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Abstract— In this study, we proposed a dynamic model that
could quantify human comfort in autonomous vehicles (AVs)
based on vehicular behaviors and a Kalman filter (KF) based
approach to further refine comfort level estimation by leverag-
ing physiological signals. The dynamic model could capture the
dynamics in human comfort when the passenger was exposed
to a continuous sequence of vehicular behaviors during an AV
journey. The KF-based comfort estimation approach could fuse
comfort level estimations based on physiological signals and the
dynamic model. A simulator-based user study was conducted
to evaluate the comfort estimation approaches in which the
participants experienced a set of virtual AV journeys on a high-
fidelity driving simulator with 6-degree-of-freedom motions.
Experimental results show that the proposed approaches could
quantify human comfort levels and the KF-based approach
outperforms the others.

I. INTRODUCTION

Despite the efforts devoted to improving the technical

competence of autonomous vehicles (AVs), low user ac-

ceptance could potentially be a significant obstacle to the

promotion of AVs [1]. According to J. D. Power [2], the

consumers expressed low confidence toward AVs, and the

concern over the comfort of AVs was a significant factor.

Therefore, comfort needs to be considered a fundamental

research topic in AVs.

Comfort is a subjective feeling for each individual, and

a wide variety of factors influence it. Traditionally, the

factors related to human comfort in vehicles could be divided

into three aspects, the dynamic aspect, the ambient aspect,

and the ergonomic aspect [3]. For AVs, some researchers

[4] suggested that the influential factors of comfort could

differ from those in traditional human-driven vehicles. While

factors in traditional human-driven vehicles should retain

their influence, the deprivation of controllability over the

vehicle could expose the passengers in AVs to new influential

factors of comfort.

Several studies used qualitative methods to analyze human

comfort in AVs. Bellem [5] carried out a simulator study

to explore the AV driving style that would be perceived

as comfortable. Results of the study suggested that keeping

acceleration and jerk as small as possible and taking early

perceivable actions in a maneuver would improve the comfort

of AVs. Hartwich [6] led a study that focused on the

influences of the driver’s age and the familiarity of the

driving style on the perceived comfort in AVs. Both younger
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and older drivers confirmed perceiving more comfort in AVs

than manual driving vehicles. While younger drivers felt

more comfortable when the AV was driving in a style similar

to their manual driving style, the older drivers showed higher

comfort with the unfamiliar AV driving style. Schockenhoff

[7] used qualitative methods to explore relationships between

passenger subjective discomfort and vehicular maneuvers.

Some quantitative studies have shown the relationship

between different factors and passenger comfort. Brizon [8]

proposed a computational model for evaluating acoustic com-

fort. The model could combine the subjective ratings from

the participant and the objective measurements of acoustical

features to evaluate a journey’s overall acoustical comfort

level. In [9], a computational model of human comfort in

AVs influenced by vehicular maneuvers was proposed and

evaluated. The model describes the human comfort level in

an AV journey as the combination of comfort levels perceived

in individual vehicular maneuvers.

Real-time human comfort estimation can be applied to

adaptive AV controllers [10], [11] to improve comfort in

AVs. However, there is a lack of studies on real-time comfort

level estimation approaches. Comfort in AVs can be as-

sessed with self-reported comfort levels through Likert scales

or hand-held devices [12]. However, self-reporting comfort

levels require continuous engagement from the passengers,

which is impractical in real human-AV interactions. Indirect

estimation of comfort through physiological signals [13] is

an alternative to the self-reporting method. However, the

accuracy is limited in some situations due to noises in

physiological signals.

In this study, we proposed a dynamic model of human

comfort that could capture dynamics in human comfort levels

influenced by the vehicular behaviors of AVs based on the

computational model proposed in [9]. In the dynamic model,

human comfort in AVs was parameterized as a function of

the current comfort level and the subsequent change in com-

fort level caused by vehicular behaviors. The physiological

signal-based comfort level detection approach proposed in

[13] was implemented in this study to detect the real-time

human comfort level in AVs. Furthermore, we proposed a

Kalman filter-based method to fuse the estimations from the

dynamic model and physiological signal-based approach into

the real-time estimation of human comfort level in AVs.

To examine the performance of the proposed method, we

conducted a simulator-based user study on a high-fidelity

driving simulator that could generate 6-degree-of-freedom

(6-DOF) motions. Participants were required to imagine

themselves in an SAE Level 5 AV [14] and report their per-

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 1-5, 2023. Detroit, USA

978-1-6654-9190-7/23/$31.00 ©2023 IEEE 9865

20
23

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

91
90

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IR

O
S5

55
52

.2
02

3.
10

34
24

80

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 26,2024 at 20:13:41 UTC from IEEE Xplore.  Restrictions apply. 



ceived comfort levels influenced by vehicular behaviors. Data

analysis results indicated that the proposed Kalman filter-

based approach could successfully quantify human comfort

in AV journeys.

II. ESTIMATION OF HUMAN COMFORT IN AVS

A. Definition of Human Comfort in AVs

In this study, the definition of human comfort from the

authors’ previous study [13] was inherited. According to the

definition, human comfort in AVs is defined as a feeling of

not being unsafe or unnatural resulting from the behaviors

of the AV itself and the way the AV interacts with the

environment.

According to the definition, human comfort is defined as

a unidimensional construct, and being comfortable is a state

of not being affected by factors related to uncomfortable

feelings. The influence of discomfort is emphasized in this

definition, where being comfortable can be interpreted as

not being uncomfortable. Such emphasis on discomfort origi-

nated from the finding that discomfort feeling has a dominant

influence on overall human comfort [15] and was employed

in multiple studies [6], [7]. Identifying and understanding

how discomfort-related factors influence human comfort in

AVs is crucial. Based on these understandings, such a defi-

nition of human comfort was employed in this study.

B. Dynamic Model of Human Comfort in AVs

Suppose an AV journey where the behaviors of the vehicle

can be described by a set of m vehicular behaviors u ∈
R

m×1, we define an event as a period of time in the journey

when no change of vehicular behaviors occurs. Consequently,

the journey can be decomposed into a continuous series of

events. The dynamics in comfort levels during the journey

can be studied with each event as the fundamental unit.

Suppose the journey consists of n continuous events, the

dynamic human comfort model can be expressed by

Lk+1 = ALk +Buk+1 (1)

where the previous event and the current event are indexed

by k and k + 1, Lk+1 and Lk ∈ R
1×1 denote the comfort

levels in events k+1 and k, A ∈ R
1×1 is the state transition

matrix, B ∈ R
1×m is the input matrix, and uk+1 describes

the vehicular behaviors in event k + 1.

Besides, we can monitor the comfort levels of the pas-

senger through particular methods. The relationship between

the observed variable yk and the comfort level Lk at event

k can be expressed by

yk = CLk (2)

where C is the observation matrix.

Considering that comfort is a subjective feeling, noises

exist when people perceive and express comfort levels. For

simplicity, we assume such noises are Gaussian noises. Based

on Equations (1) and (2), a linear time-invariant system state-

space model of human comfort in AVs can be formulated as

{
Lk+1 = ALk +Buk+1 + wk+1

yk = CLk + vk
(3)

where w ∼ N (0, Q) denotes the noise from the estimation of

human comfort level with the dynamic model, v ∼ N (0, R)
denotes the noise from the observation of comfort levels.

C. Detecting Human Comfort in AVs with Physiological
Signals

The authors proposed a comfort level detection approach

based on wearable sensors in [13]. The approach employed

a support vector machine (SVM) to detect human comfort

levels in AVs with physiological signals collected from

multiple wearable sensors. Selected physiological signals in-

cluded electroencephalogram (EEG), electrodermal activities

(EDA), blood volume pulse (BVP), and skin temperature

(SKT). For each participant, four SVM classifiers were

trained to perform different binary classification tasks: being

comfortable vs. uncomfortable, being in low/medium/high

uncomfortable level vs. other uncomfortable levels.

The theoretical feasibility of the approach was validated

in [13], and this paper employs the approach in practice.

Four SVM classifiers with the same functionality as the ones

introduced above were trained for each participant in this

study. A hierarchical one-vs-all multi-class classifier based

on the four SVM classifiers was constructed. The top layer of

the hierarchical structure consists of the SVM classifier that

discriminates between being comfortable and uncomfortable.

Data is passed down to the bottom layer consisting of three

one-vs-all SVM classifiers if the classification result from

the top layer is uncomfortable. The three one-vs-all SVM

classifiers process the data and vote on the final classification

of the comfort level. The structure and working process of

the hierarchical classifier are demonstrated in Figure 1.

Fig. 1: The structure and working process of the hierarchical

one-vs-all multi-class classifier based on SVM.

D. Human Comfort Level Estimation by Fusion

Kalman filter (KF) is an optimal estimator of the system

state in a linear system with Gaussian noises [16]. KF

has been effectively applied to the continuous estimation of

subjective feelings, e.g., trust [17] and comfort [18].
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Based on the dynamic comfort model described by Equa-

tion (3) and the comfort level detection approach with phys-

iological signals, a KF-based human comfort level estima-

tion procedure was proposed. The comfort level estimation

based on physiological signals was considered the observed

variable yk ∈ R
1×1 in the state-space model. And thus the

observation matrix C ∈ R
1×1 should be a scalar value. The

procedure is explained with Algorithm 1.

Algorithm 1 Comfort Estimator Based on Kalman Filter

1: k ← 1.

2: Lk ← C−1yk � Initialize system state

3: Σk ← 1 � Initialize covariance

4: while k < n+ 1 do
5: L̂k+1 ← ALk +Buk+1 � Predict system state

6: Σ̂k+1 ← AΣkA+Q � Predict covariance

7: ŷk+1 ← CL̂k+1

8: v ← yk+1 − ŷk+1 � Innovation

9: K ← Σ̂k+1C(CΣ̂k+1C +R)−1 � Kalman gain

10: Lk+1 ← L̂k+1 +Kv � System state correction

11: Σk+1 ← (I −KC)Σ̂k+1 � Covariance correction

12: k ← k + 1
13: return LK+1

14: end while

III. USER STUDY AND DATA PROCESSING

This study employed the stimuli, study protocols, and part

of the data in the authors’ previous study on predicting

human comfort levels in AVs based on wearable sensors [13].

Partially based on [13], this study had an independent sample

of 10 participants and explored an entirely new topic. For the

brevity and clarity of reading, the stimuli and study protocol

were selectively reintroduced in this section. One figure from

[13] was reused in this section with permission.

A. Participants

A total of 10 participants (eight male, two female) partici-

pated in the study. Ages of participants ranged from 26 to 41

years (M = 30.1 years, SD = 4.2). All participants held valid

U.S. driver’s licenses. After completing the experiment, all

participants received equal monetary incentive compensation.

B. Stimuli

A total of 27 video AV journeys with synchronized 6-

DOF motions were created as the stimuli for our study.

Each video lasted around three to five minutes. The journeys

take place on three types of roads: highway, city, and

mountain/rural roads. Three driving styles were designed for

the AV, including gentle, normal, and aggressive styles.

Figure 2 shows the high-fidelity driving simulator was

used to present the stimuli to the participant. The driving

simulator could generate 6-DOF motions of the vehicle in

the stimuli. A three-screen display system was equipped to

provide a wide field-of-view (FOV). Combining the motion

simulation and wide display FOV, the simulator could gen-

erate an immersive experience for the participant.

Fig. 2: The high-fidelity driving simulator used in this study.

(a) Picture of the button box.
(b) Structure diagram of the
button box.

Fig. 3: Button box for comfort level collection.

C. Data Acquisition

1) Human Comfort Levels Acquisition: A button box

shown in Figure 3a was employed to collect the real-time

comfort level of the participant. The button was pressed when

the participant perceived discomfort due to the vehicle’s be-

havior. A harder pressing on the button represented a higher

level of discomfort. Not pressing the button represented

perceiving no discomfort. The Z-score standardization [19]

was applied to mitigate individual differences in pressing

forces. Standardized pressing forces were calculated as self-

reported comfort levels and were regarded as the ground truth

comfort levels.

2) Physiological Signals Acquisition: Two types of wear-

able sensing devices were used in this study, including

the Empatica E4 wristband and Emotiv EPOC X headsets.

The wristband provided measurements of EDA, BVP, and

SKT. The headsets measured EEG of the participant. The

preprocessing and feature extraction of these signals followed

the processes in [13]. Data collected from all journeys

was processed for the training and implementation of the

physiological signal-based comfort estimation method. A

total of 3,032 samples with 96 features per sample were

generated for each participant.

3) Vehicular Behaviors Identification: Highway presents

a challenging scenario for AVs [20], and thus a great volume

of studies have contributed to the realization of highway

automated driving [21]. To further supplement the existing

studies from the comfort perspective, highway journeys

were selected to examine the effectiveness of the comfort

estimation method. Six maneuvers were identified within

highway journeys: lane switching to the left/right lane,

9867

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 26,2024 at 20:13:41 UTC from IEEE Xplore.  Restrictions apply. 



free driving, following, overtaking, and emergency braking.

Headway distance was a critical influential factor of comfort

in highway automated driving [22]. Three levels of headway

distance was defined within the journeys: close, medium, and

far. The maneuvers and different levels of headway distance

were dummy coded to generate nine binary indicators in

the vehicular behavior vector u ∈ R
9×1. Each journey was

sliced into 0.5s segments to extract the u in each segment. A

continuous sequence of segments with the same u values was

marked as an event in the journey. A total of 317 events were

generated within highway journeys. Vehicular behaviors uk

in event k would be used as the dynamic model input in

Eq. (3).

D. Study Procedures and Protocols

Before the experiment, the participant would be introduced

to the experimental protocols and sign the consent form.

After providing consent to participate in the study, the par-

ticipant would be introduced to the tasks to complete during

the experiment. Because the vehicle was fully autonomous,

no driving-related task was required and the only task was

to experience the journey and report the real-time comfort

level with the button box.

The experimental journeys were evenly spread across three

separate days to avoid fatigue. Nine journeys experienced

each day came from one specific type of road. A question-

naire [23] was conducted to monitor any sign of motion

sickness after each journey. No sign of motion sickness was

recorded during the study, thus no further information would

be reported. The experiment for each day typically lasted for

an hour. The experiment procedure and the study protocol

were approved by the Institutional Review Board of Clemson

University.

E. Data Processing

Among the 317 events identified from the nine journeys,

five test trials were selected where changes in self-reported

comfort levels were found along vehicular maneuver transi-

tions. Trial 1 consists of 29 events covering lane switching,

free driving, and overtaking maneuvers. Trial 2 consists of

21 events covering lane switching, free driving, following,

and emergency braking maneuvers. The vehicle was driving

in the aggressive style in Trials 1 and 2. Trial 3 consists

of 17 events covering lane switching, free driving, and

following maneuvers. Trial 4 consists of 12 events covering

lane switching and free driving maneuvers. The vehicle

was driving in the gentle style in Trials 3 and 4. Trial 5

consists of 13 events covering lane switching, free driving,

and overtaking maneuvers. The vehicle was driving in the

normal style in Trial 5. The test trials covered 92 events,

and the rest 225 events were used as training data for fitting

dynamic models and calculating KF parameters.

A multi-class comfort level classifier based on physiolog-

ical signals was trained for each participant. The classifier

was trained based on the 2,703 samples for each participant,

excluding the samples within the test trials. The classifier’s

output would be used as the observed variable y in the

KF estimator. The original output was categorical in four

levels: low-, mid-, hi-discomfort, and comfortable. Categor-

ical labels were further processed into numerical labels. For

discomfort labels, the average self-reported comfort level for

each type of discomfort label was calculated and assigned to

the corresponding label. The numerical label for comfortable

samples was assigned as zero.

Within each event, the average self-reported comfort level

and physiological signal-based comfort level estimation were

calculated for each participant. These values were further

used to obtain the parameters of the KF. The state transition

model in Equation (1) was fitted for each participant based

on the event-based self-reported comfort levels in the training

data. The variance of residuals from the state transition model

fitting was calculated as the process noise covariance Q value

in the KF for each participant. The variance of the errors

between physiological signal-based comfort estimations and

self-reported comfort levels in the training data was calcu-

lated as the measurement noise covariance R value in the

KF for each participant.

To evaluate the performance of different comfort estima-

tion methods, a series of performance metrics were calcu-

lated across the test trials for all participants, i.e., mean

absolute error (MAE), root mean squared error (RMSE),

and R squared value (R2). Both MAE and RMSE are

widely used metrics in model evaluation and are negatively

oriented, which means that a lower value indicates a better

performance. While MAE is more intuitive and easier to

interpret, RMSE penalizes larger errors [24]. R2 is another

commonly used model evaluation metric that demonstrates

the proportion of the total variance in the dependent variable

explained by the independent variables [25].

IV. RESULTS AND ANALYSIS

The three methods of comfort estimation were applied

to the test trials to obtain the dynamic model estimation,

physiological signal-based estimation, and KF estimation of

human comfort levels. The performance metrics mentioned

above were calculated for each method.

Figure 4 displays the metrics of each comfort evaluation

approach for all participants. Table I contains the mean

values of the performance metrics across participants for

each comfort evaluation approach. From Figure 4, we found

that the KF estimator had the lowest MAE among the three

approaches with seven participants, the lowest RMSE among

the three approaches with nine participants, and the highest

R2 among the three approaches with eight participants. On

average, KF achieved MAE value of .231, RMSE value

of .314, and R2 value of .444, suggesting that the KF

TABLE I: Comfort Level Estimation Performance

Method MAE RMSE R2

Kalman filter fusion .231 .314 .444
Physiological signal .283 .405 .402

Dynamic model .267 .373 .253
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(a) MAE (b) RMSE (c) R2

Fig. 4: Comfort estimation performances with different approaches across participants.

(a) Participant 1 Trial 1 (b) Participant 6 Trial 3 (c) Participant 4 Trial 4 (d) Participant 9 Trial 5

(e) Participant 9 Trial 2 (f) Participant 8 Trial 3 (g) Participant 1 Trial 4 (h) Participant 10 Trial 5

Fig. 5: Examples of comfort estimation results for some participants during various test trials.

had the overall best performance of comfort estimation

among the three approaches. The physiological signal-based

approach had higher MAE, RMSE, and R2 values than

the dynamic model, indicating that the physiological signal-

based approach might generate large estimation errors more

frequently than the dynamic model but estimate variations in

comfort levels better.

Overall, the KF estimator could generate a more accurate

estimation of comfort level than the other two approaches.

Furthermore, good performances from the dynamic model

and physiological signal-based approach could further en-

hance the good performance of the KF estimator. Perfor-

mance metrics were evaluated for each participant in differ-

ent test trials. The evaluation baseline was established refer-

ring to another comfort modeling study using similar metrics

[26]. In test trials with good estimation accuracy from the

KF (R2 ≥ .40, MAE ≤ .25, RMSE ≤ .30), both the

physiological signal-based approach and the dynamic model

achieved acceptable accuracy (R2 ≥ .20, MAE ≤ .30,

RMSE ≤ .40), e.g., in Figures 5a, 5b, 5c, 5d. Whereas in

test trials where both the physiological signal-based approach

and the dynamic model failed to provide an acceptably

accurate estimation (R2 < .20, MAE > .30, RMSE >
.40), the KF could not yield accurate estimation either (R2 <
.20, MAE > .30, RMSE > .40), e.g., in Figures 5e,

5f, 5g, 5h. The KF estimator overcame the weaknesses of

the physiological signal-based approach and the dynamic

model through model fusion. However, model fusion could

not handle the situation when both individual models in the

fusion failed to work. Therefore, it is critical to have accurate

models before applying the KF, and a significant way to

improve the performance of the KF estimator is to improve

the individual models in the KF.

In summary, the proposed KF-based comfort estimation

approach was implemented and tested in this study. The KF

estimator successfully estimated the human comfort levels of
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different participants in multiple test trials. The performance

metrics of different comfort estimation approaches were

calculated. The KF-based approach outperformed the phys-

iological signal-based approach and the dynamic model in

all metrics. The physiological signal-based approach showed

a stronger ability to explain variations in comfort levels

than the dynamic model but tended to generate large errors

more frequently. Although the KF-based approach outper-

formed the other two approaches in comfort estimation,

the performance of the KF-based approach was dependent

on the performances of the other two approaches. This

suggested that it is critical to have accurate models before

applying model fusion techniques, e.g., KF, to achieve good

performance and that improving the the individual models is

a significant way of improving the performance of the model

fusion.

V. CONCLUSIONS

We proposed a dynamic human comfort model and a KF-

based approach to estimating human comfort in AV journeys.

The dynamic model incorporates vehicular behavioral factors

and has a state-space model formulation that makes it useful

for future designs of AV controllers or decision-making

algorithms. A KF-based comfort level estimation approach

was proposed in this paper that could fuse comfort level

estimations from the dynamic model and the physiological

signal-based estimation method. An empirical study with

10 participants was conducted to evaluate the effectiveness

of the proposed comfort estimation method. Results indi-

cated that the proposed KF-based comfort level estimation

approach successfully measured the comfort levels of the

participants and outperformed both the dynamic model and

the physiological signal-based approach. This study shows

the potential of estimating human comfort levels by fusing

the model-based approach and physiological approach.
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