the observation. 
𝑦𝑗  is a class label for a particular binary learner (in the set {–
1,1,0}), 𝑠𝑗 is the score for observation j. 
 

B. Feature Selection & Compression Method 
As mentioned in the previous section, the final feature vector 

after preprocessing has a length up to 1456, which is extremely 
long and unsuitable for the machine learning model training 
process. Besides, the amount of training data is very small for 
our experiment, which could easily lead to model underfitting. 
Therefore, it is critical to apply feature reduction or feature 
extraction before the official training process. In this study, 
three different techniques, including the SVM Recursive 
Feature Elimination (SVMRFE) algorithm, Autoencoder, and 
Independent Component Analysis (ICA), were implemented 
independently, and the results were compared.  

SVMRFE can rank feature importance levels and remove 
relatively insignificant feature variables in order to achieve 
higher classification performance. Firstly, an SVM classifier is 
trained, and then the SVMRFE algorithm uses the weight 
magnitude as a ranking criterion, and computing and comparing 
the ranking criteria of all features to eliminate the lowest 
ranking features [30]. Then, the entire process is repeated 
iteratively to obtain the required number of features. The 
overall structure of SVMRFE is shown below: 

 
Algorithm1 for SVM-RFE 
Inputs: Training examples 𝑿0 = [𝒙1, 𝒙2, … 𝒙𝑘 , … 𝒙𝑙]

𝑇,   
Class labels  𝒚 = [𝒚1, 𝒚2, … 𝒚𝑘, … 𝒚𝑙]

𝑇  
Output: Feature ranked list r = [] 
1: Initialize subset of surviving features 𝒔 = [1,2, … 𝑛]  
2: Initialize feature ranked list 𝒓 = [𝑓1, 𝑓2, … 𝑓𝑛]𝑇  
3: while  𝐬 not empty  do 
4:     Restrict training examples 𝑿 ← 𝑿0(: , 𝒔)  
5:     Train the classifier 𝛼 ← 𝑆𝑉𝑀 𝑡𝑟𝑎𝑖𝑛(𝑿, 𝒚)  
6:     Compute the weight vector of dimension length (s) 

𝒘 = ∑ 𝛼𝑘𝑦𝑘𝒙𝑘

𝑘

 

7:     Compute the ranking criteria  𝑐𝑖 = (𝑤𝑖)
2 

8:     Find the feature with the smallest ranking criterion 
𝑓 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝑐) 

9:     Update feature ranked list 𝒓 ← [𝒔(𝑓), 𝒓]  
10:   Eliminate low ranking features 

𝒔 ← 𝒔(1: 𝑓 − 1, 𝑓 + 1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝒔)) 
11: end while 
12: return 𝒓 

 
Algorithm2 for Autoencoder 
Inputs: Training examples 𝑿0 = [𝒙1, 𝒙2, … 𝒙𝑘 , … 𝒙𝑙]

𝑇,   
Class labels  𝒚 = [𝒚1, 𝒚2, … 𝒚𝑘, … 𝒚𝑙]

𝑇  
Output: Extracted feature list r = [] 
1: Initialize the dimension of the code layer  
2: Train the autoencoder 𝛼 ← 𝐴𝐸 𝑡𝑟𝑎𝑖𝑛(𝑿0, 𝒚)  
3: Encode the test samples with the trained encoder 
4: Update the extracted feature list 𝒓 ← 𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝛼 (𝑿𝑡𝑒𝑠𝑡)   
5: return 𝒓 

 
Algorithm3 for ICA 
Inputs: Training examples 𝑿0 = [𝒙1, 𝒙2, … 𝒙𝑘 , … 𝒙𝑙]

𝑇,   
Class labels  𝒚 = [𝒚1, 𝒚2, … 𝒚𝑘, … 𝒚𝑙]

𝑇  
Output: Extracted feature list r = [] 
1: Generate the ICA model with a data matrix 
     𝑿𝑡𝑟𝑎𝑖𝑛 = [𝒙1, 𝒙2, … 𝒙𝑘, … 𝒙𝑙]

𝑇 with n rows of samples 
     and p rows of features 
2: Initialize a random p-by-q weight matrix  𝑾 
3: Objective function 𝑜𝑏𝑗𝑓𝑢𝑛𝑐 ← minimizes ∑ 𝑔(𝑿𝑡𝑟𝑎𝑖𝑛𝑾) 
     where 𝑔 =

1

2
log(𝑐𝑜𝑠ℎ(2𝑥))  𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

4: Train the ICA model with all training samples 
5. Obtain the resulting feature list 𝑟 ← 𝑿𝑾𝑜𝑝𝑡𝑖𝑚𝑎𝑙  
6: return 𝒓 
The second feature reduction/extraction method used in this 

study is the Autoencoder. Comprised of an encoder and a 
decoder, an autoencoder is an unsupervised artificial neural 
network that compresses and encodes data and reconstructs the 
data back from the reduced encoded representation to a 
representation that is as close to the original input as possible 
[32]. Due to this special working mechanism, the trained 
encoder works as a great feature extraction/reduction tool. In 
our study, autoencoders were trained for feature compression 
so that the feature vector length could be significantly reduced.  

The third feature extraction/reduction method is the ICA. 
ICA is a technique that allows the separation of a mixture of 
signals into their different sources by assuming non-Gaussian 
signal distribution [33]. The ICA extracts the sources by 
exploring the independence underlying the measured data. 
Firstly, a data matrix 𝑿𝑡𝑟𝑎𝑖𝑛 with n rows of samples and p rows 
of features is generated. Then initialize the p-by-q weight 
matrix 𝑾. The objective function attempts to obtain a nearly 
orthonormal weight matrix and to minimize ∑ 𝑔(𝑿𝑡𝑟𝑎𝑖𝑛𝑾) by 
using a standard limited memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) quasi-Newton optimizer, where 𝑔 =
1

2
log(𝑐𝑜𝑠ℎ(2𝑥))  is the contrast function. After training the 

model with all training samples, the resulting optimal feature 
list 𝑿𝑾𝑜𝑝𝑡𝑖𝑚𝑎𝑙  is then obtained. 
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C. Prediction Accuracy Evaluation Method 
The prediction accuracy calculation approach used in this 

paper is not ‘zero-sum’-like. Instead, we applied a multi-level 
accuracy calculation method. The general equation for accuracy 
calculation is shown as below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
|𝑥𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ − 𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

5 − 1
           (13) 

 This calculation method makes sense because a closer 
prediction to the ground truth result should have higher 
accuracy than those results which completely fall into the 
opposite side.  

IV. EXPERIMENT RESULTS AND ANALYSIS 
In this study, we performed the feature selection/reduction 

algorithms on the data from 15 different test subjects. Two 
hyperparameters were tuned in this study, feature 
reduction/extraction methods and the number of 
reduced/extracted features. For all participants, all three types 
of feature reduction/extraction methods were used. As for the 
number of reduced/extracted features, we used four different 
options for each participant. The options were 25-features, 50-
features, 100-features and 200-features. For each 
hyperparameter combination set, the prediction algorithm was 
repeatedly executed 15 times for better statistically reliable 
data. 

The distribution of training samples and testing samples was 
75% for training and 25% for testing. The datasets underwent a 
10-fold cross-validation during the training process. 

A. Results of Comfort Level Detection 
Fig. 4-6 give us the prediction accuracy results of comfort 

level detection when three different feature reduction/extraction 
methods – SVMRFE, Autoencoder, ICA were used with four 
different choices on the number of extracted features – 25, 50, 
100 and 200. The curves represent the average accuracy of each 
hyperparameter combination set for each participant. The 
results of SVMRFE/AE/ICA feature reduction methods are 
represented in Fig. 4, 5 & 6, respectively. Table 3-5 show the 
average, minimum and maximum testing accuracies of the 
classifier when trained with SVMRFE, Autoencoder-based and 
ICA feature reduction/extraction methods, respectively.  

 
a. Results of Different Feature Extraction Methods 
As shown in Fig.4-6, for 10 out of 15 participants, the 

Autoencoder-based feature extraction method yielded the 
highest personal average prediction accuracy, while 3 out of 15 
participants achieved their highest personal average accuracy 
with the SVMRFE method and 2 participants obtained achieved 
highest accuracy with the ICA method. And by using the 
Autoencoder-based feature extraction method, the prediction of 
comfort level achieved over 75% personal average accuracy 
with 13 participants. By using the SVMRFE method, the 
prediction of comfort level achieved over 75% personal average 
accuracy with 9 participants. By using the ICA method, the 
prediction of comfort level achieved over 75% personal average 
accuracy with 7 participants.  

As shown in Table3-5, among all the options of feature 
reduction/extraction methods tested in the study, the 
Autoencoder method achieved the highest total average 
accuracy – 76.68% across all participants, while both SVMRFE 
and Autoencoder methods yielded the highest maximum 
accuracy – 92.85% at the same time, and ICA method yielded 
the lowest minimum accuracy. The prediction results of 
subjects #2, 6 and 10 from a test run are shown in Fig. 7. 

 

 
Fig. 4.  Prediction Results of All Participants with SVMRFE Method 

 
Fig. 5.  Prediction Results of All Participants with Autoencoder Method

 
Fig. 6.  Prediction Results of All Participants with ICA Method 

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2024.3383296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 26,2024 at 20:08:36 UTC from IEEE Xplore.  Restrictions apply. 



 

TABLE3. TESTING ACCURACY OF THE SVMRFE FEATURE REDUCTION 
METHOD WITH 25-FEATURES, 50-FEATURES, 100-FEATURES, 200-FEATURES 

 # Reduced / Extracted Features 
25 50 100 200 

Avg. Accuracy (%) 75.01 73.97 74.32 74.92 
Min. Accuracy (%) 59.52 57.14 57.14 60.71 
Max. Accuracy (%) 89.29 92.58 89.28 88.09 

Variance of Accuracy 0.00247 0.00221 0.00187 0.00244 
 
TABLE4. TESTING ACCURACY OF THE AUTOENCODER FEATURE EXTRACTION 
METHOD WITH 25-FEATURES, 50-FEATURES, 100-FEATURES, 200-FEATURES 

 # Reduced / Extracted Features 
25 50 100 200 

Avg. Accuracy (%) 75.84 76.19 76.16 76.68 

Min. Accuracy (%) 57.14 55.35 50.00 53.57 
Max. Accuracy (%) 90.47 87.5 91.07 92.85 

Variance of Accuracy 0.00273 0.00263 0.00254 0.00359 
 

TABLE5. TESTING ACCURACY OF THE ICA FEATURE REDUCTION METHOD 
WITH 25-FEATURES, 50-FEATURES, 100-FEATURES, 200-FEATURES 

 # Reduced / Extracted Features 
25 50 100 200 

Avg. Accuracy (%) 74.44 73.21 72.59 73.69 
Min. Accuracy (%) 50.00 50.00 51.78 52.31 
Max. Accuracy (%) 90.47 92.75 89.28 89.28 

Variance of Accuracy 0.00327 0.00309 0.00299 0.00333 

 
b. Results of Different Numbers of Extracted Features 
For 8 out of 15 participants, the 100-extracted features option 

yielded the highest personal average prediction accuracy, while 
3 participants achieved their highest accuracy with the 50-
extracted features option, 2 participants achieved highest 
accuracy with 25-extracted features option, and another 2 
participants achieved highest accuracy with the 200-extracted 
features option. For all the options on the number of extracted 
features, the numbers of participants achieved 75% accuracy or 
higher were nine persons for 25-features, eight persons for 50-
features, twelve persons for 100-features, and ten persons for 
200-features. 

Among all the options of feature reduction/extraction 
numbers tested in the study, the 200-extracted features option 
yielded the highest average accuracy – 76.68. 

It is easy to notice that different selections on the numbers of 
extracted features do not make a huge impact on the final 
performance of the algorithm. The reason behind this is 
probably that although many features have been extracted, 
those key features which actually play important roles in the 
prediction process only take up a small portion within the entire 
feature group. This is great news to us since the majority of the 
running time of the algorithm falls in the feature extraction step. 
Thus, in the future, the execution time of the algorithm can be 
greatly reduced by shrinking the size of the extracted feature 
array.  
 

c. Summary of the Overall Performance 
The personal best average accuracies of comfort level 

prediction for all fifteen participants were above 80% 
considering all hyperparameter combinations. There are 10 out 
of 15 participants whose best average accuracies are above 
78%. The best personal average accuracy of comfort level 
prediction among all fifteen participants and hyperparameter 
combinations was  92.86%, achieved from Participant 1 when 

the Autoencoder method and 200 extracted features option were 
applied.  

In this study, the overall comfort level prediction 
accuracies achieved with SVMRFE, Autoencoder, ICA feature 
extraction methods and SVM multi-class classifier were 
75.01%, 76.68% and 74.44% respectively as shown in Table 3-
5. AE-based method not only yielded the best overall 
performance among all participants, but also provided the best 
average accuracies in 10 out of 15 participants. In addition, the 
AE-based method yielded the highest maximum accuracy 
across all participants. Based on these results, we can conclude 
that AE-based method is superior with certain participants in its 
performance, but lacks stability compared to the SVMRFE 
method due to the fact that its minimum accuracies are lower 
than the SVMRFE method. The reason AE method yields 
higher overall prediction accuracy could be due to its powerful 
feature compression capability. While SVM-based feature 
reduction method only reduces the size of the feature set by 
simply eliminating less useful features, the AE method 
compresses and maps the original feature set to a smaller space. 
And with such a smaller set, the classification algorithm can 
achieve a higher performance. This study proves the potential 
of the Autoencoder model for future wearable sensing studies. 
According to the statistics results in Table 3-5, the performance 
ranking from high to low is AE-based method, SVMRFE, and 
then ICA. In terms of choices on feature reduction numbers, the 
results demonstrated that the influence of this number is much 
less critical than the choice on different feature extraction 
methods. We also compared the accuracy results of the 58 
scenarios with three different methods and four feature number 
setups, as shown in Fig. 8-10. The performance gaps of 
different methods and feature number setups are negligible 
compared to the gaps among different scenarios. It is easy to 
notice that the accuracy curves drop into a valley region 
between scenarios #15-16 and #20-28, which correspond to the 
delivery distance factor group. These results demonstrated that 
the difficulty of predicting distance-related comfort is much 
higher than other factors. 
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Fig. 7.  Prediction Results of Test Subject #2, 6 & 10 in Single Test Run.  

 
Fig. 8.  Prediction Results of 58 Scenarios with SVMRFE Method  

 
Fig. 9.  Prediction Results of 58 Scenarios with Autoencoder Method  

 
Fig. 10.  Prediction Results of 58 Scenarios with ICA Method 

There are three participants whose subjective ratings are extremely unbalanced among the range [1,5], one of them 
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mostly falls in the range between [2-4], the other two were too 
biased to one side of the range. Such an unbalanced dataset will 
negatively impact the result performance. More pre-test 
training will be provided to the participants in the future to 
guarantee the quality of the collected data. The good side is that 
all subjects provided overall comfort ratings within the range 
from 2 to 4 for the two reference cases, which means no one has 
overly concentrated and biased ratings near the two borders of 
the range. 

The approach we proposed in this study demonstrated its 
value in competitive performance, which also focuses on 
human emotion prediction. Furthermore, considering the fact 
that human comfort prediction, which involves a variety of 
factors and states, is a much more complicated problem than 
emotion detection, the results achieved in our study validate the 
feasibility and effectiveness of the proposed approach in using 
physiological signals to detect the comfort levels of humans 
during physical human-robot collaborations. 

Considering that physiological signals are susceptible to 
noises and uncertainties which could be affected by many 
unknown factors and random events such as body movements, 
environment noises, etc., the physiological-based approach can 
be combined with an analytical model to make corrections to 
the results from the physiological-data prediction model in 
order to reduce the negative effects from these uncertainties. 

V. CONCLUSION 
In this paper, a physiological-data-based general human 

comfort prediction model is proposed under human-robot 
collaboration scenarios. Previous related studies mostly utilize 
subjective ratings method to evaluate how human comfort 
varies as one robot factor changes, yet such methods are limited 
in evaluating comfort online. The proposed method in this 
paper tackled these two limitations at the same time, measuring 
and evaluating human comfort under the effects of multiple 
factors online.  

In this study, an ABB Yumi robot is used as the 
collaborative robot for the HRC tasks. A sequence of 58 robot 
delivery tasks were designed with five varying robot factors. 
Wearable sensing system was used in the experiment to collect 
physiological data and the subjective comfort level of the 
participants was collected with self-reporting forms. 
Additionally, we developed an SVM-based machine-learning 
model to predict general human comfort levels based on the 
data acquired during the experiment. Based on the prediction 
accuracy results, the method proposed in this study was proved 
to be effective in HRC scenarios. The overall comfort level 
prediction accuracies achieved with SVMRFE, Autoencoder, 
ICA feature extraction methods and SVM multi-class classifier 
were 75.01%, 76.68% and 74.44% respectively, thus proving 
that SVMRFE, Autoencoder-based and ICA feature 
reduction/extraction methods are effective in bio-signal 
applications. Among the three methods, the AE-based method 
yields the highest prediction accuracy.  

In the future, we aim to further improve the accuracy of 
prediction by combining the analytical prediction model with 
physiological model to refine the results from physiological-
data-based model, or by using new physiological feature 

extraction methods to improve current framework’s accuracy. 
In addition, force/haptic/tactile interactions with different 
parameter settings could be designed and the outcome in this 
paper could be used to assess human comfort levels from a 
physiological perspective while humans are conducting such 
tasks. In future works, we will also try to reduce the feature 
processing lag of EEG and test its effectiveness in real-time 
applications. 
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