










Table 2: Timing evaluation of the benchmarks. The time unit is us.

1 kb 2 kb 3 kb 4 kb 5 kb
Benchmarks

Base DM Base DM Base DM Base DM Base DM

Gaussian blur 405.16 446.38 447.62 502.36 486.16 539.21 512.61 570.25 557.12 623.7

Contrast 215.67 246.52 230.20 267.11 250.26 289.74 267.19 305.53 294.66 330.74

Gamma 226.63 252.92 235.21 274.52 253.03 291.33 268.01 308.34 299.12 345.18

Compression 284.67 346.84 327.04 402.62 386.06 469.63 440.17 532.73 497.21 613.38

trivial overhead compared to the original system. Speci�cally, the
Gaussian blur benchmark introduces the least overhead, which is
about 11%; the image compression benchmark introduces the most
overhead, which is about 21%. In conclusion, our experiment shows
that DM-TEE introduces acceptable overhead when executing real
workloads.

7 CONCLUSION

We have developed DM-TEE, a new trusted execution environment
to support disaggregated memory systems. DM-TEE employs a
series of newly designed security components to achieve secure
memory allocation and access work�ow for disaggregated memory,
including an eMem monitor to provide transparent disaggregated
memory services to the local enclave, an rMem manager to attest
the memory requests and decline untrusted memory accesses, and
an EPCM checking process to verify the memory access permission.
In addition, we employ a customized MMT structure to ensure
the integrity of the allocated data with acceptable complexity. Our
evaluations indicate that DM-TEE achieves disaggregated memory
security with minimal overhead. The project repository of DM-TEE

is at: https://github.com/hwsel/DM-TEE.
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