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Abstract

Signal analysis plays a preeminent role in neuroethological research. Traditionally, signal identification has been based on
pre-defined signal (sub-)types, thus being subject to the investigator’s bias. To address this deficiency, we have developed a
supervised learning algorithm for the detection of subtypes of chirps—frequency/amplitude modulations of the electric organ
discharge that are generated predominantly during electric interactions of individuals of the weakly electric fish Apteronotus
leptorhynchus. This machine learning paradigm can learn, from a ‘ground truth’ data set, a function that assigns proper
outputs (here: time instances of chirps and associated chirp types) to inputs (here: time-series frequency and amplitude data).
By employing this artificial intelligence approach, we have validated previous classifications of chirps into different types
and shown that further differentiation into subtypes is possible. This demonstration of its superiority compared to traditional
methods might serve as proof-of-principle of the suitability of the supervised machine learning paradigm for a broad range

of signals to be analyzed in neuroethology.
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Introduction

Signals as vehicles for transmission of information from a
sender to a receiver play a pivotal role in animal communi-
cation (Bradbury and Vehrencamp 2011). Broadcasting of
signals is mediated by a variety of sensory channels, such as
visual, acoustic, tactile, chemical, and electric. Diversity of
signals, either within one sensory modality or by activation
of several sensory channels, enables animals to use different
signals for different behavioral functions. Within one sen-
sory modality, signal diversity is often achieved by modu-
lation of a generic type of signal. For example, different
acoustic signals can be produced by temporal frequency and
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amplitude modulations, and even rather subtle differences
can have profoundly different functional effects (Schwartz
et al. 2007; Feng et al. 2009; Hechavarria et al. 2020).
While acoustic signals are displayed intermittently only
(although sometimes for prolonged periods at high rates),
some electric fishes produce a generic form of electric signal
continuously throughout life. This group includes the brown
ghost knifefish (Apteronotus leptorhynchus), a species of the
taxonomic order Gymnotiformes that has been intensively
studied as model organisms in ethology and neuroethology.
Apteronotus leptorhynchus generates such continuous
electric discharges with its electric organ composed of modi-
fied axonal terminals of spinal motoneurons (for review see
Zupanc and Bullock 2005). The synchronous depolariza-
tion of these so-called electrocytes produces electric pulses
separated by short inter-pulse intervals. This results in the
appearance of a continuous, wave-like signal, commonly
referred to as electric organ discharge (EOD). The frequency
at which the fish generates the EOD train is determined, in
a one-to-one fashion, by the frequency of the neural oscil-
lations of a central pattern generator in the medulla oblon-
gata, the pacemaker nucleus. Within the species-specific
frequency range of 650-1000 Hz, males discharge at higher
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frequencies than females, with little overlap between the
sexes (Meyer et al. 1987; Zupanc et al. 2014). Owing to this
sexual dimorphism, the EOD contains information about the
sex of its sender.

Whereas the species as whole occupies a broad EOD fre-
quency range, the frequency of the discharges of a given
individual within this frequency band is highly constant, as
indicated by the coefficient of variation [cv = (standard devi-
ation / mean) X 100 (%)], which assumes values of less than
0.2% over 30-min (Eske et al. 2023). Nevertheless, transient
modulations may occur, resulting in diversification of the
generic EOD signal. The best-characterized type comprises
chirps. In isolated individuals of A. leptorhynchus, chirps are
very rarely produced, on average less than once per 10 min
(Engler et al. 2000; Zupanc et al. 2001; Eske et al. 2023).
However, during stimulation with the EODs of conspe-
cific fish or with electric signals mimicking such EODs, or
after administration of certain drugs, chirp production may
increase one-thousand-fold to rates as high as 2 s~! (Zupanc
and Maler 1993; Engler and Zupanc 2001; Eske et al. 2023).

Chirps last between some tens and a few hundred mil-
liseconds and involve complex frequency and amplitude
modulations. Six distinct chirp types have been identified
(Engler et al. 2000; Zupanc et al. 2006). They are defined by
differences in duration, extent of the frequency and ampli-
tude modulations, as well as additional features, such as the
presence or absence of an undershoot before the frequency
returns to baseline levels as evident in time-frequency plots.
The usefulness of these features for differentiating differ-
ent chirp types has been shown in several other studies (Ho
et al. 2013a, b; Turner et al. 2007; Oboti et al. 2023). Most
notably, by employing this approach, a comparative analysis
revealed an enormous diversity of chirp signals in 13 species
of apteronotids, which included not only variation across
species but also between congeners and populations of the
same species (Turner et al. 2007).

In A. leptorhynchus, spontaneously produced chirps are
predominantly of type 1, whereas most chirps evoked by
the EODs of a neighboring fish (or mimics of such electric
signals) or by proper pharmacological stimulation belong to
the type 2 category (Engler et al. 2000; Zupanc et al. 2006;
Eske et al. 2023). Both type 1 and type 2 chirps are rather
short (duration approximately 20 ms) but distinct in terms
of the degree of frequency increase (400 Hz versus 100 Hz)
and amplitude reduction (approximately 50% versus <10%).
Longer chirps of type 3—6 are, most typically, generated by
older individuals and directed to fish of the other sex.

While chirps can be elicited from either sex, at similar
rates, through application of pharmacological agents (Eske
et al. 2023), during electric interaction with conspecifics or
in response to electric stimuli mimicking a fish’s EOD males
chirp at much higher rates than females (Zupanc and Maler
1993; Dulka and Maler 1994; Dunlap et al. 1998; Dunlap
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2002; Triefenbach and Zakon 2003; Hupé and Lewis 2008).
In addition, chirps are optimally evoked by electric stimuli
with frequencies within +10 Hz of the fish’s EOD frequency
(Engler and Zupanc 2001). Thus, type 2 chirps are typically
exchanged by males. Moreover, the chirps produced by two
electrically interacting fish are not independent of each other
(Zupanc et al. 2006). Instead, the chirps generated by one
fish follow the chirps of the other individual with a preferred
latency of roughly 500-1000 ms (Zupanc et al. 2006). This
‘echo response’ may serve a communicatory function during
social interactions, such as aggressive encounters.

Traditionally, different chirp types have been identified
and quantified by visual inspection of time—voltage and
time—frequency plots (e.g., Engler et al. 2000; Engler and
Zupanc 2001; Zupanc et al. 2001; Dunlap and Larkins-Ford
2003; Zupanc et al. 2006; Kolodziejski et al. 2007; Hupé and
Lewis 2008; Smith and Combs 2008; Dunlap et al. 2011;
Gama Salgado and Zupanc 2011; Neeley et al. 2018). In
addition, threshold-based algorithms (Bastian et al. 2001;
Aumentado-Armstrong et al. 2015; Henninger et al. 2018;
Allen and Marsat 2019; Field et al. 2019) and a method
based on assumed chirp waveform (Eske et al. 2023) have
been used for chirp detection. Whereas these approaches
can be successfully employed for the identification of pre-
defined chirp types, the definition of chirp categories is
subject to the investigator’s bias. Moreover, such approaches
do not allow detection of possible additional chirp types that
remained unnoticed previously.

To address these deficiencies, we have, in the present
study, developed a supervised learning algorithm.
Supervised learning is a machine learning paradigm (Bishop
2006) used across many disciplines. Its goal is to learn, from
a “ground truth” (GT) data set, a function that assigns proper
outputs (in the present study: time instances of chirps and
associated chirp types) to inputs (in the present study: time-
series frequency and amplitude data). While we demonstrate
the suitability of this machine learning paradigm for the
unbiased analysis of chirps produced by A. leptorhynchus,
we propose that similar approaches can be successfully
applied to signal analysis in a variety of other ethological
and neuroethological systems.

Materials and methods
EOD recording

For the present investigation, time—voltage recordings of the
EOD containing chirps generated spontaneously or evoked
pharmacologically were analyzed. These data had been col-
lected as part of a previous study examining the effect of
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urethane anesthesia on EOD frequency and chirping behav-
ior in A. leptorhynchus (Eske et al. 2023).

Eight fish (total lengths: median, 116 mm; range
107-143 mm; body weights: median, 2.9 g; range 2.5-4.8 g)
were used. Their EOD baseline frequencies varied between
683 Hz and 868 Hz (normalized to frequency values expected
at 26 °C, using a Q,, of 1.56). The morphological data and
EOD frequencies indicate that the fish were approximately 1
year old and included both males and females (Ilies et al. 2014;
Zupanc et al. 2014).

Details of the experiments and the recording technique
are given in Eske et al. (2023). Briefly, each fish was kept in
an isolation tank in which a cylindrical plastic tube provided
shelter. Differential recording of the fish’s EOD was done
through a pair of stainless-steel electrodes mounted on the
inside of the tube. During recording, the two open ends of the
tube were closed with a coarse plastic mesh netting to ensure
that the fish did not leave the tube.

The EOD of each fish was recorded for 30 min before,
and 180 min immediately after, general anesthesia. State of
anesthesia was induced by transferring the fish into a glass
beaker containing 2.5% urethane dissolved in water from
the fish’s isolation tank. During the pre-anesthesia session,
spontaneous chirps occurred but at very low rates of approx-
imately 1 chirp/30 min. Anesthesia induced a tremendous
increase in chirping behavior, resulting, on average, in 1500
chirps during the 30 min immediately following anesthesia.

For the present analysis, the 30-min-pre-anesthesia record-
ings, and the 180-min-post-anesthesia recordings, of the 8 fish
were combined, yielding a total of 1680 min of EOD record-
ing. Employing the supervised learning algorithm, a total of
30,734 chirps were detected in these combined recordings.

Calculation of EOD frequency and amplitude

The sampled voltage data (#;,v;), i=1,...,M,, were
exported from Spike 2 and processed in MATLAB version
R2021b. These data were filtered in 3-s windows with
2-s overlap using a bandpass filter with frequency band
[0.5,1.5] X f;,, where the fundamental frequency f, in each
3-s window was determined based on the power spectrum of
the signal using fast Fourier transform and the “findpeaks”
function of MATLAB.

Based on the zero-crossings of the filtered signal, we
then computed the time, frequency, and amplitude values
(Tk,fk,Ak) associated with each k=1, ..., M, oscillation
interval (for details, see Appendix A). An example of com-
puted time-series data of frequency and amplitude is shown
in Fig. 1.

Chirp detection by supervised learning
“Ground Truth” data set

Data collection
Tuples of equal-time-length time-series data segments

S =({ T, k<r>,A<kr>} L T € [Ty + (= DAT, Ty +JAT],

k=1,...M-1), j=1,....n,

ey
were collected from each recording r = 1, ..., n,, where n,
is the total number of EOD recordings, and superscript (1)
indicates association with recording r. The time length of
segments was determined as AT = (Tend - Tstm)/ns. The
values of parameters Ty, , 1.4, 15> I, Used for the genera-
tion of time-series data segments are provided in Table 1.

Using the MATLAB tool shown in Fig. 2, a person
previously trained to identify chirps collected all chirp
instances from each segment S; for all indices i € igy,
where the elements of subset igr C {1, ,nsnr}, with
ngr = [igr| (see Table 1), were randomly chosen, without
replacement.

Although for each data point only time and frequency
values were displayed during data collection (see Fig. 2),
the associated amplitude values were also stored in the
GT set of chirps

G= { (T i} o }i=1’ ©)

where {Ti,/"fi,j’Ai,/‘} is the j-th data point of the i-th GT
chirp sample, /; denotes the number of data points in the i-th
sample, and 7 is the total number of samples.

Data processing

The person who collected chirp samples was instructed to
include, in each sample, data points prior to and after chirp-
ing, associated with the non-modulated, instantaneous “base”
frequency of the fish. Hence, we assumed that each sample
includes both pre and post-chirp data points and estimated the
“base” frequency and amplitude of each sample i as

n

fbase,i = median ( {fld }j”:;d > {f;’li_j"'l }l:;d > ’ )

3 nme nme
Apgses = medlan({Ai T i GRS Sy ) 4)
where n,.4 < min(/;/2) is an arbitrarily chosen positive
L

integer which we set to n,,.4 = 10. We normalized each
sample i = 1, ..., n with respect to the maximum frequency
rise according to
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and with respect to the base amplitude as
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Then, we centered the time values of each sample according
to
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«Fig.1 EOD frequency f (a) and amplitude A (b) with respect to time
T in a recording involving urethane anesthesia (for details of com-
putation see Sect. “Calculation of EOD frequency and amplitude”).
After baseline recording, the tube with the fish was transferred from
the home tank to a glass beaker containing 2.5% urethane solution
dissolved in aquarium water. As soon as the fish stopped undulat-
ing its anal fin and moving its opercula, it was returned to the home
tank (arbitrarily defined as time point 7 = 0). The gray bar indicates
the time during which the fish was exposed to the anesthetic. Changes
in the orientation and position of the fish relative to the record-
ing electrodes result in noisy amplitude signals (pre-anesthesia, and
T >~ 2000 s as shown in b). The reduction of noise immediately after
anesthesia is related to the ceased movement of the fish. Note onset
of type 2 chirping at higher rates immediately after anesthesia (a/Al,
b/B1) that persists to approximately 7 = 4600 s after exposure to the
anesthetic (a/A2, b/B2). The recorded signal contains both type 2 (a/
Al’, b/B1’) and type 1 (a/A2’, b/B2’) chirps. The latter is character-
ized by large rise and negative undershoot in frequency (a/A2’), as
well as a large drop in amplitude (b/B2’). By contrast, the former is
characterized by a smaller rise without undershoot in frequency (a/
A1’) and a smaller reduction in amplitude (b/B1”)

=Ty =Ty, J=1.ok ™
. . 1
Jeeni = argmm< H; - ED (8)
k
k
zj:l h((pi,i)
ik =" = 19 9l[9 (9)

=< ,
X h(@;;)
where rectifier

ln(l + e5(|‘ﬂi,f|—¢;))
o) ==

with

?; = 4max(sd({(ﬁi,k}zzd ) Sd({(pi’[i_k_'.] }:ff)), (11)

was applied for the elimination of noise and to highlight
“meaningful” parts of the frequency sample. Here sd(-)
denotes the standard deviation, @; is the cutoff value of
normalized frequency associated with sample i and 6 = 50
is an arbitrarily chosen smoothing parameter.

(10)

Using the empirical cumulative distribution H; . of recti-

fied frequency values h( ;. ), we trimmed each sample, such
that only the data points j within interval 7, ; € [-3AT;, 3AT,]
were kept, with

AT, = Ti,j;' - Ti,,',-’ (12)

Jjt = argmin (|H,;; —0.9]),
ke{l....}
o . (13)
j; = argmin (|H;, —0.1]).
ke{1,...0;}

Note that here AT, is the difference between the 90% and
10% percentile estimates of the empirical cumulative distri-
bution H; . The above described data processing method is
illustrated in Fig. 3.

Grouping and resampling

Because our supervised learning method requires uniform
size among GT samples, we grouped and resampled all GT
samples according to the number of data points that formed
the individual GT samples.

After trimming, the size of each GT sample was roughly
commensurate with the length of the associated chirp. To
distinguish between chirps whose duration have different
time scales, we divided GT samples into three groups and
resampled the members of each r group such that associated
samples contained 10" + 1 number of points:

1072
G, = { (Tl}/ccn_lff’ff,fccn,rf-.i’Al\/’ccn,ﬁj) } PP

({Tw 1 T,,€[-3AT, 34T 1 sjsli}le(lo"'+l,10’+1],
1<i<n}, r=12,3.

(14)
Here we utilized the fact that all data points inside any GT
sample can be located within the associated recording’s
time-frequency-amplitude data. For example, if we know
that7; ; and T, are from the same recording and that 7}, =T,
then we can find any other point j associated with sample i:
(TS Aig) = (Tt St Agajr )

Note that chirps typically have a duration shorter than
0.5 s, and the highest EOD frequency in A. leptorhynchus
is approximately 1000 Hz, therefore GT sample groups G,,
r =1,2,3, are able to capture the full length of all chirps.

Training

Principal component analysis
After resampling, we recomputed, according to Eqgs. 3-6,
the normalized frequencies and amplitudes

((Pi‘,'cenﬁj, aiJcen,;+j>’j =-10"/2,...,10" /2, of each chirp sam-
ple i in each GT group G,. For ease of notation, in the fol-
lowing, we drop the shift j.., ; in the second subscript index.

For each r, we collected from G, the normalized fre-
quency and amplitude values
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Fig.2 Matlab tool built for
collecting chirp samples from
time-series frequency data
(black dots). The user can select
data points associated with a
chirp by moving the cursor
(intersection of black lines in a
and c) to the two end points of
the time interval delimiting the
chirp instance. After selecting
the time interval (red lines in b),
the user must confirm the cur-
rent selection before proceeding
to collect further data points
(see dialog box in b). Follow-
ing the confirmation of the
selection, data points associated
with the selected time interval
are stored and removed from the
displayed data set (c). Once all
displayed chirp instances have
been collected, the user can
move to the next (or previous),
overlapping, time segment to
collect the remaining chirp data
points from the time-series
frequency data segment
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Fig.3 Processing of “ground truth” samples (see Sect. ““Ground
Truth” data set”). Data points {(T[J,fw)}:f:l of the i-th sample are
plotted in a as black dots. The frequency values {f”}:=1 are normal-

ized according to Eq. 5 and passed through the rectifier function (red
curve) displayed in b. The green dashed lines in b and ¢ display the
cutoff value @; of the rectifier function. The centered and normalized

data points { (7, ¢; ;) }]lzl of the i-th sample (see Eqs. 5—11) are dis-

‘ T
f<rl) = [q’i,—mr/z’ e (Pi,lo"/Z’] ’ )

; T
ai’) = [ai’_lor/z, ey ai,lO"/Z] N (16)
of each sample i associated with the training set (for details
about the training set, see Sect. “Cross-validation”) into a
matrix X, € R™>210+D gych that

o [f(l) f(’"r)]

v ar(rL) aEnlr) (17
where m, is the total number of samples in G, associated
with the training set. For the further ease of notation, in the
following, we drop index r, as well.

We determined the principal components (PCs)
Pis---»Paaor4+1y» Of X by performing the spectral

0.8+

— 0.6}

0.2

Pi,-

I
I
I
I
I
0.5+ | .
I
I
I
I
|

\
‘ L ‘ .
004 —3AT, 0 3AT,  0.04

played in ¢ as black dots together with the rectified normalized fre-
quencies (red curve) and their empirical cumulative distribution (blue
curve). The 10% and 90% percentile estimates (blue, dashed lines
in ¢) of this cumulative distribution determine the time width of the
sample: AT, = T, i T, ;- The sample is trimmed based on this time
width (d) such that data points outside interval 7, ;€ [—3ATI-,3AT,-]
(delimited by black, dashed lines and marked by gray dots) are elimi-
nated

decomposition of XTX. Then we projected the training data
set onto the space of the first N PCs, i.e., we computed

Y = XP,, (18)

where Py = [py,....py]

Gaussian mixture model fitting

We modeled the projected data Y = [y, ..., y"]using the
Gaussian mixture model (GMM)

v ~ M1 2), ¢ ~Me(pys .. .pe)s (19)

where N/ ( H..Z.) is the multivariate normal distribution of
the c-th mixture component with mean u, € R¥*! and covar-
iance £, € RYN, while M¢(p,.,...,pc) is a multinomial
distribution with C number of categories and mixing pro-
portions p, ..., p.. We estimated the unknown parameters
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Table 1 Parameter values used

L . Parameter (unit) Value

for generating time-series data

segments S;, i € igr, from which ) 3200

“ground truth” chirp samples G e

were collected Tena () 6200
ng (1) 10
n, (1) 16
ngr (1) 64

Values of T, and T, were

measured in time coordinates
fixed to the start of recordings

O ={py.....0c: His - s By Zis ..., B} of this GMM based
on data Y using the “fitgmdist” function of MATLAB.

Elimination of outliers

After fitting the GMM, we assigned each data sample i to the
cluster with maximum posterior probability, i.e., we com-
puted the cluster of sample i according to

¢

= argmax(P(c|i)),
argmax(P(c| 20)

for each i = 1,...,m, where Hcli) is the probability that
sample i belongs to cluster ¢, given the observation y®.
Then, we computed the coefficient of determination (CoD)
of the frequency component of each sample with respect to
its assigned cluster mean as

2 T T T

O  55.55%
L5f 21.57% i
O 11.06%
O  10.61%
1 X 1.20% ]
0.5) .
[
2
of e S 1
o
0.5} ’ .
1k 1
o
15 L 1 I . L
-3 -2 -1 0 1 2 3

PC1

Fig.4 Training data set projected to the space spanned by the first
two principal components (PC1 and PC2). Circles with different
colors correspond to clusters identified by the algorithm. Gray crosses
correspond to samples in an eliminated cluster. The percentage-wise
size of kept (circles) and eliminated (crosses) clusters is indicated at
the top left corner, relative to the size of the training set
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21— M 1)
e
Here ||-|| denotes the L2 norm and
f.a] =Pya. 22)
0 _ ;(1%"))1, 23)
107+ 1

with 1 being a vector of 1-s.

We eliminated each cluster ¢ for which the 5% percentile
of associated CoD values {Rl2 t=c1<i< m} was
below threshold 6 = 0.3. Additionally, we eliminated each
cluster ¢ whose size ‘{z ti=c1<5i< m}| was below

threshold 6, = 30.

Figure 4 illustrates the projected training data Y from
G,, with parameters N = 2 and C = 5; note the eliminated
cluster.

Detection
Training yields PCs P, and GMM
yO ~ N(,)C,)ic), c~Mepys....Per)s (24)

where C* < C is the number of kept clusters, with
p.=Dp./ ch; Py and p, ji, ﬁc, being the estimated param-
eters of kept clustersc =1, ..., C*

To detect chirps in recordings, we analyzed data points
{ (Ti+j_1,fi+j_1,A,-+j_1)};2;“, i=1,...,M—10"in a moving
time window containing 10" + 1 samples (see Fig. 5a). At
each instance i, we computed normalized frequency and
amplitude values

0 = [q),;l, s Ditor+ls ]T’ 25)

i T
a” = a;1,....a;1041] - (26)
according to formulas Eqs. 3-6 with
(Tijo i Aiy) = (Tigjorofiajor Ay Jand [; = 107 + 1

Mahalanobis-distance-based detection

At each instance i, our Mahalanobis-distance-based (MDB)
detection method first projects the normalized frequency and
amplitude data onto the PCs according to
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y® = pT £
V| g 27)
then it determines the kept cluster which is most likely to
generate y®:

c; = argmax (RJI 0)). (28)

JE(l,..

Afterward, our method computes the Mahalanobis distance

4 =00 -5 (0 - &) @9)

For any point generated by kept cluster c;, realizations a?l.2
follow a chi-squared distribution with N degrees of freedom:
Df ~ ;(]%,.

The MDB method collects all i instances, where the
squared Mahalanobis distance is below threshold €, and the
maximum frequency rise is above threshold &, into the tuple

1<) <10'+1(f ) ~Joasei > &5 (30)

M—10"-1).

CMDB =( d <£d2,
i=1,...,

Each contiguous segment in c¢ypg corresponds to an
identified chirp. In each contiguous segment, we associate
the identified chirp with the instance i that has lowest
distance d;. Threshold €, is determined based on a chosen
level of significance a such that P (Dl2 <ép)=1—a.The
MDB method is illustrated in Fig. 5b.

Cocfficient-of-determination-based detection

At each instance i, our coefficient-of-determination-based
(CDB) detection method computes the CoD of the frequency
component with respect to each kept cluster mean according to

”f ' “
R =1- =1,..,C G1)
ic || b l)“ s ey )

using formulae Eqs. 22-23, and assigns instance i to the
cluster with highest CoD value:

¢; = argmax <R12¢) (32)
ce(l,...,Cx}N 7

Afterward, the CDB method collects all instances into the

tuple ¢-pp where the CoD value and the maximum frequency

rise are both above thresholds £, and &4, respectively:

..
CcpB —(l : R,;cl. > Ep2, 1;1<1130,+1(f ) — Joasei > €f> 33)
i=1,...,M—10"—1).

Similarly to the MDB method, identified chirps are
associated with contiguous segments in ¢qpg. In each
contiguous segment, the identified chirp is assigned to the
instance i that has the highest Ric, value. The CDB method

is illustrated in Fig. Sc.
Chirp detection based on assumed chirp waveform

In order to assess the performance of the two algorithms
detailed above, we chose, as a reference, the time-frequency-
shape-based (TFSB) chirp detection algorithm described
in (Eske et al. 2023). This algorithm is based on the chirp
waveform function

o(T:a) = —, (34)

which is assumed to characterize, during chirps, the nor-
malized frequency @ with respect to time 7. This function
is parameterized by a single parameter & that controls chirp
duration (see Fig. 6).

The TFSB algorithm has 7 hyper-parameters, out of which
we fixed 5 (see Table 2), and the remaining 2 we determined
via cross-validation (see Sect. “Cross-validation™).

Cross-validation

To determine the optimal hyper-parameter values h,, of
detection algorithms, we used k-fold cross-validation. In
particular, we randomized indices i € igy associated with
time-series data segments S; and split them onto k number
of equal-size folds: igr, Cigr, ¢ =1,...,k. For each
iteration step g = 1, ... , k, of cross validation, a single fold
igr, Was used as a test set for determining the performance
of the algorithm, while the rest of the folds were used as a
training set. Note that only the two supervised algorithms
were trained (for details, see Sect. “Training”), while the
TFSB algorithm did not involve any training (Eske et al.
2023). The performance of each algorithm was determined
by computing the false positive and false negative rates for
each iteration stepg =1, ... ,k, as

"’lA"‘
.. A (s) K .
(| e[ <i<men Yo,
GTq/™
FP, = ’
! Z mA,s
SElGTq
(35)
MGT,s N
D) 1(‘{j 10|11 <) <my b >0>
PN, = 1- s€igr =1 A7 |
2 Mt
sEiGTq
(36)
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where 1(-) is the indicator function, Tj(s) denotes the j-th time

instance of chirps detected by the algorithm in time-series data
segment S, while Tl(sl) and TS) correspond to the first and last

data point of the i-th chirp sample in G, collected from data
segment S. Parameters m, ; and mgr  denote the total number
of chirps detected by the algorithm in S,, and collected

@ Springer

manually from S, respectively. The overall performance of the
algorithm was determined by averaging over all folds:

k
FP(h) = % D FP,(h), FN(h) =
g=1

=

k
D FN,(h). (37)
g=1
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«Fig.5 Illustration of the chirp detection methods described in
Sect. “Detection”. Different rows correspond to different time instants
(t, <t, <t; <ty of the “sliding” time window indicated by verti-
cal green lines in a. At each time instant, the Mahalanobis-distance-
based detection algorithm (b) normalizes the data set inside the time
window (green crosses in a) and projects it to the space spanned by
the principal components of the training set (green cross in b). If the
squared Mahalanobis distance value d” associated with this projected
point (indicated at the top of each row in b) is below the limit of the
cluster with highest posterior probability (corresponding to the color-
coded ellipse in b), then the Mahalanobis-distance-based algorithm
may detect a chirp (2nd and 3rd row). At each time instant, the coef-
ficient-of-determination-based algorithm (c¢) normalizes the data set
inside the time window and computes its coefficient of determination
with respect to each cluster mean. The highest coefficient-of-determi-
nation value R? among all cluster means is indicated at the top of each
row in ¢, and the related cluster mean is plotted (color-coded line in
¢). If this value is above a threshold, then the coefficient-of-determi-
nation-based algorithm may detect a chirp

Note that false positive and false negative rates depend on
hyper-parameters h. We tuned the hyper-parameters such
that for a given maximum tolerated average false positive
rate rgp, the average false negative rate is minimized, i.e.,

ho(rp) = argmin(ﬁ(h)), H(ryp) = {h €Q : FP(h) < rep }

hEH(rFP)
(38)
where Q is the search domain of hyper-parameters. At the

maximum tolerated average false positive rate rp, the lowest
achievable average false negative rate is

ren(rep) = ﬁ(hopt("FP) ). (39

The implemented search domains of hyper-parameters are
summarized in Table 3.

Results
Performance of detection algorithms

For the GT group G,, we computed the lowest achiev-
able average false negative rate rpy of each algorithm at
given average false positive rate tolerances rgp (see Fig. 7)
according to Eq. 39, using the search domains in Table 3.
These results show that the performance of the MDB
method is inferior to the CDB and TFSB methods. The
CDB method performs better than the MDB and TFSB
methods, although, the rpy(rgp) curves of the CDB and
TFSB methods are nearly identical (Fig. 7).

Principal components and explained variance

To illustrate waveform components that dominate GT group
G,, we computed its PCs (Fig. 8a, b) and the explained vari-
ance in terms of the number of its retained PCs (Fig. 8c).
The first PC explains 90% of the variation in G, (Fig. 8c).
The frequency shape of the first PC (PC1 in Fig. 8a, b) is
similar to the chirp waveform of the TFSB method (cf.
Fig. 6). This, together with the high percentage of explained
variance associated with the first PC, result in a similar per-
formance of the TFSB method and the CDB method (Fig. 7).

Chirp detection

After cross-validation, we trained a model according to
Sect. “Training” based on the entire GT data set G,. We
used optimal hyper-parameters h,,(rpp = 5%) determined
via 4-fold cross-validation (see Sect. “Cross-validation”).
The cluster means of the model, computed according to
Eq. 22, are shown in Fig. 9.

After training, we employed the CDB method (under
hyper-parameters h,,(rgp = 5%)) to detect chirps in all
1680 min of EOD recordings. A total of 30,734 chirps were
detected. We further investigated all detected chirps assigned
to the cluster mean with the smallest proportion (6.73%, see
Fig. 9). To find sub-clusters, we fitted a new GMM on these
chirps according to Sect. “Training” using N = 4 and C = 8.

This analysis revealed a new chirp type (see Fig. 10)
characterized by short, 20-30 ms duration, and two
peaks in frequency rise and amplitude drop. These latter
characteristics are distinct from all previously identified
chirps of similar duration (c.f. Engler et al. 2000). It is
important to note that here we focused on the cluster mean
with the smallest proportion. The sub-clustering of chirps
assigned to other cluster means may reveal further chirp
types.

The distinct feature of this novel type, compared to the
previously described six chirp types (Engler et al. 2000;
Zupanc et al. 2006), is the existence of two frequency
peaks (instead of just one peak); and the occurrence of
two amplitude drops—the first, rather modest amplitude
decrease is followed by a second, more pronounced
reduction. Double frequency peaks have also been found in
other apteronotid species, most notably in the A. bonapartii
group (Turner et al. 2007). However, unlike the duplet
frequency modulation characterizing the novel type in A.
leptorhynchus, in A. bonapartii the first frequency increase
is followed by a second, less pronounced increase.
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Fig.6 Time—frequency shape function used for chirp detection in
Eske et al. (2023). The time course of normalized frequency (see
Eq. 5) during chirping is modeled by a single-parameter function
(p(T;&). Different colors correspond to different shape parameter val-
ues &

Table 2 Fixed hyper-parameters

. Parameter (unit) Value
of the time-frequency-shape-
based chirp detection algorithm Nying (1) 100
(for definition of parameters, ) 10
see Eske et al. 2023) Mmed
n, (1) 200
Apin (1/8) 100
Apax (1/8) 800

Discussion
Advantages of the supervised-learning method

The results presented in this paper demonstrate the superiority
of our supervised-learning algorithm over traditional methods
for analysis of chirps produced by A. leptorhynchus.

The first advantage of our method lies in its versatil-
ity, compared to traditional approaches. As shown in

Fig.7 Lowest achievable aver- a 15

Table 3 Search domains of hyper-parameters for the Mahalanobis-
distance-based (MDB), coefficient-of-determination-based (CDB),
and time-frequency-shape-based (TFSB) chirp detection algorithms

Search domain

Hyper- MDB CDB TFSB
parameter

N {2,3,....8} {2,3,....8} n/a

C {2,3,...,14} {2,3,...,14} n/a

&f {0,2,...,20} {0,2,...,20} {0,2,...,20}

a {0.01,0.02,...,0.15} n/a n/a

Ep2 n/a {0.3,0.35,...,0.8) {0.3,0.35,...,0.8}

Sect. “Principal components and explained variance”, the
TFSB method performs well for the herein analyzed sig-
nal segments because a single time-frequency waveform
(associated with type 2 chirps) dominates the collected GT
chirp data set, and this waveform matches well the assumed
time-frequency shape. If multiple dominant waveforms are
present in the GT chirp data set, or if the assumed time-fre-
quency shape does not match the dominant chirp waveform,
the performance of the TFSB method would be significantly
worse. Furthermore, the design of a shape function repre-
sentative of the dominant chirp waveform is rather cuamber-
some and impacted by the researcher’s bias. In contrast, the
supervised-learning algorithm autonomously trains chirp
waveform models by fitting them to the collected GT chirp
data. Given that the GT data set is representative of chirps in
the analyzed signal, this algorithm provides an unbiased way
for the automatic identification of dominant chirp waveforms
in the signal.

The second advantage of our supervised-learning method
is its ability to identify, in an unbiased way, possible sub-
types of a signal. In the case of chirping behavior in A.

age false negative rate (rpy) as
a function of maximum allowed
average false positive rate (rpp),
using k-fold cross-validation
with k = 2 (a) and k = 4 (b).
Curves were calculated for
“ground truth” data set G,
according to Sect. “Cross-
validation”. Different colors
are associated with different
methods, as indicated in the top
right corner of b

10

ren (%)

(<28

— Mahalanobis-distance-based
— Coefficient-of-determination-based
— Time-frequency-shape-based

rrp (%)
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Fig.8 Normalized frequency (a) and amplitude (b) in the first two
principal components (PC1 and PC2) of the “ground truth” data set
G,. Explained variance as a function of retained principal compo-
nents (gray line in ¢). The black cross in ¢ corresponds to optimal
hyper-parameter settings hopt(er = 5%) determined by 4-fold cross-
validation (see Sect. “Cross-validation™)

leptorhynchus, visual inspection of time—frequency plots and
time—voltage plots has suggested six subtypes of this signal
(Engler et al. 2000; Zupanc et al. 2006). Although, in the
present study, the analyzed recordings contained predomi-
nantly a single chirp subtype (type 2), our method suggested
that further differentiation of this subtype is possible (see
Sect. “Chirp detection”).

The third advantage of our method is that, compared
to traditional approaches, it extracts more information
from the samples used for the validation of the algorithm.
Note that only a few traditional approaches validate their
algorithm (e.g., Eske et al. 2023) by signals with known

chirp types and locations. However, these approaches use
the collected set of chirps only to test efficiency, and thus
the algorithm itself is not informed by the known chirp
content. By contrast, our supervised learning method takes
full advantage of known chirps and utilizes them for both
training the algorithm and testing its efficiency.

Limitations of the method

Although our algorithm trains itself and identifies chirp
clusters automatically, it still relies on the collection of GT
samples. Consequently, results are still impacted by the bias
of the individual who collects the chirp samples of the GT
set. This bias can be reduced if multiple individuals carry
out chirp collection using the same signal, and if the GT set

a
B 16.86%
g 15.42%
= 15.00%
& 12.71%
H
o 10.97%
8 10.74%
-T; 10.41%
g 6.73%
- \
=]
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Feature dimension
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=
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Fig.9 Normalized frequency (a) and amplitude (b) components of
cluster means for the model trained on the entire “ground truth” data
set G,. Clusters were computed under optimal parameter settings

hopt( Tep = 5%) determined via 4-fold cross-validation (see Sect. “Cross-

validation”). Relative voltage-amplitude-decrease/maximum-frequency-
rise pairs plotted for each sample (c) reveal that G, consists entirely of
type 2 chirps. Different colors are associated with different clusters, their
proportions are indicated in the top-right corner of a
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Fig. 10 Cluster mean (red) and
detected chirp samples (gray)
in a sub-cluster (containing
264 samples) related to the
cluster with 6.73% proportion

>
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is assembled based on the overlap across sets collected by
different individuals.

When chirps appear in the signal at a low frequency,
the time needed for an individual to collect a sufficiently
large GT set increases. While the validation of any
algorithm requires the collection of all chirps from a test
signal, the number of samples needed by our supervised-
learning method is higher than the number of samples
needed for validation only. Nevertheless, our method can
still be advantageous compared to traditional approaches
when already detected chirp types are expected in future
experiments. In such cases, the cluster shapes from already
collected GT sets can be reused. Furthermore, one can even
build libraries of cluster shapes which can then be employed
to “scan” signals for all formerly identified chirp shapes.

As input, our supervised learning method uses the
time—frequency—amplitude signal (T}, f;,Ap), k=1,2,....
While the method for the computation of this signal,
described in Sect. “Calculation of EOD frequency
and amplitude”, works only for time—voltage data that
were generated by a single EOD source, for the analysis
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Feature dimension

of multiple (either synthetic or recorded from fish)
simultaneously recorded EOD signals, one can employ a
different method (e.g., Raab et al. 2022) to extract individual
time—frequency—amplitude signals.

Perspectives

The presented supervised learning algorithm provides a
valuable tool for further examining the function of chirps.
In the present study, it has not only enabled us to validate the
previous classification of chirps into different subtypes, but
also suggested that further differentiation of these subtypes
is possible. Whether these sub-subtypes of chirps subserve
any behavioral function remains to be examined.

It is likely that other algorithms based on supervised
machine learning will exhibit advantages similar to our
approach. Thus, the present study might serve as proof-
of-principle of the suitability of the supervised-machine-
learning paradigm for a broad range of signals analyzed
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in neuroethology. It is likely that, in future investigations,
algorithms based on machine learning paradigms like the
one implemented in the present study will increasingly
become standard tools for signal analysis in neuroethologi-
cal research.

Appendix A: Computation of time-series
frequency and amplitude data

Using linear interpolation, we first computed all time
instances where the filtered time-series signal (t,-,V,-),
i=1,...,M,, crosses the time axis toward positive voltage
values:

th= (¢ —L(t —ti) k=1 M+1
— \ ik V'(k)+l_v'(k) jio+1 jky) K= L .
J J
(A1)

Here the tuple of all upward crossings t* contains |j| = M + 1
number of elements, with

j= (i 1sgn(Viy,) —sen(V;) >0,i=1,...,M,) (A2)
being a tuple containing all indices of the filtered time-
series data where the voltage changed sign to a positive
value. Finally, for each oscillation interval [t+ k), tT(k + 1)],
k=1,...,M, we computed time instance 7, and associated
frequency f, and peak-to-peak amplitude A, values as

_ thk+ 1)+t k)

T , A3
k > (A3)
fi = S — 4
TGkt (A4)
A= jmax (vi) - §002Si ke () (AS)
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