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Abstract  19 
 20 
Two decades of widespread drought-induced forest mortality events on every forested continent 21 
have raised the specter of future unpredictable, rapid ecosystem changes in 21st century forests. 22 
Yet our ability to predict drought stress, much less drought-induced mortality across the 23 
landscape remains limited. This uncertainty stems at least in part from an incomplete 24 
understanding of within-species variation in hydraulic physiology, which reflects the interaction 25 
of genetic differentiation among populations (ecotypic variation) and phenotypic plasticity in 26 
response to growth environment. We examined among-population genetic differentiation in a 27 
number of morphological and hydraulic traits in California blue oak (Quercus douglasii) using a 28 
30 year old common garden. We then compared this genetic trait differentiation and trait-trait 29 
integration to wild phenotypes in the field from the original source populations. 30 
We found remarkably limited among-population genetic differentiation in all traits in the 31 
common garden, but considerable site-to-site variation in the field. However, it was difficult to 32 
explain trait variation in the field using site climate variables, suggesting that gridded climate 33 
data does not capture the drivers of plasticity in drought physiology in this species. Trait-trait 34 
relationships were also considerably stronger in the field than in the garden, particularly links 35 
between leaf morphology, leaf hydraulic efficiency and stem hydraulic efficiency. Indeed, while 36 
twelve of 45 potential trait-trait relationships showed significant wild phenotypic correlations, 37 
only four relationships showed both genetic and phenotypic correlations, and five relationships 38 
showed significantly different genetic and phenotypic correlations. Collectively, our results 39 
demonstrate limited ecotypic variation in drought-related physiology but considerable 40 
geographic variation in physiology and phenotypic integration in the wild, both driven largely by 41 
plasticity.  42 
 43 
 44 
 45 
 46 
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Introduction: 47 
In the 21st century, trees living in a hotter, more variable and often drier world will need 48 

to acclimate or adapt to avoid local extirpation, or shift their geographic ranges through multi-49 
generational migration. Recent drought- or heat-induced forest mortality events highlight the 50 
vulnerability of even highly drought-adapted forests to climate change (Allen et al. 2010; 51 
Brodribb et al. 2020; Hammond et al. 2022). Mass tree die-offs also illustrate the potential for 52 
extremely rapid ecosystem changes in a warming world, which have profound ecological 53 
consequences and impacts on human society (Anderegg et al. 2012). Unfortunately, despite 54 
multiple decades of concerted effort to understand the causes of drought-induced forest 55 
mortality, we still struggle to predict when and where trees will die off during drought (Trugman 56 
et al. 2021).  57 

Part of the large uncertainty about drought vulnerability is a poor understanding of 58 
physiological variation within species (Trugman et al. 2021). Within-species variation can be 59 
substantial (Martinez-Vilalta et al. 2009; Mclean et al. 2014; Anderegg et al. 2021), can decrease 60 
climate vulnerability in some populations (Laforest-Lapointe et al. 2014; Garcia-Forner et al. 61 
2016), and can differ between co-occurring species (Anderegg & HilleRisLambers 2016). 62 
Drought resistance is the complex result of numerous plant traits, all of which potentially vary 63 
across populations within a species. A key drought tolerance trait, namely xylem resistance to 64 
embolism, often shows limited among-population variation in conifers (Lamy et al. 2013) and 65 
angiosperms (Skelton et al. 2019). But morphological characteristics, for example high leaf mass 66 
per area (LMA) and high leaf dry matter content (LDMC) may indirectly allow plants to 67 
maintain function under increasingly negative water potentials during drought (Lamont et al. 68 
2002; Poorter et al. 2009; Bartlett et al. 2012). Meanwhile, shifting allocation to different tissues, 69 
for example decreasing leaf area to sapwood area ratio (AL:AS), and increasing tissue-specific 70 
hydraulic efficiency can help plants avoid drought stress by minimizing the water potential drop 71 
required to maintain transpirational flux (Gleason et al. 2013; Mencuccini et al. 2019). Across 72 
species, coordinated physiological strategies or trait syndromes lead to correlated variation 73 
across many of these traits (Reich et al. 2003; Chave et al. 2009; Mencuccini et al. 2015; 74 
Sanchez Martinez et al. 2020). However, within individual species, these broad evolutionary 75 
trait-trait correlations often break down (Anderegg et al. 2018; Messier et al. 2018; Rosas et al. 76 
2019). Consequently, both the total amount of within-species variation in drought resistance-77 
related traits and the key physiologic axes that drive spatial variation in drought resistance 78 
remain poorly understood. 79 

Possibly more important than the total amount of within-species variation are the drivers 80 
of this variation. Intraspecific variation can arise from two distinct processes with drastically 81 
different implications for near-term climate responses. First, spatio-temporal variation in 82 
environmental selection on heritable fitness-related phenotypes can lead to genetic differentiation 83 
among populations and local adaptation of functional traits (traits that mediate plant performance 84 
in a given environment) (Alberto et al. 2013). Substantial geographic variation in drought 85 
physiology due to local adaptation would imply that certain populations or genotypes (and not 86 
others) are drought resistant and that gene-flow (assisted or natural) is necessary for other 87 
populations to manifest improved drought resistance (Hoffmann et al. 2021). Local adaptation is 88 
widespread in plants, particularly species with large population sizes (Leimu & Fischer 2008; 89 
Savolainen et al. 2013). Indeed, provenance trials or common gardens (where multiple 90 
populations of a species are planted in a common environment) almost always detect genetic 91 
differentiation among populations in trees (Alberto et al. 2013; Ramírez-Valiente et al. 2022) 92 
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and landscape genetic/genomic approaches often reveal evidence for local adaptation 93 
(Savolainen et al. 2013; Capblancq et al. 2020; Gugger et al. 2021; Dauphin et al. 2022). 94 
However, ‘home site advantage’ (a hallmark of local adaptation) has proven rarer than expected  95 
(see meta-analyses Leimu & Fischer 2008; Oduor et al. 2016), though it is harder to test for, as it 96 
requires reciprocal transplant experiments and lifetime fitness estimates. 97 

Alternatively, adaptive trait plasticity, or the ability of each genotype to manifest a broad 98 
range of phenotypes depending on environmental cues, can generate geographic variation in 99 
water stress-related traits independent of genetic variation. If plasticity is not itself locally 100 
adapted (i.e., all populations or genotypes have the same amount of plasticity), all populations of 101 
a species could manifest drought resistant traits given the right environmental cues. As sessile 102 
organisms that experience a range of environments over their lifetime and even in different parts 103 
of the same organism (e.g., light availability in different parts of the canopy), plants show 104 
marked plasticity in many traits (Poorter et al. 2009; Palacio-López et al. 2015; Keenan & 105 
Niinemets 2016). Indeed, substantial plastic responses to drought and cold stress have been 106 
observed in multiple tree species (Gimeno et al. 2009; Gárate-Escamilla et al. 2019). However, 107 
the prevalence of active adaptive plasticity (as opposed to passive plasticity that results from 108 
reduced growth or other stresses under environmental limitation) remains the subject of long 109 
running debate (van Kleunen & Fischer 2005; Palacio-López et al. 2015). 110 

Blue oak (Quercus douglasii Hook & Arn) is a culturally and ecologically important tree 111 
species and the dominant species in many of the oak savannas in California, USA. Blue oak 112 
experienced substantial and spatially widespread mortality during a major drought from 2012-113 
2016, particularly in the southern portion of its geographic range (Brown et al. 2018; 114 
McLaughlin et al. 2020). This mortality highlights the potential vulnerability of blue oak in a 115 
changing climate, necessitating an improved understanding of blue oak drought tolerance in 116 
space and time to support proactive oak management. Blue oak grows across a wide latitude and 117 
huge range of water availability, and thus likely exhibits substantial within-species phenotypic 118 
variation. While blue oak exhibits minimal within-species variation in its xylem vulnerability to 119 
embolism (P50, or the water potential at which xylem suffers 50% embolism, a key drought 120 
tolerance metric, Skelton et al. 2019), drought avoidance traits such as hydraulic efficiency and 121 
allocation to transpiring leaf area as well as additional traits related to drought tolerance, such as 122 
leaf robustness (specific leaf area or SLA, leaf dry matter content or LDMC) are expected to 123 
vary considerably across blue oak populations. 124 

We quantified the extent and drivers of geographic variation in drought-related traits 125 
within mature blue oak trees. We asked 1) how much do drought-related traits vary across the 126 
landscape, 2) how is drought resistance coordinated across different traits and tissues, and 3) 127 
does spatial variation and trait coordination arise from local adaptation or plasticity? We sought 128 
to disentangle the relative roles of local adaptation versus plasticity by measuring drought-related 129 
traits in a common garden experiment compared to the traits of the source populations in the 130 
wild. In the garden, trait differences between populations are indicative of between-population 131 
genetic differentiation/local adaptation (assuming limited maternal effects).  Meanwhile, 132 
differences between the traits measured in the common garden and those measured in the wild 133 
source populations are due to plasticity.  134 
 135 
Methods: 136 
Blue oak (Quercus douglasii Hook & Arn.) is a deciduous species, which is endemic to 137 
California but widespread and abundant throughout the state in low elevation woodlands around 138 
the California Central Valley (Fig. S1). We measured morphological and hydraulic traits of 139 
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leaves and stems from seven populations of blue oak in the wild and in a ~30 year old, 140 
reproductively mature common garden. These populations were selected to span the geographic 141 
range and range of moisture availability of Q. douglasii (Fig. S1, Table S1), using only 142 
populations whose original acorn source (for the common garden) had been accurately relocated, 143 
and whose source populations were accessible based on current land tenure. Climate data for the 144 
source populations, both 1951-1980 climate normal and 2018 water year meteorology, were 145 
extracted from the California state-wide Basin Characterization Model (Flint et al. 2013).  146 
 147 
Common garden sampling 148 
To investigate the amount of among-population genetic trait differentiation, we sampled an 149 
existing provenance trial/common garden planted at the Hopland Research and Extension Center 150 
(CA, USA). This trial was planted in 1992 with acorns collected from 26 Q. douglasii 151 
populations across California and planted in a randomized block design (J. McBride, pers. 152 
comm.; see also McBride et al. 1997). We subsampled seven populations, capturing as much of 153 
Q. douglasii’s aridity range as possible. For each of the seven populations, we sampled five to 154 
six individuals for hydraulic traits, leaf traits and branch wood density. Between April and mid-155 
June of 2018, we collected >1 m long branches from the sunlit, south-facing portion of the 156 
canopy in the early morning (before 9am local time), relaxed the xylem by repeatedly recutting 157 
the stem underwater, and then placed the branches in large plastic bags for immediate transport 158 
back to the lab. One to two individuals from each of the seven sampled populations were 159 
collected from the garden at each sampling point (once or twice weekly) to control for temporal 160 
variation in hydraulic traits. Three small terminal twigs and subtending leaves were collected at 161 
the same time for the measurement of morphological traits. Tree diameter at 50cm and total tree 162 
height was also surveyed for every common garden tree in the winter of 2017 and used to 163 
calculate the total stem volume of the largest stem (assuming the stem was a cylinder) as a metric 164 
of total growth rate since planting. 165 
  166 
Wild population sampling 167 
We collected branches for trait measurement from six to eight mature trees from the acorn source 168 
populations used in the garden. Large branches (typically >1.5m long and >4cm basal diameter) 169 
from the south-facing canopy were collected in the same manner as in the common garden. Tree 170 
cores were also collected from the sampled trees for calculation of radial growth rates. 171 
 172 
Morphological Traits 173 
We selected three terminal branches from the south-facing sun-exposed canopy for 174 
morphological measurements (Table 1), cut at the prior year bud scar and including all current 175 
year stem and leaf tissue. Branches were rehydrated for >12 hrs using the ‘partial rehydration’ 176 
method (Pérez-Harguindeguy et al. 2013). We then measured specific leaf area (SLA, cm2 wet 177 
leaf area per g-1 leaf dry mass), leaf dry matter content (LDMC, g leaf dry mass per g-1 leaf wet 178 
mass), median leaf size (cm2 fresh leaf area), leaf dry mass to stem dry mass ratio (ML:MS), and 179 
leaf area to sapwood area ratio (AL:AS, cm2 leaf area per mm2 stem area underneath bark) on 180 
these current year terminal twigs using calipers, balances, and ImageJ image analysis software. 181 
We calculated mean leaf size as the average area per leaf for each terminal branch. We also 182 
measured wood density (WD, g dry mass per cm3 wet volume) on one to five branch disks 2-5cm 183 
in diameter cut from the basal end of branches collected for hydraulic sampling. Bark was 184 
removed from branch disks and wet volume was measured via water displacement on a balance. 185 
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For all analyses using individual or population average traits, we also included leaf and 186 
stem P50 values (the xylem tension causing 50% embolism) from Skelton et al. (2019), which 187 
were measured on branches collected at the same time and using the same methods as branches 188 
collected for hydraulic efficiency measurements reported here. However, P50 measurements had 189 
few or no replicates per individual and were thus not suitable for branch-level analyses. 190 
 191 
Hydraulic traits 192 
Due to extremely long vessel lengths in oaks (often >1 m in branches of Q. douglasii, based on 193 
pressurized branches recut at the basal end until air bubbles were seen at the distal end; RPS and 194 
LDLA pers obs), classic hydraulic methods using stem segments were impossible without 195 
considerable open vessel artifacts. Instead, we performed hydraulic measurements on terminal 196 
branches of 1-2 mm basal diameter using the vacuum chamber method (Kolb et al. 1996). We 197 
targeted current year growth when possible (similar to branch sampling for morphology), but 198 
included up to three years of growth when the current year was <2 cm long and stem diameter 199 
was not sufficiently large to fit in hydraulic tubing. For each terminal branch, all subtending 200 
leaves were cut under water at the petiole with a razor blade, and the entire stem was inserted 201 
into a vacuum chamber. Flow from a scale, through the branch and out the cut petioles was 202 
induced by subjecting the stem to a ~60 kPa vacuum. Nevertheless, any stem that was suspected 203 
of having an open vessel (i.e. any stem that had a high apparent conductance) was checked for 204 
open vessels by attaching to pressurized nitrogen for ~10 minutes and checking under water for 205 
air bubbles from the stem or petioles. The leaf area of all subtending leaves was measured via 206 
flatbed scanner and ImageJ (Schneider et al. 2012), basal stem diameter at 4 radii averaged, and 207 
the length of the stem and all branches measured with digital calipers. 208 
 Raw stem conductance was standardized two different ways. First, raw conductance was 209 
standardized per unit leaf area, here termed kstem, indicating leaf area-specific stem conductance 210 
(i.e. not standardized by path length, so including the effects of differential stem growth in long 211 
versus short stems, Table 1). Raw conductance was also divided by stem cross-sectional area and 212 
multiplied by total stem length (including length of branches if stem was branched) to produce 213 
sapwood area specific conductivity, or Ks.  214 
 Leaf hydraulic conductance was also measured on terminal branches (cut from the same 215 
>1 m long branch as stem conductance) using the ‘rehydration kinetics’ (RK) method (Brodribb 216 
& Holbrook 2003). Because leaves often had very small and irregular petioles, we measured 217 
multiple leaves attached to a terminal twig. Leaf conductance was an order of magnitude lower 218 
than stem conductance, meaning the effect of the stem in the conductance observed via the RK 219 
measurements was negligible. Total leaf area for each sample was calculated via flatbed scanner 220 
and ImageJ for each sample, and leaf-area specific leaf conductance, kleaf was calculated. Only 221 
measurements from leaves with an initial water potential < −0.2 MPa and > −2 MPa were 222 
analyzed to avoid large measurement errors in samples with small pressure gradients or potential 223 
embolism.  224 
 225 
Growth rate: 226 
We calculated growth rates for the common garden individuals based on a winter of 2017survey 227 
of tree diameter at 50 cm and stem height. We calculated total stem volume growth since 228 
planting, assuming the stem was a cylinder with the diameter of the basal diameter and a height 229 
of tree height, using only the largest stem of multi-stemmed individuals. Growth rates were 230 
calculated for the wild trees from tree cores, which were collected via increment borer at 1.3 m 231 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.20.553748doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.553748
http://creativecommons.org/licenses/by-nc/4.0/


height, mounted, sanded, and 5 years worth of rings identified using a dissecting microscope. 232 
The length of the 2013-2018 5-year growth period was measured via digital calipers and radial 233 
growth was converted to Basal Area Increment (BAI) based on tree DBH. Tree BAI is a function 234 
of tree size (Figure S2), so BAI was standardized for tree size by calculating the percent of size-235 
specific maximum Basal Area Increment (BAI) over the 2013-2018 period. Size-specific 236 
maximum BAI (the fastest rate a tree of a given DBH was observed to grow) was calculated for 237 
each tree’s DBH based on the 90th quantile regression of BAI versus tree DBH for all study trees 238 
(n=32) plus tree core data from 29 trees spanning five additional sites across California to 239 
expand the range of sampled tree sizes (total DBH range 7.8cm-104cm, Figure S2). The 240 
observed BAI was then divided by the maximum BAI for each tree to produce ‘% max BAI’. 241 
Tree cores were collected in Oct of 2018, but could not be collected from one site due to loss of 242 
site access (n=6 sites rather than 7). 243 
 244 
Variance decomposition analysis: 245 
We performed variances decompositions, separately in the garden and the wild, on all branch-246 
level trait measurements to quantify trait variation within canopy (among branches), among 247 
individuals within populations, and among populations. We fit linear mixed-effects models 248 
separately for the garden or the wild traits, with a fixed intercept term, a random intercept for 249 
population and a random intercept for individual nested within population. We employed the 250 
lmer() function from the lme4 (v 1.1-28) and lmerTest (v 3.1-3) packages. We then extracted the 251 
random effect variance parameters, and calculated the proportion of total trait variance that was 252 
attributed to among-population differences (population random effect), individual differences 253 
within populations (individual random effect) or variation within individual tree canopies 254 
(residual variance). We also calculated the coefficient of variation (CV = trait mean / trait 255 
standard deviation) for each trait in the garden and in the wild. Finally, to compare the total trait 256 
variation in the garden versus in the wild while accounting for unequal sample sizes, we 257 
bootstrapped variance estimates, randomly sampling with replacement each dataset 1000 times 258 
with sample number set to the minimum sample size of the two datasets (wild versus garden) for 259 
each trait. We then compared the median bootstrapped trait variance for the wild versus garden. 260 
  261 
Among-population trait differentiation and climatic variation 262 
We tested for significant among-population trait differences by averaging trait values per 263 
individual and then performing one-way ANOVAs separately in the garden and in the wild, and 264 
calculated the omega-squared (w2) as an estimate of the proportion of variance explained by 265 
among-population differences. Replicate was never a statistically significant factor in the garden, 266 
and was excluded from the final ANOVAs (fitted using the aov() function in the stats package, v 267 
4.1.2). We then used AICc (Akiake’s Information Criterion corrected for small sample sizes, 268 
AICc() function from the MuMIn package, v 1.43.17) to select the best single climatic predictors 269 
of among-population differences for each trait. First, we determined whether a random intercept 270 
for population was required to account for non-independence among individuals in a population 271 
by fitting an ‘over the top’ fixed effects structure (Zuur et al. 2009), including mean annual 272 
precipitation, mean annual potential evapotranspiration and mean minimum temperature) and 273 
using likelihood ratio test to determine whether the population random effect was needed (using 274 
the gls() and lme() functions from the nlme package, version 3.1-155). We then used AICc to 275 
select the best climate predictor for each trait using linear models (lm in the stats package) or 276 
linear mixed models with a population random intercept (lmer in the lme4 package) and assessed 277 
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significance of the best predictor using t-tests, using Satterthwaite's degrees of freedom from the 278 
lmerTest package (Kuznetsova et al. 2016). For the common garden, potential predictors 279 
included only 30 year climate normals of mean annual precipitation (PPT30yr), mean annual 280 
potential evapotranspiration (PET30ry), mean annual actual evapotranspiration (AET30yr), mean 281 
annual climatic water deficit (CWD30yr=PET30yr-AET30yr), and mean annual minimum 282 
temperature (Tmin30yr). For wild traits, we also included growth year (2017-2018) weather 283 
information as well: wet season (Nov-May) minimum temperature (Tmingy), maximum 284 
temperature (Tmaxgy), precipitation (PPTgy), potential evapotranspiration (PETgy), actual 285 
evapotranspiration (AETgy) and climatic water deficit (CWDgy), as well as the anomaly of the 286 
2018 water year from the site 30 year normal (PPTanom, PETanom, AETanom, CWDanom). We 287 
visually examined quantile-quantile plots and other patterns in the residuals to identify outliers 288 
and ensure model assumptions were met. 289 
 290 
Trait-trait coordination 291 
To examine the magnitude of phenotypic (genetic plus plastic variation in the wild) and genetic 292 
(variation in the garden) trait correlations, we calculated Pearson’s correlation coefficients for all 293 
pairs of individual-averaged traits in the wild and in the common garden. We visualized the 294 
correlation structure using the corrplot() function in the corrplot package (v 0.92). We then used 295 
a similar procedure to the bootstrapped variance comparisons to test for significant differences 296 
between genetic and phenotypic trait correlations, randomly sampling individuals with 297 
replacement from the entire wild and entire common garden datasets to produce two populations 298 
of equal size to the smallest of the garden or wild complete pairwise observations, resampling 299 
1000 times per trait combination. We then calculated the difference between the trait-trait 300 
correlations in each bootstrapped pair of garden and wild datasets and determined the two-tailed 301 
probability that the distribution of differences did not include 0 (e.g., alpha < 0.05 if either the 302 
2.5th percentile of differences was greater than zero or the 97.5th percentile of differences is less 303 
than zero, alpha < 0.1 if the 5th and 95th percentile range did not include zero, and alpha < 0.2 if 304 
the 10th to 90th percentile range did not include zero). 305 
 306 
All code and data for analyses and figure generation can be found at 307 
https://github.com/leanderegg/BlueOakGarden.git, and all data are also available on Dryad at 308 
[insert Dryad link upon acceptance]. 309 
 310 
 311 

Results 312 
Genetic variation among populations was low in all morphological, allocation and 313 

hydraulic traits in the common garden (Fig 1a). However, all traits except for stem sapwood 314 
area-specific hydraulic conductivity (Ks) and leaf and stem vulnerability to embolism (P50leaf, 315 
P50stem) showed substantial among-population variation in the wild. Among-population variation 316 
in the wild was consistently 25%-30% of total trait variation in most traits, with SLA and LDMC 317 
showing even larger among-population variation (46% and 40%, respectively, Fig 1b). 318 
Meanwhile, branch-to-branch variation within tree canopies consistently made up the majority of 319 
trait variation in the common garden, constituting >50% of total variation in all traits except WD 320 
(42% of total) and over 75% of total variation in kleaf, kstem, and Ks (Fig. 1a). In the wild, within-321 
tree variation was typically less than 50% of total variation, except in ML:MS and the three 322 
hydraulic traits (Fig 1b). 323 
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 324 
 325 
 326 

When traits were averaged to the individual, 40-60% of the total tree-to-tree variation in 327 
almost all traits was between populations in the wild (Fig 2a) and population differences were 328 
significant in 8 of 11 traits (all but Ks, P50leaf, and P50stem) plus growth (ANOVAs p <0.05, Table 329 
S2). Meanwhile, typically <30% of tree-to-tree variation was between populations in the garden, 330 
and population differences were only significant in 2 of 10 traits (SLA and leaf size) plus growth 331 
in the garden (Table S2). Leaf size was the one notable trait that showed significant and similar 332 
among-population differentiation in both the wild and garden.  333 
 334 

However, despite the consistent among-population variation in wild traits, climate 335 
predictors (historical climate normals, meteorology of the water year of sampling, or the 336 
sampling year anomaly from historical climate) very rarely explained differences among 337 
populations (Fig. 2b). Based on AICc of linear or linear mixed models (when there was support 338 
for a site random intercept, see Table S2), univariate climate predictors were only statistically 339 
significant for four wild traits (Fig 2b) with WD decreasing with AETanom, P50stem decreasing 340 
(growing more negative) with AET30yr, and ML:MS decreasing and kstem increasing with Tmingy 341 
(Figs S3,S4). (Fig 2b, Table S2). Meanwhile, in the garden three traits and growth were 342 
significantly associated with source population climate (Table S2). In the garden, increasing 343 
PPT30yr was significantly associated with decreasing wood density and increasing leaf size, while 344 
increasing PET30yr was significantly associated with increasing SLA and decreasing growth (Fig 345 
S3,S4).  346 

While the among-population variance in the garden was always a small fraction of the 347 
among-site variation in the wild, this did not generally result in decreased total trait variance the 348 
garden (Figure 3). Bootstrapped estimates of the variance in individual averaged traits (i.e., 349 
among individual variance) generally showed larger median variance estimates in wild traits than 350 
the common garden, but ratio of the garden variance to wild variance was only significantly less 351 
than one (alpha <0.05) for SLA, LDMC, and WD. Meanwhile, ML:MS and kleaf had similar 352 
variances in the wild and the garden despite significant among-population differentiation on the 353 
landscape and not in the garden, and AL:AS and kstem had only marginally higher wild variances. 354 
Ks, P50[stem] and P50[leaf] had similar variances in the wild compared to the garden and no 355 
significant among-population differentiation in either location (Table S2), while growth could 356 
not be compared because of differing metrics (% of max basal area increment vs 30 yr stem 357 
volume). Ultimately, population-average trait values were entirely uncorrelated in the garden and 358 
in the wild except for ML:MS (Figure S2), even for the traits with similar amounts of total 359 
variation in the two settings.  360 
 361 
 362 
Trait coordination 363 
 Trait-trait coordination was much stronger in the wild than in the common garden, 364 
suggesting phenotypic correlations are not generally driven by genetic correlations or constraints 365 
but rather by coordinated plasticity. Only six of 55 possible trait-trait correlations were 366 
significant in both the garden and the wild (Fig. 4), almost all of which are unsurprising (e.g., 367 
AL:AS ~ ML:MS, SLA ~ LDMC) or mathematically related (Ks ~ kstem or Ks~AL:AS because Ks 368 
was calculated as kstem * AL:AS * branch length). The main notable correlations consistent across 369 
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the garden and the wild trees were positive relationships between average leaf size and leaf vs 370 
stem allocation on both an area basis (AL:AS) and a mass basis (ML:MS). Moreover, average leaf 371 
size was much more strongly associated with variation in AL:AS than number of leaves per 372 
branch in both the garden and the wild (Fig. S3), suggesting that leaf expansion may be a key 373 
regulator of leaf-to-stem allocation.  374 
 375 
 376 
 377 
 378 
 379 

Beyond these correlations, only three additional trait correlations were significant in the 380 
garden, while 10 additional trait correlations were significant in the wild (Fig 4).  The change in 381 
trait-trait correlations from garden to wild was statistically significant (a <0.05) in four trait pairs 382 
and marginally significant (a <0.1) in two more pairs (based on 1000 bootstrapped correlation 383 
comparisons, Fig 5). The most striking change in trait coordination occurred amongst kleaf, kstem 384 
and AL:AS. Whereas there was only weak coordination between kstem, kleaf and AL:AS in the 385 
garden, there was a strong positive correlation between leaf area-specific branch and leaf 386 
conductance in the wild (significantly different in the wild vs garden, p <0.05, Fig 5) as well as 387 
strong negative relationships between both leaf and stem conductance and AL:AS. This plastic 388 
increase in hydraulic integration in wild trees appears to be driven by leaf size, which is strongly 389 
negatively correlated with kleaf and kstem in the wild (change in correlation is statistically 390 
significant for kstem). Across the landscape, trees with smaller leaves had lower AL:AS, but 391 
consequently greater kleaf and kstem.  392 
 393 
 394 
Trait-Growth relationships 395 
 In the garden, traits were generally not strongly predictive of population average growth 396 
(30 year height). Contrary to expectations, LDMC was positively and kstem negatively correlated 397 
with growth rates. Leaf size was the only trait correlated with growth in the expected direction, 398 
with populations with larger leaves having higher average growth rates (Fig. S4). In the wild, no 399 
traits were correlated with radial growth rates (calculated as the percent of maximum size-400 
specific Basal Area Increment), with the exception of Ks (Fig. S5), though growth was only 401 
measured in six of the seven populations due to lost access at one site after initial trait sampling. 402 
Ks was negatively correlated with growth, contrary to expectations. 403 
 404 
Discussion 405 
 We found very little among-population genetic differentiation but consistent among-406 
population variation across the landscape in morphological and hydraulic traits of a widespread 407 
oak species. This landscape-scale plasticity could not be easily explained using gridded climate 408 
or annual meteorological data, but drove trait-trait coordination – particularly of leaf and stem 409 
hydraulic traits – that was otherwise lacking in the common garden. 410 
 411 
Traits in the common garden: little local adaptation 412 
 In a relatively mesic common garden (978 mm of mean annual precipitation, greater than 413 
all but two of the sampled populations, Table S1), we found very little evidence for genetically 414 
based trait variation among populations. Populations showed significantly different growth rates 415 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.20.553748doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.553748
http://creativecommons.org/licenses/by-nc/4.0/


(height attained at 30 years) in the garden, but only SLA and leaf size showed significant among-416 
population variation (Figure 2). Among individual trees in the common garden, there was 417 
remarkably little trait coordination to suggest strong genetic correlations among traits, even 418 
though many of these traits are correlated across species (Mencuccini et al. 2019; Sanchez 419 
Martinez et al. 2020). Moreover, this lack of coordination was not necessarily an artifact of 420 
limited total trait variation in the common garden, as only three of 11 possible traits showed 421 
significantly smaller variance in the garden than in the wild (Fig. 3). Thus, the trait variation 422 
manifested in the garden was not merely the wild trait variance less among-site plasticity, and 423 
neither the lack of trait coordination (Fig 4) nor the lack of correlation between wild and garden 424 
trait values (Fig. S5) was likely driven by restricted garden trait variance. 425 

At the same time, the only traits that showed expected relationships with growth rates in 426 
the common garden were leaf to stem allocation traits (ML:MS and potentially AL:AS), with 427 
leafier populations showing faster growth, and leaf size, with larger leaved populations showing 428 
faster growth. We conclude that changes to allometry were the primary drivers of functional 429 
differences among populations in the common garden in line with classic predictions about the 430 
drivers of growth rate variation (Lambers & Poorter 1992), and that this variation in allocation 431 
was linked in part to genetically determined variation in leaf size (Fig. S3). Meanwhile, leaf dry 432 
matter content (LDMC) and leaf-specific stem conductance (ks) were significantly correlated 433 
with growth rates, but in a direction contrary to expectations. For LDMC, we interpret this as a 434 
consequence rather than a cause of growth rate variation (faster growing trees had accumulated 435 
more photosynthate in their leaves by the sampling period and thus had higher LDMC), and for 436 
ks, rather than high conductivity promoting growth (Hajek et al. 2014) slower growth in high ks 437 
populations appears to be a consequence of high hydraulic efficiency in the two most arid 438 
populations that grew slowly in the garden.  439 

 440 
Traits in the wild 441 
 In contrast to the common garden results, all traits except Ks and P50stem, leaf showed 442 
substantial among-population trait differentiation across Quercus douglasii’s geographic range. 443 
While all traits exhibited large branch-to-branch variation within a canopy (in both the garden 444 
and the wild), among-population trait differences were as large or larger than differences among 445 
trees in the wild (Fig 1b, 2a). Thus, it appears that spatial variation in drought-related physiology 446 
is substantial in blue oak, and is primarily driven by trait plasticity.  447 

Surprisingly, this site-to-site trait variability was not strongly related to available site 448 
climate data. Neither 30 year site climate normals nor meteorological data from the water year of 449 
sample collection, nor the climate anomaly of the sampled year compared to climate normals 450 
predicted among-site trait variation. For the four traits that were significantly predicted by site 451 
climate, winter minimum temperatures (Tmingy) was the best predictor for two traits (ML:MS and 452 
kstem) and a water balance metrics (some actual evapotranspiration metric, AETanom and AET30yr) 453 
was only a significant predictor for two traits (WD and kleaf, respectively). We hypothesize that 454 
this discrepancy is the result of Quercus douglasii’s deep rooting strategy, which combined with 455 
the substantial geologic and edaphic variation among the sampled sites to largely decouple the 456 
actual water availability (the ‘weather underground’, sensu (McLaughlin et al. 2020)) from 457 
above-ground climate. 458 
 Strikingly, the plasticity-driven trait variation across California resulted in strong trait-459 
trait coordination on the landscape, particularly among hydraulic efficiency and allocation traits. 460 
Leaf and branch morphology and P50 were largely uncoupled from other traits in both the wild 461 
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and the common garden (Fig 4). However, kleaf and kstem significantly changed their correlation 462 
strength from uncorrelated in the garden to positively correlated in the wild, and both traits 463 
showed a strong correlation with both leaf size and AL:AS in the wild. Collectively, this resulted 464 
in strong integration across a leaf and stem ‘hydraulic module’, wherein trees with small leaves 465 
had small AL:AS ratios and high leaf area-specific leaf and stem hydraulic conductance. We 466 
found no evidence for a tradeoff between safety and efficiency in either leaves or stems (Fig S6).  467 
 We also found very little evidence for trait-growth relationships in the wild, despite much 468 
larger among-population trait differentiation. The only significant relationship was a decrease in 469 
growth with increasing Ks, which may be consistent with increasing drought avoidance in the 470 
driest populations (Fig S5). This lack of wild trait-growth relationship is perhaps not surprising, 471 
given that both traits and environmental conditions and resources differ among populations, 472 
making it difficult to disentangle cause versus effect. 473 
 474 
Leaf area-driven hydraulic coordination 475 
 In theory, the coordination or integration of plant traits across tissues should optimize 476 
whole-plant function (Reich 2014). However, perhaps partly as a result of traits rarely being 477 
measured simultaneously for multiple tissues, this coordination is not universally observed 478 
among tissues (Vleminckx et al. 2021) or types of traits (Sanchez Martinez et al. 2020), and the 479 
actual mechanisms of this coordination (e.g., coordinated evolution, developmental constraints, 480 
etc.) remain elusive. The leaf and stem hydraulic integration that we found across wild 481 
populations suggests that, within individual species, plastically determined leaf size, presumably 482 
coordinated by leaf expansion, may be a key mechanism coordinating hydraulic efficiency across 483 
tissues.  484 
 We found little evidence for genetic correlations among hydraulic traits in a common 485 
environment (Fig 4a), suggesting that hydraulic variation within species was not due to genetic 486 
linkage or coordinated microevolution. However, strong hydraulic integration between the leaf 487 
area-specific hydraulic conductance of leaves and stems across wild populations indicates 488 
coordinated trait plasticity. This coordination seems to be mediated by allocation to leaf area 489 
(AL:AS), which was largely driven by the average size of leaves (rather than leaf number, Figure 490 
S3). Average leaf size had a larger coefficient of variation than stem diameter (0.41 versus 0.31, 491 
respectively), and had a stronger negative correlation with both kleaf (r = −0.43) and kstem (r= 492 
−0.54) than AL:AS itself did with either trait (r= −0.39 and r= −0.30 for kleaf and kstem 493 
respectively). Further supporting the importance of plasticity, average leaf size was uncorrelated 494 
with either kleaf or kstem in the garden, and the increase in the correlation from garden to wild was 495 
strong for both traits and statistically significant for kstem (p < 0.05). Meanwhile, the more 496 
commonly measured sapwood-specific branch conductivity (Ks), which is standardized for 497 
branch xylem conductive area and path length, was highly variable but not differentiated among 498 
populations (Fig 1) and unrelated to either leaf size or kleaf in the wild. This may partly be due to 499 
the difficulty of measuring path length for our Ks estimates, because in order to avoid open 500 
vessels in this long-vesseled oak species we had to measure the conductance of whole terminal 501 
branches cut at the petioles (rather than branch segments) and estimate the path length from the 502 
total branch length, even though leaf attachment to the branch occurred along much of its length. 503 
Thus, kstem (conductance of the whole branch per unit leaf area) was likely a more accurate 504 
measurement of hydraulic efficiency than Ks (conductivity per sapwood area for a 1cm stem 505 
length) in this study. 506 
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Ultimately, it appears that whole-branch conductance of terminal branches and leaf 507 
conductance were coordinated in the wild by plastic changes in leaf size, presumably regulated 508 
by environmental cues governing spring leaf expansion, rather than changes in the xylem 509 
efficiency itself. Ks, while highly variable, did not differ among populations either in the garden 510 
or the wild (Fig 1) and therefore could not drive this pattern. A developmentally fixed hydraulic 511 
architecture (in both leaves and stems) that then gets allocated to supply a variable amount of 512 
leaf area based on leaf expansion presents a parsimonious mechanism for regulating whole-tissue 513 
hydraulic resistance, as regulation of transpirational area may be much easier to regulate in 514 
response to environmental cues through turgor driven leaf expansion than anatomical changes to 515 
xylem efficiency. Moreover, the negative relationship between leaf size and kleaf/kstem 516 
documented here contrasts with the lack of relationship between kleaf and leaf size among species 517 
and suggests a developmental constraint rather than adaptive mechanism. 518 
 519 
Management implications 520 

Our results from mature trees would indicate that genetically informed management or 521 
restoration of blue oaks may not require strong consideration of the aridity of the source 522 
materials, as mature tree drought resilience appears to be determined by canalized thresholds of 523 
xylem vulnerability to drought (Skelton et al. 2019) and largely plastic adjustments to drought 524 
avoidance-related traits (e.g. kbranch and kleaf). While we could not predict trait variation across the 525 
landscape based on site climate (Fig 2b), the substantial among-population variation in leaf-to-526 
stem allocation and hydraulic efficiency are presumably adaptive and therefore constitute plastic 527 
adjustments to drought exposure by increasing plant hydraulic efficiency. This decreases the 528 
minimum leaf water potential required to attain a given rate of transpiration (Whitehead & Jarvis 529 
1981; Mencuccini et al. 2019; Trugman et al. 2019) and is quite consistent with within-species 530 
adjustments to promote drought avoidance in numerous other systems (Mencuccini & Grace 531 
1995; Martinez-Vilalta et al. 2009; Anderegg & HilleRisLambers 2016; Rosas et al. 2019; 532 
Anderegg et al. 2021).  533 

Our findings of limited local adaptation are also consistent with the relatively small 534 
amount of local adaptation found in blue oak growth rates (Fig 1) and phenology (Papper & 535 
Ackerly 2021), and the relatively high rates of gene flow in blue oak (Papper 2021). While other 536 
California oak species have been found to show strong genetic structure across their range (Sork 537 
et al. 2013; Gugger et al. 2021), evidence suggests that blue oak population differentiation across 538 
its broad geographic distribution is more limited. Given the strong potential for plastic 539 
adjustments to plant hydraulics documented here, this might suggest that most populations can 540 
(and may) manifest more drought avoidant phenotypes in a warmer and drier future climate, 541 
regardless of their climate history. 542 

Two important caveats to our finding of limited drought-related local adaptation are 1) 543 
that we only studied reproductively mature trees and 2) that we only studied traits in a relatively 544 
mesic garden. Local adaptation at the earliest life stages may be most relevant for restoration, 545 
and limited local adaptation in adult phenotypes does not guarantee limited local adaptation in 546 
juvenile phenotypes. Moreover, we were only able to perform trait measurements in a relatively 547 
wet common garden. If the expression of genetic differences depends on the environment – e.g., 548 
if there are strong GxE interactions for drought-related phenotypes – then our results could differ 549 
entirely in a drier common garden location. It remains possible that genotypes from drier 550 
populations have larger potential for plasticity (as documented in a Eucalyptus species, Mclean 551 
et al. 2014), which could imply that the same source populations planted in a dry location could 552 
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show substantial among-population variation due to the dry-adapted populations manifesting 553 
more plasticity than wet-adapted populations.  554 
 555 
 556 
Conclusion 557 
 In a study of range-wide trait variation in blue oak (Quercus douglasii), we found little 558 
evidence for local adaptation in any of numerous morphological or hydraulic traits but 559 
substantial realized trait variation across the landscape. Our results suggest that this landscape-560 
scale trait variation involved plastic trait adjustments, and that this plasticity drove among-tissue 561 
trait coordination. Thus, plastic adjustments, likely during the process of leaf development and 562 
expansion, drive the coordinated manifestation of drought avoidant phenotypes with high 563 
hydraulic efficiency in leaves and stems and increased carbon investment in stems relative to 564 
leaves. However, these phenotypes could not be predicted by site climate and were poorly linked 565 
to growth rates, indicating that our understanding of blue oak drought exposure and integrated 566 
performance remains limited. 567 
 568 
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Table 1: Trait definitions and abbreviations as employed by this study. 756 
Trait Definition 

SLA Specific leaf area (cm2 g-1) 

LDMC Leaf dry matter content (g dry mass per g fresh mass) 

WD Wood density  

ML:MS Terminal branch leaf dry mass to stem dry mass ratio 
(g/g) 

AL:AS Terminal branch leaf area to sapwood area ratio  (cm2 

mm-2) 
Leaf size Average area of a single leaf based on all leaves on a 

terminal branch (cm2) 
kleaf Leaf conductance per unit leaf area (mmol m-2 s-1 MPa-1) 

kstem Leaf area-specific stem conductance of full current year 
terminal branch (mmol cm-2 s-1 kPa-1) 

Ks Sapwood area-specific stem conductivity per branch 
length (k[stem] * Al:As * length, mmol cm s-1 kPa-1) 

P50leaf, stem Leaf and stem P50 measured with optical technique 
from Skelton et al. 2019 

Growth Garden: stem volume attained at 30 yrs, based on basal 
diameter and height of largest stem assuming cylindrical 
stem. 
Wild: percent of size-specific maximum basal area 
increment (based on rangewide 90th percentile BAI at a 
given DBH) 
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 757 
Figure 1: Variance decomposition of all branch-level measurements in the common garden (a) 758 
and wild source populations (b). Grey bars beside the colored bars show the magnitude of the 759 
trait coefficient of variation. P50stem, P50leaf and Growth do not have replicates within tree, so 760 
only contain between tree and between population variance components. 761 
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 763 
 764 
Figure 2: (a) % of the total tree-to-tree variation attributable to population in the garden versus 765 
attributable to sites in the wild. Traits with significant between-site variation (ANOVA p <0.05) 766 
in the wild are shown as filled points, while traits with significant between population variation 767 
in the garden are shown with crosses. (b) The among-population and among-site variation that 768 
could be explained with climate variables. Y-axis shows R2 of best climate predictor based on 769 
AICc, filled points indicate predictors that are statistically significant for wild traits, open points 770 
show traits with significant among-population differentiation but non-significant climate 771 
predictors, and crosses with bold text show garden traits with significant climate predictors 772 
(Table S2). Black line shows 1:1 relationship. 773 
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 779 
Figure 3: Ratio of trait variance in the common garden compared to the wild (values <1 780 
indicating more trait variance in the wild). Bars show the ratio of total trait variance (median of 781 
1000 bootstrapped variance estimates, lines show 5th – 95th percentile of ratio), gray bars 782 
indicate significantly lower variance in the garden. Points show the ratio of the between-783 
population variance component alone (Ks and P50leaf had 0 estimated between-population 784 
variance in the wild and thus no points). 785 

786 

S
LA

LD
M
C

W
D

M
l:M
s

A
l:A
s

Le
af

 s
iz

e

k[
le
af
]

k[
st
em
]

K
s

P
50
[s
te
m
]

P
50
[le
af
]

G
ar

de
n 

V
ar

 : 
W

ild
 V

ar

0.0

0.5

1.0

1.5
Total Var
btw Pop Var

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.20.553748doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.20.553748
http://creativecommons.org/licenses/by-nc/4.0/


 787 
Figure 4: Tree level trait-trait correlations in the garden (a) and in the wild (b). Ellipses and 788 
color show direction and strength of the correlation, points show statistically significant 789 
relationships, and grey boxes show relationships that are significant in both the garden and the 790 
wild. 791 
 792 

 793 
Figure 5: Multiple trait correlations were significantly different in the wild versus the garden 794 
(based on 1000 bootstrapped comparisons of correlations), particularly k[stem] and k[leaf] 795 
(significant correlation between leaf and stem hydraulic efficiency in whole terminal branch 796 
tissues in the field but not the garden) and in relationships relating to leaf size (again suggesting 797 
something interesting is going on with the drivers of plasticity in leaf expansion/development 798 
that leads to phenotypic integration in the wild). 799 
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