DM-TEE: Trusted Execution Environment for
Disaggregated Memory

Ke Xia
ke xia@rutgers.edu
Rutgers University
Piscataway, NJ, USA

ABSTRACT

Trusted execution environments (TEEs) can provide hardware and
system-level protection for sensitive data and computations. How-
ever, the security perimeter of existing TEEs is limited to a single
centralized machine, which contradicts with the growing trend of
employing disaggregated computing resources (e.g., disaggregated
memory) to achieve high performance and resource utilization. To
address this limitation, we develop DM-TEE, a customized trusted
execution environment supporting the emerging disaggregated
memory architecture. DM-TEE extends the traditional TEEs from
local memory to remote disaggregated memory, which is achieved
by a newly designed secure memory allocation and access workflow
to ensure the data confidentiality and integrity in the disaggregated
memory. We implement DM-TEE on real hardware using Intel SGX
and a state-of-the-art memory disaggregation system. Our evalua-
tions on memory allocation, read/write operations, and benchmark
program executions indicate that DM-TEE achieves the desired dis-
aggregated memory security with minimal performance overhead.

CCS CONCEPTS

« Security and privacy — Trusted computing; Security in
hardware.

KEYWORDS

Trusted Execution Environment, Disaggregated Memory

ACM Reference Format:

Ke Xia and Sheng Wei. 2024. DM-TEE: Trusted Execution Environment for
Disaggregated Memory. In Great Lakes Symposium on VLSI 2024 (GLSVLSI
'24), June 12-14, 2024, Clearwater, FL, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3649476.3658702

1 INTRODUCTION

Trusted execution environments (TEEs), such as ARM TrustZone [1]
for mobile devices and Intel SGX [8] for server platforms, have
drawn a great deal of attention recently providing hardware/system-
level protection for sensitive data and computations. Compared
to its predecessor isolation approaches at the OS and hypervisor
levels [15, 17], the hardware isolation provided by TEE ensures

This work is licensed under a Creative Commons Attribution International
4.0 License.

GLSVLSI °24, June 12-14, 2024, Clearwater, FL, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0605-9/24/06
https://doi.org/10.1145/3649476.3658702

204

Sheng Wei
sheng. wei@rutgers.edu
Rutgers University
Piscataway, NJ, USA

the confidentiality and integrity of the data even if the OS ker-
nel has been compromised, essentially excluding the huge-size OS
from the trusted computing base (TCB) to achieve the minimum
attack surface and thus highest level of security guarantee. In the
past decade, TEEs have become the state-of-the-art system security
mechanism and demonstrated strong potentials in a large number
of applications, such as mobile computing [16], OS kernels [20],
and cloud computing [3].

Despite the strong security guarantee, the existing design of
TEEs has a fundamental limitation that its security perimeter is
bounded to a single CPU core on a centralized machine, and all the
security-sensitive data and computations must be deployed in a
resource-constrained container (e.g., secure world in TrustZone or
enclave in SGX). Unfortunately, this limitation contradicts with the
growing trend of employing distributed computing resources to
achieve high performance and resource utilization. For example, the
emerging disaggregated memory architecture [6, 12, 14] incorporates
physically distributed memory devices residing in a remote memory
pool to expand the resource capacity of the local computing node
and improve the resource utilization and flexibility. However, such
disaggregated memory systems cannot be secured by the state-of-
the-art TEEs due to the aforementioned limitation.

There are several recent research efforts in the community aim-
ing to extend the singular TEEs to peripheral devices [24], GPUs [21],
and FPGAs [25] by building an encryption-based secure path. Also,
several works proposed to build standalone TEEs that support het-
erogeneous computing resources [7, 27]. Despite their effectiveness
in certain target application scenarios, the existing approaches are
still under the scope of singular TEE physically located in a sin-
gle computing node, which cannot be applied to protecting the
emerging disaggregated memory architecture.

We develop DM-TEE, a customized trusted execution environ-
ment to protect disaggregated memory systems. DM-TEE extends
the traditional TEE from local memory to remote disaggregated
memory, supporting secure disaggregated memory allocation and
access workflow. On the client side, DM-TEE employs an enclave
memory (eMem) monitor to generate the remote memory request
from the original enclave, as well as maintain a customized memory
integrity tree based on the mountable Merkle tree (MMT) struc-
ture [10] to reduce the time complexity of runtime integrity check.
On the remote disaggregated memory side, DM-TEE deploys a se-
cured memory node (SMN) to manage the disaggregated DRAM
nodes and perform permission check by employing the EPCM struc-
ture [8]. Furthermore, the client and the disaggregated memory are
bridged by a remote memory (rMem) manager, which conducts a
customized attestation process to build mutual trust between the
local and remote memories.

We implement DM-TEE on real hardware using the state-of-the-
art Intel SGX [8] as the TEE and Clio [12] as the memory disaggre-
gation system. Our evaluations indicate that DM-TEE achieves the
desired disaggregated memory security with minimal performance
overhead. To the best of our knowledge, DM-TEE is the first TEE that
supports the disaggregated memory architecture, which extends
the memory capacity and utilization of TEEs by enabling remote
memory accesses while maintaining the same security guarantee.

2 BACKGROUND AND RELATED WORKS
2.1 Disaggregated Memory

Memory disaggregation aims to decouple memory resources from
traditional centralized computer architecture and allows data to
be stored in a remote memory pool. Most disaggregated memory
solutions deploy RDMA to enable remote memory access [11, 22],
which provides low average latency and high throughput. How-
ever, RDMA introduces a large overhead with the large number
of page table entries (PTEs). To address the known issues, recent
memory disaggregation systems like Clio [12] employ customized
hardware to facilitate the high-speed communications, manage the
large memory capacity, and handle the large number of of concur-
rent requests. In particular, Clio constructs three distinct paths to
optimize the performance of disaggregated memory systems [12].
The slow path in the ARM processor handles metadata operations,
including the memory allocation for both the virtual address (VA)
and the physical address (PA). The fast path in ASIC performs mem-
ory access, including address translation, permission check, and
page fault handling. The customized memory requests are handled
by the extend path.

&
o fo0000;
VA alloc.| —
g App K= % Net. | Addr Trans. §
PA alloc. <
Client Manager Memory Node (MN)

Figure 1: Overview of disaggregated memory system.

Without loss of generality, we implemented a prototype disag-
gregated memory system based on Clio [12] for the research of
DM-TEE, as illustrated in Figure 1. The client can communicate
with the manager to request the memory node (MN). The manager
processes the memory allocation requests (i.e., the slow path), and
the MN performs the address translation to access the DRAM (i.e.,
the fast path). Note that the existing disaggregated memory designs
do not consider the potential security threats in the disaggregated
architecture, which is addressed by DM-TEE.

2.2 Trusted Execution Environment (TEE)

Trusted Execution Environments (TEEs) are designed to isolate
the security-sensitive computation from untrusted applications
and protect the data confidentiality and integrity. The state-of-
the-art TEEs, such as SGX [8], provide comprehensive protection
for the enclave data and code. In SGX [8], the enclave is stored

205

within a protected memory region known as the Processor Reserved
Memory (PRM), and the enclave page cache (EPC) is a subpart of
PRM, which is inaccessible to the operating system and untrusted
software. Furthermore, SGX implements several security checks
to ensure that the memory accesses are correctly authorized and
executed. Specifically, SGX records the allocation decisions in the
Enclave Page Cache Map (EPCM), which is used to check the EPC
access permissions. Also, to protect data integrity, SGX employs
the SGX integrity tree (SIT) to store the HMACs of all the data
blocks. However, SGX v1 can only provide limited memory for each
enclave due to the overhead of SIT. By removing SIT, SGX v2 can
support larger memory sizes but with the cost of weakened security
protection, especially against hardware replay attacks [8, 10].
Several existing works extend TEEs to disaggregated resources.
For example, Composite Enclave [18] enables the enclave to access
multiple hardware and I/O devices. DF-TEE [26] extends TEEs to
support disaggregated multi-FPGA systems. However, none of the
existing solutions support the disaggregated memory architecture.

3 THREAT MODELS

Disaggregated memory systems face several security threats in-
herited from both the traditional memory systems and the new
disaggregated architecture.

o Privileged software attacks. On the client side, the malicious
software with full control over the software stack can pretend
to be the trusted client and access the trusted memory without
authorization [8].

e Data-at-rest attacks. The attacker with full control over the
memory can easily access the memory to modify the in-stored
data [9, 13]. Also, the attacker with hardware privilege can move
certain data blocks into another position in the memory to raise
the splicing or relocation attacks [9].

e Data-in-transit attacks. The attacker with no privilege can
spoof the data in transmission, record the data previously stored
in the memory, or overwrite the memory with the old data (i.e., re-
play attacks) [8, 9, 19]. In SGX v2, the motherboard manufacturer
is considered as a trusted entity, so the replay attack no longer
needs to be considered [5]; however, in disaggregated memory
systems, since the data is transmitted via untrusted networks,
and the replay attacks become significantly more concerning.

In this paper, we do not consider side channel attacks [23] as the
original SGX is not designed to defend against them, and the en-
hancement of side channel resilience on the original SGX can also
be applied to DM-TEE. Also, this paper does not address denial of
service (DoS) attacks and routing attacks, as the mitigation of those
attacks belongs to an orthogonal research area.

4 SYSTEM DESIGN

4.1 Design Goals

DM-TEE aims to achieve the following goals in designing a TEE for
disaggregated memory systems:

e G1: Security. The secured disaggregated memory must keep

the same security standards established by SGX [8], i.e., enclave
isolation, data confidentiality, and integrity. The system should

consider potential attacks from privileged software and commu-
nication channels.

e G2: Transparency. The system design should fit into the cur-
rent SGX architecture, and the enclave can use the disaggregated
memory without noticing the implementation details of the dis-
aggregated memory system.

o G3: Scalability. The system should be designed without limita-
tions on the number of enclaves and the size of the disaggregated
memory for each enclave.

e G4: Performance. The system should not incur high perfor-
mance overhead over the original disaggregated memory system.

4.2 System Components

Figure 2 illustrates the overall DM-TEE system architecture, in-
cluding 3 components: the enclave on the client side requests the
disaggregated memory; the remote memory manager (i.e., rMem
manager) in the cloud attests the client and provides the disaggre-
gated memory services; and the secured memory nodes (SMNs) are
the hardware disaggregated memory entities that connect to the
rMem manager.

%Attestation Service

(e | [T e

Network
module

Client rMem manager SMNs

Enclave

Addr

PRM £ddr | pram

Figure 2: The system overview of DM-TEE.

4.2.1 Client. Client is the user entity with the enclave that re-
quests the disaggregated memory. In our design, the disaggregated
memory is only for the enclave data. The eMem monitor resides in
both the enclave trusted runtime system (tRTS) and the untrusted
runtime system (uRTS), and serves as the central component to
manage the virtual address space, process the memory requests,
and communicate with the rMem manager. With the help of the
eMem monitor, the enclave can access the disaggregated memory
without knowing the implementation details of the disaggregated
memory architecture (G2). The eMem monitor can automatically
generate the memory access request, and port the request from the
enclave to the rMem manager via ECalls and OCalls. To ensure
data integrity, the enclave maintains a customized integrity tree for
all the allocated memory, and the data in the disaggregated mem-
ory should always be encrypted (G1). Inspired by the PENGLAI
enclave [10], we implement a customized mountable Merkle tree
(MMT) to maintain the enclave integrity (G1). In MMT, the empty
leaf node in the rootTree can be replaced by a subTree when allo-
cating the memory. Also, the subTree for the deallocated memory is
substituted with an empty leaf node, effectively reducing the time
and the space overhead for integrity check at runtime (G1, G3, G4).

206

4.2.2 rMem manager. In the cloud service provider, the rMem
manager bridges the communication channel between the client and
the disaggregated memory. To achieve efficient memory access, we
employ a lightweight request authentication mechanism. The rMem
manager employs a verifier to attest the enclaves by conducting
SGX remote attestation. Similar to JWT [2], the attested enclave
will be granted a token signed by the verifier, which can be used for
further authentications of memory requests. Each token consists of
a payload and a signature. The payload includes the enclave ID and
a timestamp. The rMem manager can check the token expiration
using the timestamp. The verifier in the rMem manager stores a
secret key to sign the token payload and generate the signature, and
the key can only be accessed by the rMem manager. The network
module within the rMem manager serves as the gateway for client
communication, which can support high-speed connections with
SMNs via optical fiber (G4). To minimize the database searches
and reduce overhead, the network module maintains a routing
table to efficiently direct the memory accesses (G4). The routing
table records the information of allocated memory, including the
enclave IP address, the SMN IP address, and the token information
for verification. To protect the memory against physical attacks, the
routing table is stored locally and cannot be accessed by third-party
entities (G1).

4.2.3 Secured Memory Node (SMN). The SMN consists of DRAM
and attached hardware. The attached hardware performs address
translation and permission checking. To maintain the security
equivalence with the local enclave memory, we implement the
EPCM structure [8], which records the page status and the cor-
responding enclave ID, to verify if the memory page belongs to
a specific enclave and the operations are within the appropriate
permissions (G1).

4.3 System Workflows

4.3.1 Secured Disaggregated Memory Allocation. Figure 3 illus-
trates the workflow for the memory allocation in DM-TEE. The
rMem manager attests the enclave by conducting SGX remote at-
testation and generates the token for the attested enclave (i.e., the
pink arrows in Figure 3). The token contains the payload (i.e., the
enclave ID and the timestamp) and the signature, and the rMem
manager records the token in its database. When the enclave makes
a request for disaggregated memory allocation, the eMem monitor
in the tRTS checks the initial virtual address (VA) and determines if
the request needs to go to the disaggregated memory. We preserve
a VA region in the client specifically for disaggregated memory.
The requests for the local memory are managed by the original
SGX workflow, as shown in black arrows in Figure 3. The requests
for the disaggregated memory are forwarded to the rMem manager
via OCalls in the uRTS, which are illustrated as the blue arrows in
Figure 3. The uRTS communicates with the rMem manager to send
the requests to the remote memory service provider.

To achieve the client memory isolation, the rMem manager
verifies the token to determine if the request originates from a
trusted client and maintains a routing table to efficiently route
the read/write requests to the target SMNs. After verification, the
rMem manager searches for the available memory in the SMNs and
assigns it to the enclave by: (1) recording the allocation information

/ N

/|:|» T \ Verifier «——> Remote attestation
Enclave S °
5 <«+— Local mem. access
g t <+— Remote mem. access
s !
B
PRM | Network
1= |, tRTS . module
Q i £ eip[SMN ip[token
3
3 Ecallst 1 Ocalls i ‘ {'\ ddr
& - rans
s URTS Routing table v DRAM
- EPCM ™
eMem monitor
Client rMem manager SMN

Figure 3: The memory allocation workflow in DM-TEE.

in the routing table; (2) notifying the client of the updated VA; and
(3) updating the memory status in the database. In the following
read/write requests, the client uses the updated VA to access the
allocated memory region. The rMem manager also updates the
page table and EPCM in the SMN for the ongoing memory access.
When the disaggregated memory is allocated, the enclave builds a
subTree for the newly allocated memory, replacing an empty leaf
node with this subTree in MMT and subsequently updating MMT
from leaf to root. To release the allocated memory, the client issues
a deallocation request and replaces the subTree with an empty leaf
node. Then, the rMem manager updates the database, removes the
relevant record from the routing table, and instructs the SMN to
update the page table and EPCM accordingly.

4.3.2 Secured Disaggregated Memory Write/Read. To write the data
to the allocated disaggregated memory, the eMem monitor first iden-
tifies the VA of the writing operation. If the VA falls within the
disaggregated memory region, the monitor contacts the rMem man-
ager with the writing request, including the enclave token, the VA,
the data size, and the encrypted data. After receiving the request,
the rMem manager searches the routing table for the corresponding
SMN. In the next step, the SMN translates the VA and executes the
EPCM checking. Authorized requests are then permitted to write
data to the appropriate memory page. The client is notified once
the data writing is complete and updates the MMT accordingly.
Similarly, read requests containing valid information will be pro-
cessed by the corresponding SMN. After the EPCM verification,
the SMN sends the data to the client, and the enclave decrypts
the data and verifies if the HMACs match with the MMT. In the
write/read process, the data remains encrypted, eliminating poten-
tial data leakage. EPCM checking ensures memory isolation among
different enclaves, and MMT guarantees data integrity.

5 IMPLEMENTATIONS

We implement the eMem monitor on the client side based on the
Intel SGX enclave memory manager (EMM) [4]. EMM is running
on the SGX v2 platform and supports dynamic enclave memory
management with pre-defined APIs. We have extended EMM to
accommodate disaggregated memory by implementing two key
changes, including VA management and establishing ECalls/OCalls
for disaggregated memory requests. Also, the tRTS part in the eMem

207

monitor encapsulates the request with parameters including the
enclave ID, the virtual address, the memory size, and the token. The
uRTS part works for request transmission only. In the enclave, we
deploy an integrity tree in DM-TEE based on a customized MMT, as
shown in Figure 4, in comparison to the SIT in the original SGX. In
SIT, each memory node represents 8 EPCs and stores its HMAC. We
leverage such a node structure and integrate it into MMT, and the
memory node in MMT can also represent the disaggregated memory
pages. In our MMT implementation, the rootTree is assigned a
fixed height, and each leaf node can be replaced by a subTree. The
subTree is constructed and integrated into the rootTree during
the memory allocation, which has the same node structure as the
rootTree. During memory deallocation, the subTree is removed
from the rootTree and replaced with an empty leaf node.

Root node Root node
[c]-c]H] [c]-[c[H]
c|-[c|H| —]|c|~[c|H |C||C|H] ------ |C||C|H|
J o s - ™ e
[e[-Tc[n]el-]c[n] - [c[-Tc[n] ~ [c[-Ic]H] HEENE
Leaf nodes ,"" Empty leaf nodes
subTree for
allocated memory
(a) SIT (b) Customized MMT

Figure 4: The structures of (a) the original SGX integrity tree
(SIT) and (b) the customized mountable Merkle tree (MMT)
in DM-TEE .

We build the SMN based on the fast path in the Clio project [12].
Specifically, we add the additional EPCM checking component after
the address translation. The EPCM structure contains the enclave
ID, and only the request with the same enclave ID can access the
page. As discussed in Section 4.2, the disaggregated memory is
designed to store the enclave data only; therefore, all the pages are
regular pages, and the page type checking in the original EPCM
checking flow [8] is no longer necessary.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

We implement DM-TEE on a Xilinx ZCU102 FPGA board by re-
ferring to the open source Clio implementation [12] (i.e., the fast
path design) for the disaggregated memory system. We connect
the ZCU102 board with the rMem manager (deployed on an HP Z2
workstation with an Intel Core-i7 CPU and Mellanox ConnectX-5
NIC) using two SFP ports, and each port offers communication
with a speed of 10Gbps. Additionally, we adopt an Intel NUC
(NUC7CJYH), which supports Intel SGX v2, to play the role of
the client issuing disaggregated memory requests. The Intel NUC
communicates with the rMem manager in a local area network.
We build an original disaggregated memory system without any
security protection as the baseline system, following the system de-
sign in Section 2.1. In this system, the client (i.e., Intel NUC) runs the
application without SGX and sends requests to the rMem manager

to access disaggregated memory. The rMem manager only transfers
requests without authentication. The FPGA board, which manages
the disaggregated memory, operates without security checking.
Also, we evaluate DM-TEE using 4 image processing benchmarks,
namely Gaussian blur, Contrast, Gamma, and Compression, with
input images of varying sizes ranging from 1 kb to 5 kb.

6.2 Security Analysis

6.2.1 Comparison with Original SGX. Table 1 presents a compara-
tive summary of SGX v1, SGX v2, and DM-TEE. In comparison to
the original SGX, DM-TEE utilizes the disaggregated memory archi-
tecture to overcome the enclave memory limitations in SGX v1, ef-
fectively offering unlimited memory size. To preserve the isolation,
DM-TEE utilizes the similar mechanism in SGX (i.e., EPCM verifi-
cation) to authenticate data ownership and protect the data from
unauthorized accesses. Since all memory pages stored remotely
must be regular pages, DM-TEE eliminated the need of page type
checking from the original EPCM verification while maintaining
the same security standard. Also, all data stored in the disaggre-
gated memory is encrypted, ensuring confidentiality. Furthermore,
DM-TEE deploys a customized MMT to protect the data against re-
play attacks, thereby maintaining the data integrity in the enclave,
which is not achieved by SGX v2.

Table 1: Security analysis of SGX v1, SGX v2, and DM-TEE.

TEEs Mem size Mem isol. Data conf. Data inte.
SGX vl 128/256 MB v v v
SGX v2 unlimited vV vV X
DM-TEE unlimited vV v v

6.2.2 Privileged software attacks. In DM-TEE, the rMem manager
is the only entity that can communicate with the memory, and the
third-party memory access requests cannot reach the memory. Also,
the client enclave is authenticated with SGX remote attestation,
which prevents the untrusted client from accessing the memory.

6.2.3 Data-at-rest attacks. Similar to the defense against privileged
software attacks, only the rMem manager can communicate with
the disaggregated memory. Also, the EPCM identifies the ownership
of the memory page. The client can only access the pre-allocated
memory space, which declines accesses from unauthorized clients
and guarantees its isolation. Additionally, the data stored in the dis-
aggregated memory is always encrypted, and its HMAC is recorded
in MMT. Therefore, even if an attacker were to physically tamper
with the disaggregated memory, it is impossible to access the data
in plain text or compromise the data integrity.

6.2.4 Data-in-transit attacks. To defend against the data-in-transit
attacks (i.e., replay attacks), DM-TEE utilizes the MMT to protect the
data integrity. Any data update will trigger an update to the MMT,
and the old data cannot pass the verification because its HMAC no
longer matches with the current MMT record.

208

6.3 Performance Evaluation

6.3.1 Memory Allocation/Deallocation Evaluation. We first evalu-
ate the performance of disaggregated memory allocation and deal-
location in both our system (i.e., DM-TEE) and the original disag-
gregated memory system (i.e., original). In the evaluation process,
the client enclave initiates a memory allocation request, and the
rMem manager announces the updated VA to the client. Also, the
rMem manager updates the corresponding SMN. We evaluate the
allocation and deallocation requests using 1 kb to 8 kb data. As any
system calls (e.g., time functions) are prohibited inside the enclave,
we create an enclave with an empty ECall that performs no oper-
ation. Then, we calculate the time difference between the empty
ECall and the memory allocation ECall in both DM-TEE and the
original disaggregated memory system. The results are presented in
Figure 5, which indicate that DM-TEE introduces an additional over-
head of approximately 21% compared to the original system, which
is deemed acceptable given the significantly enhanced security.

Memory Allocation Memory Deallocation

us =—o—=DM-TEE =@ Original us —e—DM-TEE ~#—Original
80 80
60 '__._’/o/. 0 P—*__/
—a—a—— " — ——»—
40 40
20 20
0 0
1kb 2kb 4kb 6kb 8kb 1kb 2kb 4kb 6kb 8kb

Figure 5: The memory allocation/deallocation overhead.

6.3.2 Memory Read/Write Evaluation. We also evaluate the mem-
ory read/write overhead during the execution. We first measure the
execution time of an enclave for only memory allocation/deallocation,
without any read/write operations. Then, we evaluate the memory
read/write operations in the enclave. The time difference between
allocation-only and read/write enclaves represents the overhead
for the memory read/write, which is shown in Figure 6. DM-TEE
introduces memory read/write overhead ranging from 15% to 20%,
comparing to the original system.

Memory Read Memory Write

us —®—DM-TEE —®—Original

%

80
1kb 2kb 4kb 6kb 8kb

us =®=DM-TEE == Original

80
60
1kb 2kb 4kb 6kb 8kb

40
20

60
40
20
0 0

Figure 6: The memory read/write overhead.

6.3.3 Benchmark Evaluation. To evaluate the performance with
real workloads, we employ 4 benchmarks, where the input image
size scales from 1 kb to 5 kb. In these benchmarks, the disaggregated
memory is employed for storing the input images. The evaluation re-
sults are shown in Table 2, which indicates that DM-TEE introduces

Table 2: Timing evaluation of the benchmarks. The time unit is us.

1kb 2 kb 3 kb 4 kb 5 kb
Benchmarks
Base DM Base DM Base DM Base DM Base DM
Gaussian blur 405.16 446.38 447.62 50236 486.16 539.21 512.61 570.25 557.12 623.7
Contrast 215.67 246.52 230.20 267.11 250.26 289.74 267.19 305.53 294.66 330.74
Gamma 226.63 25292 235.21 274.52 253.03 29133 268.01 308.34 299.12 345.18
Compression 284.67 346.84 327.04 402.62 386.06 469.63 440.17 532.73 497.21 613.38

trivial overhead compared to the original system. Specifically, the
Gaussian blur benchmark introduces the least overhead, which is
about 11%; the image compression benchmark introduces the most
overhead, which is about 21%. In conclusion, our experiment shows
that DM-TEE introduces acceptable overhead when executing real
workloads.

7 CONCLUSION

We have developed DM-TEE, a new trusted execution environment
to support disaggregated memory systems. DM-TEE employs a
series of newly designed security components to achieve secure
memory allocation and access workflow for disaggregated memory,
including an eMem monitor to provide transparent disaggregated
memory services to the local enclave, an rMem manager to attest
the memory requests and decline untrusted memory accesses, and
an EPCM checking process to verify the memory access permission.
In addition, we employ a customized MMT structure to ensure
the integrity of the allocated data with acceptable complexity. Our
evaluations indicate that DM-TEE achieves disaggregated memory
security with minimal overhead. The project repository of DM-TEE
is at: https://github.com/hwsel/DM-TEE.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Founda-
tion under award 1912593.

REFERENCES

[1] 2005. ARM Security Technology: Building a Secure System using TrustZone
Technology. https://developer.arm.com/documentation/PRD29-GENC-009492/
latest/.

2015. JSON Web Token. https://datatracker.ietf.org/doc/html/rfc7519.

2022. Enclave Development Overview. https://learn.microsoft.com/en-us/azure/
confidential-computing/confidential-computing-enclaves.

2023. Intel Software Guard Extensions Enclave Memory Manager. https://github.
com/intel/sgx-emm/tree/main.

2023. Runtime Encryption of Memory with Intel Total Memory Encryption-Multi-
Key (Intel TME-MK). https://www.intel.com/content/www/us/en/developer/
articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html.
Marcos K Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad Singhal.
2019. Designing far memory data structures: Think outside the box. In Workshop
on Hot Topics in Operating Systems (HotOS). 120-126.

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021. CURE: A secu-
rity architecture with customizable and resilient enclaves. In USENIX Security
Symposium. 1073-1090.

Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint
Archive (2016).

Reouven Elbaz, David Champagne, Catherine Gebotys, Ruby B Lee, Nachiketh
Potlapally, and Lionel Torres. 2009. Hardware mechanisms for memory au-
thentication: A survey of existing techniques and engines. Transactions on

=

[10

(1]

=
&N

[13

[14

[15

(18]

=
2

[20

[21

[22

[24

[25]

[26]

[27]

209

Computational Science IV: Special Issue on Security in Computing (2009), 1-22.
Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable memory protection in the PENGLAI
enclave. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 275-294.

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G
Shin. 2017. Efficient memory disaggregation with infiniswap. In USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI). 649-667.
Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang. 2022.
Clio: A hardware-software co-designed disaggregated memory system. In In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 417-433.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
ACM SIGARCH Computer Architecture News 42, 3 (2014), 361-372.

Youngeun Kwon and Minsoo Rhu. 2019. A disaggregated memory system for
deep learning. IEEE Micro 39, 5 (2019), 82-90.

Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou. 2018.
A measurement study on linux container security: Attacks and countermeasures.
In Annual Computer Security Applications Conference (ACSAC). 418-429.

Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias
Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. Darknetz: Towards
model privacy at the edge using trusted execution environments. In International
Conference on Mobile Systems, Applications, and Services (MobiSys). 161-174.
Mendel Rosenblum and Tal Garfinkel. 2005. Virtual machine monitors: Current
technology and future trends. Computer 38, 5 (2005), 39-47.

Moritz Schneider, Aritra Dhar, Ivan Puddu, Kari Kostiainen, and Srdjan Capkun.
2022. Composite Enclaves: Towards Disaggregated Trusted Execution. IACR
Transactions on Cryptographic Hardware and Embedded Systems (2022), 630-656.
Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep
Torrellas, and Christopher W Fletcher. 2019. Microscope: Enabling microarchitec-
tural replay attacks. In International Symposium on Computer Architecture (ISCA).
318-331.

Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A practical
library OS for unmodified applications on SGX. In USENIX Annual Technical
Conference (ATC). 645-658.

Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted
execution environments on GPUs. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 681-696.

Chenxi Wang, Haoran Ma, Shi Liu, Yuangi Li, Zhenyuan Ruan, Khanh Nguyen,
Michael D Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. 2020.
Semeru: A Memory-Disaggregated managed runtime. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 261-280.

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron on
the dark land: Understanding memory side-channel hazards in SGX. In Computer
and Communications Security (CCS). 2421-2434.

Samuel Weiser and Mario Werner. 2017. SGXIO: Generic trusted I/O path for Intel
SGX. In ACM Conference on Data and Application Security and Privacy (CODASPY).
261-268.

Ke Xia, Yukui Luo, Xiaolin Xu, and Sheng Wei. 2021. SGX-FPGA: Trusted execu-
tion environment for CPU-FPGA heterogeneous architecture. In Design Automa-
tion Conference (DAC). 301-306.

Ke Xia and Sheng Wei. 2023. DF-TEE: Trusted Execution Environment for
Disaggregated Multi-FPGA Cloud Systems. In Asian Hardware Oriented Security
and Trust Symposium (AsianHOST). 1-6.

Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang, Jiangfeng Cao, Boyan
Zhao, Zhongpu Wang, Yuhui Zhang, Jiameng Ying, Lixin Zhang, et al. 2020. En-
abling rack-scale confidential computing using heterogeneous trusted execution
environment. In JEEE Symposium on Security and Privacy (S&P). 1450-1465.

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Disaggregated Memory
	2.2 Trusted Execution Environment (TEE)

	3 Threat Models
	4 System Design
	4.1 Design Goals
	4.2 System Components
	4.3 System Workflows

	5 Implementations
	6 Experimental Results
	6.1 Experimental Setup
	6.2 Security Analysis
	6.3 Performance Evaluation

	7 Conclusion
	Acknowledgments
	References

