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Abstract Over recent decades, the southeastern United States (Southeast) has become increasingly well 

represented by the terrestrial climate proxy record. However, while the paleo proxy records capture the 

region's hydroclimatic history over the last several centuries, the understanding of near surface air 

temperature variability is confined to the comparatively shorter observational period (1895‐present). Here, 

we detail the application of blue intensity (BI) methods on a network of tree‐ring collections and examine 

their utility for producing robust paleotemperature estimates. Results indicate that maximum latewood BI 

(LWBI) chronologies exhibit positive and temporally stable correlations (r = 0.28–0.54, p < 0.01) with summer 

maximum temperatures. As such, we use a network of LWBI chronologies to reconstruct August‐September 

average maximum temperatures for the Southeast spanning the period 1760–2010 CE. Our work 

demonstrates the utility of applying novel dendrochronological techniques to improve the understanding of 

the multicentennial temperature history of the Southeast. 
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1. Introduction 

While anthropogenic climate change has global‐scale implications, an improved understanding of its 

regionalscale manifestations is extremely relevant for community planning and resource management. Despite 

20th century increases to the global‐scale anthropogenic warming signal, observed summer maximum 

temperatures across the southeastern United States (hereafter, Southeast) do not reflect steadily increasing 

positive trends over the last century (Eischeid et al., 2023). Colloquially termed the “warming hole,” this 

phenomenon has spurred major research efforts linking the lack of increased summer warming to short‐wave 

cloud forcing due to aerosols (Mascioli et al., 2017; Yu et al., 2014), trends in land cover change (e.g., 

reforestation; Barnes et al., 2024), and interactions between temperature and changing precipitation regimes 

(Eischeid et al., 2023). As evidence currently supports numerous explanations for the Southeast “warming hole,” 

contextualizing this phenomenon prior to the observational record using proxy data is critical for improving the 

understanding of its underlying mechanisms. Many regions of North America contain dense networks of paleo 

proxy data (e.g., Rouston et al., 2020; Guitermann et al., 2023), which can provide regional estimates of past 

climatic variability spanning 

https://doi.org/10.1029/2024GL109099
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https://doi.org/10.1029/2024GL109099
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 

KING ET AL. 2 of 13 

Geophysical Research Letters 10.1029/2024GL109099 

Plain Language 

Summary Tree‐ring data are 

important sources of 

paleoclimate information, 

which allow for the longer‐term 

evaluation of modern climate 

values and trends. Compared 

to much of North America, the 

Southeastern United States 

(Southeast) contains 

substantially fewer 

paleoclimate records from tree 

rings, and no estimates of past 

temperature variability which 

extend before the 

observational period. 

Employing a recently 

developed technique, which 

uses light reflectance 

properties of wood to obtain a 

representative metric of tree‐

ring density, we develop a 

network of temperature‐

sensitive tree‐ring records 

across the Southeast. These 

records enable us to 

reconstruct late summer 

maximum temperatures across 

the region spanning the period 

1760–2023 CE. As few ground‐

based, pre‐instrumental 

temperature records 

previously existed for this 

region, our reconstruction 

allows for an improved 

understanding of the region's 

multi‐centennial climatic 

history. 
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the last several centuries to millennia (e.g., Marlon et al., 2017), and more specifically, can highlight past climate 

analogs for comparison with modern conditions. For example, sediment core records from the southern 

Appalachian Mountains indicate that the Southeast warmed concurrently with much of North America during 

an analogously warm period during the mid‐Holocene, thereby suggesting that the 20th century “warming 

hole” is anomalous in time (Tanner et al., 2015). However, as very few high‐resolution paleotemperature 

records currently exist for the Southeast, continued efforts to derive pre‐observational temperature estimates 

from proxy data would be advantageous for further improving the understanding of the “warming hole” and 

regional system responses to climate change. 

Compared to other regions in North America, the relative paucity of temperature proxy records from tree rings 

in the Southeast is partially attributed to increasing difficulty locating trees growing in energy‐limited 

environments at lower latitudes. Moreover, with decreasing latitude, moisture sensitivity frequently dominates 

the climatic signal embedded in radial tree growth (Martin‐Benito & Pederson, 2015). In the closed‐canopy 

forests of the Southeast, ecological factors such as canopy dynamics, insect infestation, and anthropogenic 

logging practices can also heavily impact radial growth. However, in recent decades, methodological advances 

with densiometric growth parameters such as maximum ring density (MXD; Schweingruber et al., 1978) and 

blue intensity (BI; McCarroll et al., 2002) have substantially increased the number of temperature sensitive tree‐

ring records at increasingly lower latitudes in North America, where total‐ring width (TRW) historically has been 

less successful (Briffa et al., 1992, 1994; Heeter et al., 2020, 2021; King et al., 2024). Due to the relative 

affordability and accessibility of BI methods, they have been widely adopted by the global tree‐ring community 

in recent decades (Kaczka & Wilson, 2021). 

As the application of BI methods continues to expand, recent studies have explored the suitability of using BI 

parameters from Picea rubens Sarg. (red spruce) and Tsuga candensis (L.) Carrière (eastern hemlock) in the 

midlatitudes of the eastern US to develop temperature sensitive tree‐ring records (Harley et al., 2021; Heeter 

et al., 2019). Here, we expand upon the original tree‐ring network first described by Harley et al. (2021) by 

developing and evaluating the climate signal of 12 maximum latewood BI (LWBI) chronologies from the 

southern Appalachian Mountain region of the eastern US. Further, we use this network of chronologies to 

develop the first reported temperature reconstruction for the Southeast using tree‐ring data. 

2. Materials and Methods 

2.1. Developing a Network of LWBI Chronologies Across the Southeast 

The tree‐ring data in this study (Figure 1; Table S1 in Supporting Information S1) are derived from a combination 

of recently sampled sites and preexisting tree‐ring collections, which were reprocessed for BI methods. The 

treering data are comprised of two species: P. rubens and T. canadensis. Within the Southeast, the distribution 

of P. rubens is limited to high‐elevation (>1500 m) disjunct populations, with limited occurrences of isolated, 

lowland bog populations (Adams et al., 2012). As such, except for one location in the network (ACS site), all P. 

rubens samples were collected from high‐elevation locations at the southern range periphery (Little & Viereck, 

1971; Figure 1). In the southern Appalachian Mountains, small, isolated populations of T. canadensis are 

restricted to cool, moist slopes with north to east aspects and low to middle slope positions at the southern 

range periphery (Hart & Shankman, 2005). As hemlock wooly adelgid (Adelges tsugae Annand, HWA; McClure, 

1996; Vose et al., 2013) is one of the most pervasive threats to T. canadensis, we restricted sampling for new 

collections to stands with known HWA treatments. For each new collection, we sampled between 15 and 20 

trees, taking two cores per tree with handheld increment borers. New samples were mounted and dried for 24 

hr. Both new and existing collections were incrementally shaved using a core microtome to achieve a flat surface 

and a clear radial view of annual growth bands (Gärtner & Nievergelt, 2010). All samples were then scanned on 

an Epson 12000XL scanner at 3200 dpi resolution using the Silverfast AI Plus software, calibrated with IT8 

calibration. For each site collection, samples were first visually cross dated. We delineated annual ring 

boundaries and measured TRW using the software CooRecorder (Larsson, 2014), then statistically validated the 

visual cross dating of the TRW series using the program COFECHA (Holmes, 1983). After each sample was 

absolutely dated, we then collected LWBI in CooRecorder (Heeter et al., 2022). All site‐level LWBI chronologies 
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were detrended using a variety of 

frameworks and splines (Table S1 

in Supporting Information S1) in 

order to minimize non‐climatic trends in the data using both the dplR package (Bunn, 2008) and the RCSigFree 

program (Melvin & Briffa, 2008; https://www. ldeo.columbia.edu/tree‐ring‐laboratory/resources/software). 

 

Figure 1. Locations of the 12 site‐level LWBI chronologies examined for climate response (left panel). The network is 

comprised of two species, Picea rubens Sarg. and Tsuga canadensis (L.) Carriere situated near the southern range periphery 

of each species. Right‐side panels are original author illustrations. 

2.2. Evaluating Climate‐Growth Relationships Across the Tree‐Ring Network 

To examine the relationship between the site‐level LWBI chronologies and their local climate, we used a suite of 

monthly average climate variables from the 0.5° gridded CRU TS 4.07 land data set (Harris et al., 2020). For each 

site, we compiled monthly precipitation (Pcp), self‐calibrating Palmer's Drought Severity Index (scPDSI), and 

mean (Tmean) and maximum (Tmax) temperature data from the nearest 0.5° CRU grid cell. We assessed the 

strength of the relationship of each site‐level LWBI chronology and each local climate variable using a Pearson's 

correlation over the shared period by the instrumental and all tree‐ring data (1901–1980 CE). For the 

temperature variables, we examined the climate‐growth correlations over varying, multi‐month seasonal 

windows to determine the potential optimal season for reconstruction. To assess the temporal stability of the 

climate‐growth relationships, we applied dynamic regression modeling between the LWBI chronologies and the 

instrumental variables using a Kalman filter (Harvey, 1990). To determine if the dynamic regression model 

provided a better fit to the data compared to a constant‐coefficient model, we used the modified Akaike 

Information Criteria (AIC) (Hurvich & Tsai, 1989), where the AIC of the dynamic model (AICtd) must be smaller 

than the AIC value of the constant coefficient model (AICcm) by at least 2 (AICtd–AICcm < 2; Jones, 1985). We used 

these climate signal strength and stability screenings to identify candidate predictors from the site‐level LWBI 

chronologies for the reconstruction. 

https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software
https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software
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2.3. Reconstructing Past Temperature Variability With Tree‐Ring LWBI 

We used principal components analysis (PCA) to identify the dominant climatic signals embedded across the 

candidate tree‐ring predictors which passed initial climate signal screenings. To determine the spatial footprint 

of the instrumental reconstruction target, we ran a spatial Pearson's correlation between the leading principal 

component of the tree‐ring data (PC1) and the gridded seasonal target data. Based on these results, we then 

calculated a regional average instrumental target using CRU data from all grid points where r ≥ 0.6 (p < 0.01). 

Once the regional instrumental target was identified, we used a nested principal component regression 

approach (Cook et al., 1999) to reconstruct surface air temperatures. For the common period nest, we calibrated 

and validated the reconstruction over the period 1901–1980 CE and used a split calibration/verification 

approach, calibrating over the period 1941–1980 CE and verifying over the period 1901–1940 CE. We repeated 

the approach for the two forward nests, 1901–1998 CE and 1901–2010 CE, where the verification period 

remained constant, but the calibration period varied according to end year of each nest (e.g., 1941–2010 CE). 

We evaluated the reconstruction goodness‐of‐fit using two calibration statistics: the coefficient of determination 

(CRSQ or R2) and the cross‐validation leave‐one‐out reduction of error (CVRE) statistic. Reconstruction accuracy 

was determined for the validation period of withheld data using the explained variance (VRSQ), reduction of 

error (VRE), and coefficient of efficiency (VCE) statistics, where high values of VRSQ and positive values of VRE, 

and VCE values indicate good model skill (Cook et al., 1994, 1999). After final calibration and validation, we then 

biascorrected the reconstruction using a quantile mapping approach based on localized linear regression 

(Robeson et al., 2020) and augmented the reconstruction ending in 2010 CE with instrumental data spanning 

2011–2023 CE. We quantified reconstruction uncertainty using the root mean squared error (RMSE). 

3. Results and Discussion 

3.1. Signal‐Strength and Stability of Climate‐Growth Relationships 

Across the network, climate‐growth responses suggest that warm season temperature is the dominant driver of 

year‐to‐year latewood densiometric growth variability and show no indication of interacting climatic controls 

(Figure 2). Overall, the LWBI chronologies show slightly stronger positive correlations with Tmax than with Tmean, 

particularly during August and September. Results document substantial variation in the onset of positive 

temperature response during the spring season (March‐May response), whereas the late summer seasonal 

response (August–September; AS) is more consistent. For months where LWBI shows positive, significant 

correlations (p < 0.01) with Tmax, LWBI concurrently shows negative correlations with both Pcp and scPDSI. 

However, the relationships between the LWBI chronologies and temperature are typically stronger than with 

the hydroclimate variables. The inverse relationship between LWBI and temperature versus LWBI and both Pcp 

and scPDSI is especially apparent over the late summer. This pattern is not surprising given the negative 

relationship between AS Tmax and AS Pcp in the local CRU data (r = − 0.46, p < 0.01, 1901–2022 CE) and further 

reflects the ability of the LWBI data to capture this aspect of the region's climate system. By comparing the 

network‐wide response to Tmax over varying seasonal windows, we determine that the AS window results in the 

strongest positive correlations with the temperature variables across the LWBI network. Three of the 12 site‐

level chronologies (ACS, GFM, and KTH sites) show no significant (p < 0.01) correlations with either AS Tmax or 

Tmean, and one chronology (SG site) shows a weakly negative, but still significant correlation with AS Tmax. As 

such, these four chronologies are excluded as candidate predictors for the reconstruction. 

For the eight LWBI chronologies that exhibit significant (p < 0.01), positive correlations with their local AS Tmax 

data, we use dynamic regression modeling to evaluate the temporal stability of the climate‐growth relationships 

over the shared period (1901–1980 CE). Apart from the HCH site chronology, the constant coefficient model 

explains a higher proportion of the relationship explained variance than the time‐dependent dynamic model at 

each site, thereby indicating relative temporal stability of the climate growth relationships (Figure S2 in 

Supporting Information S1). Regression coefficients for the HCH site indicate a stronger relationship between 

the LWBI data and AS Tmax in the latter half of the observational record (ca. 1940–1980) than in the earlier half. 
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Due to the instability of the temperature response, the HCH chronology is also excluded from the subsequent 

analysis and the reconstruction predictor pool. The non‐ubiquitous temperature response (strength and 

stability) of LWBI chronologies across the Southeast network is somewhat consistent with previous work, which 

documents the heterogeneous climatic response from TRW series of high elevation P. rubens across the 

southern Appalachian range (Rochner et al., 2023). 

While BI parameters have been previously shown to be less affected by disturbance agents than traditional radial 

growth parameters (Jiang et al., 2022), we suspect that the combination of microsite conditions (e.g., elevation, 

slope position, substrate) and regional variation in the response of P. rubens and T. canadensis stands to 

exogenous disturbance regimes, influences the suitability of each site‐level chronology as a candidate predictor 

for the 
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Figure 2. Pearson's correlations (r‐value) between all site‐level LWBI chronologies and their local climate data, calculated over the common period 1901–1980 CE. 

Climate variables: maximum temperature (Tmax), mean temperature (Tmean), precipitation (Pcp) and self‐calibrating Palmer's Drought Severity Index (scPDSI) are 

sourced from the CRU TS land 4.07 data set within 0.5° of each chronology site. Dashed horizontal lines indicate significance at the p < 0.01 level. 
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Figure 3. Spatial Pearson's correlation (r‐value) between the leading principal component of latewood blue intensity (PC1 of LWBI) and CRU TS land 4.07 

AugustSeptember average maximum temperature (AS Tmax) (left panel). The dashed gray box indicates the region over which the instrumental AS Tmax data are averaged 

for the reconstruction model. Based on a linear regression model, PC1 of LWBI explains 38% of regionally averaged AS Tmax over the common period 1901–1980 CE 

(right panel). The linear model is plotted with 95% confidence (dark blue shading) and prediction intervals (light blue shading). Anomalies are relative to the 1901–

1980 CE mean. 

temperature reconstruction. For example, despite the GFM P. rubens collection having a similar elevation and 

slope position as the CDS P. rubens collection, the GFM LWBI chronology shows significant, negative correlation 

with August Pcp, thereby indicating that local summer moisture availability is a more dominant limiting factor 

than maximum temperatures at this site. Exogenous disturbance regimes also play an important role in the 

growth dynamics of the closed‐canopy forests across the Southeast. For example, the impact of acid deposition 

on P. rubens is well documented in the northeastern United States, where tree‐ring data reflect substantial 

declines in radial growth in the 1960s (Cook & Zedaker, 1992), followed by more recent recovery (Kosiba et al., 

2018; Mathias & Thomas, 2018). However, tree‐ring data provide less conclusive evidence of ubiquitous growth 

decline or changes in climate sensitivity of the species due to acid deposition in the Southeast (Cook, 1988). In 

this study, neither the LWBI chronologies from the CDS or MLC sites indicate weakening climate‐growth 

relationships in the latter 20th century. While previous work demonstrates negative relationships between radial 

growth of P. rubens and SO2 and NOX emissions (Rochner et al., 2023; Soulé, 2011), determining the influence 

of acid deposition on densiometric growth of P. rubens requires further investigation. Similarly, disturbance 

from HWA may be influencing the climate sensitivity of several of the LWBI chronologies in recent decades. For 

example, despite annual treatments, the KTH site shows growth reductions associated with known infestations 

of HWA within the last several decades (Brown, 2004; Figure S1 in Supporting Information S1). While the impact 

of HWA on the influence of densiometric wood growth has not been widely studied, Walker et al. (2014) indicate 

that across the species range, both mean latewood cell wall thickness and radial cell diameter of T. canadensis 

are significantly reduced (p < 0.001) in years following HWA infestation. Given these findings, the four T. 

canadensis LWBI chronologies which pass our initial climate screenings (SFH, ROH, PHK, and BG) are evaluated 

for growth reductions coinciding with HWA outbreak years and truncated prior to subsequent analysis (Table S1 

in Supporting Information S1). 
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3.2. PCA Results 

We apply a PCA to seven LWBI chronologies that pass the initial climate signal strength and stability screenings. 

PC1 explains 38% of the total variance across the network chronologies. The PC1 time series shows strong, 

positive correlation with AS Tmax spatially (Figure 3). Using the criteria where r ≥ 0.6 (p < 0.01) between PC1 

 

Figure 4. (a) Reconstructed regional August‐September average maximum temperatures (AS Tmax) over the period 1600– 

2022 CE (top panel). Annual reconstruction estimates (thin blue lines) are plotted with ±1 root mean squared error (RMSE; 

blue shading). Multidecadal trends are visualized by smoothing annual estimates with a 30‐year low pass filter (thick, blue 

dashed line). Reconstruction statistics are plotted back to 1600 CE (bottom panel). (b) Instrumental (solid, dark brown line) 

and reconstructed (solid blue line) regional AS Tmax over the period 1901–2022 CE (top panel). Linear trend lines are plotted 

with 95% confidence intervals (dashed lines with shading). The centennial trends based on reconstruction estimates and 

instrumental have intercepts of − 0.003 and − 0.004, adjusted r2 values of 0.004 and 0.02, and p‐values of 0.22 and 0.05, 

respectively. Decadal trends (bottom panel) in the instrumental (brown line) and reconstruction (blue line) data sets are 

calculated using a least square regression approach and plotted with 95% confidence intervals (shading). Anomalies are 

relative to the 1901–1980 CE mean. 

and CRU AS Tmax, we compile a regionally averaged temperature target that comprehensively covers the 

southern Appalachian Mountain range. PC1 of LWBI data explains 38% of the variation of the regionalized AS 

Tmax data over the period 1901–1980 CE. 
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3.3. Reconstructing Late Summer Maximum Temperature 

Using the seven LWBI chronologies as predictors, we skillfully reconstruct AS Tmax over the Southeast back to 

1760 CE (Figure 4a). While the temporal coverage of the tree‐ring data spans 1600–2010 CE, negative RE and CE 

statistics prior to 1760 CE indicate decreased reconstruction skill, and thus, the earliest part of the 

reconstruction should be interpreted with caution for subsequent analysis. Over the common period nest 

(1820–1980 CE), the reconstruction model has an explained variance of 45.3% over the calibration period and 

40.5% over the verification period. The explained variance of the calibration and verification periods decreases 

as the number of chronologies comprising each backward nest decreases through time, yet the 1780–1819 CE 

nest still has a calibration period r2 > 0.36 and a verification period r2 > 0.28. The RMSE ranges from 0.835 to 

0.712, with the lowest uncertainty occurring over the 1820–1980 CE common period nest. Multidecadal 

smoothing indicates slight cooling prior to 1860 CE, however, the cooling trend becomes much more 

pronounced over the period 1600–1780 CE. As the pre‐1760 CE portion of the reconstruction should be 

interpreted with caution, additional sampling is needed to improve the fidelity of the reconstruction over this 

earlier period. Moreover, the future improved chronologies should be reevaluated for the preservation of multi‐

centennial variability, which in turn, would contribute to a more accurate evaluation of the potential long‐term 

cooling and the expression of the Little Ice Age in the Southeast. While the current network of LWBI chronologies 

shows the potential to extend the reconstruction back in time to at least 1600 CE, the complex land‐use and 

settlement history of the Southeast often presents challenges to obtaining old‐age trees required to extend 

paleoclimatic estimates further back in time. However, targeting long‐lived species whose potential for BI 

methods is currently unexplored (e.g., bald cypress; Taxodium distichum L.), as well as investigating 

paleoclimatic signals in archeological material (e.g., Bregy et al., 2022; DeGraauw et al., 2024), may be several 

strategies to overcome this perceived temporal limitation in the region. 

The reconstruction estimates track the CRU instrumental data with relative skill and reflect similar decadal 

trends (Figure 4b; r = 0.55, p < 0.01) to those shown in the CRU data over the observational period (1901–2022 

CE). However, the reconstruction slightly underestimates cooling in both the earliest and latest parts of the 

shared observational period and overestimates warming trends in the 1930s and 1970s. While there is strong 

coherence between the decadal warming and cooling trends observed in both the CRU and reconstructed data, 

neither reflect the statistically significant (p < 0.05) centennial warming trends similar to those documented 

across other regions of the US (Eischeid et al., 2023; Figure S3 in Supporting Information S1) and globally (Arias 

et al., 2021) over the last century. Rather, multi‐decadal cooling occurs from the mid‐1950s into the mid‐1970s. 

Temperatures then trend positively over the 1970s, plateau, and then again from the 1990s to present. One 

hypothesis suggests that the existence of the Southeast “warming hole” is partially due to aerosols, which can 

have a negative indirect effect on maximum temperatures in situations where cloud formation increases 

(Stevens & Feingold, 2009). Indeed, both CRU and reconstructed Tmax values for the Southeast show significant 

relationships (p < 0.001) with regional cloud coverage over the last century (Figure S4 in Supporting Information 

S1). Notably, both anthropogenic and natural biogenic sources of volatile organic compound emissions have 

previously been linked to regional summer cooling in the Southeast (Goldstein et al., 2009). Despite the multi‐

decadal persistence of the “warming hole” across much of the 20th century, summer maximum temperatures 

have trended positively since the 1990s. This increasing trend is likely due to a combination of simultaneous 

reductions in anthropogenic aerosols following the Clean Air Act Amendments of 1989–1990 and increases in 

greenhouse gases. As such, a failure to reduce greenhouse gas emissions in the coming decades, coupled with 

projected reductions in aerosol emissions may lead to a decline in future multidecadal periods of regional 

summer cooling (Mascioli et al., 2017). Recent work suggests that the persistence of the Southeast warming 

hole over the last two decades, despite accelerated global warming, is consistent with 21st century trends in 

increasing regional summer rainfall (Eischeid et al., 2023). Moreover, current projections point to an 

intensification of the hydrologic cycle over the 

Southeast in the coming decades (Akinsanola et al., 2020; Li et al., 2013). If, in fact, the maintenance of the 

Southeast warming hole is becoming less regulated by aerosols and increasingly tied to summer rainfall, using 

a combination of paleorecords to achieve a longer‐term understanding of the relationship between changes to 
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the hydrologic cycle and summer temperatures may provide critical insights into future extreme heat‐related 

risk for the Southeast. 

4. Conclusions 

We demonstrate the application of BI methods across a network of conifers to provide a tree‐ring‐based 

temperature reconstruction for the Southeast, which allows for the multi‐century contextualization of modern 

values and trends. Notably, the 20th–21st centuries across the Southeast are not characterized by steadily 

increasing latesummer maximum temperatures, as is documented across much of North America and globally. 

While substantial uncertainty remains regarding the relationship between projected hydroclimatic shifts under 

anthropogenic warming scenarios and the future persistence of the Southeast “warming hole,” the paleoclimate 

record may provide important insights into future temperature‐hydroclimate interactions. Although BI methods 

have immense potential to expand the current representation of North America by paleotemperature proxy 

record, numerous caveats require additional consideration prior to their wide‐spread employment in the closed 

canopy forests of the Southeast. Although perhaps to a lesser degree than with radial growth metrics, both 

microsite 
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conditions and exogenous disturbance regimes from defoliators likely still influence the suitability of LWBI 

chronologies as candidate predictors for climate reconstruction. As LWBI is closely linked to latewood cell 

geometry (ratio of cell wall area to cell lumen area; Björklund et al., 2021), future efforts comparing BI methods 

and quantitative wood anatomy (Von Arx et al., 2016) would be highly beneficial for evaluating the influence of 

defoliator‐type disturbances on densiometric tree growth. 
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