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Summary

o Predictive relationships between plant traits and environmental factors can be derived at
global and regional scales, informing efforts to reorient ecological models around functional
traits. However, in a changing climate, the environmental variables used as predictors in such
relationships are far from stationary. This could yield errors in trait-environment model predic-
tions if timescale is not accounted for.

e Here, the timescale dependence of trait-environment relationships is investigated by
regressing in situ trait measurements of specific leaf area, leaf nitrogen content, and wood
density on local climate characteristics summarized across several increasingly long timescales.
¢ We identify contrasting responses of leaf and wood traits to climate timescale. Leaf traits
are best predicted by recent climate timescales, while wood density is a longer term memory
trait. The use of sub-optimal climate timescales reduces the accuracy of the resulting trait-
environment relationships.

o This study concludes that plant traits respond to climate conditions on the timescale of tis-
sue lifespans rather than long-term climate normals, even at large spatial scales where multi-
ple ecological and physiological mechanisms drive trait change. Thus, determining trait-
environment relationships with temporally relevant climate variables may be critical for pre-
dicting trait change in a nonstationary climate system.

Introduction

Climatic factors like temperature, atmospheric aridity, and water
availability strongly impact the strategies by which plants grow,
allocate resources, and respond to stress (e.g. Woodward, 1987) —
and, consequently, their traits (e.g. Wright ez 4/, 2004; Messier
et al., 2010; Reichstein ez al., 2014). Understanding relationships
between plant traits and their environment, particularly via pre-
dictive trait—environment relationships that can be directly
derived from trait observations (e.g. Boonman ez al., 2020), can
help to elucidate how climate shapes the distribution and diver-
sity of vegetation at the global scale (Lavorel & Garnier, 2002;
Wright ez al., 2005; Laughlin, 2014). While such relationships
have myriad applications in trait-based ecology, including
flexibly parameterizing large-scale ecological models (e.g. Verhei-
jen et al., 2013, 2015; Famiglietti ez al., 2023), as well as extrapo-
lating between sparse in situ data (Borgy er al, 2017), their
potential utility is hampered by their relatively low predictabilicy
(Anderegg, 2023).

Indeed, there is ample evidence that underlying relationships
between traits and climate exist across a range of scales. Responses
of leaf traits such as leaf mass per area (LMA) and leaf nitrogen
content (LNC) — both of which correlate to photosynthetic capa-
city (Field & Mooney, 1986; Niinemets, 1999) — to climate
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factors are particularly well-studied. For example, results from a
synthesis of laboratory studies examining trait change within spe-
cies indicate inverse relationships between LMA and either tem-
perature or water availability (i.e. leaves become thicker and
denser as the local climate cools or dries), as well as a positive
relationship with radiation (Poorter e al, 2009). Relationships
between leaf traits, such as LMA and LNC, and climate are also
modulated by changes in light availability (Niinemets
et al., 2015; Keenan & Niinemets, 2016). On longer timescales
and larger ecological scales, drought, elevated carbon dioxide,
nitrogen deposition, and increasing temperatures have each been
linked to shifts in leaf traits via climate manipulation experiments
(Saban ez al, 2019; Cui et al, 2020), regional meta-analyses
(Wellstein ez al., 2017), globally distributed 77 sizu measurements
(Madani ez al, 2018), optimality theory (Smith et al, 2019;
Smith & Keenan, 2020), earth system model simulations
(Doughty er al, 2018), and remote sensing data analyses (He
et al., 2017; Dong er al., 2022). Beyond leaf traits, other plant
organs are also strongly affected by climatic variability. Tree-ring
studies indicate that the density of wood, for instance, responds
to environmental effects — notably temperature and water avail-
ability — on both intra- and inter-annual timescales (Parker &
Henoch, 1971; Bouriaud er al, 2005). Among-species and
among-community patterns in wood density also respond to
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climate (Chave er al, 2006; Bruelheide er al, 2018), though
often less strongly than to soil fertilicy (Chave ez al, 2009).
Taken together, such trait responses may even induce broader
feedbacks within the climate system. Leaf trait acclimation to ele-
vated carbon dioxide, for instance, may amplify warming
through reductions in evapotranspiration (Kovenock &
Swann, 2018). Widespread changes in albedo that have global
climate impacts may also result from trait shifts in tundra ecosys-
tems caused by species turnover (Sturm et 4l, 2005; Swann
et al., 2010; Myers-Smith ez al., 2011).

However, climate change is inducing pervasive shifts in the
environmental covariates that affect plant behavior over time
(e.g. Hughes, 2000; Dai, 2013), and at rates that may outpace
organisms’ abilities to re-equilibrate to new conditions (Loarie
et al., 2009; Schimel ez al, 2013). Thus, a growing mismatch
may exist between distributions of key plant traits and climate
dynamics of the present and recent past (Cui et 4/, 2020), which
could yield errors in trait—environment model predictions if they
are based on climate records not representative of the timescale at
which that trait actually responds to climate. Addressing this
source of error is not straightforward, though. First, there is no
agreed-upon temporal span to be used for climate predictors in
the development of trait—environment relationships. Most prior
work simply uses the entirety of the relevant climate data record
available (e.g. Ordofiez et al., 2009; Verheijen et al., 2013). For
example, while a recent study by Boonman ez 4l (2020) pre-
sented global distributions of specific leaf area (SLA; the inverse
of LMA), LNC, plant height, and wood density based on rela-
tionships between traits and climate, no temporal dimension was
considered in the models, and reliable predictions of LNC could
not be achieved. Second, it is unclear over what timescales differ-
ent plant traits respond to past climatic controls — and whether
these response timescales are static or dynamic, as well as species-
or trait-specific. The multiple physiological and ecological drivers
of trait change (e.g. lineage or species turnover, changes in species
abundance, and trait acclimation within species) make it very dif-
ficult to predict a priori which timescales may be relevant for any
given trait (Anderegg, 2023). These unresolved questions suggest
that neither the stability nor consistency of trait—environment
relationships across time are well-understood, underscoring
potential limitations of their generalizability (e.g. Anderegg
et al., 2018; Yang er al., 2019). The role of timescale may further
restrict the strength and universality of such relationships, which
are already challenged by the overwhelming diversity of vegeta-
tion behavior within and between species, communities, and
biomes (Bruelheide ez al., 2018; Anderegg, 2023).

Here, by regressing thousands of globally distributed trait mea-
surements from the TRY database (Kattge ez a/., 2020) on several
increasingly extensive records of local climate characteristics, we
investigated two questions. First, what — if any — is the optimal
timescale with which trait distributions are predicted by climate
factors? Second, how much do derived trait—environment rela-
tionships change as a function of climate (predictor) memory?
We focus on three traits for which strong links to the environ-
ment have been demonstrated previously (Verheijen ez al., 2013;
Butler er al, 2017; Walker et al, 2017; Boonman ez al., 2020):
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SLA, LNC, and wood density. These traits are well-suited to
this analysis not only because of their previously demonstrated
trait—environment relationships, but also because of the large
number of measurements publicly available for modeling
and their relevance for understanding multiple dimensions of
plant functioning.

Materials and Methods

Overview

Using several thousand globally distributed 77 sizu measurements
of SLA, LNC, and wood density aggregated within 9 km pixels,
we derived predictive relationships between these plant traits and
local climate variables. The choice of the 9 km pixel size was
based on the resolution of the climate data. We considered a
range of ‘climate integration times’ — spanning 301 yr before
the measurement date — to evaluate both the predictive strength
and temporal consistency of these relationships as a function of
timescale. Throughout this paper, the phrase ‘climate integration
time’ is used to refer to the time period over which summary cli-
mate statistics are calculated. Our methodology is represented
schematically in Fig. 1.

Trait measurements

The TRY database is a comprehensive, publicly accessible archive
of plant trait measurements across the globe (Fraser, 2020; Kattge
et al., 2020). From TRY, we downloaded all public records of
SLA (including those with petiole included or excluded), mass-
based LNC, and wood density. For each trait, we removed mea-
surements with insufficient metadata. Specifically, we required
that all measurements contained a geolocation and a sampling
year equal to or after 1980 (30 yr past the start of the climate
data record). Following filtering methods used by Boonman
et al. (2020), we also required that (1) measurements were taken
only from natural vegetation rather than managed systems; (2)
sampled species were representative of the broader plant commu-
nity or dominant vegetation structure growing at that location;
and (3) measurements were not obtained from early successional
communities or from seedlings or juveniles. After implementing
these filters, we retained 35281 measurements of SLA, 12288
measurements of LNC, and 5753 measurements of wood
density.

Due to the variability in development and life history between
species  with different growth forms (e.g. Sandago &
Wright, 2007), we further subdivided the remaining measure-
ments into two classes: woody (trees and shrubs) and nonwoody
(herbs and grasses). However, because of sample size restrictions
on the nonwoody class, we restricted the remainder of our analy-
sis only to the woody class (> 5X more woody than nonwoody
measurements). To categorize each species as woody or non-
woody, we referred to the growth form dataset provided by Enge-
mann et al. (2016), which synthesizes information from several
sources, including Wright ez /. (2010). Approximately 77% of
the filtered TRY measurements were directly matched with
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Fig. 1 Schematic representation of workflow, including (a) aggregation of
the filtered trait measurements within 9 km pixels; (b) calculation of
predictors across climate integration times; and (c) trait-environment
regression models using different climate histories. In (a), sample weights
corresponding to the square root of the number of measurements per pixel
are represented by w, > w3 > wy.

species included in the Engemann ez 4/ (2016) dataset. In cases
when a given species was not included in the dataset, but other
species from that genus were included (c. 20% of measurements),
we assigned the most common listed growth form for that genus
to the unlisted species. If no species from that genus were
included in the Engemann ez a/ (2016) dataset (c. 3% of mea-
surements), we conducted web and literature searches for species-
specific growth form information. No information could be
found for < 0.1% of measurements, most of which were missing
relevant metadata. These measurements were removed from the
analysis.

Finally, we aggregated the remaining iz situ trait measure-
ments to align with the 9 km spatial resolution of the climate
variables. To do so, for each trait, we isolated all the woody,
species-level measurements that fell into a given pixel for a given
sampling year (Supporting Information Figs S1-S3). Because the
filtering criteria described above ensure that individual measure-
ments are representative of the broader community or dominant
vegetation structure (Boonman er al, 2020), we took a simple
average of these measurements for further modeling and analysis.
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Climate data

We used climate data from the land component of the fifth-
generation European ReAnalysis dataset (ERA5-Land) from the
European Centre for Medium-Range Weather Forecasts
(ECMWE), which provides high resolution (9 km) informaton
about land surface meteorology, water, and energy cycling from
1950 to present (Mufioz-Sabater ez al, 2021). We downloaded all
available ERA5-Land data for the following variables at the monthly
timescale: 2 m air temperature, total precipitation, soil water content
(0-7 and 7-28 cm depths), and downward surface solar radiation.
We also downloaded 2 m dew point temperature data, which we
used to calculate the vapor pressure deficit (VPD). These variables
were selected because they have previously been shown to be predic-
tive of plant traits (e.g. Verheijen ez 2, 2013; Buder ez 4/, 2017).

For each pixel-year, we then extracted local climate summary
metrics over several different climate integration times. These
ranged from 30 to 1 yr prior to the aggregated trait value. Specifi-
cally, for each environmental covariate, we calculated the overall
mean as well as the standard deviation of monthly averages (here-
after referred to as the seasonality) across the entire record. These
values were considered as predictors in the regression models for
cach trait. We used a two-sample Kolmogorov—Smirnov test to
evaluate whether the 30- and 1-yr distributions of each climate
predictor at the sampled pixels are significantly different. The sta-
tistical test returns the Kolmogorov—Smirnov statistic, D, which
represents the maximum distance between the two cumulative
distribution functions, and a corresponding P-value.

Trait-environment regression models

We developed multiple linear regression models for each combi-
nation of trait and climate integration time to test the hypothesis
that trait—environment relationships shift as a function of time-
scale. These models were of the following form:

yzzla/X/—f—b Eqn 1
=

it

where y is the predicted trait value; 4; are the regression coeffi-
cient values for each of 7 climate predictors Xj; & is the intercept;
i € (1, 30) is the climate integration time; and # € (SLA, LNC,
wood density) is the trait. Before regression analysis, each X; was
rescaled between 0 and 1; trait values were log-transformed due
to their significant skew; and each sample (pixel value) was
weighted using the square root of the number of trait measure-
ments within that pixel. Overall, the regression coefficient value
a; corresponding to a given environmental covariate X reflects
the magnitude and directionality of its impact on the predicted
trait y. These models were implemented in PYTHON using Scikit-
Learn’s LinearRegression functionality.

Climate predictor selection

For every trait, we chose a subset of the 12 potential predictors
prior to making model predictions. This was intended to reduce
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multicollinearity and mitigate equifinality (which, in this context,
is the case in which different combinations of predictors could
yield the same result).

First, we removed highly cross-correlated predictors from the
models (»>10.75l). For each plant trait studied, we identified all
groups of cross-correlated predictors at the sampled pixels
(Figs S4-S6) and retained only the predictor most strongly corre-
lated to the target trait within each group (the other predictors
were removed from the analysis). After this step, seven
predictors with <10.75| remained for SLA and LNC, while five
predictors remained for wood density. Note that cross-
correlations were assessed only at the sampled pixels, which var-
ied from trait to trait.

We then conducted an analysis using Bayesian information cri-
teria values (BIC, a common method for scoring a model that
takes complexity and sample size into account) to select the most
parsimonious set of predictors from those remaining (Figs S7—
S9). This ensures that predictors adding only a relatively small
amount of value to the model are not included, thereby reducing
the potential influence of equifinality and noise on the analysis.
This approach yielded three final predictors for each trait.

Analysis

To answer our first research question (what — if any — is the opti-
mal timescale with which trait distributions are predicted by envir-
onmental factors?), we assessed the skill of the trait-specific
regression model predictions as a function of climate integration
time and identified performance optima. Skill was measured
using the coefficient of determination (R, weighted root-mean-
square error (WRMSE), weighted mean absolute percentage error
(WMAPE), and weighted mean absolute error (WMAE). All
metrics were weighted according to the sample weights used for
model development (square root of the number of trait measure-
ments per pixel; Fig. 1).

Trait predictions are a direct function of which (and how
many) pixels were sampled along with their weights, as well as
which (and how many) predictors were included in the regres-
sion framework. To characterize the range in skill resulting from
the limited sample size, we implemented a statistical bootstrap-
ping procedure that randomly resamples pixels (and associated
predictors) with replacement prior to regression. Second, to
characterize the range in skill resulting from the choice of pre-
dictors, we conducted recursive feature elimination, which uses
feature importance rankings to remove predictors one at a time
until a specified number of predictors is reached. We performed
recursive feature elimination several times for each trait, testing
every possible number of predictors less than the size of the
final set.

To answer our second research question (how much do derived
trait-environment relationships change as a function of predictor
memory?), we evaluated feature importance rankings derived via
recursive feature elimination as well as the degree to which the
regression coefficient values shift across the different climate inte-
gration times, using the standard error ¢; on each coefficient as a
measure of significance.
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Results

Shifts in climate across integration times

Consistent with our expectation of a changing climate, the sum-
mary metrics used as predictors in the trait-environment regres-
sion models shift across climate integration times. Specifically, by
comparing distributions of each predictor variable between the
longest (30-yr) and shortest (1-yr) integration times, we find sta-
tistically significant increases in shortwave radiation, mean tem-
perature, and VPD at the sampled pixels, as well as decreases in
average total precipitation and soil water content (Fig. 2). The
seasonalities of both soil water content layers also increase mark-
edly when comparing recent to historical climate, and the largest
shift of any variable occurs for the seasonality of shortwave radia-
tion (Fig. 2b). The seasonalities of temperature and VPD appear
relatively stable across integration times, although their shifts are
still statistically significant. Overall, these shifts in climate are not
spatially uniform but instead show latitudinally variable patterns
(Fig. S10), potentially leading some individual trait measure-
ments to derive from organisms experiencing stronger shifts in
climate than are captured by global summaries alone. Taken
together, this evidence of climate change at the sampled pixels
between the 30- and 1-yr integration times demonstrates the
importance of evaluating whether trait—environment relation-
ships developed using different climate histories are inconsistent
and/or unstable.

Optimal climate integration time for trait-environment
prediction

When comparing the resulting trait predictions for woody plants
across the full suite of tested integration times, the three traits
show different performance optima (Fig. 3). SLA is best pre-
dicted by short integration times — that is, by recent climate. Spe-
cifically, the quality of SLA predictions (measured through the
coefficient of determination, R*) improves when moving from
30- to 1-yr integrated climate, which is its optimal integration
time (Fig. 3a). Furthermore, a notable upward spike in skill
occurs c. 4 yr prior to the measurement. Similarly, LNC, which is
physiologically linked to SLA through relationships with photo-
synthetic capacity, is also optimally predicted with recent (1 yr)
rather than historical climate (Fig. 3b). The predictability of
LNC as a function of timescale is slightly more stable than that
of SLA, showing only marginal increases in R when the optimal
rather than other integration times are used. We tested the
hypothesis that this insensitivity may result from weaker shifts in
climate at the pixels where LNC was sampled than at the pixels
where SLA or wood density were sampled, but did not find
strong evidence to support this (Fig. S11). We also repeated the
analysis using only datasets that measured at least two traits at the
same time, finding consistent results (Fig. $12).

Wood density shows different behavior than the two leaf traits
when considering variations in skill across integration times. Its
optimal climate integration time extends 7 yr before the measure-
ment (Fig. 3c). In general, higher qualitcy wood density
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predictions are generated with longer integration times, and a
substantial decline in skill is observed when using climate his-
tories shorter than 7 yr.

Overall, using the R metric, SLA and LNC are the best-
predicted traits (Figs 3, S13). The optimal model for SLA (using
1-yr integrated climate predictors) explains 42% of variance and is
closely followed by that for LNC, which explains 50% of variance
using 1-yr integrated climate predictors. Wood density is more
challenging to predict, achieving only 22% variance explained
using its optimal (7-yr) climate integration time. However, the R
values of the SLA and LNC predictions are slightly more uncertain
than those of wood density predictions (Fig. 4). This result holds
when considering sampling uncertainty (quantified via bootstrap-
ping and shaded in Fig. 3) as well as predictor space composition
(quantified via recursive feature elimination, whereby we evalu-
ated models with successively fewer predictors). Both span a larger
range for the two leaf traits than for wood density.
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The consequences of deriving trait—environment relationships
with sub-optimal climate timescales persist across multiple error
metrics (Fig. 5). For all three traits, wWRMSE, wMAPE, and
wMAE are minimized — though each with a large range in possi-
ble values from bootstrapping — when the optimal integration
time is used. In the case of LNC and particularly for SLA, errors
are comparably larger when using longer rather than shorter sub-
optimal integration times. For wood density, increases in error
are marginal, but are most apparent when using 1-yr (too-short)
integrated climate predictors.

Stability of trait-environment relationships across
integration times

With this improved understanding of optimal integration time,
its uncertainty, and its variability across traits, we next investi-
gated the degree to which underlying relationships between
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composition (shown in filled circles) for (a) specific leaf area (SLA), (b) leaf nitrogen content (LNC), and (c) wood density. The horizontal line represents the
median; the whiskers extend from the lower to upper quartile; the open circles are outliers (beyond the IQR).

predictors and the target trait shift across models driven by differ-
ent climate integration times. Indeed, the concept of timescale
dependence includes not only variations in predictability across
integration times, but also extends to the ways in which traits and
climate are linked when considering different temporal domains
(i.e. which climate predictors best predict trait values).

In Fig. 6, we present discrete relative importance rankings for
each predictor variable across traits and integration times (the
highest ranking indicates the strongest predictor of that trait). In
Fig. 7, we present the corresponding regression coefficient values
underlying those rankings for a selection of integration times. We

found that the relative importance rankings of the predictors
show differences in stability as a function of trait and climate
integration time (Fig. 6), although shifts in regression coefficient
values all remain within the range of standard errors (Fig. 7).
First, all predictor rankings in the SLA and LNC models remain
stable across integration times. Mean VPD, average total precipi-
tation, and the seasonality of 2 m temperature are consistently
the top three predictors of SLA (Fig. 6a). Similarly, mean VPD
and the seasonalities of shortwave radiation and 2 m temperature
are consistently the most important predictors of LNC (Fig. 6b).
For both leaf traits, the coefficient value for mean VPD shrinks
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resulting from recursive feature elimination
for (a) specific leaf area (SLA), (b) leaf
nitrogen content (LNC), and (c) wood
density across integration times. For each
trait, the optimal integration time is
highlighted with a thick black outline. Colors
correspond to importance rankings, with
darker colors representing higher rankings.
Gray colors in panel (c) represent a predictor
that was not selected in that model.
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slightly when the optimal integration time is used rather than the
longest one (2% decrease in coefficient value for SLA; 9%
decrease for LNC), while the coefficient value for temperature
variability increases by 16% for SLA and decreases by 7% for
LNC (Fig. 7a,b).

By contrast, substantial variability in importance rankings is
observed in the wood density model (Fig. 6¢). Mean temperature
and mean radiation are each just as likely to be the top predictor
of wood density at different integration times, with temperature
outweighing radiation at the optimal integration time. Precipita-
tion variability is also an important predictor of wood density,
but only at mid-range climate timescales.

Discussion

Physiological controls on the timescale dependence of
trait-environment relationships

The challenge of predicting plant traits with environmental fac-
tors given the astounding ecological diversity of the terrestrial
biosphere (Bruelheide ez al, 2018) is further complicated by the
existence of optimal climate integration times, which we demon-
strate vary from trait to trait at the global scale. Signals of this
dependence on climate timescale can be directly inferred from
publicly available trait measurements.

Understanding the biological basis of these relationships
with climate timescale is necessary in order to draw a clearer pic-
ture of trait—environment predictability and its limitations. In
particular, several mechanisms may explain the variability in opti-
mal integration times we identified between different traits
(Fig. 3). The relatively short residence time of foliar carbon
(Bloom et al., 2016), as well as the ability of plants to dynami-
cally adjust their leaf traits, such as SLA, on seasonal to diurnal
timescales in response to environmental perturbations (Poorter
et al., 2009; Dwyer et al., 2014; Keenan & Niinemets, 2016),
may contribute to the greater predictability of leaf traits by recent
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climate compared with historical climate. LNC is also highly
plastic, demonstrated in part through its variability in different
light environments (Rozendaal er al, 2006). This can be
explained by the fact that photosynthetic infrastructure and asso-
ciated photosynthetic processes, which plants can adjust on short
timescales, depend on N-rich enzymes (e.g. Stitt & Schulze, 1994;
Reich er al, 1997). By contrast, tree-ring development — and
accordingly wood density, which showed a longer timescale
dependence than either SLA or LNC in our study — reflects
changes in temperature, water availability, and other environ-
mental controls integrated over the entire lifetime of the organ-
ism (Zobel & van Buijtenen, 1989; Roderick & Berry, 2001).
Indeed, wood density captures the influence of many xylem
growth rings — each of which represents only 1yr of growth —
while leaves (in deciduous species) regrow annually.

Regression coefficient stability and consistency with
previous studies

Wood and leaf traits differ not only in their timescale dependen-
cies but also in the variable stability of their underlying relation-
ships with climate factors, which we interpreted in part via
regression coefficient sensitivities. We caution, though, that
because these sensitivities are derived from multiple linear regres-
sion models (i.e. they represent partial rather than univariate cor-
relations), they should be interpreted in concert rather than
independently. Furthermore, despite removing the most strongly
cross-correlated climate predictors from our models and selecting
a parsimonious model via BIC, it is still possible that some degree
of multicollinearity impacts our interpretation of these environ-
mental sensitivities.

In the wood density model, all coefficient shifts remained
within the standard error of the corresponding 30-yr value
(Fig. 7¢) despite variability in importance rankings across integra-
tion times (Fig. 6¢). Our results indicate a consistent positive
relationship between mean temperature and the target trait as
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well as inverse relationships associated with mean soil water con-
tent and radiation. The signs of these sensitivities to temperature
and water availability match findings from studies of field plots
(Bouriaud ez al, 2005). The contrasting sensitivities of wood
density to mean radiation (negative) and mean temperature
(positive) were somewhat unexpected, though, as the two are
typically linked and increases in either variable could stimulate
photosynthetic activity and growth in the absence of water or
nutrient limitations (Bouriaud ez 4/, 2004). Additionally, Boon-
man et al. (2020) found strong impacts of minimum tempera-
ture, precipitation in the driest quarter of the year, and soil
cation exchange capacity on wood density. Though the exact for-
mulation of the predictor variables used here differs from the
aforementioned study, we also identify temperature and water
availability as important predictors of wood density (Fig. 7c).

By contrast, greater stability in predictor—target relationships
was observed in both leaf trait models across climate integration
times. While coefficients for mean VPD and the seasonality of
temperature (the two traits common to both the SLA and LNC
regressions) were more sensitive to integration time for SLA than
for LNC, no shifts in coefficient values were greater than their
standard error and the signs of the retrieved predictor—target rela-
tionships remained the same, regardless of integration time
(Fig. 7a,b). For the leaf trait models, only some — but not all — of
the underlying coefficient relationships aligned with expectations.
For instance, we found a positive effect of mean total precipita-
tion on SLA. In their study of trait—environment relationships
for parameterizing global vegetation models, Verheijen
et al. (2013) found inverse relationships between water availabil-
ity (mean annual precipitation) and SLA for some vegetation
types. However, Swenson ez al. (2012) reported the opposite in a
global synthesis of woody plant traits. We also identified a posi-
tive effect of VPD on both leaf traits (Figs 6a,b, 7a,b). In a review
of experimental studies with varying VPD treatments and plant
growth environments, Ldpez et al. (2021) reported significantly
increasing LNC with increasing VPD (consistent with our
results), but weakly decreasing SLA with increasing VPD (unlike
our results). Relatedly, Boonman ez 4/. (2020) identify the aridity
index as the strongest predictor of SLA and the second-strongest
predictor of LNC in their study of global trait—environment rela-
tionships, though the signs of these relationships are positive (a
lower aridity index yields lower leaf trait values).

Taken together, we find varying degrees of consistency
between our predictor—target relationships and those reported in
the literature across traits. This range of agreement may be
explained by the difficulty of comparing trait—environment rela-
tionships across scales (e.g. experimental or climate manipulation
studies vs measurements from natural vegetation; site-scale stu-
dies vs vegetation type-specific subsets vs global aggregations; and
so on). This challenge is compounded by issues related to trait
measurement sampling (e.g. representativeness of sampled species
given variations in community structure and composition
between different ecosystems), which functional groups are
included in the analysis (e.g. only woody plants here vs woody
and herbaceous plants in other analyses), and specific methodolo-
gical choices relating to model structure and development (e.g.
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exactly which predictors were considered as potential descriptors
of each trait; the degree to which model parsimony was priori-
tized; and the impact of equifinality between predictors; Fig. 4).

Implications for trait distributions under future climate
change

The trait-specific environmental sensitivities identified here sug-
gest that shifts in climate strongly affect vegetation behavior and
support the idea that a rapidly changing climate may induce dise-
quilibria in global distributions of plant traits (Aitken ez 4/, 2008;
Schimel ez al., 2013). In fact, signals of this disequilibrium are
already apparent. For example, Hill ez /. (2023) found evidence
for a growing vegetation—climate mismatch in California’s Sierra
Nevada mountains marked by increasingly unsuitable environ-
mental conditions for conifer regeneration, which may cause
increased vulnerability to disturbance and increased likelihood of
species turnover. This acceleration falls within the larger backdrop
of differential velocities of climate change across the global land
surface — species are facing increasing pressures to ‘keep up’ with
shifts in environment (Loarie et al, 2009; Corlett & West-
cott, 2013). The relatively long optimal integration time of wood
density (Fig. 3), which may be explained by responses to water
stress, suggests that wood density and other traits linked to plant
water use are more likely than short-term memory traits to be in
such disequilibrium with climate. However, it is also possible that
the climate timescale dependencies and associated optimal inte-
gration times of different plant traits will continue to evolve with
climate change, complicating our ability to project trait distribu-
tions and associated environmental sensitivities into the future.

Recommendations for trait-based modeling

Efforts to integrate trait-based methodologies into ecological
models of many scales — including those describing plant growth
(Enquist ¢z al., 2007), community assembly (Laughlin & Laugh-
lin, 2013), species distribution (Violle & Jiang, 2009), and
dynamic global vegetation (van Bodegom er al, 2012) — are
becoming increasingly common. Limitations to the generality of
such trait—environment relationships, such as the trait-specific
optimal climate integration times identified here, are salient to
these modeling efforts. Here, we present three key lessons from
our investigation into climate timescale that are generalizable
across trait-based modeling approaches.

(1) There is no ‘one-size-fits-all’ trait-environment relationship.
The choice of integration time may have greater consequences for
some trait predictions than others (e.g. compare LNC to wood
density in Fig. 3). Still, it is clear that arbitrary, trait-invariant cli-
mate timescales are insufficient to reliably capture the broad spec-
trum of trait variability across the globe. Indeed, we identified
two classes of traits — ‘short-term memory’ (here, SLA and LNC)
and ‘long-term memory’ traits (here, wood density) — which
showed contrasting performance optima (Fig. 3) and different
dynamics of coefficient (in)stability. Accordingly, trait—environ-
ment relationships, including climate integration time and the
composition of the predictor space (e.g. number and type of
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climate variables; Fig. 6), should be tailored to the individual trait
of interest. Even in situations where consideration of trait-specific
climate integration times is not considered practical or feasible,
though, our results still suggest that integration times < 10 yr are
more appropriate than the multi-decade integration times often
used in past trait—environment relationship studies.

(2) Multicollinearity and equifinality should be considered during
model development. Trait—environment relationships are prone to
equifinality, which is the situation in which different (potentially
unphysical) coefficient combinations yield the same result (Beven
& Freer, 2001). One reason for this susceptibility is the high
degree of cross-correlation between climate predictors (Figs S4—
S6), leading to potential misattribution of model sensitivities
when this multicollinearity is not accounted for. While introdu-
cing a greater number of predictors can be important in order to
adequately characterize a given trait—environment relationship
when the initial predictor space is very small (e.g. only one or
two predictors; Figs 4, S7-S9), the resulting equifinality may lead
to uncertainty in the coefficients of the trait—environment rela-
tionship and incorrect interpretations of which predictors are
most strongly linked to the target trait (Figs 6, 7). Extensive ana-
lysis of predictor cross-correlations and/or interdependencies, as
well as a careful choice of the number of necessary predictors, is
therefore recommended. For example, results from our analysis
with BIC (Figs S7-S9) suggest that the use of more than three or
four predictors may yield diminishing returns.

(3) Trairenvironment predictions should be made using the same
climate integration times with which the relationship was developed.
A mismatch in climate integration times used during relationship
development vs upon application may restrict accuracy, robust-
ness, and interpretability. Such a mismatch could occur if a trait—
environment regression equation derived in one context (e.g.
with some set of trait measurements and climate predictors) is
used to make predictions in another, independent context (e.g. to
parameterize an ecosystem model). Consider the wood density
model in our study, while prediction quality remained relatively
consistent at all but the shortest few integration times (Figs 3c,
5), the composition of the predictor space varied significantly
across the integration time axis (Fig. 6). Thus, as long as the
choice of integration time is consistent between development and
application, the effect of climate timescale may be mitigated. If it
is not, however, variability in underlying coefficients may lead to
unexpected behavior.

Remaining uncertainties

While we have
dependencies using a relatively simple regression framework, our
approach contains several imitations. We acknowledge that
sampling- and species-related biases of these trait measurements

identified clear trait—environment timescale

contribute substantial uncertainties to our models, though this is
far from inconsistent with prior trait—environment work (Ander-
egg, 2023). Indeed, the greater predictability of both SLA and
LNC than wood density observed here may first be a function of
the representativeness of the trait measurements used for relation-
ship development. As shown in Figs S1-S3, SLA and LNC are
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much more widely sampled across space and time in the TRY
database than wood density is, potentially enabling more under-
lying variability to be explained by the regression models.

Additionally, the complete spectrum of environmental factors
relevant to trait variability was not tested here, nor were the
impacts of using different integration times for different climate
predictors within the same regression model. Future studies
should pursue such an analysis, but it is outside the scope of this
paper, which is a proof of concept seeking to align as closely as
possible with existing modeling approaches. Because our focus
was on climate variables that evolve on annual to decadal time-
scales, we also neglected the role of slow-evolving environmental
covariates such as edaphic factors (Hulshof & Spasojevic, 2020),
which are also known to influence plant behavior. Indeed, the
soil cation exchange capacity and soil pH were shown as relevant
predictors of SLA, LNC, and wood density by Boonman
er al. (2020). By not including these properties, our approach
prioritized predictor space simplicity with the goal of mitigating
equifinality. The inclusion of information about soil texture
yielded only marginal improvements in prediction accuracy for
some traits (most notably wood density, for which R atits opti-
mal integration time increased from 0.22 to 0.28; Fig. S14).
Nonetheless, the skill of our predictions is comparable to recent
work by Boonman et 4/ (2020), in which SLA, LNC, and wood
density were predicted with average R values of 0.24, 0.12, and
0.32, respectively.

Third, our analysis only reflects relationships between woody
plants and climate, which does not capture the full spectrum of
global vegetation behavior. A detailed analysis by individual plant
growth form or functional type is challenging for several reasons,
including inconsistent metadata accompanying trait measure-
ments; biases in the growth forms of commonly measured species
(Sandel ez al, 2015); and limited species-level information in
growth form databases (e.g. Engemann ez al, 2016). Our focus
on only woody species was a direct function of data availability.
Nonetheless, optimal integration times of nonwoody plants
(which remain to be investigated) are also relevant for under-
standing the full spectrum of vegetation responses to climate.

Fourth, we derived relationships using trait measurements
from the TRY database, which — while exceptionally valuable —
are sparse and spatially nonuniform. The degree to which these
sparse measurements are representative of the total diversity of
terrestrial ecosystems across the globe is limited (Schimel
et al., 2015), and our point-to-pixel aggregation could lead to
uncertainties, especially in highly heterogeneous locations.
Furthermore, different measurements may have been sampled at
different times of year, which could bias results for fast-evolving
leaf traits. Looking forward, opportunities for novel monitoring
and observation of species distributions and ecosystem function
are becoming increasingly accessible. In particular, hyperspectral
remote sensing for functional trait estimation can avoid the lim-
itations and difficulties of on-the-ground measurement in a scal-
able and repeatable way (e.g. Asner er al, 2015; Wang
et al., 2020). Still, given that remote sensing approaches cannot
capture individual-scale behavior, broad and repeated 77 situ sam-
pling remains necessary and critically important.
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Conclusions and paths forward

Trait-specific dependencies on climate integration time represent
an under-explored limitation on the generalizability and univers-
ality of trait—environment relationships. However, developing a
robust understanding of these effects remains complicated by the
multiple interacting ecological and physiological mechanisms
driving trait change across scales and by the limited data available
to characterize them. Looking forward, an improved understand-
ing of optimal climate integration times for trait—environment
predictions may help guide intelligent restoration, conservation,
or management efforts (e.g. Sandel er al, 2011; Carlucci
et al., 2020; Merchant ez al., 2023), given that vegetation resili-
ence to environmental change is modulated by trait variability
(Liu et al, 2023). Such an improved understanding could also
increase confidence in future ecological projections (e.g. Madani
et al., 2018) and inform trait-based modeling efforts across scales
(e.g. Famiglietti ez al., 2023).
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Fig. S1 Number of specific leaf area measurements per pixel per
year, colored by latitude.

Fig. $2 Number of leaf nitrogen content measurements per pixel
per year, colored by latitude.
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Fig. S3 Number of wood density measurements per pixel per
year, colored by latitude.

Fig. S4 Pairwise Pearson correlations for all candidate climate
predictors in the specific leaf area model.

Fig. S5 Pairwise Pearson correlations for all candidate climate
predictors in the leaf nitrogen content model.

Fig. S6 Pairwise Pearson correlations for all candidate climate
predictors in the wood density model.

Fig. S7 Bayesian information criteria values across integration
times for specific leaf area models with different numbers of pre-
dictors.

Fig. S8 Bayesian information criteria values across integration
times for leaf nitrogen content models with different numbers of
predictors.

Fig. S9 Bayesian information criteria values across integration
times for wood density models with different numbers of
predictors.

Fig. S10 Average shifts in climate between 1- and 30-yr integra-
tion times within 10-degree latitude bands.

Fig. S11 Shifts in climate between 1- and 30-yr integration
times, partitioned by trait.

Fig. S12 Skill across integration times for specific leaf area, leaf
nitrogen content, and wood density when only including publi-
cations/sub-datasets that measured more than one trait.

Fig. S13 Observations vs predictions made using each trait’s
optimal climate integration time.
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when soil factors are included in the regression models.
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