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Abstract: Natural disasters pose significant threats to human life and property, exacerbated by their
sudden onset and increasing frequency. This paper conducts a comprehensive bibliometric review
to explore robust methodologies for post-disaster building damage assessment and reconnaissance,
focusing on the integration of advanced data collection technologies and computational techniques.
The objectives of this study were to assess the current landscape of methodologies, highlight techno-
logical advancements, and identify significant trends and gaps in the literature. Using a structured
approach for data collection, this review analyzed 370 journal articles from the Scopus database
from 2014 to 2024, emphasizing recent developments in remote sensing, including satellite and UAV
technologies, and the application of machine learning and deep learning for damage detection and
analysis. Our findings reveal substantial advancements in data collection and analysis techniques,
underscoring the critical role of machine learning and remote sensing in enhancing disaster dam-
age assessments. The results are significant as they highlight areas requiring further research and
development, particularly in data fusion techniques, real-time processing capabilities, model gener-
alization, UAV technology enhancements, and training for the rescue team. These areas are crucial
for improving disaster management practices and enhancing community resilience. The application
of our research is particularly relevant in developing more effective emergency response strategies
and in informing policy-making for disaster-prepared social infrastructure planning. Future research
should focus on closing the identified gaps and leveraging cutting-edge technologies to advance the
field of disaster management.
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1. Introduction

Natural disasters are characterized by their sudden onset, immense destructive power,
and inherent unpredictability, posing significant threats to human life and the security
of property. These catastrophic events can strike with little to no warning, leading to
substantial loss of life, extensive damage to infrastructure, and profound economic disrup-
tions. Between 2000 and 2019, there were 510,837 deaths and 3.9 billion people affected by
6681 climate-related disasters [1]. In 2020 alone, disaster events attributed to natural haz-
ards affected approximately 100 million people, accounted for an estimated USD 190 billion
in global economic losses, and resulted in 15,082 deaths [2]. These staggering figures un-
derscore the critical importance of effective disaster management and mitigation strategies.
The increasing frequency and severity of natural disasters, exacerbated by climate change
and urbanization, necessitates robust methodologies for assessing and responding to build-
ing damage post-disaster. Identifying critically affected areas and delivering essential aid
to disaster-impacted regions is a pivotal component of effective disaster management [3].

In the wake of natural disasters, researchers are increasingly leveraging advanced
technologies to meticulously gather information about buildings affected by such calami-
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ties [4-7]. This critical task of identifying damaged structures is essential for ensuring public
safety, as it informs residents about the condition of their homes and supports decisions on
whether they can safely reoccupy their living spaces. Given the fundamental role of a home
as a place of safety, accurately determining whether a building remains structurally sound
after a disaster is paramount. To achieve this, researchers utilize a suite of state-of-the-art
techniques, including remote sensing [8,9] and aerial drone surveillance [10,11], to deliver
precise and comprehensive assessments. These technologies enable rapid evaluation of
damage extent and critical structural weaknesses, providing residents with the information
needed to feel secure and confident about the safety of their environments. Furthermore,
the application of these advanced technologies extends beyond immediate post-disaster
assessments. They are instrumental in shaping long-term urban planning and improving
disaster response strategies. By integrating data-driven insights from current and past
events, urban planners can design more resilient infrastructures, and disaster response
teams can refine their strategies to enhance efficacy and safety.

This paper provides a comprehensive bibliometric review of post-disaster building
damage assessment and reconnaissance methods, emphasizing recent advancements in
data collection technologies and the incorporation of machine learning and deep learning
techniques to enhance damage detection and analysis. This study meticulously compiles
and analyzes a vast array of the literature, leveraging the latest developments in remote
sensing, UAV surveillance, and automated data processing to provide a holistic view of
the current landscape in disaster assessment methodologies. This review makes several
notable contributions. First, it systematically catalogs the evolution and application of
cutting-edge technologies in post-disaster scenarios, demonstrating how these tools not
only accelerate damage assessment but also enhance the accuracy of these evaluations.
Second, by exploring the integration of artificial intelligence, particularly machine learning
and deep learning, this paper reveals how these technologies are reshaping approaches
to damage assessment, providing deeper insights and predictive capabilities that were
previously unattainable. Furthermore, this review identifies significant gaps and limitations
in current methodologies, offering a critical perspective that is essential for advancing the
field. It outlines future directions and proposes potential improvements, such as the
integration of multi-modal data and the development of more robust Al models that can
adapt to chaotic environments post-disaster. Ultimately, the contributions of this study aim
to advance more effective and efficient disaster management practices. By highlighting
innovative technologies and identifying areas for further research and development, this
paper seeks to enhance the resilience of communities against future disasters, ensuring
quicker recovery and reducing the long-term impact on affected populations.

2. Methodology of the Research

Disaster reconnaissance is a vital and complex field that utilizes a range of advanced
technologies to perform its functions. To ensure the inclusion of the most relevant research
works in this area, it is essential to follow a clear and systematic methodology. This
research adopts a structured approach beginning with the collection of data by retrieving
relevant publications from a selected database. This initial step is followed by a meticulous
data-sorting process to identify additional pertinent research articles for comprehensive
analysis. The final stage involves conducting a bibliometric analysis to construct a detailed
science map of the existing literature. This map provides an in-depth understanding of
the current research landscape, highlighting significant trends and gaps, and ultimately
offering suggestions for future research directions.

For this study, the Scopus database has been chosen due to its extensive range of
high-quality publications, particularly those related to interdisciplinary and technologically
advanced aspects of disaster reconnaissance. Leveraging Scopus ensures a robust foun-
dation for our bibliometric analysis. The following subsections describe the methodology
in detail.
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2.1. Article Collection from Sources

The quality of input data is crucial for any literature review, necessitating a compre-
hensive database and a rigorous search strategy before proceeding to bibliometric analysis
and discussion. For this research, the literature has been derived from the Scopus database,
as it has a wider range of disaster reconnaissance-related research articles and provides a
broader scope for interdisciplinary research topics. Articles featured in the Scopus database
have undergone peer review, ensuring they meet established criteria for research qual-
ity [12]. The related publications were chosen with certain keywords. However, at first,
some research questions were developed and then keywords were selected.

e  What are the comparative strengths and limitations of remote sensing (satellite, UAV)
versus ground-based sensing technologies in the detection and assessment of building
damage following various types of disasters (e.g., earthquakes, floods, hurricanes)?

e  How can artificial intelligence and deep learning techniques (e.g., CNNs) improve the
accuracy and efficiency of building damage assessment from diverse data sources?

e  Considering the challenges in real-time data collection and analysis in post-disaster sce-
narios, what are the most effective Al-driven strategies for rapidly assessing building
damage to support immediate response and recovery efforts?

e How do machine learning models compare in their ability to detect, segment, and
classify different types of building damage in disaster-affected areas?

Based on the above research questions, the following keywords were chosen for final
data collection:

(“Building*” OR “house*” OR “residence*” OR “dwelling*”) AND (“Damage*” OR
“Collapse*” OR “Destruction*”) AND (“assess*” OR “Investigat*” OR “Evaluat*” OR “
analysis*” OR “survey*” OR “reconnaissance”) AND ( “Disaster*” OR “Earthquake*” OR
“Tsunami*” OR “seismic*” OR “Hurricane*” OR “Tornado*” OR “typhoon*” OR “flood*”
OR “fire*” OR “storm*”) AND (“Machine Learning” OR “Deep Learning” OR “Computer
vision*” OR “transformer*” OR “Detect*” OR “segment*” OR “classif*” OR “Artificial
Intelligence” OR “AI” OR “ML” OR “DL” OR “Neural Network*” OR “CNN*” OR “DNN*")
AND (“remote sensing” OR “LiDAR*” OR “Point cloud*” OR “radar*” OR “satellite*” OR
“imag*” OR “drone*” OR “UAV*” OR “aerial*” OR “camera*”)) AND PUBYEAR > 2013
AND PUBYEAR < 2025.

Publications that include the specified keywords in their titles, abstracts, or designated
keyword sections are identified using the Scopus database keyword search tool. The search
criteria involve selecting the title/abstract/keywords option within the database. This
comprehensive search covers a decade, specifically from 2014 to 2024, ensuring a robust
collection of the relevant literature over this period. The goal is to capture a wide array
of studies and articles that align with the research focus, providing a solid foundation for
analysis and review within the chosen timeframe.

2.2. Data Sorting/Article Selection

Using the specified keywords, a total of 698 publications met the initial selection
criteria. To refine this collection, a further screening process was implemented. This
involved selecting only publications in the English language and focusing exclusively on
journal articles pertinent to the research objectives. After this rigorous screening, a final
total of 370 journal articles were chosen for in-depth analysis. This curated selection aims
to provide a comprehensive understanding of the research landscape, ensuring that the
most relevant and high-quality studies are included in the analysis.

2.3. Bibliometric Analysis Using Vosviewer

The network maps were created using the VOSviewer tool (version 1.6.20), a widely
recognized tool in the recent literature for producing high-quality bibliometric visualiza-
tions. This tool facilitates the construction of diverse bibliometric networks, including
co-authorship, co-occurrence, citation, bibliographic coupling, and co-citation networks,
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utilizing data from sources such as Web of Science, Scopus, and PubMed. The software
features three distinct visualization modes—network, overlay, and density—that enable
thorough analysis of extensive datasets and the interconnections among items. Addi-
tionally, VOSviewer supports data cleaning and the integration of multiple bibliographic
and reference manager databases, significantly enhancing its effectiveness in bibliometric
research and analysis [13]. A summary of the methodology is provided in Figure 1.

Data Collection Screening Bibliographic Analysis

@ -

: #VOSviewer

copus

e hi.
VOSviewer-Based

Bibliographic Analysis of
Selected Journals

\4

Comprehensive Database Refined Journal
Collection: 698 Journals Selection: 370 Journals

Figure 1. Overview of the methodology.

In this study, the bibliometric analysis using VOSviewer spanned the period from
2014 to April 2024, focusing on scientific articles. The analysis included co-occurrence,
citation, co-authorship, and bibliographic coupling, with the full counting method em-
ployed throughout. Minimum and maximum thresholds were carefully selected for each
analysis to ensure the inclusion of relevant terms and significant articles. The network
visualization was created using the default Association Strength algorithm, with attraction
and repulsion parameters set to their default values. Clustering was conducted with a
resolution parameter of 1.0, and colors were assigned based on cluster membership. Node
and label sizes were scaled according to the frequency of various parameters specific to
each network map. Key metrics, such as the number of clusters and the size of the largest
connected component, were reported. These settings were chosen to enhance visualization
quality and ensure the reproducibility of our results.

3. Results of Bibliometric Analysis
3.1. Bibliometric Performance Trends
3.1.1. Yearly Publication Metrics

Over the past decade, there has been a significant surge in the volume of research
dedicated to disaster management and mitigation. This body of work has particularly
concentrated on the development and implementation of technologies for predicting, mon-
itoring, and responding to disasters. Additionally, there has been substantial progress in
disaster documentation through remote sensing, as well as the utilization of various com-
putational and artificial intelligence techniques for the analysis of post-disaster scenarios,
among other areas. Figure 2 shows the yearly publication trends on similar research works
from 2014 to 2024 (April).

The increasing number of publications over the years, as depicted in the Figure 2,
illustrates the growing interest from various fields in disaster management and mitigation.
This trend underscores the heightened recognition of the critical significance of these topics.
Furthermore, the rising frequency and severity of natural disasters, driven by climate
change, urbanization, and other environmental stressors, have catalyzed the scientific
community to prioritize research aimed at predicting, mitigating, and managing the impacts
of such events. These data reveal a marked increase in publications from 2018 onwards,
with a pronounced surge in 2023, indicating an accelerated response to the escalating threat
posed by these disasters.
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Figure 2. Number of publications over the year. (* For the year 2024, publications till April 2024 have
been considered for this paper).

3.1.2. Geographical Distribution of Publications

The global response to disaster reconnaissance, depicted in Figure 3, is a testament to
the collective acknowledgment of its importance by countries across the world.

64 2
25

3 10

Number of publications m—
1 169

Figure 3. Number of publications by different countries from 2014 to 2024.

Based on the detailed analysis of publications, it is evident that this critical field has
garnered significant attention and contributions from a wide range of nations, spanning
all continents.

After analyzing the number of publications of the last decade, Asia stands out with
substantial contributions from countries such as China and Japan, reflecting their proactive
approach to addressing disaster management challenges through scientific research and
innovation. Similarly, Europe showcases a robust engagement with notable publications
from Germany, the United Kingdom, and France, underscoring their commitment to
advancing knowledge and practical solutions in disaster reconnaissance.

In North America, the United States and Canada lead with a considerable number
of publications, highlighting their emphasis on leveraging advanced technologies and
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methodologies to enhance disaster preparedness and response. The African continent, al-
though traditionally underrepresented in global research outputs, shows participation from
Algeria and Egypt, indicating a recognition of the importance of disaster reconnaissance in
mitigating the impacts of natural and man-made disasters.

South America, with contributions from Peru, reflects a regional effort to integrate
scientific research into national disaster management frameworks. Oceania, represented
primarily by Australia, demonstrates a strong research output that underscores its strategic
focus on disaster risk reduction, considering its vulnerability to natural calamities such as
bushfires and cyclones. The cumulative number of publications from these diverse regions
underscores the universal recognition of disaster reconnaissance as a vital discipline. This
global effort is crucial not only for advancing scientific knowledge but also for developing
practical tools and strategies that can save lives, protect property, and enhance the resilience
of communities against future disasters.

3.2. Bibliometric Mapping
3.2.1. Co-Occurrence of Keywords

To provide an accurate picture of the main research stream and topics covered in the
domain of disaster reconnaissance, a co-occurrence network of keywords was created using
VOSviewer software. Keywords capture the central concepts of ongoing research, delineate
the explored domains within specific topics, and assist scholars in discovering potential
possibilities for future investigation [14,15]. Contrarily, keywords designated by authors
are typically regarded as a crucial tool for pinpointing pivotal research areas within a given
subject. These author-assigned terms not only provide insight into the focus of the research
but also serve as a valuable resource for identifying emergent trends and gaps in the field.
To visualize the bibliographic map of author-indexed keywords for the co-occurrence
analysis in VOSviewer, a threshold was meticulously set, requiring a minimum occurrence
of 5. An additional process of merging keywords with analogous semantic meanings
was undertaken to create a coherent and insightful map. For example, keywords such as
“convolutional neural network”, “convolutional neural networks”, and “cnn” were merged
under “convolutional neural network”. From this approach, 37 keywords were identified
and are displayed in the co-occurrence map in Figure 4, from the 839 keywords discovered
in the included publications. As per the manual of VOSviewer, the node size indicates the
frequency of keyword occurrences, with larger nodes representing more frequent keywords.
Nodes sharing the same color are grouped into the same research cluster, and the proximity
between nodes illustrates the strength of their relationship, where greater distances imply
weaker connections [13].

The largest nodes in the co-occurrence map represent “Building Damage Assessment”
and “Remote Sensing.” This prominence is not surprising as these are key research topics
within the domain of disaster management and damage evaluation. The figure suggests
that many researchers are exploring the synergy between remote sensing technologies
and building damage assessment, as well as integrating machine learning techniques.
For example, the Building Damage Assessment cluster is centrally located, indicating its
pivotal role in the research field. Remote Sensing, positioned nearby, signifies its significant
contribution to the domain, often used in conjunction with other analysis approaches. The
Satellite Imagery cluster reflects research aimed at using satellite data to assess damage from
natural calamities. Additionally, the SAR (Synthetic Aperture Radar) cluster highlights
its utility in structural analysis and monitoring. Overall, the map in Figure 4 provides a
detailed visualization of the key research areas and their interconnections within the field
of building damage assessment, remote sensing, and disaster management. It highlights
significant clusters and suggests ongoing and future research directions.
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Figure 4. Co-occurrence of author-indexed keywords.
3.2.2. Co-Authorship Network
e  Co-Authorship Network of Countries

This section presents a co-authorship analysis using VOSviewer, focusing on indi-
vidual authors’” geographic areas which can help to uncover patterns of international
partnerships, highlight key contributors from different areas, and reveal the extent of global
collaboration in the research community. Figure 5 shows the mapping of the co-authorship
network among the authors of different countries.
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Figure 5. Co-authorship network for different countries.

To create the co-authorship network, a minimum number of documents of a country is
selected 1, and a minimum number of citations is considered 5. The map illustrates the dom-
inant research productivity and collaboration of the United States and China, depicted as
the largest nodes. Specifically, China shows extensive collaborations with countries like the
United States, Germany, and the United Kingdom. The United States has strong links with
countries such as Germany and the Netherlands. This visualization reveals the structure of
global research collaboration, highlighting key regional and international partnerships.

e  Co-Authorship Network of Authors

To obtain valuable insights into collaborative relationships among authors and their
research, revealing patterns, a co-authorship network map in VOSviewer can significantly
enhance understanding. This map indicates the strength of these collaborations by the
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number of coauthored works, helping to identify influential partnerships. In this study,
the minimum documents per author were set to 1, and the minimum citations were set to
30, resulting in 284 authors meeting the threshold values. Fractional counting was used
to provide a nuanced view of individual contributions. Figure 6 shows the co-authorship
network for authors around the world.
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Figure 6. Co-authorship network for authors from around the world.

The co-authorship network map reveals each author as a node and their collaborative
relationships as links, with node size corresponding to the number of documents authored
and link thickness indicating the strength of co-authorship. Two key metrics, the number of
links per author and total link strength are crucial for understanding these collaborations.
From Figure 6, it can be seen that notable authors in this network include Bruno Adriano,
with 10 documents and a total link strength of 37, Shunichi Koshimura, and Masashi
Matsuoka, all of whom demonstrate extensive collaborations. The analysis identifies
multiple clusters, with the largest featuring significant authors such as Masashi Matsuoka
and Hiroyuki Miura, indicating strong collaborative efforts

3.2.3. Citation Analysis

e  (Citation Analysis by Countries

Understanding citation networks is crucial for evaluating the scholarly impact and
academic influence of countries, as they reveal the interconnectedness and flow of knowl-
edge within the global research community. For developing the citation network map, the
minimum number of documents per country is considered 5 and the minimum number
of citations for each country is considered 15. Figure 7 provides a detailed overview of
the citation network among various countries, focusing on their scholarly impact and
interconnectedness. China leads with the highest figures (169 documents, 2325 citations,
and 245 total link strength), indicating its significant academic influence. The United States
follows with 64 documents, 1499 citations, and a total link strength of 106, showcasing
its strong citation impact. The Netherlands and Germany also exhibit substantial citation
strength, with the Netherlands having 13 documents, 872 citations, and 116 total link
strength, and Germany with 16 documents, 520 citations, and 107 total link strength. Coun-
tries such as Iran, Canada, Italy, France, and the United Kingdom display moderate citation
metrics, reflecting their roles in the global citation network. South Korea, India, Turkey,
Australia, and Indonesia have lower metrics but still contribute meaningfully. The network
visualization, created using VOSviewer, illustrates these citation relationships, with nodes
representing countries and node sizes reflecting citation counts and link strength. China
appears as the largest node, indicating its dominant role, while the United States is another
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significant node with extensive connections. The Netherlands and Germany also show
substantial connectivity, reinforcing their influence.
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Figure 7. Citation network for different countries.

e  (Citation Analysis of Sources

To generate the bibliographic map of citation sources, the minimum number of doc-
uments for a source was set to 5, and the minimum number of citations was set to 30.
Ultimately, 21 sources met these thresholds. Figure 8 shows the map which reveals that
“Remote Sensing”, and the “IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing” are central, highly cited nodes, signifying their influence in the field.
The map’s color-coded clusters represent different subfields, such as geoscience-related
research and civil engineering applications. Analysis of Excel data highlights that “Remote
Sensing” leads in document count (56) and citation count (1534). Journals such as the
“ISPRS Journal of Photogrammetry and Remote Sensing,” with 568 citations, “IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,” with 282 cita-
tions, and “Computer-Aided Civil and Infrastructure Engineering,” with 263 citations,
underscore their significant role in advancing disaster reconnaissance research. These
high citation counts highlight the critical contributions these journals make to the field,
reflecting their influence and importance in ongoing academic and practical advancements
in disaster reconnaissance.
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Figure 8. Citation of sources.
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e (Citation Analysis of Journal Articles

Citation counts of a document indicate its significant academic impact. High citation
counts often serve as validation for the research findings and methodologies, reflecting
widespread acceptance and utilization within the academic community [16]. A citation
map is generated in VOSviewer for highly cited documents, where the minimum number
of citations is taken 30. Figure 9 shows the highly cited documents between the year 2014
and 2024.

adrian@y2021
> L ol
: -
bl o annibab.(201 8)
sher@022)
moy3i019)
sharm@(2017) moya@@018a) SN @016)
h panQ,DZO)8
11{2078) cooner (2016)
fernandgz g@lgrreta (20 RN o
3 5’ " janalipa@r2016)
ne>')1.9) - @
qing(2022)
W@ songi2020)
gongl(2016)

Figure 9. Citation of journal articles, Vetrivel et al. (2018) [17], Fernandez Galarreta et al. (2015) [18],
Cooner et al. (2016) [19], Nex et al. (2019) [20], Ji et al. (2018) [21], Janalipour et al. (2016) [22],
Gong et al. (2016) [23], Pan et al. (2020) [24], i et al. (2019) [25], Moya et al. (2019) [26], Adriano
et al. (2021) [27], Anniballe et al. (2018) [28], Li et al. (2015) [29], Shen et al. (2022) [30], Moya
etal. (2018a) [31], Sun et al. (2016) [32], Song et al. (2020) [33], Qing et al. (2022) [34], Sharma et al.
(2017) [35], Tu et al. (2017) [36], Li et al. (2018) [37].

From the map, it is visible that the research article by authors such as Vetrivel et al.
(2018) [17], Fernandez Galarreta et al. (2015) [18], and Cooner et al. (2016) [19] are highly
cited, indicating their significance. The map features various clusters such as the green
cluster (e.g., Fernandez Galarreta 2015) [18], the blue cluster (e.g., Ji 2018) [21], the red cluster
(e.g., Moya 2019) [26], and the orange cluster (e.g., Vetrivel 2018 and Pan 2020) [17,24], each
representing distinct research themes.

3.2.4. Bibliographic Coupling

Bibliographic coupling happens when two documents cite the same references, sig-
naling a shared basis in their research areas. This technique gauges the extent of overlap
in the reference lists of two documents, indicating their common intellectual foundation
and suggesting aligned research interests. By pinpointing these connections, bibliographic
coupling aids in charting the terrain of academic dialogue, uncovering clusters of related
works, and supporting the exploration of scholarly networks. This approach is especially
valuable for understanding how different research papers are interconnected through their
citations, shedding light on the interdependencies and thematic relationships within a
specific field of study. Figure 10 shows the bibliographic coupling of documents where the
minimum number of citations for each document is taken 15.
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Figure 10. Bibliographic coupling of documents. Hu et al. (2022) [4], Pi et al. (2020) [11], Vetrivel et al.
(2018) [17], Ji et al. (2018a) [21], Moya et al. (2019) [26], Song et al. (2020) [33], Qing et al. (2022) [34],
Qi et al. (2016) [38], Moya et al. (2018c) [39], Zheng et al. (2021) [40], Brando et al. (2017) [41],
Zhai et al. (2016) [42], Levine et al. (2022) [43], Pham et al. (2014) [44], Xie et al. (2016) [45], Wang
et al. (2022) [46], Cui et al. (2023) [47], Thomas et al. (2014) [48], Wang et al. (2015a) [49], Kaur et al.
(2022) [50], Liu et al. (2022) [51].

4. Discussion
4.1. Techniques for Data Collection in Building Damage Assessment
4.1.1. Satellite-Based Data Collection

Accurate data collection for identifying damaged buildings is a crucial aspect of
disaster reconnaissance. The prompt and precise identification of structural damage is
vital for informing first responders about critically affected structures, enabling them to
prioritize rescue operations effectively. Researchers are employing various remote sensing
technologies, including optical satellite imagery and synthetic aperture radar (SAR), to
collect data on damaged buildings. Satellite imagery has become a vital technology in
disaster mapping and assessment due to its ability to capture detailed temporal and
spatial information over large areas, which is essential in post-disaster scenarios such
as earthquakes, typhoons, hurricanes, and many more [21]. Satellites equipped with
optical sensors can provide detailed information about the structural integrity of buildings
following disasters such as earthquakes, floods, and hurricanes. Modern satellite sensors,
such as WorldView-4, provide very high-resolution (VHR) imagery with ground sample
distances (GSD) as fine as 0.31 m. Satellites are equipped with various sensors, including
optical and Synthetic Aperture Radar (SAR), which can capture data under different
conditions. Optical sensors provide high-resolution images, while SAR sensors can operate
in all weather conditions and during both day and night, ensuring continuous monitoring
capability [39,52].

One of the key advantages of optical satellite imagery is its extensive coverage and
frequent revisit times, which allow for timely monitoring of disaster-affected areas. For
instance, the Copernicus Sentinel-2 mission provides optical imagery with a spatial resolu-
tion of up to 10 m and a revisit time of five days, making it highly effective for continuous
monitoring [53]. SAR is a powerful remote sensing technology used in building damage
assessment. There are several advantages of using SAR over optical satellite imagery in
disaster monitoring. For example, unlike optical sensors, SAR can penetrate cloud cover
and operate in all weather conditions, providing reliable data acquisition capabilities. SAR
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systems emit microwave signals that interact with the Earth’s surface, and the reflected
signals are used to create high-resolution images. This technology is particularly useful for
detecting structural deformations and changes in surface roughness, which are indicative of
building damage. One of the notable advantages of SAR is its ability to capture data at night
and under adverse weather conditions, making it a reliable tool for emergency response [54].
The unique ability of SAR sensors to capture high-resolution images under any weather
conditions makes this technology particularly valuable for disaster damage assessment,
where timely and accurate information is crucial. Prominent SAR satellite systems such as
TerraSAR-X, TanDEM-X, Sentinel-1, RADARSAT-2, ALOS-2, RISAT, Cosmo-SkyMed, and
Gaofen-3 have been extensively used in this domain.

TerraSAR-X, launched by the German Aerospace Center (DLR) in 2007, provides high-
resolution radar imagery with up to 1 m resolution [55]. Its versatility in capturing data in
various modes, such as StripMap, Spotlight, and ScanSAR, allows for detailed monitoring
of natural disasters like floods, landslides, and earthquakes [56]. TanDEM-X, launched in
2010 as a twin satellite to TerraSAR-X, forms a unique SAR interferometry constellation
capable of generating high-precision digital elevation models (DEMs) [57]. These DEMs are
crucial for understanding terrain changes caused by natural disasters. For instance, after
an earthquake, the TanDEM-X system can detect ground displacement and deformation,
aiding in evaluating the extent of damage and planning reconstruction efforts, as shown by
Eineder et al. [58].

Sentinel-1 and Sentinel-2, both part of the European Space Agency’s Copernicus
program, include two satellites, Sentinel-1A and Sentinel-1B, launched in 2014 and 2016,
respectively. These satellites provide all-weather, day-and-night radar imagery, with a
revisit time of six days [59]. Sentinel-1’s wide coverage and short revisit time make it ideal
for monitoring dynamic disaster scenarios, such as floods, landslides, and oil spills [60].
The sensor’s ability to detect surface movement and changes over time has been crucial in
assessing the impact of disasters and guiding relief efforts. Using freely available data from
the Sentinel satellite, researchers worldwide have explored various methods to analyze
earthquake damage, particularly focusing on damaged buildings [61-63]. RADARSAT-2,
a Canadian satellite launched in 2007, offers high-resolution SAR imagery with various
beam modes, including fine, standard, and wide modes. Its versatility and high resolu-
tion are beneficial for monitoring disasters such as floods, hurricanes, and earthquakes.
RADARSAT-2 has been extensively used to map flood extents, assess hurricane damage,
and monitor changes in coastal regions [64]. ALOS-2, the successor to Japan’s ALOS satel-
lite, was launched in 2014 and features the PALSAR-2 sensor, providing high-resolution
imagery with enhanced sensitivity. It is particularly useful for monitoring earthquakes,
tsunamis, and landslides [65]. Cosmo-SkyMed, an Italian constellation of four satellites
launched between 2007 and 2010, offers high-resolution SAR imagery with short revisit
times. Its ability to capture frequent images makes it suitable for monitoring rapidly chang-
ing disaster scenarios. Cosmo-SkyMed has been used extensively for earthquake damage
assessment, flood mapping, and monitoring volcanic activity [66]. The constellation’s
data help in understanding the extent of damage and planning effective recovery efforts.
Gaofen-3, a Chinese satellite launched in 2016, provides high-resolution SAR imagery
with multiple imaging modes. Its data are valuable for disaster monitoring, including
floods, landslides, and earthquakes. Gaofen-3’s ability to capture detailed images in all
weather conditions ensures continuous monitoring of disaster-prone areas. Its data support
emergency responders in assessing damage and planning relief operations efficiently [67].

Satellite imagery techniques have some limitations as well. High-resolution images
may miss subtle structural damage, such as fine cracks or internal issues not visible from
above. Processing this rich data requires advanced techniques and substantial computa-
tional resources, necessitating continual refinement of automated methods. Post-disaster
datasets are often imbalanced, with fewer collapsed buildings compared to intact ones,
requiring techniques like over-sampling and cost-sensitive learning to improve classifica-
tion accuracy. Optical imagery’s reliance on clear weather can impede data acquisition
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due to cloud cover, necessitating supplementary use of weather-independent methods like
SAR. The limitations of current building damage estimation methods using post-event SAR
imagery include the impracticality of the physical polarimetric SAR features approach due
to the unavailability of fully polarimetric SAR data in real-world scenarios [68].

4.1.2. UAV-Based Data Collection

The utilization of both manned aircraft and UAVs for data collection is prevalent due to
their ability to meet specific user requirements effectively. UAVs are used to collect various
damaged building data as well as disaster-affected areas data for analysis [17]. UAVs offer
significant advantages for disaster damage assessment, including the ability to capture
very high-resolution imagery (up to 2 cm) essential for identifying fine damage details
like cracks on fagades. Their superior portability and high-resolution imaging capabilities
allow them to gather more detailed information on building damage compared to manned
platforms [69]. Additionally, their flexible data acquisition capabilities allow for multi-angle
imaging, providing comprehensive views of building fagades and roofs often missed by
traditional methods. UAVs support the generation of detailed 3-D point clouds, which
are invaluable for identifying major damage features such as collapsed roofs and rubble
piles. Additionally, UAVs enable fully controlled flight paths for systematic and reliable
data collection. Their rapid deployment capabilities facilitate quick data acquisition and
assessment, crucial for timely post-disaster decision-making. Furthermore, UAVs can safely
access and survey hazardous or inaccessible areas, ensuring thorough damage assessments
without risking human lives [18]. However, UAVs have several disadvantages in disaster
damage assessment, including short battery life that limits coverage, and sensitivity to
variable atmospheric conditions that can affect data quality. Their effective use requires
skilled pilots, but pilot training is often insufficient. Strict regulations in many countries
can also restrict UAV deployment and flexibility. Additionally, the rich, detailed data
they provide can complicate automated analysis and necessitate time-consuming expert
assessments, introducing subjectivity into the evaluation process.

Airborne LiDAR (Light Detection and Ranging) offers several advantages for iden-
tifying damaged buildings as it provides highly accurate 3D point clouds essential for
assessing both surface and structural damages, facilitating effective damage detection and
emergency response. The rapid data acquisition capability of airborne LiDAR allows for
quick assessment over large areas, aiding timely decision-making and resource allocation
during disasters [70]. Additionally, LIDAR operates effectively in various weather condi-
tions, including cloudy and nighttime scenarios, ensuring consistent data collection. The
detailed structural analysis capability of LIDAR helps identify specific damage types, such
as surface irregularities and structural deformations, enabling comprehensive damage
assessments [71,72]. Foroughnia et al. [73] used airborne LiDAR to collect data on the
terrain and structures before and after an earthquake. Later, the data are analyzed by
aligning the pre- and post-event point clouds using the Iterative Closest Point (ICP) method
to determine ground and building displacements, which are then used to calculate residual
drift ratios. These ratios classify the damage levels of buildings into categories ranging from
negligible to complete, providing a detailed assessment of earthquake-induced damage.

The deployment and operation of airborne LiDAR systems can be costly, including
expenses for equipment, maintenance, and data processing, which may limit its use in
smaller-scale assessments. Additionally, LIDAR data require complex processing and
specialized expertise to extract meaningful information from 3D point clouds. Effective
damage assessment often necessitates comparison with pre-event data, which may not
always be available, hindering accurate damage evaluation. While LiDAR is highly ef-
fective for detecting surface and certain structural damages, it may struggle to identify
internal deformations or minor cracks, which can affect the comprehensiveness of damage
assessments. To address these limitations, data processing is crucial for filtering out noise
and creating digital elevation models (DEMs) or digital surface models (DSMs), enhancing
the accuracy and reliability of the data for thorough damage evaluation. This involves
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techniques like ground filtering, classification, and point cloud segmentation to distin-
guish ground points from non-ground points such as buildings and vegetation. Change
detection is achieved by comparing pre-disaster and post-disaster DEMs/DSMs to identify
terrain and structural changes, such as landslides and erosion [74]. The detailed 3D models
produced allow for accurate measurement of structural damage, including displacement,
deformation, and volumetric changes, which are vital for planning reconstruction efforts.

However, there are certain limitations of UAV-based radar systems in disaster as-
sessment which include limited flight time and range due to battery constraints, which
affect continuous monitoring and rapid response capabilities. Additionally, environmental
factors such as adverse weather conditions and complex terrains can interfere with radar
signal accuracy and UAV stability. The high data processing requirements of radar systems,
coupled with limited onboard computing power, pose challenges for real-time data analysis
and decision-making. Moreover, current regulations restrict UAV airspace access, compli-
cating timely deployment in disaster zones. To address these limitations, advancements in
battery technology and energy-efficient UAV designs can extend flight times. Enhancing
radar signal processing algorithms and integrating artificial intelligence can improve data
accuracy and processing speed. Developing UAVs with better weather resistance and more
robust designs can mitigate environmental impacts. Finally, regulatory frameworks need
to evolve to allow more flexible UAV operations in disaster response scenarios [75-77].

4.1.3. Ground-Based Data Collection

Complementing these methods, ground-based investigations such as visual inspec-
tions of damaged buildings, though time-consuming, are crucial for identifying structural
damage [78]. These inspections provide detailed assessments that are essential for accurate
damage evaluation and informing subsequent repair and recovery efforts. One of the
primary methods of ground-based data collection is on-site surveys. Teams of experts,
including engineers, geologists, urban planners, and disaster response professionals, are
deployed to the affected areas to conduct these surveys. These professionals meticulously
examine the damage, taking precise measurements and recording their observations. Stan-
dardized forms and checklists are often used to ensure that data collection is consistent
and comprehensive. This hands-on approach allows for the identification of specific struc-
tural weaknesses and failures, offering insights that are not always visible through remote
sensing methods. Photographic and video documentation also play a critical role in ground-
based disaster data collection. High-resolution cameras and video equipment capture the
physical state of the affected areas, providing a visual record of the damage. These images
and videos are invaluable for detailed analysis and can be used to support claims for
disaster relief funding and insurance [79,80]. They also serve as a historical record that can
inform future research and disaster preparedness initiatives.

Ground-based LiDAR data deliver precise details about damaged structures in disaster-
stricken areas. Notably, ground-based LiDAR technologies, such as Terrestrial Laser Scan-
ning (TLS) and Mobile Laser Scanning (MLS), provide substantial benefits for evaluating
damage post-event, surpassing the capabilities of airborne remote sensing methods [81]. In
post-earthquake building loss analysis, ground-based LiDAR data can be used to develop
analysis models to address issues related to building earthquake damage analysis [82,83].
Ground-based LiDAR has greatly enhanced the ability to assess building damage caused
by flooding. Bodoque et al. [84] used high-resolution ground-based LiDAR data to improve
the accuracy of flood damage assessments by generating precise Digital Surface Models
(DSMs). In addition, vibration-based structural damage assessment is recommended for
buildings without evident damage to accurately estimate the severity of the damage [85].

In conclusion, while ground-based data collection offers detailed and direct assess-
ments of disaster-impacted areas, it inherently faces several limitations that can restrict its
efficiency and scalability. One primary challenge is the time-intensive nature of ground
surveys, which often require significant human resources and can be slow to deploy in
the immediate aftermath of a disaster. Additionally, ground-based methods are limited
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by the physical accessibility of the disaster site. Areas that are severely damaged or haz-
ardous can be inaccessible, posing risks to personnel and potentially leading to gaps in
data collection. Moreover, ground-based data collection is often constrained by environ-
mental conditions. Poor weather, ongoing hazardous events, or unstable structures can
further delay or prevent comprehensive on-site assessments. Such conditions can diminish
the accuracy and timeliness of the data gathered, which are critical for effective disaster
response and recovery planning. However, integrating ground-based methods with re-
mote sensing technologies can significantly enhance the efficiency and effectiveness of
these surveys. Remote sensing enables the collection of data without physical access to
the site, overcoming many limitations associated with direct assessments. It provides a
broader view and gathers critical data rapidly, which is especially valuable in extensive or
inaccessible disaster zones where quick situational awareness is essential.

4.2. Analytical Techniques for Post-Disaster Building Assessment
4.2.1. Image-Based Analysis

Image-based analysis, utilizing data from Unmanned Aerial Vehicles (UAVs), satel-
lites, and field observations, has emerged as a powerful tool for effective disaster response
and recovery. This method allows for the comprehensive evaluation of the extent and
severity of damage over large areas, providing vital information for emergency services,
government agencies, and reconstruction efforts. Such analysis for disaster reconnaissance
involves several critical steps to ensure a comprehensive understanding of the impact. The
process begins with a series of image preprocessing steps, including georeferencing [86],
ortho-rectification [87], and mosaicking [88], to ensure the images are accurately aligned
and free from distortions. The preprocessing of collected images focuses on reducing
noise and haze to improve their suitability for machine processing. This step is crucial in
enhancing the clarity and quality of the images, ensuring they are optimized for subsequent
automated analysis [89]. There are various techniques in image-based analysis to identify
and assess the damage to buildings. One common method is change detection, which
involves comparing pre- and post-disaster images to identify areas that have undergone
significant changes [90]. Techniques such as pixel-based and object-based change detection
are employed, with pixel-based methods comparing individual pixels and object-based
methods analyzing groups of pixels for a more context-aware assessment. Change detection
algorithms can highlight differences in color, texture, and structural integrity, which are
indicative of damage. For instance, in the case of an earthquake, the collapse of buildings,
rubble, and debris can be easily identified through changes in the landscape [91]. Feature
extraction plays a pivotal role in this analysis. It involves identifying and isolating signifi-
cant attributes from the imagery, such as edges, corners, textures, and shapes, which can
then be used to detect and classify damage. For example, features like building outlines,
roof textures, structural edges, road networks, water bodies, etc., can be extracted and
analyzed to assess the damage [92]. Advanced algorithms can quantify these features,
enabling a detailed comparison between pre- and post-disaster conditions.

Advanced machine learning and deep learning techniques are increasingly being
used to automate and enhance the accuracy of damage assessment from images [93,94].
Researchers have been investigating the application of machine learning (ML) algorithms
to evaluate the condition of buildings. ML algorithms have been applied to the seismic
risk assessment of reinforced concrete (RC) buildings, enabling the prediction of seismic
responses and performance levels. Techniques such as Artificial Neural Networks (ANNs),
Extra-Trees Regressor (ETR), and Extreme Gradient Boosting (XGBoost) have shown ex-
ceptional performance in generating seismic fragility curves, thus expediting seismic risk
assessment processes. By incorporating innovative hyperparameter optimization methods,
like halving search and k-fold cross-validation, there is a substantial reduction in computa-
tional effort compared to traditional seismic fragility assessment procedures [95,96]. These
advancements have inspired researchers to utilize advanced machine learning and deep
learning techniques for automating and improving damage assessment from images.
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Convolutional Neural Networks (CNNSs), a type of deep learning algorithm, have
shown great promise in identifying damaged buildings from aerial and satellite images.
Moreover, these techniques are adept at crack analysis, a crucial indicator for damage
identification, which is essential for disaster reconnaissance [97]. These applications extend
to infrastructure maintenance, urban planning, monitoring data recovery [98], response
prediction for megastructures [99], and environmental monitoring, demonstrating the versa-
tility and broad impact of machine learning and deep learning in managing and mitigating
risks across different sectors. CNNs can be trained on large datasets of labeled images to
recognize patterns associated with different levels of damage. Once trained, these models
can process new images rapidly, providing real-time assessments of disaster-affected ar-
eas. For post-earthquake rescue planning, researchers have integrated balancing methods
with CNNs which improved their model’s capability to identify collapsed buildings [21].
For example, incorporating artificial intelligence with the collected images significantly
enhances the effectiveness of UAVs for disaster assessment, making them an excellent
choice for rapid response teams [100]. Numerous researchers have leveraged deep learning-
based object detection methods, including Faster R-CNN and YOLO, to identify damaged
building regions in post-disaster imagery [101,102]. UAV platform integrated with deep
learning is increasingly being utilized for post-earthquake damage assessment and man-
agement [103,104]. Khankeshizadeh et al. [86] explored the use of both deep learning (DL)
and machine learning (ML) techniques for building damage assessment using UAV data
by employing various feature sets, including spectral features (SFs) and combinations
of spectral and geometrical features (SGFs). These artificial intelligence techniques have
enhanced the analysis of UAV data, thereby increasing the ability of first responders to
provide aid and manage disasters more efficiently.

However, for image-based analysis, high-resolution data availability is crucial for
accurate post-disaster building damage assessment as it provides detailed and precise
information necessary for evaluating the extent and nature of damage. These data, typically
obtained from advanced remote sensing technologies, enable a granular analysis of the af-
fected areas. The importance of high-resolution data lies in its ability to capture fine details
of structural damage that lower-resolution data might miss, such as cracks, deformations,
and partial collapses. These details are essential for rapid and effective response, planning
of relief efforts, and allocation of resources [105]. Moreover, high-quality data ensure the
reliability of damage assessment models and algorithms, which are often used to automate
the evaluation process [106]. Accurate data inputs lead to more reliable predictions and
assessments, reducing the risk of errors that could result in either an underestimation or
overestimation of the damage, both of which have significant implications. Underesti-
mation might lead to insufficient aid and delayed recovery, while overestimation could
result in unnecessary expenditure and misallocation of resources. High-resolution data
also support longitudinal studies to monitor recovery progress and improve future disaster
preparedness strategies. Ensuring data quality involves rigorous validation and verification
processes to minimize errors and enhance the credibility of the findings. Furthermore,
high-resolution data facilitate the integration of various datasets, such as structural design
information and socio-economic data, enabling a comprehensive assessment that consid-
ers not only physical damage but also the broader impact on communities. Thus, the
availability and quality of high-resolution data are fundamental to effective post-disaster
building damage assessment, directly influencing the efficiency and effectiveness of disaster
response and recovery efforts.

4.2.2. Point Cloud Data Analysis

Point clouds have emerged as a crucial technology for assessing building damage after
disasters. This technology involves the creation of a three-dimensional representation of an
environment, constructed from a multitude of data points collected through remote sensing
techniques such as LiDAR, photogrammetry, and terrestrial laser scanning (TLS). Each
point in a point cloud is defined by X, Y, and Z coordinates, and can include additional
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attributes such as color, intensity, and reflectivity, which are invaluable for detailed analysis
and modeling, providing a robust foundation for evaluating structural damage in the
aftermath of a disaster [107].

The generation of point clouds begins with data acquisition. LiDAR systems, com-
monly mounted on drones or aircraft, emit laser pulses toward the ground and measure
the time it takes for these pulses to return. This time-of-flight measurement is used to
calculate the distance between the sensor and the surface, resulting in a dense, highly
accurate 3D map of the surveyed area [108]. LiDAR data leveraged with deep learning
are useful for wildfire damage analysis and detection as they enable precise identification
and classification of damaged structures from detailed point-cloud datasets [109]. Yang
et al. [82] processed and analyzed the LiDAR data using a triangular network vector model
(TIN-shaped model) in conjunction with the alpha shapes algorithm to measure deforma-
tion and extract detailed damage features, such as wall cracks and tilt. The analysis results
provide accurate, quantitative assessments of building damage, enabling the identifica-
tion of structural deformations and damage levels, which are critical for post-earthquake
emergency response and reconstruction efforts.

Once the point cloud data are collected, the next step is processing and analysis.
The raw data often require cleaning and filtering to remove noise and irrelevant points,
which ensures a more accurate representation of the surveyed area. Advanced algorithms
are then applied to extract meaningful information from the point cloud. Researchers
have shown significant interest in utilizing point clouds for swift damage assessment in
disaster scenarios. The ability to quickly collect comprehensive 3D data over large areas
allows emergency response teams to gain an immediate understanding of the extent and
severity of the damage. This is crucial for prioritizing response efforts and allocating
resources effectively. By comparing pre- and post-disaster point clouds, it is possible to
measure the deformation of buildings. This deformation analysis helps identify structural
displacements, tilting, and other forms of damage that may not be visible to the naked
eye. High-resolution point clouds enable the detection of cracks and other minor damages
on building surfaces. Advanced image processing and machine learning algorithms can
analyze point cloud data to identify and quantify these damages, providing a detailed
assessment of the structural integrity of buildings. For example, Researchers integrated
CNN features with 3D point cloud features which improved the accuracy of disaster
damage detection. The combined approach achieved an average classification accuracy of
94%, compared to 91% when using CNN features alone [17]. Additionally, the combined
model demonstrated improved transferability, achieving an average accuracy of 85% when
applied to new, unseen sites.

For structures that have partially collapsed, point clouds can be used to calculate the
volume of debris [110]. Creating a digital twin of the affected area is another powerful
application of point clouds. A digital twin is a highly accurate 3D model that replicates the
real-world environment, allowing for detailed analysis and visualization of the damage.
These 3D models can be used for planning reconstruction efforts, conducting virtual inspec-
tions, and communicating the extent of damage to stakeholders [111]. Researchers have
also explored damage segmentation and evaluation framework, utilizing UAV-based point
cloud modeling to inspect surface damage on building facades caused by earthquakes [112].
The advantages of using point clouds in building damage assessment are numerous. They
provide highly accurate and detailed 3D representations of buildings and structures, en-
abling precise damage assessments [113]. The speed of data collection and processing is
crucial in disaster scenarios where timely information is essential for effective response.
Point clouds also allow for non-intrusive data collection, ensuring the safety of assessment
teams. The comprehensive coverage of point clouds, capturing data from multiple angles,
provides a thorough understanding of the affected region.

However, there are challenges and limitations associated with the use of point clouds.
The large volume of data generated requires significant processing power and advanced
algorithms for effective analysis. Analyzing and interpreting point cloud data also requires
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specialized skills and expertise, which may not be readily available in all disaster response
teams. Additionally, point cloud data often suffer from noise contamination and contain
outliers, posing significant challenges for accurate analysis and interpretation [114]. This
issue arises from various factors, including sensor inaccuracies, environmental interfer-
ences, and reflective surfaces, which can introduce errors and irrelevant data points into
the dataset. Despite these challenges, the future of point clouds in building damage as-
sessment looks promising. Advances in technology are likely to enhance the capabilities
and accessibility of point cloud-based assessments. The development of machine learning
algorithms for automated damage detection and classification will improve the efficiency
and accuracy of assessments. The use of cloud computing resources for processing and
analyzing large point cloud datasets will overcome the limitations of local processing power.
Real-time data collection and processing will enable continuous monitoring of buildings
and infrastructure, providing early warnings of potential failures or further damage.

4.2.3. Radar Remote Sensing Data Analysis

Radar remote sensing technologies have revolutionized disaster reconnaissance, par-
ticularly in assessing building damage after events such as earthquakes, hurricanes, floods,
and other natural disasters. However, the data collected from various radar remote sens-
ing technologies, such as Synthetic Aperture Radar (SAR), Radar Interferometry (InSAR),
Polarimetric SAR (PolSAR), and UAV-based radar systems, are analyzed through a series
of sophisticated processing and interpretation techniques. SAR produces radiometric and
geometric distortions and to reduce such distortions, preprocessing is necessary [115]. Pre-
processing corrects geometric distortions, removes noise, and calibrates the signal strength
using techniques such as speckle filtering, radiometric calibration, and geocoding. There
are several preprocessing techniques carried out by researchers. One of the preprocessing
techniques is radiometric calibration, which accounts for factors such as the antenna gain,
the system loss, and the effective aperture of the antenna, etc. This introduces a significant
radiometric bias in the SAR image and renders it unsuitable for use in applications that
entail quantitative use of the SAR data. Radiometric calibration provides for converting
the pixel values in the SAR image from being qualitatively representative of the biased
backscatter signal to being quantitatively representative of the RCS (o) and the backscatter
coefficient (o,), respectively, for the cases of point and extended targets. In applications
such as target recognition, this provides for proper comparison between the scattering cen-
ters of a target imaged with different SAR sensors, or from the same sensor with different
operating conditions [116]. Another preprocessing technique is Multilooking. It is applied
to SAR data to generate square pixels. The number of looks is determined by the image
statistics [117].

Geometric correction is a crucial preprocessing technique that repositions pixels from
their uncorrected image locations to a reference grid through geometric operations. Com-
mon methods include the Global Polynomial Model, 2D Direct Linear Transformation
Model, Rational Function Model, and Generic Algorithm Model [118]. SAR’s active sen-
sor produces speckle noise due to its coherent imaging mechanism. This noise is caused
by the random interference of numerous elementary reflectors within a single resolution
cell [119,120]. Therefore, speckle filtering is a vital preprocessing technique for SAR, as
it diminishes noise and improves image quality and interpretability. Co-registration is
another key preprocessing technique that aligns slave images with a master image so that
each pixel corresponds to the same point on Earth’s surface. This is essential for tomo-SAR
and In-SAR processes. Preprocessing methods such as image cropping, target segmentation,
and image enhancement are essential to improve the quality of SAR images for better target
recognition. Image cropping removes background redundancy by segmenting a specific
area of the image, while target segmentation isolates the target from the background using
techniques like histogram equalization, average filtering, thresholding, and mathematical
morphology. Image enhancement, such as power exponent enhancement, highlights rele-
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vant features and suppresses background noise to facilitate effective feature extraction and
classification [121].

SAR analysis utilizes radar-based remote sensing to capture high-resolution images
regardless of weather conditions or daylight, making it ideal for disaster monitoring [122].
Data acquisition involves SAR sensors on satellites like Sentinel-1 and RADARSAT or
aircraft emitting microwave signals toward the earth’s surface and measuring the reflected
signals. Researchers are trying various ways to analyze SAR data to obtain the maximum
output for disaster mapping. Kim et al. [123] analyzed SAR data by employing a contextual
change analysis method that maps damaged buildings using novel textural features derived
from bi-temporal SAR images with different observation modes. The Gray Level Co-
occurrence Matrix (GLCM) and Local Ternary Codes (LTCs) have been used in the study to
enhance damage detection while minimizing false alarms. This approach improved the
detection of earthquake-induced damages, achieving a 72.5% detection rate and a 6.8%
false alarm rate in the study area affected by the 2016 Kumamoto earthquake. GLCM
and LTC enhance damage detection in SAR data by analyzing texture and local pixel
intensity variations. GLCM captures spatial relationships between pixel pairs, extracting
features like contrast, correlation, and homogeneity, essential for identifying structural
damages. LTC, an extension of Local Binary Patterns (LBPs), encodes image texture into
three states, improving robustness to noise and lighting changes, and highlighting subtle
surface changes. Together, these methods enable detailed and accurate damage assessment
in SAR data, aiding efficient disaster response and recovery [123-125].

InSAR and PolSAR are two advanced microwave remote-sensing technologies that
have emerged in recent years. These technologies have been effectively utilized for the
comprehensive analysis and assessment of earthquake disaster impacts and associated
losses [126]. Their flexibility and precision in capturing detailed geophysical changes
make them invaluable tools in disaster monitoring and response, enhancing our ability to
rapidly detect and evaluate the extent of damage in affected areas. INSAR measures surface
deformations by analyzing phase differences between pre- and post-earthquake SAR im-
ages, effectively mapping subsidence or uplift caused by seismic activity. This capability
was demonstrated in the assessment of the 2021 Baicheng earthquake, where INSAR pro-
vided accurate coseismic deformation fields crucial for immediate disaster response [127].
PoISAR, on the other hand, enhances building damage detection by utilizing different
polarizations of radar waves to differentiate between undamaged and damaged structures.
PolSAR'’s effectiveness is illustrated in the rapid damage assessment following the Yushu
earthquake, where polarization orientation angle compensation and supervised classifica-
tion methods significantly improved the accuracy of identifying collapsed buildings [42].
These technologies enable comprehensive and reliable earthquake damage assessments,
facilitating timely and informed decision-making for disaster management.

CNNss and Recurrent Neural Networks (RNNs) offer substantial potential in enhanc-
ing SAR data analysis for damage detection. By automatically extracting high-level features
from raw data, CNNs enhance the accuracy of building damage classification and detection.
According to Xu et al. [128], CNNs can effectively address the complexities of SAR images,
such as speckle noise and radiometric distortions, by leveraging robust feature extrac-
tion capabilities. Shahzad et al. [129] highlighted the effectiveness of fully convolutional
neural networks (FCNNSs) in detecting buildings in VHR SAR images, achieving high
mean pixel accuracies through advanced techniques like SAR tomography for data labeling
and the use of auxiliary information to improve training datasets. On the other hand,
RNN, particularly Long Short-Term Memory (LSTM) networks, are adept at temporal se-
quence modeling, which is crucial for monitoring changes over time in multi-temporal SAR
datasets. This capability allows RNNSs to track the progression of damage and distinguish
between transient and permanent changes. RNNs can analyze time series of interferometric
SAR (InSAR) coherence to detect anomalies indicative of building damage. For instance,
Stephenson et al. [130] demonstrated the use of RNNs as probabilistic anomaly detectors
on INSAR coherence time series, where the network is trained on pre-event data to fore-
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cast expected coherence values. The deviation between these forecasted values and the
actual post-event coherence provides a measure of damage, enabling more accurate and
localized damage detection compared to traditional methods. This approach allows for
customized damage detection thresholds based on local coherence behavior, significantly
improving the precision and recall of damage mapping across diverse geographic areas
and disaster scenarios. The application of these advanced neural network architectures
facilitates more efficient and reliable SAR data analysis, which is vital for rapid disaster
response, infrastructure monitoring, and environmental impact assessments. These models’
ability to handle large datasets and their adaptability to different SAR configurations make
them invaluable tools in modern remote sensing applications.

5. Challenges and Future Direction

Based on the discussion of previous research works, the following things can be
considered as future challenges, and solving these will make disaster reconnaissance
more effective:

5.1. Challenges to Be Solved
e  Data Quality and Availability

The accuracy of building damage assessment heavily relies on the quality and avail-
ability of data. High-resolution satellite imagery, UAV footage, and LiDAR data are often
required but can be expensive and difficult to obtain promptly after a disaster. For example,
the presence of speckle noise in SAR images poses another limitation. Despite filtering,
speckle noise cannot be completely removed and affects the accuracy of the features used
for classification. Additionally, the presence of obstructions such as debris or weather
conditions can impede data collection, leading to incomplete or inaccurate assessments.
Collecting data during extreme disaster conditions, such as fires, is highly challenging.
For instance, UAVs encounter difficulties in fire disaster scenarios. Fire disaster scenarios
present several challenges, including harsh environmental conditions such as high tempera-
tures, smoke, and strong winds that can affect the UAVs’ flight stability. High temperatures
and smoke can limit their flying capacity and sensor effectiveness. Communication break-
downs and limited battery life further complicate continuous operations in these dangerous
zones. To obtain high-quality data, it is essential to address and overcome these challenges.

e Integration of Multiple Data Sources

Integrating data from various sensors, including optical, infrared, LiDAR, radar, and
ground-based observations, presents significant challenges. Advances in wireless sensor
technologies and computer vision-based monitoring techniques have significantly im-
proved our ability to gather and analyze these data [131]. However, each data type has
unique characteristics and limitations, requiring sophisticated algorithms and techniques
for effective fusion and analysis. The heterogeneity of these data sources complicates the
development of comprehensive damage assessment models. One primary issue is the in-
consistency in data formats, resolutions, and spectral characteristics across different sensors,
which complicates data fusion and analysis. Temporal synchronization is another challenge,
as data from various sources may be captured at different times, leading to discrepancies
in the observed phenomena. Additionally, the differing spatial resolutions can result in
misalignment issues when combining high-resolution data with lower-resolution datasets.
Processing and computational demands also increase significantly when handling large
volumes of multi-sensor data, necessitating advanced algorithms and substantial com-
puting resources. Effective integration requires addressing issues such as data alignment,
resolution differences, and varying levels of noise and reliability. Additionally, advanced
machine learning and data processing methods are essential to harmonize these disparate
data streams into a coherent, actionable framework. By overcoming these challenges,
more accurate and reliable models for damage assessment could be developed, enhancing
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the human capability to respond to disasters, maintain infrastructure, and plan urban
environments more effectively.

e  Processing and Analysis Complexity

The processing and analysis of large volumes of data from diverse sources such as
radar, LiDAR, and optical imagery in disaster management scenarios present substantial
challenges that require significant computational resources and specialized expertise. Each
of these data types brings its own set of complexities that compound the difficulty of
deriving accurate and actionable insights from the data. Radar, known for its capability to
penetrate atmospheric conditions and provide data regardless of weather or lighting, gen-
erates large volumes of complex data that include both phase and amplitude information.
The handling of these data necessitates advanced algorithms capable of distinguishing
meaningful patterns from noise, which are critical for accurate disaster assessment. High-
performance computing (HPC) systems are essential for processing these data efficiently,
due to the sheer volume and the need for real-time analysis. These systems must not only
have robust storage solutions to manage the data but also powerful processors to facilitate
rapid and timely analysis. The real-time processing requirements of radar data add another
layer of complexity, demanding optimized algorithms and parallel processing techniques
to effectively manage the continuous inflow of data. Additionally, noise reduction, cali-
bration, and correction of atmospheric effects are crucial steps that further increase the
computational burden.

LiDAR data, while offering unmatched precision in topographical information, gen-
erate vast amounts of point cloud data that require extensive processing. Constructing
accurate 3D models from these data involves intricate algorithms for noise reduction, data
filtering, and feature extraction. These processes are computationally intensive and require
sophisticated software that can accurately differentiate relevant features from irrelevant
data. The precision of LiDAR data is pivotal in scenarios where detailed spatial analy-
sis is required, such as assessing the structural integrity of buildings or mapping terrain
deformations after a natural disaster. Optical imagery complements the data provided
by radar and LiDAR by offering high-resolution visual information. This type of data is
invaluable for tasks such as assessing visible damage, monitoring recovery progress, and
planning rescue missions. However, processing optical imagery also involves significant
challenges. The tasks of image stitching, alignment, and classification are computationally
demanding and require sophisticated image processing software. Handling large datasets,
especially those covering extensive disaster-affected areas, demands not only advanced
computational capabilities but also extensive data management strategies to ensure that
the data can be processed and analyzed in a timely manner.

5.2. Future Directions

e Advanced-Data Fusion Techniques

Future research should prioritize the development of more sophisticated data fusion
techniques that can effectively integrate various types of sensor data. This integration is
essential for creating comprehensive and accurate models for applications such as damage
assessment, environmental monitoring, and infrastructure management. One of the key ar-
eas to focus on is the advancement of artificial intelligence (AI) and machine learning (ML)
algorithms to handle heterogeneous data sources like remote sensing, satellite imagery, etc.
Employing advanced ML algorithms could be pivotal in addressing the complexities of dis-
aster assessment data, which often encompass heterogeneous data sources such as remote
sensing and satellite imagery. Integrating diverse data from multiple sensors—including
optical imagery, LiDAR, and thermal data—can be achieved through the development of
robust ML models, leading to more accurate and reliable damage assessments. One of the
primary challenges in disaster assessment is the effective combination and interpretation of
data from various sensors. For instance, optical imagery provides high-resolution visual
data, which are valuable for identifying surface-level damage. LiDAR offers detailed
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topographical information, essential for assessing structural deformations and landscape
changes. Thermal data, on the other hand, help in detecting heat anomalies that can indi-
cate ongoing fires or human activity in disaster zones. Integrating these data types requires
sophisticated ML techniques capable of handling their inherent variability and complexity.

For potential improvements involving the integration of multi-modal data and the devel-
opment of more robust Al models, convolutional neural networks (CNNSs) and recurrent neural
networks (RNNs) can be used to create a multi-modal deep learning framework [132-134]. This
framework aims to combine data from diverse sources, such as satellite imagery, UAV
footage, LiDAR scans, social media posts, and ground-based observations, ensuring a com-
prehensive analysis of post-disaster scenarios [135-137]. The integration of these varied
data types enhances the model’s ability to capture a wide range of damage indicators, from
structural deformations visible in satellite images to detailed surface damage captured
by UAVs. The primary benefit of this approach lies in its robustness and adaptability to
chaotic post-disaster environments. By leveraging the strengths of each data source, the
model can provide more accurate and timely assessments, crucial for effective disaster
response and resource allocation. Furthermore, the use of advanced Al techniques enables
the system to process and analyze large volumes of data rapidly, facilitating real-time
decision-making and significantly improving the efficiency and effectiveness of disaster
management practices. Another critical aspect is the development of user-friendly software
tools and platforms that can facilitate the implementation of these advanced data fusion
techniques. These tools should be designed to handle large volumes of data and provide
real-time processing capabilities, making them accessible to a wide range of users, including
scientists, engineers, and decision-makers.

e  Real-Time Data Processing

Real-time processing is an advanced technology that integrates the rapid capture,
processing, and export of data. This method ensures that data are handled almost instanta-
neously, providing immediate insights and responses [138]. It involves the fast acquisition,
integration, and analysis of diverse data streams, utilizing cutting-edge technologies such as
sensors, satellite imagery, drones, ground-based sensors, and sometimes even social media
feeds. The significance of real-time data processing capabilities, especially in urban disaster
response cannot be overstated. Enhancing real-time data processing capabilities is crucial
for timely disaster response, particularly in densely populated areas where deploying
disaster relief quickly is challenging. Rapid data analysis allows for the quick identification
of disaster-affected areas, enabling targeted deployment of resources and minimizing the
time taken to reach those in need. Technologies such as the Internet of Things (IoT) play a
pivotal role in this process by providing continuous streams of data from various sensors
deployed throughout a city [139]. Advanced algorithms, powered by Al and machine
learning, can be designed to handle these large and diverse data sets efficiently. These
algorithms need to be capable of identifying critical patterns and anomalies that indicate
disaster impacts, such as structural damage, flooding, or fires, and provide this information
instantly to decision-makers [51]. For instance, in the event of an earthquake, real-time data
from seismographs, satellite images, and social media can be fused to create an immediate
and accurate picture of the affected areas.

Cloud computing and edge computing technologies can play a vital role in achiev-
ing these capabilities, providing the necessary computational power and ensuring data
availability and redundancy. In addition to technical advancements, collaboration between
various stakeholders, including government agencies, non-profits, and private sector com-
panies, is essential. Sharing data and resources can enhance the effectiveness of real-time
disaster response systems, ensuring that the most accurate and up-to-date information is
available to all parties involved. Future efforts should focus on developing faster and more
efficient algorithms that can process and analyze data in real time, providing immediate
and actionable insights to emergency responders. This is especially important in urban
areas, where the complexity and density of the infrastructure can significantly hinder rescue
and relief operations.
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e Improving Model Generalization

Developing models that can generalize well across different disaster scenarios and
geographic regions is essential for effective disaster response and management. This
involves training models on diverse datasets and incorporating transfer learning techniques
to improve their adaptability and performance in new, unseen environments. Residential
buildings, which are often most at risk during disasters, vary significantly in their structural
characteristics across different societies and regions, adding to the complexity of creating
robust and versatile models. That is why developing training models on diverse datasets
is a critical step in ensuring that they can handle various types of disasters, such as
earthquakes, floods, hurricanes, and wildfires, in different geographic locations. These
datasets should include data from past disasters, encompassing various types of buildings,
infrastructure, and environmental conditions. By exposing models to a wide range of
scenarios during training, we can enhance their ability to generalize and perform accurately
when faced with new and unforeseen disaster situations. In this case, transfer learning
can be a powerful technique. Transfer learning can enhance the adaptability of models by
pre-training them on a large, diverse dataset and then fine-tuning them on a smaller, specific
dataset related to the target disaster scenario or geographic region. This approach leverages
knowledge from the broader dataset to improve performance in the specific context, making
the model more effective in real-world applications. By utilizing knowledge from past
disaster events, transfer learning enhances model generalization in disaster response
applications, improving performance on new, unseen disasters. It addresses domain gaps
and distribution shifts inherent in different disaster scenarios, such as varying locations,
damage types, and climatic conditions. Pretraining models on diverse datasets from
previous disasters enables the extraction of generic features applicable to new disaster
contexts. Fine-tuning the models with a limited number of annotated samples from the
current disaster allows for quick adaptation and improved accuracy in damage assessment.
This process reduces the need for extensive manual annotation, which is time-consuming
and costly, and ensures reliable predictions under urgent conditions, supporting timely
and effective disaster response efforts [140-142].

Incorporating data on residential structures is also crucial, as these are often the most
vulnerable during disasters. Different societies have distinct residential building designs,
materials, and construction practices, which influence how buildings respond to various
types of disasters. For instance, the earthquake resistance of buildings in Japan, which
commonly use flexible materials and advanced engineering techniques, differs significantly
from that of buildings in less earthquake-prone areas. Therefore, models must account for
these differences to provide accurate damage assessments and risk predictions.

Moreover, integrating advanced simulation techniques, such as finite element mod-
eling and agent-based modeling, can help in understanding the impact of disasters on
different types of residential structures. These simulations can generate synthetic data to
supplement real-world datasets, further enhancing the robustness of the models.

e  Enhancing UAV Capabilities

Enhancing current UAV technologies with additional features is crucial for improving
their accuracy and effectiveness in disaster assessment. Integrating advanced capabilities
into UAVs will not only make them more versatile but also enable them to provide more
detailed and reliable data during disaster response efforts. One of the primary limitations of
current UAV technology is battery life. Extending the flight duration of UAVs is crucial for
covering larger areas and conducting thorough assessments without the need for frequent
recharging or battery replacement. Research into more efficient energy storage solutions,
such as advanced lithium-ion batteries, fuel cells, or even solar-powered UAVs, can help
achieve longer flight times. Payload capacity is another critical factor that determines the
effectiveness of UAVs in disaster scenarios. Increasing the payload capacity allows UAVs
to carry more advanced sensors, such as high-resolution cameras, LiDAR, thermal imaging
devices, and multispectral sensors. This expanded sensor suite can provide comprehen-
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sive data on the disaster’s impact, including structural damage, thermal anomalies, and
environmental changes. Developing sophisticated algorithms for autonomous flight, ob-
stacle avoidance, and real-time decision-making can enable UAVs to navigate challenging
terrains and reach areas that are difficult for human responders to access. Integrating Al
and machine learning techniques can further enhance UAVs’ ability to adapt to changing
conditions, such as shifting debris, adverse weather, or extreme disaster conditions like
firebreak. UAVs can be adapted by equipping them with robust sensors designed for
extreme conditions and employing advanced algorithms for real-time data processing and
decision-making. Enhancing communication systems to ensure stable connection technolo-
gies, such as 5G or satellite-based connectivity, can enhance real-time data transmission
between UAVs and ground control stations, ensuring emergency responders receive timely
and accurate information and developing more efficient power sources or battery-swapping
mechanisms can also improve UAV operations in fire disaster scenarios. Future research
should focus on heat-resistant materials, improved cooling systems, and sensors capable of
operating in high-temperature environments. These improvements will enable UAVs to
quickly assess damage, identify areas needing immediate assistance, and provide valuable
data for emergency responders.

e  Training for the Rescue Team/Disaster Management Team

Even with advancements in technology, the goals of disaster reconnaissance cannot
be fully realized if the personnel or rescue teams lack the necessary skills to utilize the
technology effectively. This gap in skills can lead to delays in rescue operations, potentially
endangering lives and worsening the impact of the disaster. Identifying critical structures,
such as damaged buildings during emergency situations, remains a challenge without
proper training. Virtual reality (VR) offers a promising solution for equipping rescue
teams with the skills needed for such tasks. It has been widely utilized by researchers to
explore and enhance the effectiveness of training for disaster preparedness [143], hazard
identification [144], evacuation drills [145], and much more. VR simulation can dynamically
present the progression of a situation, aiding participants in comprehending their decision-
making process [146,147]. By analyzing historical disaster data and integrating synthetic
data, VR can be used to create immersive training scenarios that enhance the knowledge
and skills required for assessing critical building structures in disaster reconnaissance. This
technology can enable trainees to experience various disaster scenarios in a controlled,
repeatable environment, significantly enhancing their ability to react and adapt in real-life
situations [148]. The use of VR has shown tremendous potential in improving knowledge
retention and practical skills through experiential learning. For example, simulations can
replicate the chaos and complexity of natural disasters like earthquakes, floods, hurricanes,
and wildfires, allowing team members to practice critical decision-making, communication,
and coordination without the risk of real-world consequences. This hands-on approach
enables participants to develop muscle memory and refine their strategies, leading to
more effective and timely responses during actual disasters [149]. VR training can lead
to better preparedness, increased confidence, and enhanced situational awareness among
participants, as they can repeatedly practice and refine their responses to a variety of
disaster scenarios.

Moreover, VR training facilitates the evaluation of individual and team performance,
providing valuable feedback that can be used to identify areas for improvement and further
customize training programs. Additionally, VR training is cost-effective compared to large-
scale real-life drills, making it accessible for widespread use across various organizations
and regions, including those with limited resources [150]. By providing a safe yet realistic
platform for disaster response training, VR helps build more resilient and effective disaster
management teams. It allows for the simulation of rare or complex disaster scenarios that
might be difficult to practice in real life, ensuring comprehensive preparedness. Further-
more, VR can simulate the emotional and psychological stress experienced during disasters,
helping trainees develop coping mechanisms and resilience. This holistic approach en-
sures that disaster management teams are not only technically proficient but also mentally
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prepared to handle high-pressure situations. Ultimately, VR contributes to better disaster
preparedness and response outcomes, reducing the potential for loss of life and property,
and enhancing the overall safety and resilience of communities.

6. Conclusions

In conclusion, this comprehensive bibliometric review of post-disaster building dam-
age assessment and reconnaissance methods highlights the significant advancements and
challenges within this critical field. The findings on global collaboration and scholarly
impact in the field of disaster reconnaissance highlight several key benefits. Firstly, the
comprehensive analysis of the global citation network and the geographical distribution
of publications underscores the interconnectedness of research efforts worldwide. This
interconnectedness facilitates the sharing of knowledge, technologies, and methodologies,
thereby accelerating advancements in disaster reconnaissance. Moreover, the collaboration
across different regions allows for a diverse range of perspectives and expertise, which
enhances the robustness and applicability of research findings. Disaster is a global phe-
nomenon, affecting millions of people each year and resulting in significant economic
losses worldwide. Understanding the geographical distribution of publications helps
researchers and policymakers identify regions with significant contributions and those
that may require more attention and support. This awareness can guide targeted efforts
to strengthen research capabilities and disaster response strategies globally. Additionally,
such analyses help to understand different approaches around the world to fight disasters
and improve preparedness. The global citation network will help identify critical papers,
and the distribution of publications will help understand the study areas and affected
regions. Ultimately, the enhanced global collaboration fosters a more resilient and prepared
international community, better equipped to mitigate the impacts of natural disasters and
improve recovery efforts.

The increasing frequency and severity of natural disasters necessitate robust and
efficient methodologies for assessing building damage, which is pivotal for effective dis-
aster management and mitigation strategies. This review underscores the importance of
leveraging advanced technologies such as satellite imagery, and UAVs in conjunction with
machine learning and deep learning techniques. These technologies have revolutionized
the way researchers collect and analyze data, providing high-resolution, accurate, and
timely information crucial for disaster response. Optical satellite imagery, despite its limita-
tions under adverse weather conditions, remains a widely used tool due to its extensive
coverage and frequent revisit times. Synthetic aperture radar (SAR), with its all-weather
and night-time operational capabilities, offers a reliable alternative, especially in detecting
structural deformations. LiDAR, known for its precise 3D mapping capabilities, proves
invaluable for detailed structural analysis and damage assessment. The integration of these
diverse data sources presents significant challenges, particularly in terms of data fusion
and processing. Developing sophisticated algorithms that can effectively merge data from
optical, infrared, LiDAR, radar, and ground-based observations is essential for creating
comprehensive damage assessment models. Moreover, this review highlights the need
for real-time data processing capabilities to provide immediate insights for emergency
responders, thereby enhancing the effectiveness of disaster response efforts.

One of the standout insights from this review is the evolving role of machine learning
and deep learning technologies in enhancing the accuracy and efficiency of building
damage assessments. Innovative applications of convolutional neural networks (CNNs)
and transfer learning have demonstrated significant potential in processing large datasets
and rapidly adapting to unfamiliar disaster scenarios. These advancements facilitate
more precise damage evaluations in real-time, which are critical for effective response and
recovery operations. They also play a crucial role in long-term urban planning and resilience
building, offering tools that can predict potential damage and optimize urban layouts to
mitigate future disaster impacts. Future research directions should focus on overcoming the
challenges identified through this review and exploring groundbreaking solutions. There
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is a particular need to enhance UAV capabilities, such as extending flight durations and
increasing payload capacities, which would revolutionize data collection, especially in areas
that are difficult to access following a disaster. Moreover, the development of user-friendly
software tools and platforms for data fusion and real-time processing is essential. These
tools would democratize the use of advanced technologies, making them accessible and
practical for a broader range of stakeholders, including local governments, emergency
responders, and community planners.

In conclusion, although significant strides have been made in the field of post-disaster
building damage assessment, there remains a wealth of opportunities for further research
and technological innovation. Addressing the highlighted challenges and leveraging the
potential of emerging technologies will enable the development of more effective and
efficient disaster management practices. Such progress is vital for enhancing the resilience
and safety of communities worldwide, equipping them with the necessary tools and
knowledge to better predict, respond to, and recover from disastrous events.
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