2023 Asian Hardware Oriented Security and Trust Symposium (AsianHOST) | 979-8-3503-4099-0/23/$31.00 ©2023 IEEE | DOI: 10.1109/AsianHOST59942.2023.10409376

DF-TEE: Trusted Execution Environment for
Disaggregated Multi-FPGA Cloud Systems

Ke Xia and Sheng Wei

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA
Email: {ke.xia, sheng.wei}@rutgers.edu

Abstract—Multi-FPGA systems have recently been deployed
in modern data centers to accelerate large-scale, computation-
intensive cloud applications. Meanwhile, recent studies promote
resource disaggregation as an emerging trend in data center
infrastructure enabling high flexibility and utilization of cloud
computing resources, including FPGAs. While the community has
mostly focused on the management and performance optimiza-
tion aspects of disaggregated multi-FPGA systems, the security
challenges caused by the emerging infrastructure have not been
well studied. We tackle the security of disaggregated multi-FPGA
systems by developing a new trusted execution environment
(TEE), namely DF-TEE, which for the first time extends the
capability of the traditional CPU TEEs to disaggregated FPGA
accelerators. DF-TEE employs a secure isolation path to connect
all the components in the CPU and multi-FPGA system based on
the established mutual trust in the heterogeneous environment,
as well as security-aware slicing and deployment of the sensitive
computations. We evaluate DF-TEE on a real hardware imple-
mentation of disaggregated multi-FPGA system, which justifies
its security with acceptable timing and resource overhead.

I. INTRODUCTION

With the growing demand for high-performance computing,
system designers and industry practitioners have employed
FPGAs as an efficient and programmable hardware accelerator
in modern data centers, such as Amazon AWS [1] to support
computation-intensive cloud computing workloads. Consider-
ing the scale of most FPGA cloud applications, such as deep
neural networks [2], a single FPGA is often insufficient to
deploy the entire workload, leading to the trend of deploying
multi-FPGA systems to jointly accomplish the computation
task, such as Microsoft Brainwave [3]. In a multi-FPGA
system, multiple FPGA boards are connected to each other
in the data center network (e.g., through PCle bus, high-
bandwidth fiber, or Ethernet) to form a pool of FPGA boards,
each of which executes one sequential or parallel partition
of the workload. Since its emergence, multi-FPGA systems
have demonstrated their superiority in various computation-
intensive applications [2] with commercial deployments [4].

Meanwhile, resource disaggregation has attracted great at-
tention in data center infrastructure, which separates comput-
ing resources (e.g., memory/storage and GPU) from traditional
monolithic servers to disaggregated resource pools to achieve
higher flexibility and resource utilization [5]. As a key com-
puting resource in modern data centers, FPGAs have also been

979-8-3503-4099-0/23/$31.00 ©2023 IEEE

decoupled from the CPU host and deployed in disaggregated
FPGA pools in recent studies [6], which demonstrate superior
performance compared to traditional multi-FPGA systems.

While the community has mainly focused on the workload
partitioning, management/scheduling, performance optimiza-
tion, and resource utilization of FPGAs in the cloud [7],
the security challenges introduced by the new disaggregated
multi-FPGA architecture have not been well studied. In fact,
the multi-FPGA system would expose unattended new attack
surfaces as compared to the traditional CPU-based or single-
FPGA systems. For example, an untrusted client may deploy
malicious IPs to one or more FPGAs to compromise the
computation or leak confidential information [8]. An untrusted
or vulnerable service provider may compromise the privacy-
sensitive information processed by the FPGAs [9].

In traditional CPU-based systems, the state-of-the-art solu-
tions to similar security challenges are hardware-based trusted
execution environments (TEEs) [10], which create a hardware-
enabled security region (i.e., enclave) to isolate security
sensitive data from security threats. The hardware isolation
provided by TEE ensures the confidentiality and integrity of
the code and data even if the operating system kernel has been
compromised, effectively reducing the trusted computing base
to achieve the highest level of security guarantee. However,
the existing CPU-based TEEs have a fundamental limitation
in that their root of trust ties closely with a single CPU, and all
the security-sensitive data and computations must be deployed
in a resource-constrained CPU-based container, which does
not support FPGA accelerators. Also, the recent explorations
on FPGA TEEs [11] only focus on a single FPGA instead of
disaggregated multi-FPGAs.

We develop a trusted execution environment targeting dis-
aggregated multi-FPGAs, namely DF-TEE, to address the
unattended security challenges in the new heterogeneous ar-
chitecture. DF-TEE extends the security and trust from the
traditional CPU-based TEE to disaggregated multi-FPGAs by
securely slicing and isolating the sensitive portion of the
application via a secure computation and communication path
connecting all trusted parties in the end-to-end CPU-FPGA
system. DF-TEE achieves both security features from the
traditional TEE, namely hardware isolation and attestation,
to the realm of disaggregated multi-FPGA systems, which
effectively addresses the confidentiality and integrity of data
and computation in the distributed heterogeneous architecture.

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on July 30,2024 at 18:50:13 UTC from IEEE Xplore. Restrictions apply.

We evaluate the proposed DF-TEE framework on a real hard-
ware implementation of disaggregated multi-FPGA system
using representative FPGA benchmarks. The evaluation results
justify the anticipated security features with acceptable timing
and resource overhead. Also, DF-TEE is immediately de-
ployable on empirical multi-FPGA systems without hardware
modifications. To the best of our knowledge, this is the first
work on TEE supporting disaggregated multi-FPGA systems.

II. RELATED WORKS

Disaggregated Multi-FPGA Systems. Disaggregated multi-
FPGA systems have been incorporated into modern data
centers to support computation-intensive workloads [12], [13].
Despite the performance gains achieved by deploying and
utilizing multi-FPGAs in the cloud, the security of the FPGA
cloud has recently drawn a great deal of attention. The existing
security research mainly focuses on multi-tenant single-FPGA
systems, where the victim and malicious clients may share
hardware resources. In this case, the malicious client can
implement critical attacks such as side-channel [14] and fault-
inject attacks [15] to steal the information from the victim
clients, and the community has explored countermeasures to
defend against such attacks [16]. However, the security of
disaggregated multi-FPGA systems has not been well studied.

Trusted Execution Environment. TEEs have become the
state-of-the-art hardware-based technique in protecting the
data and computations on a variety of platforms, such as ARM
TrustZone for mobile devices [17], and Intel SGX [10], Intel
TDX [18], and AMD SEV [19] for server/cloud platforms.
However, the CPU-based TEEs lack the support for hardware
accelerators, such as GPUs and FPGAs. Recently, several
research works have explored extending TEEs to hardware
accelerators. For example, CURE [20] proposed a new stan-
dalone TEE frameworks for the heterogeneous architecture.
Graviton [21] and HIX [22] focus on building GPU TEEs.
SGX-FPGA [11] extends SGX to a single FPGA connected
to the CPU via PCle bus. ShEF [23] targets cloud FPGAs and
builds an FPGA TEE. However, none of the existing works
target TEE for disaggregated multi-FPGA systems, which is
the focus of our proposed DF-TEE.

III. THREAT MODELS

Several attacks against the CPU-FPGA architecture have
been proposed to reveal the secrets in CPU and FPGA [24].
Different from the CPU-based and single-FPGA systems,
the disaggregated multi-FPGA system would expose more
challenging attack surfaces, due to the involvements of the
client, cloud service provider, and multiple FPGAs, which
must be addressed with a new security measure. We target
the following threat models in the design of DF-TEE:

o Client-FPGA attack. The interactions between the client
(i.e., CPU) and the multi-FPGA system may incur a series
of security threats unless trust and protection are established
between the two parties [24]. For example, we assume
that a malicious client may inject malicious IPs into the
FPGAs [8], invoke FPGA kernels without authorization,

or issue remote attacks to compromise the security of
the FPGA [25]; a malicious FPGA kernel may probe the
sensitive information from the client [26]; and a man-in-the-
middle adversary may probe the sensitive data between the
client and FPGA through the PCle bus or the network [27].
o Service provider attack. The FPGA service providers may
pose security or privacy concerns given the client data
being processed in the FPGAs, similar to the trust issues
in traditional CPU/GPU-based cloud computing [28]. Also,
recent research has demonstrated the vulnerabilities of data
and bitstream hosted by the FPGA service providers with
regard to unauthorized accesses and reverse engineering
attacks [9], [24]. Moreover, even if the service providers are
trustworthy, they may be compromised by external adver-
saries and become a medium for indirect threats to the client
data, as evidenced by numerous data breaches targeting
cloud servers [28]. Therefore, it is crucial to securely isolate
the privacy-sensitive data from being accessed by untrusted
FPGA service providers or adversaries.
We do not consider the hardware physical attacks (e.g.,
through side channel analysis [14]) that are able to com-
promise the FPGAs, as they have been actively addressed
in the hardware security community [16]. Also, similar to
other security research, we assume that certain trusted entities
(e.g., local trusted servers or global trusted authorities) are
achievable to serve as the root of trust and host the proposed
security measures without potential security threats.

IV. SYSTEM DESIGN OF DF-TEE
A. DF-TEE Overview

While several disaggregated FPGA systems have been de-
veloped in the community [6], [12], there has not been a
consensus on the standard architecture for FPGA disaggre-
gation. Without loss of generality, we develop an end-to-
end, 4-level disaggregated FPGA system following the recent
practices in disaggregated data center designs [S], to deploy
the security mechanisms in the proposed DF-TEE framework.
Figure 1 illustrates the overall architecture and workflow of our
disaggregated multi-FPGA system. Note that the components
in green are considered as trusted entities to achieve the
security features of DF-TEE, the integrity of which is assumed
as achievable based on the discussion in Section III.

o Client is the user entity that offloads the computation, in
the form of high-level programming language, to the dis-
aggregated FPGA system. The disaggregated FPGA system
would provide the level of abstraction that the hardware de-
ployment and execution of the computation are transparent
to the users, achieving serverless computing.

o Trusted Edge Server is the trustworthy entity to compile the
client code in high-level language into FPGA bitstreams.
Inheriting the principle of TEE, we deploy a code slicer
that isolates the security-sensitive computation from the rest
of the program. Such isolation helps reducing the demand
for TEE-protected FPGAs to only the security-sensitive part
of the program, alleviating the resource and performance
overhead required by DF-TEE.

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on July 30,2024 at 18:50:13 UTC from IEEE Xplore. Restrictions apply.

o FPGA Manager is the intermediate management entity that
maps the compiled bitstreams to the FPGA hardware. It
maintains a bitstream pool that stores all the bitstreams
obtained from the trusted edge server, as well as an FPGA
database that maintains the record and dynamic status of all
the FPGAs. The scheduler keeps track of the bitstream and
FPGA records and determines the FPGA topology for the
deployments of the bitstreams in the disaggregated FPGAs.
The hardware manager can communicate with the FPGA
infrastructure, deploy the bitstreams, and transmit the data.
In parallel to the FPGA manager,

o Secure Monitor is a third-party certificate authority, which
serves as the root of trust for security, aiming to authenti-
cate the trusted entities (e.g., client, FPGA), distribute the
encryption key, and build the secure isolation path to protect
client-sensitive information.

o FPGA Infrastructure is the hardware entity hosting all the
hardware FPGAs. DF-TEE supports two types of multi-
FPGA deployments using PCle and network interface card
(NIC) to implement the disaggregated architecture. In the
PCle case, each FPGA is connected to a CPU host machine
via PCle bus, but the host machine does not execute any
computation and only serves as a communication channel to
direct the data flow among multiple FPGAs. In the NIC case,
the FPGAs communicate via the NIC connected to each
FPGA without requiring a CPU host. Although physically
disaggregated, the FPGAs are logically categorized into two
groups based on their security properties: (1) secure FPGAs,
which are authenticated by the secure monitor with the
capability of carrying out security-sensitive workload; and
(2) normal FPGAs, which are not part of the security domain
and can only execute non-sensitive workload.

' 1. Build the trust |
B Secure Monitor
ﬁ—J AN Code | | _I—lgh
Csource file slicer]- 1 I_ "| FPGA
" o 2. Isolate dztl:d?;:e g:“ :
the secret g_ - FPGA
. g
=), Bitstream 3 LI
o Scheduler = |
| T B - FPGA
0
oot 1%
. Trusted Edge FPGA
Client Server FPGA Manager Infrastructure

I data 4. Execute the application T

Figure 1: Overall architecture of the proposed DF-TEE system.

B. DF-TEE Workflow

Figure 1 shows the end-to-end workflow of DF-TEE, which
can be outlined in the following 4 main steps:

1) Build the Trust: To establish the secure isolation path,
DF-TEE authenticates both the FPGAs and the client in the
initialization phase, which is conducted by the secure monitor,
as illustrated in Figure 2.

o FPGA Authentication. The secure monitor can directly au-
thenticate the FPGAs using an RSA-based security verifica-
tion process, assuming the FPGAs have been programmed

with private keys at fabrication (e.g., eFuse) and the secure
monitor possesses the corresponding public keys. On the
FPGA, we implement an RSA module in order to generate
the RSA signature and perform cryptographic operations.
To prove its identity, as shown in green arrows in Figure
2, the FPGA invokes the RSA module to sign a message
randomly generated by the secure monitor with its RSA
private key and sends the signature to the secure monitor. If
the secure monitor can recover the same message from the
signature with the corresponding RSA public key, the FPGA
is deemed as secure FPGA and added in the FPGA database
for trusted computations. The other FPGAs in the FPGA
infrastructure that did not accomplish the authentication
process are marked as normal FPGAs.

o Client Authentication. Assuming that the client is equipped
with a CPU-based TEE (e.g., SGX) with the capability
of conducting remote attestations, the secure monitor can
communicate with the Intel Attestation Service [10] to attest
the client remotely, as illustrated by the blue arrows in
Figure 2. When the attestation succeeds, the client is allowed
to request the services from the DF-TEE system. During
remote attestation, the client and the secure monitor also
negotiate an attestation key [10], which is used to securely
exchange a session key generated by the secure monitor for
the trusted computations with the FPGAs. Also, the secure
monitor encrypts the session key using the RSA public key
and stores it in the FPGA database, which is later retrieved
by the FPGAs participating in the trusted computations.

%Secure Monitor
| SGX attestation
module
FPGA authentication
module

Intel SGX attestation
service

intel)
sox

1
3 3
SGX FPGA RSA
enclave database module } HEGS
Client FPGA Manager FPGA Infrastructure

<— 1. FPGA authentication
— 2. SGX remote attestation

Figure 2: Secure isolation path establishment in DF-TEE.

2) Isolate the Secret: To defend against the client-FPGA
and service provider attacks, we adopt two security policies
to isolate the client secret in the DF-TEE framework: (1) The
security-sensitive data and computation cannot be exposed
to the untrusted entities (e.g., the network, FPGA Manager,
and normal FPGAs), which is achieved by a secure isolation
path established in the aforementioned “build the trust” step;
and (2) The security-sensitive computation must be securely
isolated from the overall workload to minimize the trusted
computing base and the required secure FPGA resources,
which is achieved by a code slicer at the trusted edge server.

Figure 3 shows an example of code slicer conducting
function-level program slicing. The client does not need the
knowledge about the FPGA implementations and only send
the source code in C/C++ to the system with annotations
indicating sensitive variables. After receiving the code from

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on July 30,2024 at 18:50:13 UTC from IEEE Xplore. Restrictions apply.

Source code

void func_1 (int* a, int* b, int size) {
for(inti="0; i < size; i+ +)(
) b[i] = (a[l] +i) % 256, }

void func_2 (int* b, int* c, int* d, int size) {

Normal function code

Normal kernel code

void func_1 (int* a, int* b, int

void func_1 (int* a, int* b, int size) {
size) { #pragma R Lé Normal
for(inti = 0; i < size; i++) { for(int i = 0; i < size; i++) { bitstream

) biil = (ali] + i) % 256; }) blil = (alif + i) % 256; }

for(inti = 0; i < size; i++) {

) dli] = blelil]; }

v0|d maln)SJ
func_
func_ 2 b [d)
}

Sensitive function code

Sensitive kernel code

void func__ 2 int* b, int* c, int* d, int size) {

void func_2 (int* b, int* c, int* #pragma A

dintsize){ decryptlon(c pla/n c); Sensitive
for(int i = 0; i < size; i++) { for(int i = 0; i < size; ,+ ﬁs bitstream
d[ll blcfil]; } plaln d[i] = bplain_ c[-

encryption(plain_d, d)

(a) Simplified SDG

Bitstream

Trusted Edge Server

-Bitstream
Pool

FPGA manager

(b) Code slicing workflow at the function level

Figure 3: Function-level slicing example: (a) simplified system dependency graph (SDG); and (b) workflow of code slicing.
The client sensitive function and variable are marked in red, and the appended code to form the kernel code is marked in blue.

the client, the trusted edge server slices the source code by
tracing the user-provided sensitive variables (e.g., variable
c in the example). We employ TZSlicer [29], a security-
oriented program slicing framework to identify the sensitive
functions based on the sensitive variables. In particular, the
code slicer generates the system dependency graph (SDG) of
the code, determines the propagation of sensitive variables,
and slices the code into two sets at the function level — the
sensitive function set (i.e., functions that contain security-
sensitive information) and the normal function set. Then, the
code slicer follows the sensitive function set to slice the entire
client program and communicates with the FPGA manager
to determine the FPGAs that will be used. The bitstream
generator receives the sliced code from the code slicer and
adds necessary instructions and algorithms (e.g., HLS prag-
mas, encryption/decryption functions) to create the final FPGA
kernel code, including the sensitive and normal kernels to be
deployed on secure and normal FPGAs, respectively. Finally,
the bitstream generator generates and delivers the bitstreams
to the bitstream pool in the FPGA manager.

3) Deploy the Bitstream: The hardware manager is in
charge of deploying the bitstreams into the FPGA infrastruc-
ture. In particular, the hardware manager maintains an FPGA
database, including the information and status of all FPGAs
in the FPGA infrastructure. When receiving the notification
from the trusted edge server, the scheduler in the hardware
manager follows the instructions to search for suitable FPGAs
and build the FPGA topology for bitstream deployment. To
deploy the bitstreams, the hardware manager uses OpenCL
APIs in the PCle case and PYNQ APIs in the NIC case. During
the deployment of bitstreams, the FPGA manager remains
unaware of the client’s source code, which reduces the risk
of service provider attack.

4) Execute the Application: After establishing the isolation
path channel and deploying the bitstreams, the client can begin
the application execution by transferring the input data to
the FPGAs. The hardware manager communicates with the
FPGA infrastructure and directs the data from/to the FPGA
infrastructure following the topology. During the execution,
the selected secure FPGA reads the embedded RSA private

key to decrypt the session key stored in the RSA module,
followed by decrypting the received security-sensitive data for
computation. The final FPGA sends the encrypted result back
to the FPGA manager. During this process, no sensitive data
and keys are exposed to the external components in the clear.

V. EXPERIMENTAL RESULTS

We evaluate the proposed DF-TEE system in 2 FPGA in-
frastructure configurations: (1) PCle configuration: the FPGA
is connected to a host server with a PCle bus, and the host
server directs the data to/from the FPGA; (2) NIC configura-
tion: the FPGA is connected to Mellanox Connectx-5 NIC in-
stalled on a server. The server also plays the role of the switch,
to receive/send data to the destination. We build the system
using 2 Alveo U200 FPGA cards in both configurations. We
use two HP Z2 workstations with an Intel Core i7 CPU as
the trusted edge server and FPGA manager. All the devices
are connected via Ethernet in the same local area network. We
employ 8 FPGA benchmarks, each partitioned into 2 or 3 sub-
tasks and deployed on the FPGA cards, as described in Table 1.
The benchmarks include 3D_rendering, Digit_recognition, and
Spam_filter from Rosetta [30], K_Means and SmithWaterman
(SW) from Vitis tutorial code [31], and our implementations
of 3 neural network benchmarks, including 2-layer DNN,
LeNet5 [32], and the first three layers of Alexnet [33].

TABLE I: Benchmark partition and deployment on FPGAs.

Benchmarks Kernel 1 Kernel 2 Kernel 3
3D_rendering Project & search Hide or display Coloring
LeNet Conv1+Pooll Conv2+Pool2 Fcl+Fc2+Fc3
AlexNet Convl Pooll Norml
Spam_filter Compute sigmoid Update /
Digit_recog Compare instance Classify /
2Layer_DNN Fc RelLU /
K_Means Categorize Compute center /
SW Construct matrix Traceback /

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on July 30,2024 at 18:50:13 UTC from IEEE Xplore. Restrictions apply.

A. Security Analysis

We conduct a security analysis on the effectiveness of
DF-TEE in defending against the threat models defined in
Section IIl. (1) Client-FPGA attack: DF-TEE extends the
trust built by SGX remote attestation to the heterogeneous
CPU and multi-FPGA system. The trust establishment process
ensures that only trusted clients and FPGAs can participate
in the secure computations enabled by DF-TEE and obtain
the session keys needed to decrypt the data and execute the
secure applications. Therefore, the attacks originated from
malicious clients, FPGAs, and man-in-the-middle adversaries
cannot succeed. (2) Service provider attack: Our system design
effectively isolates security-sensitive data from the service
provider, ensuring that even if the service provider is com-
promised, the data would remain secure and not be exposed
to external threats. Therefore, the client can perform secure
computations without trusting the service provider. Also, the
source code is compiled by the trusted edge server, which the
service provider does not have access.

B. Performance Overhead Evaluation

Since the addition of the security feature in DF-TEE would
inevitably introduce performance overhead to the original
multi-FPGA system, we measure the running time of the end-
to-end system in the following phases:

1) Secure path initialization: We first measure the time
to initialize the secure isolation path between the client
app and the FPGA cards, which includes the two steps
discussed in Section IV-B1 and Section IV-B4, namely (1)
FPGA authentication and (2) Client authentication (via SGX
remote attestation). Figure 4 shows the execution time for
each authentication step, as compared to the original SGX.
In our current implementation, the two authentication steps
are executed in order, and the entire secure path initialization
process takes 1275 ms in the PCle case and 1448 ms in the
NIC case. The NIC case incurs higher overhead due to the use
of different frameworks and APIs compared to the PCle case.
Specifically, the PCle case employs OpenCL in C/C++, while
the NIC case utilizes PYNQ implemented in Python.

Unit: ms
600 @ DF-TEE
500 [0 Original SGX
400 g
300
200
100
0

Client FPGA (PCle) FPGA (NIC)

Figure 4: Timing overhead of secure path initialization.

2) Secure job execution: Table II and Table III report the
job execution time results for all the benchmarks in PCle con-
figuration, comparing DF-TEE with the baseline system (i.e.,
without security protection). We use HLS DATAFLOW [31]
to enable the pipelining encryption, which helps limit the

overhead to around 5% to 15% in most benchmarks. The
benchmark Spam_filter introduces the most overhead (20%)
because the partitioned kernel workload is trivial compared
with the AES encryption/decryption workload. In real use
cases, the FPGA is rarely used to perform trivial tasks;
therefore, we consider the overhead to be acceptable.

TABLE II: Timing results (ms) of the 2-kernel benchmarks on
U200 FPGA cards. (Base: Baseline; DF: DF-TEE)

Kernel 1 Kernel 2 End-to-End Time
Benchmarks
Base DF Base DF Base DF
Digit_recog 16.96 1724 0.56 0.61 19.03 21.06
2Layer_DNN 5.49 5.84 079 092 8.45 9.26
Spam_filter 0.52 0.66 049 057 33747.18 40826.40
K_means 0.78 0.94 0.81 0.97 11.72 13.36
SW 1.02 1.25 0.66 0.72 4.24 475

3) Sliced benchmark execution: We implement 4 bench-
marks of image processing to evaluate the performance of the
sliced FPGA kernels, including gamma filter, Gaussian blur,
sharpening, and contrast adjustment. The input image size
scales from 1 mb to 8 kb. In each benchmark, we consider
the input image as security-sensitive information that needs
protection. To achieve the security goals, the code of each
benchmark is sliced into two kernels. The kernel that interacts
with the input image is considered as the sensitive kernel,
and the other kernel, which does not process any sensitive
information, is considered as normal kernel. Figure 5 plots
the results of all 4 benchmarks comparing DF-TEE with the
original system in two configurations, which show that: (1)
the PCle and NIC configurations have a similar trend in all
benchmarks; and (2) the two curves are very close to each
other, indicating the trivial timing overhead of DF-TEE.

C. Resource Overhead Evaluation

DF-TEE deploys two crypto kernels (i.e., AES and RSA)
with additional resource usage compared to the original FPGA.
Also, the NIC configuration requires the network kernel (i.e.,
UDP) to enable data transmission. Table IV shows the foot-
prints of the hardware implementations on the U200 FPGA
card as reported by Xilinx Vitis, which indicate that DF-TEE
consumes less or around 10% resources in all the components.

VI. CONCLUSION

We have developed DF-TEE, a trusted execution environ-
ment for disaggregated multi-FPGA systems. DF-TEE extends
the traditional CPU-based TEEs to multi-FPGAs by establish-
ing a secure isolation path between the CPU client and the
disaggregated FPGA infrastructure. Our experiments on real
hardware using representative FPGA benchmarks demonstrate
the effectiveness of DF-TEE with acceptable overhead. The
repository of the project is at https://github.com/hwsel/df-tee.

ACKNOWLEDGEMENTS

This work was partially supported by the National Science
Foundation under award 1912593.

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on July 30,2024 at 18:50:13 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Timing results (ms) of 3-kernel benchmarks on U200 FPGA cards (Base: Baseline; DF: DF-TEE).

Benchmarks Kernel 1 Kernel 2 Kernel 3 End-to-End Time
Base DF Base DF Base DF Base DF
3D_rendering 7.07 7.31 728 7774 797 826 80265.12 84003.25
LeNet5 7.35 7.60 0.87 090 192 214 12.36 13.79
Alexnet 15.10 1643 1.74 1.99 1.51 1.66 22.35 25.64
Gamma_ filter PCle Gaussian_blur_PCle Gamma_filter NIC Gaussian_blur NIC
Unit: ms - - .. --- original A L.
--- original 80 g 25 ---original |, --- original
1(5) secured 60 secured 20 secured 80 secured
10 40 15 N 60
10 40 ~
5 — 20 5 e— 20 —
0 0 B—— 0 o

1mb 512kb 256kb 128kb 32kb 8kb

Contrast_PCle

1mb 512kb 256kb 128 kb 32kb 8kb

Sharpening_PCle

20 --- original gg --- original
N ——secured secured
15 60
10 40 .
5 e 20

Imb 512kb 256 kb 128kb 32kb 8kb Imb S12kb 256kb 128kb 32kb 8kb

(a) PCIe-connected FPGA

25
20
15

1mb 512kb 256 kb 128 kb 32kb 8 kb
Contrast NIC

Imb 512kb 256 kb 128 kb 32kb 8kb

Sharpening_NIC

--- original o, --- original
secured 30 secured
60
40
S 20

1mb 512kb 256 kb 128 kb 32kb 8kb 1mb 512kb 256 kb 128 kb 32kb 8kb

(b) NIC-connected FPGA

Figure 5: Performance of sliced benchmarks under (a) PCle and (b) NIC, comparing DF-TEE with the original system.

TABLE IV: Resource usage on U200 FPGA.

Component FFs LUTs DSPs BRAMs

RSA 53811 50521 0 15
2.54% 4.98% 0.00% 0.78%

AES 32018 29308 5 155
1.51% 2.89% 8.08% 0.07%
84691 32666 0 0

upp 3.99% 3.22% 0.00% 0.00%

Total 8.04% 11.09% 8.08% 0.85%

REFERENCES
[1] “Amazon EC2 F1 instances,” 2019, https://aws.amazon.com/ec2/

[2]
[3]
[4]
[51
[6]

[7]
[8]
[91
[10]
[11]

[12]

instance-types/f1/.

S. Biookaghazadeh et al., “Toward multi-FPGA acceleration of the
neural networks,” JETC, 2021.

“Project Brainwave,” https://www.microsoft.com/en-us/research/project/
project-brainwave, 2022.

A. M. Caulfield er al., “A cloud-scale acceleration architecture,” in
MICRO, 2016.

Y. Shan et al., “Towards a fully disaggregated and programmable data
center,” in ApSys, 2022.

J. Weerasinghe et al., “Disaggregated FPGAs: Network performance
comparison against bare-metal servers, virtual machines and Linux
containers,” in CloudCom, 2016.

T. Geng et al., “FPDeep: Acceleration and load balancing of cnn training
on FPGA clusters,” in FCCM, 2018.

Q. A. Ahmed et al., “Malicious routing: Circumventing bitstream-level
verification for fpgas,” in DATE, 2021.

M. Ender et al., “The unpatchable silicon: A full break of the bitstream
encryption of Xilinx 7-series FPGAs,” in USENIX Security, 2020.
“Intel SGX,” 2020, https://software.intel.com/content/www/us/en/
develop/topics/software- guard-extensions.html.

K. Xia et al., “SGX-FPGA: Trusted execution environment for CPU-
FPGA heterogeneous architecture,” in DAC, 2021.

J. Weerasinghe et al., “Network-attached FPGAs for data center appli-
cations,” in FPT, 2016.

[13]
[14]

[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]

[28]
(291

(301
(311

(32]
[33]

S. Li et al., “Hyperscale fpga-as-a-service architecture for large-scale
distributed graph neural network,” in ISCA, 2022.

J. Krautter et al., “Active fences against voltage-based side channels in
multi-tenant FPGAs,” in ICCAD, 2019.

A. S. Rakin et al., “Deep-Dup: An adversarial weight duplication attack
framework to crush deep neural network in multi-tenant FPGA,” in
USENIX Security, 2021.

Y. Luo et al., “Hill: A hardware isolation framework against information
leakage on multi-tenant FPGA long-wires,” in ICFPT, 2019.

“Building a secure system using TrustZone technology,” 2005, https:
/Ideveloper.arm.com/documentation/PRD29- GENC-009492/1atest/.
“Intel TDX,” https://www.intel.com/content/dam/develop/external/us/en/
documents/tdx-whitepaper-v4.pdf, 2022.

“AMD-SEV guide,” https://documentation.suse.com/sles/15-SP3/html/
SLES-all/article-amd-sev.html, 2022.

R. Bahmani et al., “CURE: A security architecture with customizable
and resilient enclaves,” in USENIX Security, 2021.

S. Volos et al., “Graviton: Trusted execution environments on GPUs,”
in OSDI, 2018.

1. Jang et al., “Heterogeneous isolated execution for commodity GPUs,”
in ASPLOS, 2019.

M. Zhao et al., “ShEF: Shielded enclaves for cloud FPGAs,” in ASPLOS,
2022.

F. Turan et al., “Trust in FPGA-accelerated cloud computing,” CSUR,
2020.

S. Ince et al., “Oauth 2.0-based authentication solution for FPGA-
enabled cloud computing,” in UCC, 2021.

Z. Weissman et al., “JackHammer: Efficient rowhammer on heteroge-
neous FPGA-CPU platforms,” TCHES, 2020.

M. A. Khelif et al., “Toward a hardware man-in-the-middle attack on
pcie bus,” Microprocessors and Microsystems, 2020.

“Public cloud security breaches,” 2023, https://www.breaches.cloud/.
M. Ye et al., “HISA: hardware isolation-based secure architecture for
CPU-FPGA embedded systems,” in ICCAD, 2018.

Y. Zhou et al., “Rosetta: A realistic high-level synthesis benchmark suite
for software-programmable FPGAs,” 2018.

“Vitis High-Level Synthesis User Guide (UG1399),” https://docs.xilinx.
com/r/en-US/ug1399-vitis-hls/.

“LeNet-5 in HLS,” https://github.com/changwoolee/lenet5_hls, 2022.
“AlexNet-FPGA-implementation,” https://github.com/JunnanShan/
AlexNet-FPGA-implementation, 2022.

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on July 30,2024 at 18:50:13 UTC from IEEE Xplore. Restrictions apply.

