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Abstract—In this study, we proposed a dynamic model that
could quantify human comfort in autonomous vehicles (AVs)
based on vehicular behaviors and a Kalman filter (KF) based
approach to further refine comfort level estimation by leverag-
ing physiological signals. The dynamic model could capture the
dynamics in human comfort when the passenger was exposed
to a continuous sequence of vehicular behaviors during an AV
journey. The KF-based comfort estimation approach could fuse
comfort level estimations based on physiological signals and the
dynamic model. A simulator-based user study was conducted
to evaluate the comfort estimation approaches in which the
participants experienced a set of virtual AV journeys on a high-
fidelity driving simulator with 6-degree-of-freedom motions.
Experimental results show that the proposed approaches could
quantify human comfort levels and the KF-based approach
outperforms the others.

I. INTRODUCTION

Despite the efforts devoted to improving the technical
competence of autonomous vehicles (AVs), low user ac-
ceptance could potentially be a significant obstacle to the
promotion of AVs [1]. According to J. D. Power [2], the
consumers expressed low confidence toward AVs, and the
concern over the comfort of AVs was a significant factor.
Therefore, comfort needs to be considered a fundamental
research topic in AVs.

Comfort is a subjective feeling for each individual, and
a wide variety of factors influence it. Traditionally, the
factors related to human comfort in vehicles could be divided
into three aspects, the dynamic aspect, the ambient aspect,
and the ergonomic aspect [3]. For AVs, some researchers
[4] suggested that the influential factors of comfort could
differ from those in traditional human-driven vehicles. While
factors in traditional human-driven vehicles should retain
their influence, the deprivation of controllability over the
vehicle could expose the passengers in AVs to new influential
factors of comfort.

Several studies used qualitative methods to analyze human
comfort in AVs. Bellem [5] carried out a simulator study
to explore the AV driving style that would be perceived
as comfortable. Results of the study suggested that keeping
acceleration and jerk as small as possible and taking early
perceivable actions in a maneuver would improve the comfort
of AVs. Hartwich [6] led a study that focused on the
influences of the driver’s age and the familiarity of the
driving style on the perceived comfort in AVs. Both younger
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and older drivers confirmed perceiving more comfort in AVs
than manual driving vehicles. While younger drivers felt
more comfortable when the AV was driving in a style similar
to their manual driving style, the older drivers showed higher
comfort with the unfamiliar AV driving style. Schockenhoff
[7] used qualitative methods to explore relationships between
passenger subjective discomfort and vehicular maneuvers.

Some quantitative studies have shown the relationship
between different factors and passenger comfort. Brizon [§]
proposed a computational model for evaluating acoustic com-
fort. The model could combine the subjective ratings from
the participant and the objective measurements of acoustical
features to evaluate a journey’s overall acoustical comfort
level. In [9], a computational model of human comfort in
AVs influenced by vehicular maneuvers was proposed and
evaluated. The model describes the human comfort level in
an AV journey as the combination of comfort levels perceived
in individual vehicular maneuvers.

Real-time human comfort estimation can be applied to
adaptive AV controllers [10], [11] to improve comfort in
AVs. However, there is a lack of studies on real-time comfort
level estimation approaches. Comfort in AVs can be as-
sessed with self-reported comfort levels through Likert scales
or hand-held devices [12]. However, self-reporting comfort
levels require continuous engagement from the passengers,
which is impractical in real human-AV interactions. Indirect
estimation of comfort through physiological signals [13] is
an alternative to the self-reporting method. However, the
accuracy is limited in some situations due to noises in
physiological signals.

In this study, we proposed a dynamic model of human
comfort that could capture dynamics in human comfort levels
influenced by the vehicular behaviors of AVs based on the
computational model proposed in [9]. In the dynamic model,
human comfort in AVs was parameterized as a function of
the current comfort level and the subsequent change in com-
fort level caused by vehicular behaviors. The physiological
signal-based comfort level detection approach proposed in
[13] was implemented in this study to detect the real-time
human comfort level in AVs. Furthermore, we proposed a
Kalman filter-based method to fuse the estimations from the
dynamic model and physiological signal-based approach into
the real-time estimation of human comfort level in AVs.
To examine the performance of the proposed method, we
conducted a simulator-based user study on a high-fidelity
driving simulator that could generate 6-degree-of-freedom
(6-DOF) motions. Participants were required to imagine
themselves in an SAE Level 5 AV [14] and report their per-
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ceived comfort levels influenced by vehicular behaviors. Data
analysis results indicated that the proposed Kalman filter-
based approach could successfully quantify human comfort
in AV journeys.

II. ESTIMATION OF HUMAN COMFORT IN AVS
A. Definition of Human Comfort in AVs

In this study, the definition of human comfort from the
authors’ previous study [13] was inherited. According to the
definition, human comfort in AVs is defined as a feeling of
not being unsafe or unnatural resulting from the behaviors
of the AV itself and the way the AV interacts with the
environment.

According to the definition, human comfort is defined as
a unidimensional construct, and being comfortable is a state
of not being affected by factors related to uncomfortable
feelings. The influence of discomfort is emphasized in this
definition, where being comfortable can be interpreted as
not being uncomfortable. Such emphasis on discomfort origi-
nated from the finding that discomfort feeling has a dominant
influence on overall human comfort [15] and was employed
in multiple studies [6], [7]. Identifying and understanding
how discomfort-related factors influence human comfort in
AVs is crucial. Based on these understandings, such a defi-
nition of human comfort was employed in this study.

B. Dynamic Model of Human Comfort in AVs

Suppose an AV journey where the behaviors of the vehicle
can be described by a set of m vehicular behaviors u €
R™*! we define an event as a period of time in the journey
when no change of vehicular behaviors occurs. Consequently,
the journey can be decomposed into a continuous series of
events. The dynamics in comfort levels during the journey
can be studied with each event as the fundamental unit.
Suppose the journey consists of n continuous events, the
dynamic human comfort model can be expressed by

Lyy1 = AL + Bugy (1)

where the previous event and the current event are indexed
by k and k + 1, L1 and Ly € R**! denote the comfort
levels in events k+ 1 and k, A € R*! ig the state transition
matrix, B € R1*"™ is the input matrix, and w4 describes
the vehicular behaviors in event k£ + 1.

Besides, we can monitor the comfort levels of the pas-
senger through particular methods. The relationship between
the observed variable vy, and the comfort level L at event
k can be expressed by

Yp = CLy 2

where C' is the observation matrix.

Considering that comfort is a subjective feeling, noises
exist when people perceive and express comfort levels. For
simplicity, we assume such noises are Gaussian noises. Based
on Equations (1) and (2), a linear time-invariant system state-
space model of human comfort in AVs can be formulated as

{Lk+1 = ALy, + Buj 1 +wip 3)

Yy, =CLy +vi

where w ~ N (0, Q) denotes the noise from the estimation of
human comfort level with the dynamic model, v ~ N'(0, R)
denotes the noise from the observation of comfort levels.

C. Detecting Human Comfort in AVs with Physiological
Signals

The authors proposed a comfort level detection approach
based on wearable sensors in [13]. The approach employed
a support vector machine (SVM) to detect human comfort
levels in AVs with physiological signals collected from
multiple wearable sensors. Selected physiological signals in-
cluded electroencephalogram (EEG), electrodermal activities
(EDA), blood volume pulse (BVP), and skin temperature
(SKT). For each participant, four SVM classifiers were
trained to perform different binary classification tasks: being
comfortable vs. uncomfortable, being in low/medium/high
uncomfortable level vs. other uncomfortable levels.

The theoretical feasibility of the approach was validated
in [13], and this paper employs the approach in practice.
Four SVM classifiers with the same functionality as the ones
introduced above were trained for each participant in this
study. A hierarchical one-vs-all multi-class classifier based
on the four SVM classifiers was constructed. The top layer of
the hierarchical structure consists of the SVM classifier that
discriminates between being comfortable and uncomfortable.
Data is passed down to the bottom layer consisting of three
one-vs-all SVM classifiers if the classification result from
the top layer is uncomfortable. The three one-vs-all SVM
classifiers process the data and vote on the final classification
of the comfort level. The structure and working process of
the hierarchical classifier are demonstrated in Figure 1.

Physiological signals

Top layer

If ‘Comfortable’

N N Output ‘Comfortable”
Comfortable vs. Uncomfortable

If ‘Uncomfortable’

Bottom layer

Low-discomfort vs.
Medium- or High-discomfort

Medium-discomfort vs.
Low- or High-discomfort

— Output a specific discomfort level

High-discomfort vs.
Low- or Medium-discomfort

Fig. 1: The structure and working process of the hierarchical
one-vs-all multi-class classifier based on SVM.

D. Human Comfort Level Estimation by Fusion

Kalman filter (KF) is an optimal estimator of the system
state in a linear system with Gaussian noises [16]. KF
has been effectively applied to the continuous estimation of
subjective feelings, e.g., trust [17] and comfort [18].
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Based on the dynamic comfort model described by Equa-
tion (3) and the comfort level detection approach with phys-
iological signals, a KF-based human comfort level estima-
tion procedure was proposed. The comfort level estimation
based on physiological signals was considered the observed
variable y;, € R'*! in the state-space model. And thus the
observation matrix C' € R'*! should be a scalar value. The
procedure is explained with Algorithm 1.

Algorithm 1 Comfort Estimator Based on Kalman Filter

1. k<« 1.
2. Ly + Cilyk
3 Y 1
4: whjlek<n+1 do
© Lpy1 < ALy + Bugy

> Initialize system state
> Initialize covariance

5 > Predict system state
6: N1 AAE;CA +Q > Predict covariance
70 g1 < CLpga

8 V4= Yl — Ykt > Innovation
9. K+ 210(C8p1C+R)7? > Kalman gain
100 Lgqq ﬁkH + Kv > System state correction
1: Xppq «— (I— KC’)EA];CH > Covariance correction
122 k+k+1

13:  return Ly

14: end while

III. USER STUDY AND DATA PROCESSING

This study employed the stimuli, study protocols, and part
of the data in the authors’ previous study on predicting
human comfort levels in AVs based on wearable sensors [13].
Partially based on [13], this study had an independent sample
of 10 participants and explored an entirely new topic. For the
brevity and clarity of reading, the stimuli and study protocol
were selectively reintroduced in this section. One figure from
[13] was reused in this section with permission.

A. Farticipants

A total of 10 participants (eight male, two female) partici-
pated in the study. Ages of participants ranged from 26 to 41
years (M = 30.1 years, SD =4.2). All participants held valid
U.S. driver’s licenses. After completing the experiment, all
participants received equal monetary incentive compensation.

B. Stimuli

A total of 27 video AV journeys with synchronized 6-
DOF motions were created as the stimuli for our study.
Each video lasted around three to five minutes. The journeys
take place on three types of roads: highway, city, and
mountain/rural roads. Three driving styles were designed for
the AV, including gentle, normal, and aggressive styles.

Figure 2 shows the high-fidelity driving simulator was
used to present the stimuli to the participant. The driving
simulator could generate 6-DOF motions of the vehicle in
the stimuli. A three-screen display system was equipped to
provide a wide field-of-view (FOV). Combining the motion
simulation and wide display FOV, the simulator could gen-
erate an immersive experience for the participant.

finger

box.

button

(b) Structure diagram of the
button box.

(a) Picture of the button box.

Fig. 3: Button box for comfort level collection.

C. Data Acquisition

1) Human Comfort Levels Acquisition: A button box
shown in Figure 3a was employed to collect the real-time
comfort level of the participant. The button was pressed when
the participant perceived discomfort due to the vehicle’s be-
havior. A harder pressing on the button represented a higher
level of discomfort. Not pressing the button represented
perceiving no discomfort. The Z-score standardization [19]
was applied to mitigate individual differences in pressing
forces. Standardized pressing forces were calculated as self-
reported comfort levels and were regarded as the ground truth
comfort levels.

2) Physiological Signals Acquisition: Two types of wear-
able sensing devices were used in this study, including
the Empatica E4 wristband and Emotiv EPOC X headsets.
The wristband provided measurements of EDA, BVP, and
SKT. The headsets measured EEG of the participant. The
preprocessing and feature extraction of these signals followed
the processes in [13]. Data collected from all journeys
was processed for the training and implementation of the
physiological signal-based comfort estimation method. A
total of 3,032 samples with 96 features per sample were
generated for each participant.

3) Vehicular Behaviors Identification: Highway presents
a challenging scenario for AVs [20], and thus a great volume
of studies have contributed to the realization of highway
automated driving [21]. To further supplement the existing
studies from the comfort perspective, highway journeys
were selected to examine the effectiveness of the comfort
estimation method. Six maneuvers were identified within
highway journeys: lane switching to the left/right lane,
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free driving, following, overtaking, and emergency braking.
Headway distance was a critical influential factor of comfort
in highway automated driving [22]. Three levels of headway
distance was defined within the journeys: close, medium, and
far. The maneuvers and different levels of headway distance
were dummy coded to generate nine binary indicators in
the vehicular behavior vector u € R%*!. Each journey was
sliced into 0.5s segments to extract the u in each segment. A
continuous sequence of segments with the same u values was
marked as an event in the journey. A total of 317 events were
generated within highway journeys. Vehicular behaviors ug
in event £ would be used as the dynamic model input in

Eq. (3).

D. Study Procedures and Protocols

Before the experiment, the participant would be introduced
to the experimental protocols and sign the consent form.
After providing consent to participate in the study, the par-
ticipant would be introduced to the tasks to complete during
the experiment. Because the vehicle was fully autonomous,
no driving-related task was required and the only task was
to experience the journey and report the real-time comfort
level with the button box.

The experimental journeys were evenly spread across three
separate days to avoid fatigue. Nine journeys experienced
each day came from one specific type of road. A question-
naire [23] was conducted to monitor any sign of motion
sickness after each journey. No sign of motion sickness was
recorded during the study, thus no further information would
be reported. The experiment for each day typically lasted for
an hour. The experiment procedure and the study protocol
were approved by the Institutional Review Board of Clemson
University.

E. Data Processing

Among the 317 events identified from the nine journeys,
five test trials were selected where changes in self-reported
comfort levels were found along vehicular maneuver transi-
tions. Trial 1 consists of 29 events covering lane switching,
free driving, and overtaking maneuvers. Trial 2 consists of
21 events covering lane switching, free driving, following,
and emergency braking maneuvers. The vehicle was driving
in the aggressive style in Trials 1 and 2. Trial 3 consists
of 17 events covering lane switching, free driving, and
following maneuvers. Trial 4 consists of 12 events covering
lane switching and free driving maneuvers. The vehicle
was driving in the gentle style in Trials 3 and 4. Trial 5
consists of 13 events covering lane switching, free driving,
and overtaking maneuvers. The vehicle was driving in the
normal style in Trial 5. The test trials covered 92 events,
and the rest 225 events were used as training data for fitting
dynamic models and calculating KF parameters.

A multi-class comfort level classifier based on physiolog-
ical signals was trained for each participant. The classifier
was trained based on the 2,703 samples for each participant,
excluding the samples within the test trials. The classifier’s
output would be used as the observed variable y in the

KF estimator. The original output was categorical in four
levels: low-, mid-, hi-discomfort, and comfortable. Categor-
ical labels were further processed into numerical labels. For
discomfort labels, the average self-reported comfort level for
each type of discomfort label was calculated and assigned to
the corresponding label. The numerical label for comfortable
samples was assigned as zero.

Within each event, the average self-reported comfort level
and physiological signal-based comfort level estimation were
calculated for each participant. These values were further
used to obtain the parameters of the KF. The state transition
model in Equation (1) was fitted for each participant based
on the event-based self-reported comfort levels in the training
data. The variance of residuals from the state transition model
fitting was calculated as the process noise covariance () value
in the KF for each participant. The variance of the errors
between physiological signal-based comfort estimations and
self-reported comfort levels in the training data was calcu-
lated as the measurement noise covariance R value in the
KF for each participant.

To evaluate the performance of different comfort estima-
tion methods, a series of performance metrics were calcu-
lated across the test trials for all participants, i.e., mean
absolute error (MAE), root mean squared error (RMSE),
and R squared value (R?). Both MAE and RMSE are
widely used metrics in model evaluation and are negatively
oriented, which means that a lower value indicates a better
performance. While MAE is more intuitive and easier to
interpret, RMSE penalizes larger errors [24]. R? is another
commonly used model evaluation metric that demonstrates
the proportion of the total variance in the dependent variable
explained by the independent variables [25].

IV. RESULTS AND ANALYSIS

The three methods of comfort estimation were applied
to the test trials to obtain the dynamic model estimation,
physiological signal-based estimation, and KF estimation of
human comfort levels. The performance metrics mentioned
above were calculated for each method.

Figure 4 displays the metrics of each comfort evaluation
approach for all participants. Table I contains the mean
values of the performance metrics across participants for
each comfort evaluation approach. From Figure 4, we found
that the KF estimator had the lowest MAE among the three
approaches with seven participants, the lowest RMSE among
the three approaches with nine participants, and the highest
R? among the three approaches with eight participants. On
average, KF achieved MAE value of .231, RMSE value
of 314, and R? value of .444, suggesting that the KF

TABLE I: Comfort Level Estimation Performance

Method MAE RMSE R?
Kalman filter fusion 231 314 444
Physiological signal 283 405 402

Dynamic model 267 373 253
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Fig. 5: Examples of comfort estimation results for some participants during various test trials.

had the overall best performance of comfort estimation
among the three approaches. The physiological signal-based
approach had higher MAE, RMSE, and R? values than
the dynamic model, indicating that the physiological signal-
based approach might generate large estimation errors more
frequently than the dynamic model but estimate variations in
comfort levels better.

Overall, the KF estimator could generate a more accurate
estimation of comfort level than the other two approaches.
Furthermore, good performances from the dynamic model
and physiological signal-based approach could further en-
hance the good performance of the KF estimator. Perfor-
mance metrics were evaluated for each participant in differ-
ent test trials. The evaluation baseline was established refer-
ring to another comfort modeling study using similar metrics
[26]. In test trials with good estimation accuracy from the
KF (R? > 40, MAE < .25, RMSE < .30), both the
physiological signal-based approach and the dynamic model

achieved acceptable accuracy (R? > 20, MAE < .30,
RMSFE < 40), e.g., in Figures 5a, 5b, 5c, 5d. Whereas in
test trials where both the physiological signal-based approach
and the dynamic model failed to provide an acceptably
accurate estimation (R?> < .20, MAE > .30, RMSE >
.40), the KF could not yield accurate estimation either (R? <
20, MAE > .30, RMSE > .40), e.g., in Figures Se,
5f, 5g, 5h. The KF estimator overcame the weaknesses of
the physiological signal-based approach and the dynamic
model through model fusion. However, model fusion could
not handle the situation when both individual models in the
fusion failed to work. Therefore, it is critical to have accurate
models before applying the KF, and a significant way to
improve the performance of the KF estimator is to improve
the individual models in the KF.

In summary, the proposed KF-based comfort estimation
approach was implemented and tested in this study. The KF
estimator successfully estimated the human comfort levels of
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different participants in multiple test trials. The performance
metrics of different comfort estimation approaches were
calculated. The KF-based approach outperformed the phys-
iological signal-based approach and the dynamic model in
all metrics. The physiological signal-based approach showed
a stronger ability to explain variations in comfort levels
than the dynamic model but tended to generate large errors
more frequently. Although the KF-based approach outper-
formed the other two approaches in comfort estimation,
the performance of the KF-based approach was dependent
on the performances of the other two approaches. This
suggested that it is critical to have accurate models before
applying model fusion techniques, e.g., KF, to achieve good
performance and that improving the the individual models is
a significant way of improving the performance of the model
fusion.

V. CONCLUSIONS

We proposed a dynamic human comfort model and a KF-
based approach to estimating human comfort in AV journeys.
The dynamic model incorporates vehicular behavioral factors
and has a state-space model formulation that makes it useful
for future designs of AV controllers or decision-making
algorithms. A KF-based comfort level estimation approach
was proposed in this paper that could fuse comfort level
estimations from the dynamic model and the physiological
signal-based estimation method. An empirical study with
10 participants was conducted to evaluate the effectiveness
of the proposed comfort estimation method. Results indi-
cated that the proposed KF-based comfort level estimation
approach successfully measured the comfort levels of the
participants and outperformed both the dynamic model and
the physiological signal-based approach. This study shows
the potential of estimating human comfort levels by fusing
the model-based approach and physiological approach.
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