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Abstract
Signal analysis plays a preeminent role in neuroethological research. Traditionally, signal identification has been based on 
pre-defined signal (sub-)types, thus being subject to the investigator’s bias. To address this deficiency, we have developed a 
supervised learning algorithm for the detection of subtypes of chirps—frequency/amplitude modulations of the electric organ 
discharge that are generated predominantly during electric interactions of individuals of the weakly electric fish Apteronotus 
leptorhynchus. This machine learning paradigm can learn, from a ‘ground truth’ data set, a function that assigns proper 
outputs (here: time instances of chirps and associated chirp types) to inputs (here: time-series frequency and amplitude data). 
By employing this artificial intelligence approach, we have validated previous classifications of chirps into different types 
and shown that further differentiation into subtypes is possible. This demonstration of its superiority compared to traditional 
methods might serve as proof-of-principle of the suitability of the supervised machine learning paradigm for a broad range 
of signals to be analyzed in neuroethology.

Keywords  Signal analysis · Artificial intelligence · Supervised learning · Chirping behavior · Weakly electric fish · 
Apteronotus leptorhynchus

Introduction

Signals as vehicles for transmission of information from a 
sender to a receiver play a pivotal role in animal communi-
cation (Bradbury and Vehrencamp 2011). Broadcasting of 
signals is mediated by a variety of sensory channels, such as 
visual, acoustic, tactile, chemical, and electric. Diversity of 
signals, either within one sensory modality or by activation 
of several sensory channels, enables animals to use different 
signals for different behavioral functions. Within one sen-
sory modality, signal diversity is often achieved by modu-
lation of a generic type of signal. For example, different 
acoustic signals can be produced by temporal frequency and 

amplitude modulations, and even rather subtle differences 
can have profoundly different functional effects (Schwartz 
et al. 2007; Feng et al. 2009; Hechavarría et al. 2020).

While acoustic signals are displayed intermittently only 
(although sometimes for prolonged periods at high rates), 
some electric fishes produce a generic form of electric signal 
continuously throughout life. This group includes the brown 
ghost knifefish (Apteronotus leptorhynchus), a species of the 
taxonomic order Gymnotiformes that has been intensively 
studied as model organisms in ethology and neuroethology.

Apteronotus leptorhynchus generates such continuous 
electric discharges with its electric organ composed of modi-
fied axonal terminals of spinal motoneurons (for review see 
Zupanc and Bullock 2005). The synchronous depolariza-
tion of these so-called electrocytes produces electric pulses 
separated by short inter-pulse intervals. This results in the 
appearance of a continuous, wave-like signal, commonly 
referred to as electric organ discharge (EOD). The frequency 
at which the fish generates the EOD train is determined, in 
a one-to-one fashion, by the frequency of the neural oscil-
lations of a central pattern generator in the medulla oblon-
gata, the pacemaker nucleus. Within the species-specific 
frequency range of 650–1000 Hz, males discharge at higher 
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frequencies than females, with little overlap between the 
sexes (Meyer et al. 1987; Zupanc et al. 2014). Owing to this 
sexual dimorphism, the EOD contains information about the 
sex of its sender.

Whereas the species as whole occupies a broad EOD fre-
quency range, the frequency of the discharges of a given 
individual within this frequency band is highly constant, as 
indicated by the coefficient of variation [cv = (standard devi-
ation / mean) × 100 (%)], which assumes values of less than 
0.2% over 30-min (Eske et al. 2023). Nevertheless, transient 
modulations may occur, resulting in diversification of the 
generic EOD signal. The best-characterized type comprises 
chirps. In isolated individuals of A. leptorhynchus, chirps are 
very rarely produced, on average less than once per 10 min 
(Engler et al. 2000; Zupanc et al. 2001; Eske et al. 2023). 
However, during stimulation with the EODs of conspe-
cific fish or with electric signals mimicking such EODs, or 
after administration of certain drugs, chirp production may 
increase one-thousand-fold to rates as high as 2 s−1 (Zupanc 
and Maler 1993; Engler and Zupanc 2001; Eske et al. 2023).

Chirps last between some tens and a few hundred mil-
liseconds and involve complex frequency and amplitude 
modulations. Six distinct chirp types have been identified 
(Engler et al. 2000; Zupanc et al. 2006). They are defined by 
differences in duration, extent of the frequency and ampli-
tude modulations, as well as additional features, such as the 
presence or absence of an undershoot before the frequency 
returns to baseline levels as evident in time-frequency plots. 
The usefulness of these features for differentiating differ-
ent chirp types has been shown in several other studies (Ho 
et al. 2013a, b; Turner et al. 2007; Oboti et al. 2023). Most 
notably, by employing this approach, a comparative analysis 
revealed an enormous diversity of chirp signals in 13 species 
of apteronotids, which included not only variation across 
species but also between congeners and populations of the 
same species (Turner et al. 2007).

In A. leptorhynchus, spontaneously produced chirps are 
predominantly of type 1, whereas most chirps evoked by 
the EODs of a neighboring fish (or mimics of such electric 
signals) or by proper pharmacological stimulation belong to 
the type 2 category (Engler et al. 2000; Zupanc et al. 2006; 
Eske et al. 2023). Both type 1 and type 2 chirps are rather 
short (duration approximately 20 ms) but distinct in terms 
of the degree of frequency increase (400 Hz versus 100 Hz) 
and amplitude reduction (approximately 50% versus <10%). 
Longer chirps of type 3–6 are, most typically, generated by 
older individuals and directed to fish of the other sex.

While chirps can be elicited from either sex, at similar 
rates, through application of pharmacological agents (Eske 
et al. 2023), during electric interaction with conspecifics or 
in response to electric stimuli mimicking a fish’s EOD males 
chirp at much higher rates than females (Zupanc and Maler 
1993; Dulka and Maler 1994; Dunlap et al. 1998; Dunlap 

2002; Triefenbach and Zakon 2003; Hupé and Lewis 2008). 
In addition, chirps are optimally evoked by electric stimuli 
with frequencies within ±10 Hz of the fish’s EOD frequency 
(Engler and Zupanc 2001). Thus, type 2 chirps are typically 
exchanged by males. Moreover, the chirps produced by two 
electrically interacting fish are not independent of each other 
(Zupanc et al. 2006). Instead, the chirps generated by one 
fish follow the chirps of the other individual with a preferred 
latency of roughly 500–1000 ms (Zupanc et al. 2006). This 
‘echo response’ may serve a communicatory function during 
social interactions, such as aggressive encounters.

Traditionally, different chirp types have been identified 
and quantified by visual inspection of time–voltage and 
time–frequency plots (e.g., Engler et al. 2000; Engler and 
Zupanc 2001; Zupanc et al. 2001; Dunlap and Larkins-Ford 
2003; Zupanc et al. 2006; Kolodziejski et al. 2007; Hupé and 
Lewis 2008; Smith and Combs 2008; Dunlap et al. 2011; 
Gama Salgado and Zupanc 2011; Neeley et al. 2018). In 
addition, threshold-based algorithms (Bastian et al. 2001; 
Aumentado-Armstrong et al. 2015; Henninger et al. 2018; 
Allen and Marsat 2019; Field et al. 2019) and a method 
based on assumed chirp waveform (Eske et al. 2023) have 
been used for chirp detection. Whereas these approaches 
can be successfully employed for the identification of pre-
defined chirp types, the definition of chirp categories is 
subject to the investigator’s bias. Moreover, such approaches 
do not allow detection of possible additional chirp types that 
remained unnoticed previously.

To address these deficiencies, we have, in the present 
study, developed a supervised learning algorithm. 
Supervised learning is a machine learning paradigm (Bishop 
2006) used across many disciplines. Its goal is to learn, from 
a “ground truth” (GT) data set, a function that assigns proper 
outputs (in the present study: time instances of chirps and 
associated chirp types) to inputs (in the present study: time-
series frequency and amplitude data). While we demonstrate 
the suitability of this machine learning paradigm for the 
unbiased analysis of chirps produced by A. leptorhynchus, 
we propose that similar approaches can be successfully 
applied to signal analysis in a variety of other ethological 
and neuroethological systems.

Materials and methods

EOD recording

For the present investigation, time–voltage recordings of the 
EOD containing chirps generated spontaneously or evoked 
pharmacologically were analyzed. These data had been col-
lected as part of a previous study examining the effect of 
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urethane anesthesia on EOD frequency and chirping behav-
ior in A. leptorhynchus (Eske et al. 2023).

Eight fish (total lengths: median, 116  mm; range 
107–143 mm; body weights: median, 2.9 g; range 2.5–4.8 g) 
were used. Their EOD baseline frequencies varied between 
683 Hz and 868 Hz (normalized to frequency values expected 
at 26 ◦ C, using a Q 10 of 1.56). The morphological data and 
EOD frequencies indicate that the fish were approximately 1 
year old and included both males and females (Ilieş et al. 2014; 
Zupanc et al. 2014).

Details of the experiments and the recording technique 
are given in Eske et al. (2023). Briefly, each fish was kept in 
an isolation tank in which a cylindrical plastic tube provided 
shelter. Differential recording of the fish’s EOD was done 
through a pair of stainless-steel electrodes mounted on the 
inside of the tube. During recording, the two open ends of the 
tube were closed with a coarse plastic mesh netting to ensure 
that the fish did not leave the tube.

The EOD of each fish was recorded for 30 min before, 
and 180 min immediately after, general anesthesia. State of 
anesthesia was induced by transferring the fish into a glass 
beaker containing 2.5% urethane dissolved in water from 
the fish’s isolation tank. During the pre-anesthesia session, 
spontaneous chirps occurred but at very low rates of approx-
imately 1 chirp/30 min. Anesthesia induced a tremendous 
increase in chirping behavior, resulting, on average, in 1500 
chirps during the 30 min immediately following anesthesia.

For the present analysis, the 30-min-pre-anesthesia record-
ings, and the 180-min-post-anesthesia recordings, of the 8 fish 
were combined, yielding a total of 1680 min of EOD record-
ing. Employing the supervised learning algorithm, a total of 
30,734 chirps were detected in these combined recordings.

Calculation of EOD frequency and amplitude

The sampled voltage data 
(
ti, vi

)
 , i = 1,… ,Mv , were 

exported from Spike 2 and processed in MATLAB version 
R2021b. These data were filtered in 3-s windows with 
2-s overlap using a bandpass filter with frequency band 
[0.5, 1.5] × f0 , where the fundamental frequency f0 in each 
3-s window was determined based on the power spectrum of 
the signal using fast Fourier transform and the “findpeaks” 
function of MATLAB.

Based on the zero-crossings of the filtered signal, we 
then computed the time, frequency, and amplitude values (
Tk, fk,Ak

)
 associated with each k = 1,… ,M, oscillation 

interval (for details, see Appendix A). An example of com-
puted time-series data of frequency and amplitude is shown 
in Fig. 1.

Chirp detection by supervised learning

“Ground Truth” data set

Data collection
Tuples of equal-time-length time-series data segments

were collected from each recording r = 1,… , nr , where nr 
is the total number of EOD recordings, and superscript ◻(r) 
indicates association with recording r. The time length of 
segments was determined as ΔT =

(
Tend − Tstart

)
∕ns . The 

values of parameters Tstart, Tend, ns, nr , used for the genera-
tion of time-series data segments are provided in Table 1.

Using the MATLAB tool shown in Fig. 2, a person 
previously trained to identify chirps collected all chirp 
instances from each segment Si for all indices i ∈ iGT , 
where the elements of subset iGT ⊂

{
1,… , nsnr

}
 , with 

nGT = ||iGT|| (see Table 1), were randomly chosen, without 
replacement.

Although for each data point only time and frequency 
values were displayed during data collection (see Fig. 2), 
the associated amplitude values were also stored in the 
GT set of chirps

where 
{
Ti,j, fi,j,Ai,j

}
 is the j-th data point of the i-th GT 

chirp sample, li denotes the number of data points in the i-th 
sample, and n is the total number of samples.

Data processing
The person who collected chirp samples was instructed to 
include, in each sample, data points prior to and after chirp-
ing, associated with the non-modulated, instantaneous “base” 
frequency of the fish. Hence, we assumed that each sample 
includes both pre and post-chirp data points and estimated the 
“base” frequency and amplitude of each sample i as

where nmed < min
i
(li∕2) is an arbitrarily chosen positive 

integer which we set to nmed = 10 . We normalized each 
sample i = 1,… , n with respect to the maximum frequency 
rise according to

(1)

Sns(r−1)+j=
({

T
(r)

k
, f

(r)

k
,A

(r)

k

}
∶ T

(r)

k
∈
[
Tstart + (j − 1)ΔT , Tstart + jΔT

]
,

k = 1,… ,M − 1), j = 1,… , ns,

(2)G =
{({

Ti,j, fi,j,Ai,j

})li
j=1

}n

i=1
,

(3)fbase,i = median
({

fi,j
}nmed

j=1
,
{
fi,li−j+1

}nmed

j=1

)
,

(4)Abase,i = median
({

Ai,j

}nmed

j=1
,
{
Ai,li−j+1

}nmed

j=1

)
,
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and with respect to the base amplitude as

(5)�i,j =
fi,j − fbase,i

max
j∈{1,…,li}

(
fi,j
)
− fbase,i

, j = 1,… , li,

Then, we centered the time values of each sample according 
to

(6)ai,j =
Ai,j − Abase,i

Abase,i

, j = 1,… , li.
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where rectifier

with

was applied for the elimination of noise and to highlight 
“meaningful” parts of the frequency sample. Here sd(⋅) 
denotes the standard deviation, 𝜑̄i is the cutoff value of 
normalized frequency associated with sample i and � = 50 
is an arbitrarily chosen smoothing parameter.

Using the empirical cumulative distribution Hi,⋅ of recti-
fied frequency values h

(
�i,⋅

)
 , we trimmed each sample, such 

that only the data points j within interval T̃i,j ∈
[
−3ΔT̃i, 3ΔT̃i

]
 

were kept, with

(7)T̃i,j ∶= Ti,j − Ti,jcen,i , j = 1,… , li,

(8)jcen,i = argmin
k

(||||
Hi,k −

1

2

||||

)
,

(9)Hi,k =

∑k

j=1
h
�
�i,j

�

∑li
j=1

h
�
�i,j

� , k = 1,… , li,

(10)h
(
𝜑i,j

)
=

ln
(
1 + e𝛿(|𝜑i,j|−𝜑̄i)

)

𝛿 − 𝛿𝜑̄i

,

(11)𝜑̄i = 4max
(
sd
({

𝜑i,k

}nmed

k=1

)
, sd

({
𝜑i,li−k+1

}nmed

k=1

))
,

(12)ΔT̃i = T̃i,j+
i
− T̃i,j−

i
,

Note that here ΔT̃i is the difference between the 90% and 
10% percentile estimates of the empirical cumulative distri-
bution Hi,⋅ . The above described data processing method is 
illustrated in Fig. 3.

Grouping and resampling
Because our supervised learning method requires uniform 
size among GT samples, we grouped and resampled all GT 
samples according to the number of data points that formed 
the individual GT samples.

After trimming, the size of each GT sample was roughly 
commensurate with the length of the associated chirp. To 
distinguish between chirps whose duration have different 
time scales, we divided GT samples into three groups and 
resampled the members of each r group such that associated 
samples contained 10r + 1 number of points:

Here we utilized the fact that all data points inside any GT 
sample can be located within the associated recording’s 
time-frequency-amplitude data. For example, if we know 
that Ti,1 and Tq are from the same recording and that Ti,1 = Tq , 
then we can find any other point j associated with sample i: (
Ti,j, fi,j,Ai,j

)
=
(
Tq+j−1, fq+j−1,Aq+j−1

)
.

Note that chirps typically have a duration shorter than 
0.5 s, and the highest EOD frequency in A. leptorhynchus 
is approximately 1000 Hz, therefore GT sample groups Gr , 
r = 1, 2, 3, are able to capture the full length of all chirps.

Training

Principal component analysis
After resampling, we recomputed, according to Eqs. 3–6, 
t he  nor mal ized  f requenc ies  and  ampl i tudes (
�i,jcen,i+j

, ai,jcen,i+j

)
, j = −10r∕2,… , 10r∕2 , of each chirp sam-

ple i in each GT group Gr . For ease of notation, in the fol-
lowing, we drop the shift jcen,i in the second subscript index.

For each r, we collected from Gr the normalized fre-
quency and amplitude values

(13)

j+
i
= argmin

k∈{1,…,li}

(||Hi,k − 0.9||
)
,

j−
i
= argmin

k∈{1,…,li}

(||Hi,k − 0.1||
)
.

(14)

Gr =

{{(
Ti,jcen,i+j, fi,jcen,i+j,Ai,jcen,i+j

)}10r∕2

j=−10r∕2
∶

|||
{
T̃i,j ∶ T̃i,j∈

[
−3ΔT̃i, 3ΔT̃i

]
, 1 ≤ j ≤ li

}|||∈
(
10r−1+1, 10r+1

]
,

1 ≤ i ≤ n}, r = 1, 2, 3.

Fig. 1   EOD frequency f (a) and amplitude A (b) with respect to time 
T in a recording involving urethane anesthesia (for details of com-
putation see Sect.  “Calculation of EOD frequency and amplitude”). 
After baseline recording, the tube with the fish was transferred from 
the home tank to a glass beaker containing 2.5% urethane solution 
dissolved in aquarium water. As soon as the fish stopped undulat-
ing its anal fin and moving its opercula, it was returned to the home 
tank (arbitrarily defined as time point T = 0 ). The gray bar indicates 
the time during which the fish was exposed to the anesthetic. Changes 
in the orientation and position of the fish relative to the record-
ing electrodes result in noisy amplitude signals (pre-anesthesia, and 
T >∼ 2000 s as shown in b). The reduction of noise immediately after 
anesthesia is related to the ceased movement of the fish. Note onset 
of type 2 chirping at higher rates immediately after anesthesia (a/A1, 
b/B1) that persists to approximately T = 4600 s after exposure to the 
anesthetic (a/A2, b/B2). The recorded signal contains both type 2 (a/
A1’, b/B1’) and type 1 (a/A2’, b/B2’) chirps. The latter is character-
ized by large rise and negative undershoot in frequency (a/A2’), as 
well as a large drop in amplitude (b/B2’). By contrast, the former is 
characterized by a smaller rise without undershoot in frequency (a/
A1’) and a smaller reduction in amplitude (b/B1’)

◂
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Fig. 2   Matlab tool built for 
collecting chirp samples from 
time-series frequency data 
(black dots). The user can select 
data points associated with a 
chirp by moving the cursor 
(intersection of black lines in a 
and c) to the two end points of 
the time interval delimiting the 
chirp instance. After selecting 
the time interval (red lines in b), 
the user must confirm the cur-
rent selection before proceeding 
to collect further data points 
(see dialog box in b). Follow-
ing the confirmation of the 
selection, data points associated 
with the selected time interval 
are stored and removed from the 
displayed data set (c). Once all 
displayed chirp instances have 
been collected, the user can 
move to the next (or previous), 
overlapping, time segment to 
collect the remaining chirp data 
points from the time-series 
frequency data segment
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of each sample i associated with the training set (for details 
about the training set, see Sect. “Cross-validation”) into a 
matrix Xr ∈ ℝ

mr×2(10
r+1) such that

where mr is the total number of samples in Gr associated 
with the training set. For the further ease of notation, in the 
following, we drop index r, as well.

We determined the principal components (PCs) 
p1,… , p2(10r+1), of X by performing the spectral 

(15)f(i)
r
=
[
�i,−10r∕2,… ,�i,10r∕2,

]T
,

(16)a(i)
r
=
[
ai,−10r∕2,… , ai,10r∕2

]T
,

(17)XT
r
=

[
f(1)
r

⋯ f(mr)
r

a(1)
r

⋯ a
(mr)
r

]
,

decomposition of XTX . Then we projected the training data 
set onto the space of the first N PCs, i.e., we computed

where PN =
[
p1,… , pN

]
.

Gaussian mixture model fitting
We modeled the projected data YT =

[
y(1),… , y(m)

]
 using the 

Gaussian mixture model (GMM)

where N
(
�c,�c

)
 is the multivariate normal distribution of 

the c-th mixture component with mean �c ∈ ℝ
N×1 and covar-

iance �c ∈ ℝ
N×N , while MC

(
p1,… , pC

)
 is a multinomial 

distribution with C number of categories and mixing pro-
portions p1,… , pC . We estimated the unknown parameters 

(18)Y = XPN ,

(19)y(i) ∼ N
(
�c,�c

)
, c ∼ MC

(
p1,… , pC

)
,

Fig. 3   Processing of “ground truth” samples (see Sect.  ““Ground 
Truth” data set”). Data points 

{(
Ti,j, fi,j

)}li

j=1
 of the i-th sample are 

plotted in a as black dots. The frequency values 
{
fi,j
}li

j=1
 are normal-

ized according to Eq. 5 and passed through the rectifier function (red 
curve) displayed in b. The green dashed lines in b and c display the 
cutoff value 𝜑̄i of the rectifier function. The centered and normalized 

data points 
{(

T̃i,j,𝜑i,j

)}li

j=1
 of the i-th sample (see Eqs. 5–11) are dis-

played in c as black dots together with the rectified normalized fre-
quencies (red curve) and their empirical cumulative distribution (blue 
curve). The 10% and 90% percentile estimates (blue, dashed lines 
in c) of this cumulative distribution determine the time width of the 
sample: ΔT̃i = T̃i,j+

i
− T̃i,j−

i
 . The sample is trimmed based on this time 

width (d) such that data points outside interval T̃i,j ∈
[
−3ΔT̃i, 3ΔT̃i

]
 

(delimited by black, dashed lines and marked by gray dots) are elimi-
nated
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� =
{
p1,… , pC,�1,… ,�C,�1,… ,�C

}
 of this GMM based 

on data Y using the “fitgmdist” function of MATLAB.

Elimination of outliers
After fitting the GMM, we assigned each data sample i to the 
cluster with maximum posterior probability, i.e., we com-
puted the cluster of sample i according to

for each i = 1,… ,m , where P(c|i) is the probability that 
sample i belongs to cluster c, given the observation y(i) . 
Then, we computed the coefficient of determination (CoD) 
of the frequency component of each sample with respect to 
its assigned cluster mean as

(20)ci = argmax
c∈{1,…,C}

(P(c|i)),

Here ‖⋅‖ denotes the L2 norm and

with 1 being a vector of 1-s.
We eliminated each cluster c for which the 5% percentile 

of associated CoD values 
{
R2
i
∶ ci = c, 1 ≤ i ≤ m

}
 was 

below threshold �R2 = 0.3 . Additionally, we eliminated each 
cluster c whose size |||

{
i ∶ ci = c, 1 ≤ i ≤ m

}||| was below 
threshold �c = 30.

Figure 4 illustrates the projected training data Y from 
G2 , with parameters N = 2 and C = 5 ; note the eliminated 
cluster.

Detection

Training yields PCs PN and GMM

where C∗ ≤ C is the number of kept clusters, with 
p̃c = p̂c∕

∑C∗

q=1
p̂q , and p̂c, �̂c, �̂c , being the estimated param-

eters of kept clusters c = 1,… ,C∗.
To detect chirps in recordings, we analyzed data points {(
Ti+j−1, fi+j−1,Ai+j−1

)}10r+1

j=1
 , i = 1,… ,M − 10

r in a moving 
time window containing 10r + 1 samples (see Fig. 5a). At 
each instance i, we computed normalized frequency and 
amplitude values

a c c o r d i n g  t o  f o r m u l a s  E q s .   3 – 6  w i t h (
Ti,j, fi,j,Ai,j

)
=
(
Ti+j−1, fi+j−1,Ai+j−1

)
 and li = 10r + 1.

Mahalanobis-distance-based detection
At each instance i, our Mahalanobis-distance-based (MDB) 
detection method first projects the normalized frequency and 
amplitude data onto the PCs according to

(21)R2
i
= 1 −

‖‖‖f
(i) − f̄ci

‖‖‖
2

‖‖‖f
(i) − f̄

(i)‖‖‖
2
.

(22)
[
f̄c, āc

]T
= PN�̂c,

(23)f̄
(i)
=

1

10r + 1

(
1Tf(i)

)
1,

(24)y(i) ∼ N

(
�̂c, �̂c

)
, c ∼ MC∗

(
p̃1,… , p̃C∗

)
,

(25)f(i) =
[
�i,1,… ,�i,10r+1,

]T
,

(26)a(i) =
[
ai,1,… , ai,10r+1

]T
,

Table 1   Parameter values used 
for generating time-series data 
segments S

i
 , i ∈ i

GT
 , from which 

“ground truth” chirp samples G 
were collected

Values of T
start

 and T
end

 were 
measured in time coordinates 
fixed to the start of recordings

Parameter (unit) Value

T
start

 (s) 3200
T
end

 (s) 6200
n
s
 (1) 10

n
r
 (1) 16

n
GT

 (1) 64

Fig. 4   Training data set projected to the space spanned by the first 
two principal components (PC1 and PC2). Circles with different 
colors correspond to clusters identified by the algorithm. Gray crosses 
correspond to samples in an eliminated cluster. The percentage-wise 
size of kept (circles) and eliminated (crosses) clusters is indicated at 
the top left corner, relative to the size of the training set
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then it determines the kept cluster which is most likely to 
generate y(i):

Afterward, our method computes the Mahalanobis distance

For any point generated by kept cluster ci , realizations d2
i
 

follow a chi-squared distribution with N degrees of freedom: 
D2

i
∼ �2

N
.

The MDB method collects all i instances, where the 
squared Mahalanobis distance is below threshold �d2 and the 
maximum frequency rise is above threshold �f  , into the tuple

Each contiguous segment in cMDB corresponds to an 
identified chirp. In each contiguous segment, we associate 
the identified chirp with the instance i that has lowest 
distance di . Threshold �d2 is determined based on a chosen 
level of significance � such that P

(
D2

i
< 𝜀d2

)
= 1 − 𝛼 . The 

MDB method is illustrated in Fig. 5b.

Coefficient-of-determination-based detection
At each instance i, our coefficient-of-determination-based 
(CDB) detection method computes the CoD of the frequency 
component with respect to each kept cluster mean according to

using formulae Eqs. 22–23, and assigns instance i to the 
cluster with highest CoD value:

Afterward, the CDB method collects all instances into the 
tuple cCDB where the CoD value and the maximum frequency 
rise are both above thresholds �R2 and �f  , respectively:

(27)y(i) = PT
N

[
f(i)

a(i)

]
,

(28)ci = argmax
j∈{1,…,C∗}

(P(j|i)).

(29)di =

√
(
y(i) − �̂ci

)T
�̂
−1

ci

(
y(i) − �̂ci

)
.

(30)
cMDB =

(
i ∶ d2

i
< 𝜀d2 , max

1≤j≤10r+1

(
fi,j
)
− fbase,i > 𝜀f ,

i = 1,… ,M − 10r − 1 ).

(31)R2
i,c

= 1 −

‖‖‖f
(i) − f̄c

‖‖‖
2

‖‖‖f
(i) − f̄

(i)‖‖‖
2
, c = 1,… ,C∗,

(32)ci = argmax
c∈{1,…,C∗}

(
R2
i,c

)
.

(33)
cCDB =

(
i ∶ R2

i,ci
> 𝜀R2 , max

1≤j≤10r+1

(
fi,j
)
− fbase,i > 𝜀f ,

i = 1,… ,M − 10r − 1 ).

Similarly to the MDB method, identified chirps are 
associated with contiguous segments in cCDB . In each 
contiguous segment, the identified chirp is assigned to the 
instance i that has the highest R2

i,ci
 value. The CDB method 

is illustrated in Fig. 5c.

Chirp detection based on assumed chirp waveform

In order to assess the performance of the two algorithms 
detailed above, we chose, as a reference, the time-frequency-
shape-based (TFSB) chirp detection algorithm described 
in (Eske et al. 2023). This algorithm is based on the chirp 
waveform function

which is assumed to characterize, during chirps, the nor-
malized frequency � with respect to time T̃  . This function 
is parameterized by a single parameter 𝛼̃ that controls chirp 
duration (see Fig. 6).

The TFSB algorithm has 7 hyper-parameters, out of which 
we fixed 5 (see Table 2), and the remaining 2 we determined 
via cross-validation (see Sect. “Cross-validation”).

Cross‑validation

To determine the optimal hyper-parameter values hopt of 
detection algorithms, we used k-fold cross-validation. In 
particular, we randomized indices i ∈ iGT associated with 
time-series data segments Si and split them onto k number 
of equal-size folds: iGT,q ⊂ iGT , q = 1,… , k . For each 
iteration step q = 1,… , k, of cross validation, a single fold 
iGT,q was used as a test set for determining the performance 
of the algorithm, while the rest of the folds were used as a 
training set. Note that only the two supervised algorithms 
were trained (for details, see Sect. “Training”), while the 
TFSB algorithm did not involve any training (Eske et al. 
2023). The performance of each algorithm was determined 
by computing the false positive and false negative rates for 
each iteration step q = 1,… , k , as

(34)𝜑
(
T̃;𝛼̃

)
=

2e𝛼̃T̃

1 + e2𝛼̃T̃
,

(35)

FPq =

∑
s∈iGT,q

mA,s∑
j=1

1

�����

�
i ∶ T̂

(s)

j
∉
�
T
(s)

i,1
, T

(s)

i,li

�
, 1 ≤ i ≤ mGT,s

�����
=mGT,s

�

∑
s∈iGT,q

mA,s

,

(36)

FNq = 1 −

∑
s∈iGT,q

mGT,s∑
i=1

1

�����

�
j ∶ T̂

(s)

j
∈
�
T
(s)

i,1
, T

(s)

i,li

�
, 1 ≤ j ≤ mA,s

�����
>0

�

∑
s∈iGT,q

mGT,s

,
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where 1(⋅) is the indicator function, T̂ (s)

j
 denotes the j-th time 

instance of chirps detected by the algorithm in time-series data 
segment Ss , while T (s)

i,1
 and T (s)

i,li
 correspond to the first and last 

data point of the i-th chirp sample in Gr collected from data 
segment Ss . Parameters mA,s and mGT,s denote the total number 
of chirps detected by the algorithm in Ss , and collected 

manually from Ss , respectively. The overall performance of the 
algorithm was determined by averaging over all folds:

(37)FP(h) =
1

k

k∑

q=1

FPq(h), FN(h) =
1

k

k∑

q=1

FNq(h).
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Note that false positive and false negative rates depend on 
hyper-parameters h . We tuned the hyper-parameters such 
that for a given maximum tolerated average false positive 
rate rFP , the average false negative rate is minimized, i.e.,

where � is the search domain of hyper-parameters. At the 
maximum tolerated average false positive rate rFP , the lowest 
achievable average false negative rate is

The implemented search domains of hyper-parameters are 
summarized in Table 3.

Results

Performance of detection algorithms

For the GT group G2 , we computed the lowest achiev-
able average false negative rate rFN of each algorithm at 
given average false positive rate tolerances rFP (see Fig. 7) 
according to Eq. 39, using the search domains in Table 3. 
These results show that the performance of the MDB 
method is inferior to the CDB and TFSB methods. The 
CDB method performs better than the MDB and TFSB 
methods, although, the rFN

(
rFP

)
 curves of the CDB and 

TFSB methods are nearly identical (Fig. 7).

(38)

hopt
(
rFP

)
= argmin

h∈H(rFP)

(
FN(h)

)
, H(rFP) =

{
h ∈ � ∶ FP(h) ≤ rFP

}
,

(39)rFN
(
rFP

)
= FN

(
hopt

(
rFP

))
.

Principal components and explained variance

To illustrate waveform components that dominate GT group 
G2 , we computed its PCs (Fig. 8a, b) and the explained vari-
ance in terms of the number of its retained PCs (Fig. 8c). 
The first PC explains 90% of the variation in G2 (Fig. 8c). 
The frequency shape of the first PC (PC1 in Fig. 8a, b) is 
similar to the chirp waveform of the TFSB method (cf. 
Fig. 6). This, together with the high percentage of explained 
variance associated with the first PC, result in a similar per-
formance of the TFSB method and the CDB method (Fig. 7).

Chirp detection

After cross-validation, we trained a model according to 
Sect. “Training” based on the entire GT data set G2 . We 
used optimal hyper-parameters hopt

(
rFP = 5%

)
 determined 

via 4-fold cross-validation (see Sect. “Cross-validation”). 
The cluster means of the model, computed according to 
Eq. 22, are shown in Fig. 9.

After training, we employed the CDB method (under 
hyper-parameters hopt

(
rFP = 5%

)
 ) to detect chirps in all 

1680 min of EOD recordings. A total of 30,734 chirps were 
detected. We further investigated all detected chirps assigned 
to the cluster mean with the smallest proportion (6.73%, see 
Fig. 9). To find sub-clusters, we fitted a new GMM on these 
chirps according to Sect. “Training” using N = 4 and C = 8.

This analysis revealed a new chirp type (see Fig. 10) 
characterized by short, 20–30 ms duration, and two 
peaks in frequency rise and amplitude drop. These latter 
characteristics are distinct from all previously identified 
chirps of similar duration (c.f. Engler et al. 2000). It is 
important to note that here we focused on the cluster mean 
with the smallest proportion. The sub-clustering of chirps 
assigned to other cluster means may reveal further chirp 
types.

The distinct feature of this novel type, compared to the 
previously described six chirp types (Engler et al. 2000; 
Zupanc et  al. 2006), is the existence of two frequency 
peaks (instead of just one peak); and the occurrence of 
two amplitude drops—the first, rather modest amplitude 
decrease is followed by a second, more pronounced 
reduction. Double frequency peaks have also been found in 
other apteronotid species, most notably in the A. bonapartii 
group (Turner et  al. 2007). However, unlike the duplet 
frequency modulation characterizing the novel type in A. 
leptorhynchus, in A. bonapartii the first frequency increase 
is followed by a second, less pronounced increase.

Fig. 5   Illustration of the chirp detection methods described in 
Sect. “Detection”. Different rows correspond to different time instants 
( t1 < t2 < t3 < t4 ) of the “sliding” time window indicated by verti-
cal green lines in a. At each time instant, the Mahalanobis-distance-
based detection algorithm (b) normalizes the data set inside the time 
window (green crosses in a) and projects it to the space spanned by 
the principal components of the training set (green cross in b). If the 
squared Mahalanobis distance value d2 associated with this projected 
point (indicated at the top of each row in b) is below the limit of the 
cluster with highest posterior probability (corresponding to the color-
coded ellipse in b), then the Mahalanobis-distance-based algorithm 
may detect a chirp (2nd and 3rd row). At each time instant, the coef-
ficient-of-determination-based algorithm (c) normalizes the data set 
inside the time window and computes its coefficient of determination 
with respect to each cluster mean. The highest coefficient-of-determi-
nation value R2 among all cluster means is indicated at the top of each 
row in c, and the related cluster mean is plotted (color-coded line in 
c). If this value is above a threshold, then the coefficient-of-determi-
nation-based algorithm may detect a chirp

◂
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Discussion

Advantages of the supervised‑learning method

The results presented in this paper demonstrate the superiority 
of our supervised-learning algorithm over traditional methods 
for analysis of chirps produced by A. leptorhynchus.

The first advantage of our method lies in its versatil-
ity, compared to traditional approaches. As shown in 

Sect. “Principal components and explained variance”, the 
TFSB method performs well for the herein analyzed sig-
nal segments because a single time-frequency waveform 
(associated with type 2 chirps) dominates the collected GT 
chirp data set, and this waveform matches well the assumed 
time-frequency shape. If multiple dominant waveforms are 
present in the GT chirp data set, or if the assumed time-fre-
quency shape does not match the dominant chirp waveform, 
the performance of the TFSB method would be significantly 
worse. Furthermore, the design of a shape function repre-
sentative of the dominant chirp waveform is rather cumber-
some and impacted by the researcher’s bias. In contrast, the 
supervised-learning algorithm autonomously trains chirp 
waveform models by fitting them to the collected GT chirp 
data. Given that the GT data set is representative of chirps in 
the analyzed signal, this algorithm provides an unbiased way 
for the automatic identification of dominant chirp waveforms 
in the signal.

The second advantage of our supervised-learning method 
is its ability to identify, in an unbiased way, possible sub-
types of a signal. In the case of chirping behavior in A. 
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Fig. 6   Time–frequency shape function used for chirp detection in 
Eske et  al. (2023). The time course of normalized frequency (see 
Eq.  5) during chirping is modeled by a single-parameter function 
𝜑
(
T̃;𝛼̃

)
 . Different colors correspond to different shape parameter val-

ues 𝛼̃

Table 2   Fixed hyper-parameters 
of the time-frequency-shape-
based chirp detection algorithm 
(for definition of parameters, 
see Eske et al. 2023)

Parameter (unit) Value

n
wind

 (1) 100
n
med

 (1) 10
n� (1) 200
�
min

 (1/s) 100
�
max

 (1/s) 800

Table 3   Search domains of hyper-parameters for the Mahalanobis-
distance-based (MDB), coefficient-of-determination-based (CDB), 
and time-frequency-shape-based (TFSB) chirp detection algorithms

Search domain

Hyper-
parameter

MDB CDB TFSB

N {2, 3,… , 8} {2, 3,… , 8} n/a
C {2, 3,… , 14} {2, 3,… , 14} n/a
�
f

{0, 2,… , 20} {0, 2,… , 20} {0, 2,… , 20}

� {0.01, 0.02,… , 0.15} n/a n/a
�
R2 n/a {0.3, 0.35,… , 0.8} {0.3, 0.35,… , 0.8}

Fig. 7   Lowest achievable aver-
age false negative rate ( rFN ) as 
a function of maximum allowed 
average false positive rate ( rFP ), 
using k-fold cross-validation 
with k = 2 (a) and k = 4 (b). 
Curves were calculated for 
“ground truth” data set G2 
according to Sect. “Cross-
validation”. Different colors 
are associated with different 
methods, as indicated in the top 
right corner of b 
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leptorhynchus, visual inspection of time–frequency plots and 
time–voltage plots has suggested six subtypes of this signal 
(Engler et al. 2000; Zupanc et al. 2006). Although, in the 
present study, the analyzed recordings contained predomi-
nantly a single chirp subtype (type 2), our method suggested 
that further differentiation of this subtype is possible (see 
Sect. “Chirp detection”).

The third advantage of our method is that, compared 
to traditional approaches, it extracts more information 
from the samples used for the validation of the algorithm. 
Note that only a few traditional approaches validate their 
algorithm (e.g., Eske et al. 2023) by signals with known 

chirp types and locations. However, these approaches use 
the collected set of chirps only to test efficiency, and thus 
the algorithm itself is not informed by the known chirp 
content. By contrast, our supervised learning method takes 
full advantage of known chirps and utilizes them for both 
training the algorithm and testing its efficiency.

Limitations of the method

Although our algorithm trains itself and identifies chirp 
clusters automatically, it still relies on the collection of GT 
samples. Consequently, results are still impacted by the bias 
of the individual who collects the chirp samples of the GT 
set. This bias can be reduced if multiple individuals carry 
out chirp collection using the same signal, and if the GT set 
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Fig. 8   Normalized frequency (a) and amplitude (b) in the first two 
principal components (PC1 and PC2) of the “ground truth” data set 
G2 . Explained variance as a function of retained principal compo-
nents (gray line in c). The black cross in c corresponds to optimal 
hyper-parameter settings hopt

(
rFP = 5%

)
 determined by 4-fold cross-

validation (see Sect. “Cross-validation”)

Fig. 9   Normalized frequency (a) and amplitude (b) components of 
cluster means for the model trained on the entire “ground truth” data 
set G2 . Clusters were computed under optimal parameter settings 
hopt

(
rFP = 5%

)
 determined via 4-fold cross-validation (see Sect. “Cross-

validation”). Relative voltage-amplitude-decrease/maximum-frequency-
rise pairs plotted for each sample (c) reveal that G2 consists entirely of 
type 2 chirps. Different colors are associated with different clusters, their 
proportions are indicated in the top-right corner of a 
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is assembled based on the overlap across sets collected by 
different individuals.

When chirps appear in the signal at a low frequency, 
the time needed for an individual to collect a sufficiently 
large GT set increases. While the validation of any 
algorithm requires the collection of all chirps from a test 
signal, the number of samples needed by our supervised-
learning method is higher than the number of samples 
needed for validation only. Nevertheless, our method can 
still be advantageous compared to traditional approaches 
when already detected chirp types are expected in future 
experiments. In such cases, the cluster shapes from already 
collected GT sets can be reused. Furthermore, one can even 
build libraries of cluster shapes which can then be employed 
to “scan” signals for all formerly identified chirp shapes.

As input, our supervised learning method uses the 
time–frequency–amplitude signal (Tk, fk,Ak) , k = 1, 2,… . 
While the method for the computation of this signal, 
described in Sect.  “Calculation of EOD frequency 
and amplitude”, works only for time–voltage data that 
were generated by a single EOD source, for the analysis 

of multiple (either synthetic or recorded from fish) 
simultaneously recorded EOD signals, one can employ a 
different method (e.g., Raab et al. 2022) to extract individual 
time–frequency–amplitude signals.

Perspectives

The presented supervised learning algorithm provides a 
valuable tool for further examining the function of chirps. 
In the present study, it has not only enabled us to validate the 
previous classification of chirps into different subtypes, but 
also suggested that further differentiation of these subtypes 
is possible. Whether these sub-subtypes of chirps subserve 
any behavioral function remains to be examined.

It is likely that other algorithms based on supervised 
machine learning will exhibit advantages similar to our 
approach. Thus, the present study might serve as proof-
of-principle of the suitability of the supervised-machine-
learning paradigm for a broad range of signals analyzed 

Fig. 10   Cluster mean (red) and 
detected chirp samples (gray) 
in a sub-cluster (containing 
264 samples) related to the 
cluster with 6.73% proportion 
in Fig. 9a (see Sect. “Chirp 
detection”). The black curve 
displays the median of detected 
chirp samples across feature 
dimensions
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in neuroethology. It is likely that, in future investigations, 
algorithms based on machine learning paradigms like the 
one implemented in the present study will increasingly 
become standard tools for signal analysis in neuroethologi-
cal research.

Appendix A: Computation of time‑series 
frequency and amplitude data

Using linear interpolation, we first computed all time 
instances where the filtered time-series signal 

(
ti,Vi

)
 , 

i = 1,… ,Mv , crosses the time axis toward positive voltage 
values:

Here the tuple of all upward crossings t+ contains |�| = M + 1 
number of elements, with

being a tuple containing all indices of the filtered time-
series data where the voltage changed sign to a positive 
value. Finally, for each oscillation interval 

[
t+(k), t+(k + 1)

]
 , 

k = 1,… ,M , we computed time instance Tk , and associated 
frequency fk and peak-to-peak amplitude Ak values as
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(A1)

t+ =

(
tj(k) −

Vj(k)

Vj(k)+1 − Vj(k)

(
tj(k)+1 − tj(k)

)
∶ k = 1,… ,M + 1

)
.

(A2)j =
(
i ∶ sgn

(
Vi+1

)
− sgn

(
Vi

)
> 0, i = 1,… ,Mv

)

(A3)Tk =
t+(k + 1) + t+(k)

2
,

(A4)fk =
1

t+(k + 1) − t+(k)
,

(A5)Ak = max
j(k)≤i≤j(k+1)

(
vi
)
− min

j(k)≤i≤j(k+1)

(
vi
)
.
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