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The quest for complete observables in general relativity has been a long-standing open problem. We

employ methods from descriptive set theory to show that no complete observable on rich enough

collections of spacetimes is Borel definable. In fact, we show that it is consistent with the Zermelo-Fraenkel

and dependent choice axioms that no complete observable for rich collections of spacetimes exists

whatsoever. In a nutshell, this implies that the problem of observables is to “analysis” what the Delian

problem was to “straightedge and compass.” Our results remain true even after restricting the space of

solutions to vacuum solutions. In other words, the issue can be traced to the presence of local degrees of

freedom. We discuss the next steps in a research program that aims to further uncover this novel connection

between theoretical physics and descriptive set theory.
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From Einstein’s century old hole-argument paradox

[1–3], to the contemporary programs for quantizing gravity

[4–7], the problem of deciding which “functions” of the

metric components do not depend on the choice of coor-

dinates has raised technical and epistemological difficulties

in the theory of general relativity (GR). This issue has

become known as the problem of observables.

The quest for complete observables—observables

which can discern between any pair of diffeomorphically

inequivalent spacetimes—began in the 1950s [4,8–12],

and is often discussed in the context of more modern

approaches [13–18]. While one can tailor observables for

special families of spacetimes [19–21], no nontrivial

(nonconstant) observable supported on the collection of

all spacetimes has been reported. This, despite a seven-

decades-long search since Bergmann famously stated the

issue [8–11]. The question arises: why this state of affairs?

Notwithstanding some interesting partial negative results in

the Hamiltonian formulation of the problem [22,23], a

conclusive result that identifies the root of the issue has

remained elusive.

In this Letter, we employ methods from descriptive set

theory to prove a rather conclusive negative result for the

definability of complete observables, at least when no

significant constraints on the space of solutions are

imposed: there is no constructive way to build complete

observables for full general relativity. We trace the root

cause of this incompleteness phenomenon to a certain

ergodic-theoretic behavior that general covariance exhibits

on any “rich enough” collection of spacetimes.

Our results do not imply that a theory of quantum gravity

cannot be based on definable observables of some kind.

Rather, they highlight some of the difficulties when

considering large and diverse collections S of spacetimes,

all at once—a problem not unique to GR, but potentially to

any other physical theory with a large symmetry group.

Indeed, a takeaway is that a physical theory can be

extremely useful even when the full space of solutions is

too large to admit definable complete observables.

Theorems 1 and 2 provide the precise statements. Both

theorems hold for any collection of spacetimes S that is

rich—a technical term that we define below. In particular,

they both hold when S is the collection of all Lorentzian

manifolds of dimension d for any fixed d ≥ 2.

Theorem 1.—No concrete observable f∶ S → R is both

complete and Borel definable.

The terms appearing in the statement of Theorem 1 will

be defined below. In plain language: completeness requires

that f distinguishes any two diffeomorphically inequivalent

spacetimes by assigning to them different values; concrete-

ness requires that f takes concrete objects as values, e.g.

real numbers, invariant scalars, etc; Borel definability

requires that f is given by some formula expressible in

the language of analysis.

Theorem 1 shows that it is as futile to seek an analytic

description for a complete observable, as trying to construct
ffiffiffi

2
3
p

using straightedge and compass. This is not to say that

complete observables do not “exist.” In the extremely

abstract sense allowed when utilizing the axiom of

choice (AC), complete observables do exist. However,
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for a mathematical object to be useful in doing physics, it

should also be amenable to some kind of description with

analytic tools. In a sense, when an object exists only by the

power of AC, then for what concerns physics it is as useful

as if it did not exist. From this point of view, the following

is even more troubling.

Theorem 2.—The statement “no complete concrete

observable for S exists” is consistent with ZFþ DC.

Here ZF stands for the usual Zermelo-Fraenkel axioms

of set theory and DC stands for the axiom of dependent

choice: a “fragment” of AC that is needed even for basic

real analysis on the Euclidean space. Theorem 2 is proved

in ZFþ AC (ZFC) and it highlights the nonconstructive

nature of complete observables: any mathematical proof of

the statement that complete observables merely “exist,” has

to make use of the “full” strength of AC.

Importantly, both theorems above hold even if we restrict

S to be the family of vacuum solutions (Solutions with

vanishing stress-energy tensor and cosmological constant

Λ ¼ 0. For Λ ≠ 0 we refer to the discussion.) on R4. That

is, the problem can be traced to the local degrees of freedom

present in the vacuum theory. This is a feature that is

particular to four dimensions, and perhaps higher. Indeed, it

is in sharp contrast to the vacuum theory on R3, which

trivially admits complete observables, as its only geodesi-

cally complete solution is the Minkowski spacetime.

Another important point is that the above results immedi-

ately extend to incompleteness theorems for countable

families of concrete and definable observables.

Theorems 1 and 2 follow from Lemma 4, a stronger but

more technical version of Theorem 1. All three results are

proved for an arbitrary space of solutions S which is “rich,”

see below. In Theorem 3 we show that the family of

gravitational plane waves is rich. This implies that the

vacuum sector of solutions is also rich. The proof of

Theorem 3 is given in the Supplemental Material [24],

where we also show that the family of Robertson-Walker

spacetimes in any dimension d ≥ 2 is rich.

Our results do not imply that all questions regarding the

definability of observables have been addressed. In closing,

we discuss their reach and speculate on strategies for trying

to circumvent incompleteness, by relaxing the notion of

“observables” or by restricting the space S of “acceptable”

solutions. We put forth a series of open problems which aim

to form the backbone of a research program to determine

the intrinsic complexity of general covariance and help

identify quantization procedures that could be implemented

constructively.

The problem of observables.—Originating in the work of

Bergmann [8,10,11], the problem of observables refers to

the problem of identifying those “functions (or functionals)

of field variables that are invariant with respect to

coordinate transformations” [12]. Formally, an observable

for a collection S of metric component fields is any

function f∶ S → R to a set R, so that for all gμν; g̃ρσ ∈S

gμν ≃diff g̃ρσ ⇒ fðgμνÞ ¼ fðg̃ρσÞ: ð1Þ

We write g̃ρσ ≃diff gμν whenever there exists a smooth

change of coordinates x̃ξ ¼ x̃ξðxηÞ so that

gμνðxηÞ ¼
∂x̃ρ

∂xμ
∂x̃σ

∂xν
g̃ρσðx̃ξÞ: ð2Þ

The goal in Bergmann’s program was to piece together a

complete family of observables. That is, enough observ-

ables to tell apart different geometries represented in S,

similarly to how Komar mass [25] classifies Schwarzschild

spacetimes. Since the notions of concretness and defib-

ability below are closed under countable products, we can

always replace a list f1;…fn;… of observables with a

single observable f ¼⊗n fn. Hence, it suffices to consider

completeness in the context of a single observable.

Completeness.—An observable f∶ S → R is complete

for S if, for all gμν; g̃ρσ ∈S, we can strengthen (1) to

gμν ≃diff g̃ρσ ⇔ fðgμνÞ ¼ fðg̃ρσÞ: ð3Þ

Without imposing any further restrictions on the “concrete-

ness” of the range R and the “definability” of f, any space

of solutions S admits a complete observable. For example,

one can always take R to be the “abstract” collection of all

equivalence classes represented in S

½gμν�diff ≔ fg̃ρσ ∈S∶g̃ρσ ≃diff gμνg; ð4Þ

and consider the complete observable that is given by the

assignment gμν ↦ ½gμν�diff . Or, one can take R ¼ R to be

the more “concrete” space of all real numbers, and use AC

to build a complete R-valued observable.

To rule out such extreme “solutions” to the problem of

observables, we will next require that observables are

concrete and definable. For these notions, as well as for

a few more technical points later on, we will need some

nomenclature from descriptive set theory [26].

Elements of descriptive set theory.—Let X be a topo-

logical space and let A ⊆ X. Then, A is nowhere dense if the

complement of its closure is dense in X; meager if it is a

countable union of nowhere dense sets; comeager if its

complement is meager; Borel if it is in the smallest

σ-algebra of subsets of X that contains the open sets;

Baire-measurable if it is in the smallest σ-algebra of subsets

of X that contains both the open and the nowhere dense

subsets of X. A map f∶ X → Y between topological spaces

is Borel—respectively, Baire-measurable—if so is f−1ðUÞ,
for every open U ⊆ Y. We are particularly interested in

Polish spaces, where these notions are well behaved. A

Polish space is a topological space X whose topology is

separable and completely metrizable.

The Borel structure on S.—Let EinðMÞ denote the

collection of all smooth spacetimes supported on a smooth
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manifold M. In what follows, we assume that S is a subset

of EinðMÞ, for some fixed M. We denote by τ the C∞

compact-open topology on S. Specifically, let C∞ðM;NÞ
be the Polish space of all smooth maps M → N between

two manifolds M, N endowed with the C∞ compact-open

topology. A basic openUf;K;n;ε ⊆ C∞ðM;NÞ consists of all
g∈C∞ðM;NÞ whose derivatives up to degree n on the

compact K ⊆ M are ε-close with those of f [27]. With the

usual identifications we view S as a subset of C∞ðM;NÞ,
where N ≔ ðTM ⊗ TMÞ�. Then S inherits from

C∞ðM;NÞ the C∞ compact-open topology. This topology

induces on S the σ-algebra of Borel sets on which we base

the notion of definable observables below.

Theorem 1 is a statement about the Borel sets on EinðMÞ,
so it implicitly relies on τ. Note that τ is a rather weak

topology and of no obvious physical relevance. Here, it is

used as a convenient “basis” for spanning the σ algebra of

Borel sets, which is a more robust structure. For example,

any stronger Polish topology τ0 ⊇ τ on EinðMÞ induces

the exact same Borel sets and all physical spacetimes, i.e.,

sets of the form (4), are themselves Borel (These follow

from [26] (Exercise 15.4) and [28] (Proposition 3.1.10).).

On the other hand, once S has been established to be rich,

the conclusion of Theorem 2 is agnostic both on the

topology and the Borel structure on S.

Concreteness.—An observable f∶ S → R is concrete if

it takes values in a Polish space. Restricting R to be a Polish

space is a generic requirement. For instance, setting R to be

either of the Polish spaces R or C∞ðM;RÞ we recover

classical definitions of observables [11,12]. However, our

definition of concreteness allows observables to take values

in much more general spaces, as Polish spaces include

spaces of distributions, separable Banach spaces, as well as

a vast array of more “exotic” objects like the Cantor set.

Restricting R to be a Polish space is natural as well from the

viewpoint of descriptive set theory, which considers Polish

spaces to be “well behaved” incarnations of uncountable

sets. This is because their points are controlled by a

countable dense subset, similarly to how the rationals

control the reals.

Definability.—A concrete observable f∶ S → R is

Borel definable if it is a Borel map when S is endowed

with the C∞ compact-open topology. These are exactly

those observables which admit a description by an

explicit formula in the language of analysis, in the follow-

ing sense.

The descriptive power of analysis is rooted in its ability

to implement limiting procedures. For example, defining

the value fðgμνÞ of an ADM observable f requires ‘taking

limits’ at least once, as it is given as the limit of integrals

over a sequence of compact regions of the manifold [19].

Maps whose definition relies on limiting procedures of

length two can already be surprisingly complex. For

instance, the characteristic map χQ∶ R → R of the rationals

can be expressed as χQðxÞ ¼ limnlimmcos
2mðπn!xÞ.

Borel maps are precisely those maps which are attained

by allowing iterations of such limiting procedures for any

“number” ξ of times, where ξ ranges over the set ω1 of all

countable ordinals [26] (Theorem 24.3).

Rich families.—Theorems 1 and 2 concern any family of

solutions S which is rich. For the definition of this notion

we recall a few more elements from invariant descriptive

set theory [28,29].

A Polish group G is a topological group whose topology

is Polish. A Polish G space is a continuous action G↷X of

the Polish group G on a Polish space X. The associated

orbit equivalence relation ≃G on X is given by setting x ≃G

y if and only if x, y are in the same orbit, i.e., if Gx ¼ Gy.
We say that G↷X is generically ergodic if: (1) there is

x∈X, whose orbitGx is dense in X; (2) for every x∈X, the
orbit Gx is meager in X.
A family S of spacetimes is called rich, if there exists

a generically ergodic Polish G-space G↷X together with a

Borel reduction r from ðX;≃GÞ to ðS;≃diffÞ. That is, a
Borel map r∶ X → S so that for all α; β∈X we have

α ≃G β ⇔ rðαÞ ≃diff rðβÞ: ð5Þ

One way for S to be rich is if the action DiffðMÞ↷S of the

diffeomorphism group, implementing (2), is itself generi-

cally ergodic. In this case, it is very difficult to tell different

orbits apart as any open set in S will be intersected by

almost every orbit, and the mental picture which depicts

orbits as “curves” should better be replaced with that of a

“knotted ball of yarn.” That being said, for S to be rich it is

enough for this tangling between orbits to occur just in

some “corner” of S.

The family of vacuum solutions.—Before we turn to the

proofs of Theorems 1 and 2 we would like to establish that

rich families of solutions exist and hence, these theorems

are not vacuous. To the reader familiar with these argu-

ments, it is probably not that surprising that rich families

exist. Indeed, without imposing any restrictions on the

stress-energy tensors of the members of S, one can simply

concoct rich families of energy-momentum distributions

that generate ergodic behavior within S. An example

that illustrates this can be found in the Supplemental

Material [24], where we show that the family of cosmo-

logical Robertson-Walker spacetimes [30] is rich.

Perhaps what is more surprising is that the problem is

already present in the vacuum sector. That is, even when all

members of S have a vanishing stress-energy tensor (we

assume the cosmological constant Λ to be zero).

Theorem 3.—Vacuum solutions on R4 form a rich

family.

Theorem 3 implies that any collection of spacetimes

which contains the vacuum solutions on R4 is rich. In

particular, this provides yet another proof that the collection

of all spacetimes is rich—one which does not rely on the

collection of Robertson-Walker spacetimes.

PHYSICAL REVIEW LETTERS 131, 171402 (2023)

171402-3



We now sketch the proof of Theorem 3, detailed in the
Supplemental Material [24]. Consider the family GPW of
gravitational plane waves on R4. These are all spacetimes
which can be written in Brinkmann form [31] as

Hðu; x; yÞdu2 þ dudvþ dx2 þ dy2; ð6Þ
where H is a smooth map that is quadratic in x, y and
satisfies Hxx −Hyy ¼ 0. Since members of GPW are

vacuum solutions [32], it suffices to see that GPW is rich.
As a model of generic ergodicity we will use the

Bernoulli shift Z↷X, where X ≔ f0; 1gZ is the space of
all integer-indexed sequences of 0,1 endowed with the
product topology. The action Z↷X is implemented by
ðk; αÞ ≔ kα, where ðkαÞðnÞ ¼ αðn − kÞ. Hence,

α ≃Z β ⇔ ∃ k∈Z ∀ n∈Zαðn − kÞ ¼ βðnÞ: ð7Þ
To see that Z↷X is generically ergodic, notice that its
orbits are countable and that for the random α∈X in the
sense of the coin-flip measure, α admits a dense orbit.
We can now associate a smooth map Wα∶ R → R to

each α∈X, so that Wα reflects the distribution of 0,1’s in
the sequence α; see Fig. 1. We define a Borel reduction
r∶ X → GPW by setting rðαÞ to be the metric with
Hðu; x; yÞ ≔ WαðuÞxy in (6). The map r is in fact con-
tinuous since compact regions of rðαÞ are determined by
finite regions of α. It is straightforward to check that r
satisfies the ð⇒Þ direction of (5). The ð⇐Þ direction of (5)
also holds and is given in the Supplemental Material [24].
This part is more technical and it relies on the theory of Lie
symmetries of planes waves from [32–34].

In summary, we showed that the highly tangled orbit

structure of the Bernoulli shift is also present in the orbit

structure of general covariance, even after restricting to the

vacuum sector. Our incompleteness theorems are a conse-

quence of this complex orbit structure.

Incompleteness of observables in general relativity.—

We are now ready to see how Theorems 1 and 2 come

about. The proofs follow from standard arguments used in

invariant descriptive set theory [28,29]. We sketch these

arguments here for completeness.

Let S be a rich family and fix r∶ X → S as in (5). Let

now f∶ S → R be any complete concrete observable and

precompose f̂ ≔ f
̊
r to get a map f̂∶ X → R. By (3) and

(5), for every α; β∈X we have that

α ≃G β ⇔ f̂ðαÞ ¼ f̂ðαÞ: ð8Þ

We will make use of the following classical result.

For the proof of its first part, see Ref. [29]

(Theorem 3.2) or [28]. The second part of the statement

follows directly from the first, as the comeager C ⊆ X
cannot be covered by a union of finitely many meager

orbits; see, e.g., [26].

Lemma 4.—Let f̂∶ X → R be a Baire-measurable map

which satisfies (8). Then, there exists a comeager set C ⊆ X

on which f̂ is constant. In particular, there are α; β∈X with

α≄Gβ and f̂ðαÞ ¼ f̂ðβÞ.
Theorem 1 follows from Lemma 4. Indeed, assume that

the complete observable f∶ S → R is Borel definable. It

follows that the associated f̂ above is Baire-measurable and

hence, by Lemma 4, we have α; β∈X with α≄ Gβ and

f̂ðαÞ ¼ f̂ðβÞ. But this contradicts (8).
Theorem 2 follows from Lemma 4 and the fact that there

exists, provably from ZFC, a model of ZFþ DC in which

every map f̂∶ X → R is Baire-measurable [35,36]. Since

Lemma 4 is provable in ZFþ DC, all maps in this model

satisfy the last statement of Lemma 4, and hence, they have

to fail (8). Notice the resemblance of this proof with the

usual consistency proof of the first four axioms of Euclid

with the negation of the parallel postulate, which uses

Euclidean geometry to construct a model of non-Euclidean

geometry such as the Poincare disc.

Discusssion.—Similar to Gödel’s first incompleteness

theorem which shows that no “rich enough” fragment of

arithmetic admits a consistent extension that is both

complete and computable, Theorems 1 and 2 show that

no “rich enough” collection of spacetimes admits an

observable that is both complete and definable.

Given the central role that various types of observables

play in quantization procedures [4–7], a natural followup

question is, how much of Bergmann’s program for “the

identification and systematic exploitation of the observ-

ables” [37] can be salvaged, and in what precise form?

Some first attempts to preserve definability while trying

to maintain completeness of observables on large collec-

tions of spacetimes can be ruled out merely on the basis of

how flexible is the notion of concrete observable in

Theorems 1 and 2. This includes attempts involving

gauge–fixing procedures s∶ S → S ⊆ EinðMÞwhich select
a single representative sðgμνÞ∈ ½gμν�diff from each class (4);

or the use of families of observables F ¼ ffi∶i∈ Ig in

place of a single observable f. Indeed, since EinðMÞ is a
Polish space, Theorems 1 and 2 imply that no gauge-fixing

map s can be definable. Similarly, since the notions of

concreteness and definability are closed under countable

products, a countable F can be replaced by the single

observable⊗i fi. In fact, a technical elaboration shows that

our incompleteness results extend to uncountable families

of observables, so long as the parametrization i ↦ fi is

“definable enough”.

0 0 1 0 1 1

FIG. 1. To each α∈X we associate a smooth Wα.
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One could also try to circumvent these issues by

endowing S with a different topology. This would have

to be a topology so “fine” that it admits a Borel definable

complete observable f∶ S → R. While this is certainly

doable—for example, one may consider the discrete top-

ology, Theorem 2 raises the question of whether Borel

maps in this new topology would be amenable to

computations.

On the other hand it is not at all clear—and in fact almost

certainly not a good idea—that a successful theory of

gravity should predicate on the definability of complete

observables over large collections of spacetimes. In fact,

similar incompleteness phenomena may occur in electro-

magnetism, for example, if one takes observables to be all

the Poincare-invariant quantities defined on the space of all

Maxwell solutions without imposing any boundary con-

ditions. Yet this does not seem it would cause any issues to

the theory.

We are left with many questions. How much do we need

to restrict the collection of spacetimes S before it admits

definable complete observables? Are there generalizations

of the notion of an observable that allow to classify rich

collections of spacetimes definably? Is there a formal sense

in which general covariance is strictly more complex than

the gauge induced, say, by actions of the Poincare group?

With such questions in mind, we next discuss two natural

directions in which this work could be extended.

Several interesting and physically relevant collections of

spacetimes might admit definable complete observables.

Consider for example the collections AF, DCD, VSþ, VS−
of all spacetimes on R4 which are asymptotically flat,

maximal globally hyperbolic developments of a Cauchy

dataset, and Λ-vacuum solutions with positive or negative

cosmological constant Λ, respectively. In the context of

Theorems 1,2 it is natural to ask the following:

Problem 5.—Which of the families above are rich?

Preliminary results not provided here suggest that DCD

is indeed rich, but this requires some different techniques

than the ones presented in this Letter. Moreover, in view of

Penrose’s method for approximating regions of any space-

time near a null geodesic via plane waves [38] the proof for

Theorem 3 is likely generalizable to other families of

spacetimes.

The fully invariant observables considered here can be

relaxed to “equivariant” types of observables. Let G be a

Polish group. A G-observable for S is a Polish G space

G↷R together with a map f∶ S → R so that

gμν ≃diff g̃ρσ ⇔ fðgμνÞ ≃G fðg̃ρσÞ ð9Þ

holds for all gμν; g̃ρσ ∈S. Instances of G observables have

been considered in the literature before. For example, some

modern criticisms to Bergmann’s program [39] maintain

the use of scalars R ¼ C∞ðR4;RÞ as values for

observables, but replace the equality in the right-hand side

of (1) with covariance ≃diff of scalars.

Families of spacetimes which are incomplete in the sense

of Theorems 1 and 2, may still admit definable G
observables, for various groups G. If G can be chosen to

have nice representation-theoretic properties, then G
observables can still be promoted to operators on a

Hilbert space, and hence be used for quantization. An

elaboration on Theorem 1 shows that rich families S do not

admit G observables for compact G [28] (Exercise 5.4.5).

But, couldG be locally compact? Or couldG be the unitary

group of a separable C� algebra?

Problem 6.—For which Polish groups G and S ⊆

EinðR4Þ there exists a definable and completeG observable

for S?

Investigating Problem 6 may also allow us to formally

address whether the problem of observables is “more

severe” in general relativity than in, say, electromagnetism,

e.g., by taking G to be the gauge group underlying the

latter.

Recent breakthroughs [40–43] in the complexity theory

of Polish group actions provide sharp tools for investigating

the problems listed above. We hope that this work may

form the basis of a research program for cross-pollinating

theoretical physics and descriptive set theory in order to

analyze the complexity of general covariance.

In summary, the roots of the problem of observables run

deep and suggest another beautiful connection of math-

ematics with physics inspired by general relativity. This

work opens many unexplored future directions. Perhaps

further investigation may also help identify types of

quantization recipes that can be implemented definably.
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