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Abstract

Short-period super-Earths and mini-Neptunes encircle more than ~50% of Sun-like stars and are relatively
amenable to direct observational characterization. Despite this, environments in which these planets accrete are
difficult to probe directly. Nevertheless, pairs of planets that are close to orbital resonances provide a unique
window into the inner regions of protoplanetary disks, as they preserve the conditions of their formation, as well as
the early evolution of their orbital architectures. In this work, we present a novel approach toward quantifying
transit timing variations within multiplanetary systems and examine the near-resonant dynamics of over 100 planet
pairs detected by Kepler. Using an integrable model for first-order resonances, we find a clear transition from
libration to circulation of the resonant angle at a period ratio of ~0.6% wide of exact resonance. The orbital
properties of these systems indicate that they systematically lie far away from the resonant forced equilibrium.
Cumulatively, our modeling indicates that while orbital architectures shaped by strong disk damping or tidal
dissipation are inconsistent with observations, a scenario where stochastic stirring by turbulent eddies augments the
dissipative effects of protoplanetary disks reproduces several features of the data.

Unified Astronomy Thesaurus concepts: Orbital resonances (1181); Transit timing variation method (1710);
Exoplanet dynamics (490); Exoplanet formation (492)
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1. Introduction

The architectures of multiplanet systems hold crucial clues to
their formation and evolution. Conditions of the protoplanetary
disk leave deep imprints on individual and statistical properties
of these planets and systems (Lee & Peale 2002; Adams et al.
2008; Lee et al. 2013; Millholland 2019). Although the process
of planet formation itself remains difficult to observe directly,
the galactic planetary census is now broad enough to employ as
a population-level testing ground for models of planetary
formation (Mordasini et al. 2015).

One distinct feature is mean motion resonances: although
most exoplanets are not near resonance, the small fraction that
are resonant imply that dissipative processes play an important
role in at least those systems (Batygin 2015). This small degree
of certainty in their formation makes it possible to build more
robust models incorporating other physical processes. Notably,
numerous physical effects have been invoked to explain the
unexpected phenomenon in which adjacent exoplanets tend to
lie slightly wide of, rather than exactly on, mean motion
resonances (Delisle et al. 2012; Fabrycky et al. 2014; Terquem
& Papaloizou 2019; Choksi & Chiang 2020).

From a distinct point of view, near-resonant planets offer a
unique opportunity to measure planetary masses and orbital
elements normally invisible to transiting exoplanet surveys.
When the ratio of orbital periods of adjacent planets is close to
a ratio of small integers, planet—planet interactions are coherent
and become amplified. The slight changes to the Keplerian orbits
manifest as deviations from exact periodicity in the arrival of
transits (Agol et al. 2005). Inverting the transit timing variation
(TTV) signal to produce mass and orbital constraints is nontrivial
and subject to several degeneracies (Lithwick et al. 2012;
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Hadden & Lithwick 2016). Nevertheless, TTVs have routinely
provided useful constraints on the masses and orbits of small
planets not amenable to radial-velocity observations (Hadden &
Lithwick 2014; Agol et al. 2021).

Together, the special properties of near-resonant systems
offer a unique opportunity to take precise measurements and
use those constraints to reliably study their origin. Recently,
studies of a small subset of resonant giant planets have
produced possible histories of migration and constraints on the
behavior of the inner disk (Hadden & Payne 2020; Nesvorny
et al. 2022). By extending this type of analysis to small planets
and a much larger sample, we can test whether a given physical
process acting in the late stage of planet formation could
conceivably reproduce the current sample.

In Section 2, we review the basics of first-order mean motion
resonance from a Hamiltonian perspective. In Section 3, we
summarize the key properties of TTVs and then analyze the
resonant structure of the Kepler TTV sample. Section 4 tests four
general models of the formation of near-resonant systems against
our new constraints. We identify possible biases and possible
future work in Section 5, and summarize our results in Section 6.

2. Mean Motion Resonance

We begin with a brief overview of the Hamiltonian
formulation of a first-order mean motion resonance. To first
order in planet masses and eccentricities, the Hamiltonian for a
pair of planets near a k:k — 1 resonance is

_ GMymy GMymy  Grumy
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where m, a, e, A\, and w are the planet mass, semimajor axis,
eccentricity, mean longitude, and longitude of pericenter,
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respectively (Batygin 2015). Additionally, G is the gravitational
constant, M, is the mass of the central star, and f and g are
order-unity constants that depend on the resonant index (see,
e.g., Deck et al. 2013). The two angles that appear as
arguments of the cosines are referred to as “resonant angles,”
and we will refer to them as ¢, and ¢,, respectively. After a
series of rescalings and canonical transformations that identify
three conserved quantities, Equation (1) can be reduced to an
integrable Hamiltonian with just one degree of freedom:

H =306+ DT — B — 2428 cos(¥)). )

Here, 1) is the coordinate and ¥ is its conjugate momentum.
Specifically,

Y=kl — (k- DA — @, 3)

where % is a generalized longitude of pericenter, most easily
expressed using complex eccentricities (Hadden 2019):°

& = Arg(fee’™ + ge,e'™). 4)

We will refer to ¢ as the “mixed resonant angle.” Finally, ¢ is a
dimensionless constant that determines the topology of the
Hamiltonian. Its form as derived in Batygin (2015) is unwieldy
but can be simplified dramatically in the compact orbits
approximation, i.e., k~k — 1, a;/a, — 1, —f~ g ~ 0.8k (Deck
& Batygin 2015). In that case, ¢ takes the form

2/3
5%_14_1(02_%) _ 15kMy (3)
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where
02 = el 4 ef — 2eje;cos(wwy — @) (6)

is a generalized eccentricity and A is the normalized distance to
exact resonance defined in terms of the inner and outer periods
P, and P, (e.g., Lithwick et al. 2012):

A= Pk—-1_ 1. 7
Pk
Additionally, in this approximation the action takes the form
2/3
L] L (8)
2 4(1’}’!1 + mz)
and the generalized longitude of pericenter is
W =~ Arg(ee’™ — e,e™?). )

We will use the unapproximated forms of § and < unless
indicated otherwise.

The Hamiltonian of Equation (2) has one, two, or three
equilibria, depending on ¢. In all cases, there is a stable
equilibrium point at i) =; this is the sole equilibrium for
6 < 0. At 6=0 another equilibrium appears, and for 6 >0 it
splits into a stable and unstable equilibrium, both of which have
1 = 0. The dynamical regime of the system can be categorized
according to these fixed points. One regime is “libration,” in
which ) oscillates around O or 7 in a bounded interval smaller
than [0, 27]. Inversely, “circulation” indicates that ) eventually
takes on every value from [0, 27]. Libration and circulation of a

3 . . . e| sin ¢ + gey sin ¢
One can also write this equation as tanv) = w (Laune et al.
2022) fey cos @1 + gep cos o
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resonant angle are sometimes taken to be equivalent to being
“in resonance” and ‘“nonresonant,” respectively. However,
resonance is in fact only formally defined when the
Hamiltonian has a separatrix that divides resonant and
nonresonant trajectories, which only occurs when ¢>0
(Henrard & Lemaitre 1983; Delisle et al. 2012). Correspond-
ingly, true resonant dynamics only occur for libration of 1
around 7 when 6 > 0.

3. Transit Timing
3.1. Overview of Transit Timing Variations

TTVs have proven to be an especially powerful tool in
investigating the dynamics of near-resonant planetary systems.
TTVs have been widely used to characterize planetary systems
beyond what is obtainable from strictly periodic transits alone
and sample posterior distributions of planet masses, eccentri-
cities, and other orbital elements (see Agol et al. 2021 and
references therein). In principle, one could use these samples to
compute the posterior distributions of the resonant angles in the
Hamiltonian of Equation (1) for each system. In practice,
however, the distributions of ¢; and ¢, are typically very broad
and uninformative.

The reason for this limitation is that there are fundamental
degeneracies in inverting TTV data. For example, the
approximate first-harmonic TTV amplitude derived by Hadden
& Lithwick (2016) for the inner planet in a near-resonant pair is

stp o 20 by 12 (10)
2nMy| Al A
where
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is a combined complex eccentricity relevant to the dynamics.”*
Higher-order TTV signals still depend on planet eccentricities
only through the combination Z rather than the individual
planet eccentricities (Hadden & Lithwick 2016).% As a result,
while Z is often well constrained, w; and w, are rarely
independently measured and the libration or circulation
behavior of ¢; and ¢, cannot be determined (e.g., Petigura
et al. 2018, 2020). The analytical results of Hadden & Lithwick
(2016) only apply to near-resonant systems that are not actually
in resonance. Nevertheless, Nesvorny & Vokrouhlicky (2016)
find that TTVs for planets in resonance also depend only on Z.

However, a precise measurement of Z does allow for a direct
measurement of %, because, from Equation (4), &0 = Arg Z.
Thus, the dynamically relevant mixed resonant angle ) can be
calculated. Remarkably, while TTV data typically cannot
determine the full planetary orbits, they can constrain the
parameters of the mean motion resonance. The ability of TTV
data to precisely measure 1) has been used previously to study
the resonant behavior in a few systems (Hadden & Lithwick
2017; Petit et al. 2020). Here, we apply it on a population level
to study many near-resonant pairs in a uniform way.

Z

(1)

* Note that |Z| ~ 0/+/2 in the compact approximation.

5 The exception is the 2:1 resonance, where the second-harmonic TTV can
individually constrain eccentricities (Hadden & Lithwick 2016).
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Figure 1. Left: distance from exact resonance A vs. the osculating mixed resonant angle i for the 108 pairs of planets near first-order resonances characterized in
Hadden & Lithwick (2017) and Jontof-Hutter et al. (2021). Dots mark pairs outside of exact resonance (A > 0) and crosses mark pairs inside (A < 0). Error bars are
1o circular standard deviations. The resonant equilibrium at ¢ = 7 is shown with a horizontal dashed line. Right: cumulative distributions of 1) for the systems nearest
to resonance (|A| < 0.006, in maroon), and the more distant systems (|A| > 0.006, in yellow). In both cases, 100 CDFs are plotted by drawing from the posterior

distribution of ¢ for each planet pair.

3.2. Observed Transit Timing Variation Systems

Our sample is the near-resonant pairs of planets from Kepler
studied by Hadden & Lithwick (2017) and Jontof-Hutter et al.
(2021). Each work ran N-body models to fit transit times of
Kepler systems and derived the mass, orbital period, time of
midtransit, and eccentricity vector of each planet (orbits are
assumed to be planar). We use their Markov Chain Monte
Carlo posterior distributions of those parameters. If a planet
pair was fit by both works, we use the posteriors from Hadden
& Lithwick (2017). We remove planet pairs near second-order
resonance (which have a different Hamiltonian) and pairs with
|A| > 0.1, leaving 105 unique planet pairs in the joint sample.
Of these, 40 are near the 2:1 resonance, 37 are near the 3:2
resonance, and the rest are near higher-index first-order
resonances. We use the default set of mass/eccentricity priors
from Hadden & Lithwick (2017) for the following analysis, but
checked that the results are the same for their alternative “high-
mass” priors.

For each of these planet pairs, we compute the osculating
value of v from the posterior distributions using Equations (3)
and (4). The results are shown in Figure 1, where 1 has been
plotted against |A|. Uncertainties on ) are computed using a
circular standard deviation and are an average of ~3 times
smaller than the uncertainties on ¢, and ¢,. Figure 1 clearly
shows two regimes: for |A| <0.006, ¢ is clustered around 7;
for |A| > 0.006, v is uniformly distributed on [0, 27].°

To confirm that these are indeed distinct distributions and
not the result of a small sample size or measurement
uncertainty, we randomly drew one value of 1 from the
posterior of each planet pair to construct two empirical
cumulative distribution functions (CDFs) for pairs with
|A] <0.006 and |A]>0.006. We then used the two-sample
Kuiper test implemented by the astropy package to compute
a false alarm probability (FAP) that these two samples were
drawn from the same distribution. Repeating this process
10,000 times, we found that the median FAP was 0.0063. The
right panel of Figure 1 is a representation of 100 of these
empirical CDFs in each range of A. Although the CDFs of the
planet pairs with |A|>0.006 seem to follow a uniform

S The code for these and all following calculations is available at https://

github.com/goldbergmax /resonant-capture-simulation.

distribution, the pairs nearest to resonance show a clear kink in
the distribution near 7.

We noted in Section 2 that resonant trajectories are only
formally defined if a separatrix exists, equivalent to § > 0. Is
this the case for the systems in Figure 1? In the compact limit
(see Section 2) and assuming the system is at the stable
equilibrium, the condition for the existence of a separatrix is

2/3
A< Agit ~ 34 mtm JAvE (12)
2\15 M,

As a typical near-resonant Kepler system, we will assume
myx=my~10 Mg, M, ~ M., and k~ 3. For this “fiducial”
system, Equation (12) gives A~ 0.001. This boundary is
narrower than the break seen in Figure 1, and indicates that the
vast majority of our sample cannot strictly be resonant,
regardless of ¢/ (Delisle et al. 2012). Interestingly, clustering
persists beyond A, up to ~0.006, suggesting that libration
exists in some formally nonresonant systems.

The resonant dynamics also induce a forced eccentricity on
the pair of planets (Lithwick et al. 2012). That is, the stable
equilibrium of the Hamiltonian of Equation (2) implies a
nonzero value of o for A >0. By solving the equilibrium
equation for the Hamiltonian in the compact limit, one obtains

4 m + my
Oq= ———.
5A My

A similar expression can be derived for the 2:1 resonance, and
in that case the forced eccentricity is a factor of ~2 smaller than
Equation (13) (Lithwick et al. 2012).

Figure 2 shows the observed |Z| for the TTV sample
compared to the forced eccentricity |Ze| & 0oq/~/2. Some
eccentricities are not robustly measured and the positive-
definite nature of | Z] can introduce a bias. Following Hadden &
Lithwick (2017), if the projection of the measured Z onto the
median of its distribution is consistent with O at the 1o level
(true for about 25% of systems), we report only upper limits on
| Z]. The observed eccentricities exceed the equilibrium-forced
value in most cases, often by an order of magnitude, except
when |A|<0.006. In the context of the Hamiltonian of
Equation (2), a free eccentricity exceeding the forced
eccentricity implies that the (W, 1)) phase space trajectory

13)
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Figure 2. The norm of the generalized eccentricity Z as a function of distance
from resonance A for the TTV systems. As in Figure 1, circles and crosses
mark pairs outside and inside of the resonance, respectively. For well-measured
eccentricities, error bars are 1o uncertainties, otherwise 2¢ upper limits are
plotted. The dashed and dashed—dotted lines are the equilibrium-forced
eccentricities in the compact limit and for the 2:1 resonance, respectively
(Equation (13)).

circumnavigates the origin and hence v is in circulation.
Random draws of 1 from a circulating population will be
distributed almost uniformly. Thus, the distribution of ¢ in
Figure 1 is consistent with the observed | Z|.

3.3. Aside: Pitfalls of Determining Libration with Standard
Resonant Angles

While we have demonstrated that the mixed resonant angle 1
is a valuable tool for studying near-resonant systems, it is worth
emphasizing that considering only ¢, and ¢, as derived from
TTV data can be deeply misleading. As an example, consider a
coplanar pair of 10 My, planets around a solar-mass star with
initial conditions Py =2 days, P, =3 days, A\; = X, =0, and
complex eccentricities e; =0.02-¢, e,=0.02-¢'". By
numerically integrating this system with rebound, we find
that the 3:2 resonant angles ¢, ¢,, ¥ all librate with small
amplitudes and the transit times vary by ~30 minutes over the
resonant libration cycle (left column of Figure 3).

Now suppose we construct a similar system (represented by
primed coordinates) where we translate the complex eccentri-
cities by some complex number £ so that e'; = ¢ + ¢ and
ey =e — (f/g)&. All other orbital elements are left
untouched. The Hamiltonian of Equation (2) is invariant under
such a transformation because W and ¢ depend on the
eccentricities only through a linear combination in which &
cancels. Likewise, | Z| remains unchanged. The right panel of
Figure 3 shows the evolution of the transformed system, where
we have arbitrarily chosen £=0.1-¢'™2. As expected, v’
librates and the TTV signal is nearly identical. However, ¢| and
¢4 are now in circulation, so an analysis which only computed
these angles would classify this system as “nonresonant.” In
general, TTV fits cannot distinguish between these two
configurations (Leleu et al. 2021) and therefore they frequently
recover both librating and circulating solutions to the same
data, even if 1) librates across nearly all of the allowed entire
parameter space (Dai et al. 2023).

For completeness, we note that there are some ways to
distinguish between the systems in the left and right columns of
Figure 3. Higher-order resonant terms and secular evolution
depend on different combinations of the eccentricities, so
higher-precision or longer-baseline TTV measurements can
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Figure 3. An example of the impact of two eccentricity configurations (left and
right columns) on TTVs and inferred resonant angles. In the top row, the black
and red lines are the standard resonant angles ¢ and ¢, respectively, while the
dashed blue line is the mixed angle v. The bottom row shows the observed
minus calculated transit times for the inner and outer planets in black and red.
Without additional information, TTV fits cannot distinguish between the two
cases and often recover solutions where ¢, and ¢, circulate even if the system
is resonant.

break the degeneracy. The most eccentric solutions can also be
eliminated via dynamical stability tests. Finally, transit
durations can directly measure esinw for well-understood
systems (Van Eylen & Albrecht 2015). Photodynamical
analyses that incorporate all of these strategies can provide
excellent constraints on resonant behavior, for example in K2-
19 (Petigura et al. 2020; Petit et al. 2020). The problem can
also be avoided altogether in systems of three or more planets
by considering zeroth-order Laplace angles that depend only
weakly on eccentricity (Siegel & Fabrycky 2021).

4. Migration History of Near-resonant Systems

Early on in the Kepler mission, an excess of planet pairs just
outside of first-order resonances was identified (Lissauer et al.
2011; Fabrycky et al. 2014). The effect is most striking near the
2:1 and 3:2 commensurabilities, where there is a distinct peak
at A~ 1% and a trough inside the exact resonance (L. M.
Weiss et al. 2023, in preparation). There is considerable
literature on this topic, and explanations of this unexpected
feature have broadly fallen into two categories.

The first idea argues that the departure from resonance
occurs during the migration phase within the gaseous disk. As a
pair of planets capture into resonance in the protoplanetary
nebula, the orbital periods reach an equilibrium value of A that
is set by the disk properties (Terquem & Papaloizou 2019).
Various disk models and parameterizations have been found to
match the distribution of period ratios wide of resonance
(Choksi & Chiang 2020).

The second idea argues alternatively that the distancing from
resonance occurs after the disappearance of the protoplanetary
disk. Early theoretical studies noted that a near-resonant pair of
planets, under some form of energy dissipation that conserves
angular momentum, will “repel,” and the orbital period ratio
will increase (Lithwick & Wu 2012; Batygin & Morbidelli
2013; Pichierri et al. 2019). Thus, an initial population near
exact resonance that is subjected to energy dissipation (e.g.,
eccentricity damping) will naturally form the trough and peak
inside and outside the resonance, respectively. Several sources



THE ASTROPHYSICAL JOURNAL, 948:12 (9pp), 2023 May 1

Table 1
An Overview of Our Population-synthesis Models and the Parameters that
Control Their Evolution

Parameter
Model Controlling Parameter Range
Laminar disk Damping ratio K = 7,/7, [10%, 10°]
Turbulent disk Stochastic force strength [1077, 1077
Tidal damping Cumulative e damping timescales (107", 107
Planetesimal Planetesimal disk mass M, [107% 10 M,
damping

of dissipation have been suggested, including tides due to
orbital eccentricity (Delisle & Laskar 2014), tides due to
planetary obliquity (Millholland & Laughlin 2019), and
damping from leftover planetesimals, which can also drive
divergent migration (Chatterjee & Ford 2015).

We argue here that many of these models cannot explain the
results of Section 3. The fundamental issue is that they invoke
strong energy dissipation to grow A, a process that will
invariably cause the systems to settle into their equilibrium
with small free eccentricity and librating 1. That configuration
is robustly ruled out by our analysis of the TTV sample in
Figures 1 and 2. To demonstrate this, we built four simplified
population-synthesis models based on published hypotheses for
the Kepler near-resonant systems, summarized in Table 1. Of
them, stochastic forces present during disk migration best
replicate the trends observed in Section 3.

4.1. Laminar Disk Migration

Several authors (e.g., Choksi & Chiang 2020; Charalambous
et al. 2022) have invoked disk migration and capture into
resonance as the dominant physical processes that produce the
near-resonant pairs. Typically, each planet is assigned a
semimajor axis and eccentricity damping timescale,
Tai = a;/a; and T,; = e;/é;, respectively. In the case of
convergent migration with eccentricity damping (i.e., 7.; <0
and 7,1 > T7,5), at equilibrium the planets are wide of the

resonance by
Agg =~ 1.1 mtmy () Tael , (14)
M* Te

where T;}el = 7';11 — T;lz (Terquem & Papaloizou 2019). We

have also made use of the compact orbits approximation (see
Section 2) and assumed 7, =T, = Te5.

Equation (14) presents an immediate challenge. For our
fiducial system and a distance of A =0.01, the ratio of
timescales must be 7,/7,~ 10°. However, standard disk
models predict K = 7,/7, ~ (h/r) > ~ 100-400, where h/r is
the disk aspect ratio (Papaloizou & Larwood 2000). Various
suggestions have been made that K could be higher, including
flared disks (Ramos et al. 2017), torque-free inner disk edges
(Xiang-Gruess & Papaloizou 2015), and alternative planet—disk
interaction prescriptions (Charalambous et al. 2022). Some
authors have also explicitly incorporated self-consistent disk
models and torque calculations, with similar results to
increasing K (Migaszewski 2015; Cui et al. 2021).

However, higher values of K are only more efficient at
damping eccentricity and finding the equilibrium. To test this,
we simulated resonant capture for our fiducial system
numerically. For this and all following integrations we used
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Figure 4. The results of the laminar disk population synthesis. The top panel
shows |A| vs. 1, equivalent to Figure 1. The bottom panel shows |A| vs. | Z],
equivalent to Figure 2. Points are color-coded by the ratio of semimajor axis to
eccentricity damping timescales K. Contour lines and labels show the expected
amplitude of TTVs (Equation (10)).

the hybrid mercurius integrator implemented in the
rebound package and the reboundx extension for disk-
induced forces (Rein & Tamayo 2015; Rein et al. 2019;
Tamayo et al. 2020). We initialized the planets on circular
orbits at Ay = 0.05, and set 7, = —10> for both planets in
units of the inner orbital period. Only the outer planet was
made to migrate with 7, = K - 7,, where K was varied from 10?
to 10°. When the integration time reached approximately
74/ 10, the resonance was captured, and the disk was removed
adiabatically by increasing 7, and 7,. The results are shown in
Figure 4. Although the final pairs span a large range in A, the
mixed resonant angle librates with small amplitude and hence
clusters near ¢ =m. Similarly, the eccentricities follow the
forced eccentricity curve and depend directly on A. Neither
result is consistent with the TTV observations, which show a
distinct break at A = 0.006 and nonzero free eccentricities for
many systems.

4.2. Turbulent Disks

Real protoplanetary disks are expected to have turbulent
inner regions, where the magneto-rotational instability operates
(Nelson & Papaloizou 2004; Flock et al. 2017). The associated
density fluctuations lead to stochastic gravitational forcing on
the planet not captured by simple migration and eccentricity
damping timescales (Nelson & Papaloizou 2004). Stochastic
forcing has been invoked to explain the smooth period ratio
distribution (Rein 2012), large libration amplitudes of resonant
planets (Nesvorny et al. 2022), and escape from resonance
(Rein & Papaloizou 2009; Batygin & Adams 2017). Turbulent
fluctuations have also been shown to be consistent with planet
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Figure 5. The same as Figure 4, but for the turbulent disk model. The points
are color-coded by &, the ratio of stochastic force to stellar gravitational force.

population-synthesis models that include a phase of resonant
capture (Izidoro et al. 2017).

The strength of turbulent forces in real disks is highly
uncertain, so here we invoke a broad range of stochasticity. We
implement stochastic forces with the reboundx package, in
which the strength of the forces is parameterized by x, the ratio
of the stochastic force to the stellar gravitational force (Rein &
Choksi 2022). The forces themselves have an autocorrelation
time equal to the planet orbital period. We ran 100 simulations
of our fiducial system, with the same initial conditions as
Section 4.1 but setting K = 100 and adding stochastic forces to
both planets with a « that varied uniformly in log space from
1077 to 107>, Values of s can also be related to the
dimensionless disk viscosity « via diffusion coefficients
(Rein 2012; Batygin & Adams 2017). Assuming a local disk
surface density at 0.1 au of 17,000gcm > (Batygin &
Adams 2017), our range of s approximately corresponds to a
range in a of 107°-10"". After 10° orbits of the inner planet,
the disk forces were adiabatically removed and the system was
integrated for another 5 x 10> inner orbits.

The results, plotted in Figure 5, are distinctly different than
smooth disk migration (Figure 4) and qualitatively similar to
the observed distribution. The final distance from resonance A
is closely related to «. Planets that experienced a small amount
of turbulence remain in the resonance but have an excited
libration amplitude. Inversely, planets for which x> 107°
escape the resonance entirely, and by virtue of their
eccentricities being stochastically driven to =~0.03 have a
circulating resonant angle. We also ran another set of
simulations fixing K =300. The results were the same as
Figure 5, except that there were fewer systems with |A| < 10~
(as expected from Equation (14)). We experimented with
longer integrations and found that systems with the largest
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values of x typically escaped the 3:2 resonance and continued
to migrate convergently, capturing into more compact first-
order resonances. Because our model only considers proximity
to the 3:2 resonance, these planets reached A < —0.1 and thus
were not considered in the final analysis. However, the systems
that remained near the 3:2 resonance maintained the clustering
trend seen in Figure 5 even in integrations that were 3 times
longer.

Interestingly, this model of convergent migration with
stochastic forcing naturally produces a population of planets
with A ~0.01 without invoking very large K or strong tidal
dissipation. We note that the distribution of A in Figure 5 is
controlled by the distribution of x, which is log-uniform from
107 to 10> in our simulations. Hence, the observed peak near
A =~ 0.01 could be a consequence of a corresponding peak in
the distribution of x, and thus in «. Within the formally
resonant region, there appear to be too many systems with
small but negative A, although these could conceivably be
moved to positive A via a small degree of tidal damping
without disrupting the distribution of .

4.3. Tidal Damping

An alternative mechanism that has been invoked in the
literature to explain the deviation from resonance is a
dissipative force that acts after the protoplanetary disk is gone.
In contrast to the case of disk migration, there is no
equilibrium: as long as the force is present, the pair of planets
will continue to diverge from exact resonance (Lithwick &
Wu 2012). A natural source of dissipation is tides raised on the
planet by the star (Delisle & Laskar 2014). There are major
problems with this proposed solution, however, including
requiring anomalously small tidal quality factors (Lee et al.
2013), too high initial eccentricities (Silburt & Rein 2015), and
the lack of an expected signature of dependence on orbital
separation (Choksi & Chiang 2020). Tides strengthened by
planetary obliquity (Millholland & Laughlin 2019) may
alleviate these issues somewhat, but not fully.

Regardless of the exact mechanism, tidal damping away
from exact resonance involves considerable energy dissipation.
To test the effect of this, we ran 200 integrations with 10 M,
planets near the 3:2 resonance. The initial eccentricities were
0.01 and w was drawn randomly from a uniform distribution.
For each simulation, we set the eccentricity dissipation
timescale for each planet to {104, 10°, 10°, 107} inner orbital
periods and initial A uniformly from [—0.05, 0.05]. The
simulations were run for 10° inner orbital periods, so that some
systems experienced many damping timescales and others did
not finish a single one.

The results of these integrations are shown in Figure 6.
When tidal timescales are much longer than the integration
duration, A does not change much and < remains in
circulation. Inversely, when many tidal timescales elapse, the
region of very small |A| is cleared out and v settles at an
equilibrium value. Specifically, highly damped systems that
end with A <0 go to the ¢ =0 equilibrium while those that
end with A >0 go to the ) =7 equilibrium. Neither trend
agrees with the near-uniform distribution of v seen for the
|A] > 0.006 systems in Section 3.
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Figure 6. The same as Figure 4, but for the tidal damping model. Points are
color-coded by the timescale of eccentricity damping. In contrast to the other
three models, the initial value of A was drawn uniformly from [—0.05, 0.05].

4.4. Planetesimal Interactions

Other authors have suggested that a planetesimal disk, made
of material that did not coalesce into planets, is responsible for
damping and/or migration away from resonance (Chatterjee &
Ford 2015; Ghosh & Chatterjee 2023). To reproduce the
overpopulation of planet pairs wide of resonance, they place a
population of planetesimals in orbit around a resonant pair of
planets, and the resulting gravitational interactions increase A
with a dependence on the local mass of material in the
planetesimal disk. While the stochastic nature of planetesimal
interactions can increase the phase space area somewhat, the
broad effect is to act as an energy sink and damp the planet’s
eccentricity through dynamical friction.

To investigate this further, we ran a set of simulations that
included a planetesimal disk, similar to the setup of Chatterjee
& Ford (2015) and Ghosh & Chatterjee (2023). To initialize the
simulations, we applied gas-driven migration and eccentricity
damping timescales as in Section 4.1 with K=100 and
removed the gas disk adiabatically. Once the gas was
completely removed, we instantaneously added a planetesimal
disk of 1000 equal-mass particles with total mass M, We
varied M, across 100 simulations log-uniformly from 10~" to
10" M.,. The planetesimals were placed randomly at radii such
that their surface density scales as () o< r—2, the approximate
steady-state distribution for radially drifting dust (Youdin &
Chiang 2004; Armitage 2020). Following Ghosh & Chatterjee
(2023), we set the inner and outer edges of the disk to be the
1:3 and 3:1 resonances of the inner and outer planets,
respectively. The eccentricities and inclinations (in radians)
of the planetesimals were drawn uniformly from [0, 0.01] to
match the self-consistent simulations of Chatterjee & Ford
(2015). The remaining angular orbital elements were drawn
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Figure 7. Same as Figure 4, but for the planetesimal disk model. The points are
color-coded by My;q, the total mass of planetesimals.

uniformly from [0, 27]. These integrations were run for 2 X 10°
inner orbits. Planetesimals which passed within 1 R, of the
central star or 2 R, of either planet were merged with the
nearby body while conserving linear momentum.

The results of this final suite of simulations are shown in
Figure 7. Broadly, the systems remain near the resonant
equilibrium like in the laminar disk model, except for a large
increase in libration amplitude for A 2 0.05. Though qualita-
tively similar to the break at A = 0.006 in Figure 1, this break
is nearly an order of magnitude more distant from exact
resonance. Additionally, the final eccentricities are small and
depend strongly on A, a trend not seen in the data (Figure 2).
We note that Ghosh & Chatterjee (2023) highlight the
importance of a mixture model in which some systems begin
not in resonance; these systems only experience limited
eccentricity damping during the planetesimal migration phase
and retain circulating resonant angles. Nevertheless, the
dominant population within the peak around A ~0.01 will
be planet pairs that capture into resonance in the gas disk and
will be highly damped after planetesimal interactions.

The planetesimal damping model also presents problems
from the standpoint of model testing. While the planet
formation process is certainly not 100% efficient, the true
quantity and distribution of unaccreted material is complex,
highly uncertain, and dependent on dust and planet migration
as well as detailed disk structure (Hansen & Murray 2012;
Drazkowska et al. 2016; Raymond & Morbidelli 2022).
Furthermore, the model seems to require a degree of fine-
tuning: planets that begin migrating through a disk “run away”
as long as material is present (see Ormel et al. 2012). When
integrated long enough, many initial conditions bring planets to
A ~0.1 rather than the observed peak at A = 0.01-0.02
(Ghosh & Chatterjee 2023).
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5. Discussion
5.1. Dependence on Multiplicity and Resonant Index

Many of the near-resonant systems within the Kepler sample
are planet pairs, and, for simplicity, we have assumed in our
formation models that there are only two planets in the system
and that they begin near the 3:2 resonance. The canonical
transformation that replaces ¢, and ¢, with 1 in the first-order
resonant term is not strictly valid for three or more planets.
Additionally, the compact orbits approximation is acceptable
for k > 3 but breaks down for k = 2, approximately one-third of
our sample.

To evaluate the dependence of our observational results on
transit multiplicity, we split the sample into two subsamples of
systems: one where only two transiting planets were detected,
and one where more than two were seen. Both subsamples
show the libration-circulation break seen at |A|=a0.006.
However, there is a noticeable dearth of two-planet systems
very close to commensurability. The eight systems with
smallest |A| have three or more transiting planets, despite
two-planet systems making up 41 of the 105 planet pairs. For
resonant index, we performed a similar exercise by splitting the
sample into two subsamples with k=2 and k > 3. Of the 22
systems with |A| < 0.006, only two are associated with the 2:1
resonance, despite that resonance accounting for 40 of the 105
planet pairs. A possible explanation for these trends is that low
disk turbulence, relative to the migration rate, skips capture into
the 2:1 resonance and delivers systems deep (i.e., small |A|)
into higher-index resonances. On the other hand, high
turbulence may disrupt the most compact systems, leaving
only circulating systems near the 2:1 resonance. We encourage
more work on this topic.

5.2. Limitations of Our Work

Our analysis does not take into account the effects of
sampling bias. Importantly, Hadden & Lithwick (2017) and
Jontof-Hutter et al. (2021) do not model systems with weak or
undetectable TTVs. This choice preferentially discards lower-
mass planets, pairs more distant from resonance, and pairs with
small free eccentricity (Hadden & Lithwick 2016). Our results
should be robust to the first two effects because we do not
directly model the distributions of planetary masses or A. The
final effect suggests that some nearly circular systems might be
missing from Figure 2 at higher A. However, Equation (10)
indicates that the dependence on eccentricity is only important
for|Z| 2 |A|. Thus, highly damped systems at A ~ 0.01 would
be observable if they existed, but they are not seen in Figure 2.

An additional sytematic bias in the models of Hadden &
Lithwick (2017) and Jontof-Hutter et al. (2021) is that they
only consider the TTV contributions from known, transiting
planets. Unseen planets may induce a TTV signal that is
interpreted as coming from one of the transiting planets,
biasing the measured ¢ and | Z|.

5.3. Eccentricity Excitation or Damping?

In general, it is not obvious what sets the eccentricities of
planets in multiplanet systems. Transit timing and transit
duration measurements have independently agreed that typical
eccentricities in multiplanet systems are small but nonzero
(Hadden & Lithwick 2017; Van Eylen et al. 2019). There is no
evidence of correlation between eccentricity and any system
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properties except multiplicity (Van Eylen et al. 2019; He et al.
2020). Eccentricities must be bounded below by self-excitation
(even for initially circular orbits) and above by orbit-crossing
and stability limits. Remarkably, the observed census of
planetary systems falls in between these two regimes: planets
are neither dynamically cold nor do they reside right at the
stability boundary (Yee et al. 2021). Therefore, planet
formation scenarios that rely on strong damping must
eventually include a source of eccentricity excitation; alter-
natively, scenarios that invoke dynamical sculpting as the
dominant process require damping. Ultimately, the full story of
planet formation must incorporate a competition between
mechanisms of eccentricity damping and excitation.

6. Conclusion

In this work, we have reanalyzed the near-resonant planetary
systems characterized with TTVs from Kepler. We show that
despite fundamental limitations in TTV interpretation, the
resonant behavior of these systems can be probed in detail.
Planet pairs very close to exact resonance (|A| < 0.006) have a
librating mixed resonant angle, but those in the peak ~1% wide
of resonance are predominantly circulating. This result is
difficult to reconcile with several hypotheses which argue that
dissipative processes place pairs of planets wide of resonance,
keeping them in a stable quasi-equilibrium state. Stochastic
forces during migration, meant to simulate density variations in
a turbulent gaseous disk, offer a promising explanation for the
qualitative features of the sample.

Future work should use a more thorough modeling effort that
considers a mixture of resonant and nonresonant systems.
Recent theories of planet formation have argued that near-
universal dynamical instabilities successfully reproduce the
observed mostly smooth period ratio distribution (Izidoro et al.
2017). In such a model, some planet pairs are “near-resonant”
only coincidentally (reaching that state after the dissipation of
the protoplanetary disk) and not as the consequence of resonant
capture or damping. The actual fraction of systems that never
experienced a post-gas instability in the overall sample is
unclear: Izidoro et al. (2021) suggest that no more than 5%
remain stable and resonant, but it remains to be seen whether
those results are consistent with the overabundance of three-
body libration seen in the Kepler sample (Goldberg &
Batygin 2021; Cerioni et al. 2022). While basic modeling of
the peaks in the period ratio distribution has had some success
(e.g., Choksi & Chiang 2020; Ghosh & Chatterjee 2023), the
results of this work illuminate a novel and stringent constraint
that must be accounted for in a complete model of planet
formation.

We are grateful to the anonymous referee for a thorough
reading and useful recommendations that substantially
improved this work. We thank Jon Zink and Juliette Becker
for insightful suggestions. While this work was in peer review,
we became aware that Choksi & Chiang (2022) also arrived at
some of the same results presented in this work simultaneously
and independently. K.B. is grateful to Caltech, the Caltech
Center for Comparative Planetary Evolution, the David and
Lucile Packard Foundation, and the Alfred P. Sloan Foundation
for their generous support.
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