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Transmission switching has proven to be a highly useful post-contingency re-
covery technique by allowing power system operators increased levels of control
through leveraging the topology of the power system. However, transmission
switching remains only implemented in limited capacity because of concerns
over computational complexity, uncertainty of performance in AC systems, and
scalability to real-world, large-scale systems. We propose a heuristic which
uses a sophisticated guided undersampling procedure combined with logistic
regression to accurately identify transmission switching actions to reduce post-
contingency AC power flow violations. The proposed heuristic was tested on
real-world, large-scale AC power system data and consistently identified optimal
or near optimal transmission switching actions. Because the proposed heuris-
tic is computationally inexpensive, addresses an AC system, and is validated
on real-world large-scale data, it directly addresses the aforementioned issues
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1. Introduction

The robustness of the electrical power grid is one of the most vital fea-
tures of our critical infrastructure. Therefore, research efforts which accurately
model operation of the grid and validate its robustness are of great importance
going forward. In particular, methods concerning post-contingency operations
are noteworthy because they mitigate the harm which the grid may undergo
following component failure. One notable analytical technique is contingency
analysis, which allows operators to study the impacts of various contingencies
and develop corrective measures which may be applied should such a failure
occur. One example of a post-contingency corrective measure is transmission
switching, also known as topology control, which we herein study.

In the past, the power grid has been modeled using a fixed configuration
(Dehghanian et al., 2015). Using such a modeling paradigm, control on the grid
is exerted only by making dispatch decisions. However, transmission switching
allows system operators an additional method of control by physically switching
transmission lines in and out of the grid. Previous research has demonstrated
that transmission switching has a myriad of potential benefits. In one of the
initial papers on the technique, Fisher et al. (2008) showed that transmission
switching can produce significant reductions in generation fuel costs. Other
works have echoed this conclusion with focuses on sensitivity analysis (Hed-
man et al., 2008; Ruiz et al., 2012) and contingency analysis (Hedman et al.,
2009). In addition to cost, transmission switching has demonstrated usefulness
in preventing loadshed (Escobedo et al., 2014; Dehghanian et al., 2015; Brown &
Moreno-Centeno, 2020), improving system reliability (Korad & Hedman, 2013),
and, as studied herein, reducing post-contingency violations (Li et al., 2017).

The herein studied problem, optimal transmission switching, lies within a
class of computationally complex optimization problems in the area of power
systems planning and operations. These problems are of substantial interest to

the operations research community because of their challenging nature and their
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clear value to practitioners. Important recent work on transmission switching
in particular includes novel formulations and valid inequalities (Kocuk et al.,
2016), development of techniques to solve for transmission switching actions un-
der stochastic conditions (Pichler & Tomasgard, 2016), application of transmis-
sion switching within the unit commitment problem (Schumacher et al., 2017),
and accounting for variable renewable energy sources (Cavalheiro et al., 2018).
A problem fundamentally related to transmission switching is transmission ex-
pansion planning (TEP), wherein optimal solutions suggest new transmission
lines to be invested in and added to the power grid. Skolfield et al. (2022)
derived path-based valid inequalities to ease the difficulty in solution of TEP,
Ghaddar & Jabr (2019) solved TEP using semidefinite programming, and Mor-
eira et al. (2021) developed a three-stage approach to solve TEP under climate
uncertainty.

There are other problems in power systems planning and operations which
are of similar interest to the operations research community. Such problems in-
clude power generation expansion, similar to TEP, wherein new generators are
added to the power system (Lohmann & Rebennack, 2017; Pineda & Morales,
2016). Another related problem is in the planning and application of power
grid defense Alguacil et al. (2014), in which transmission lines identified as crit-
ical are hardened from malicious or weather-related events. A third problem
of interest is the optimal phasor measurement unit placement problem (Car-
valho et al., 2018), which seeks to give full real-time visibility of the network at
minimum cost. A class of problems regularly-studied by the operations research
community are the unit commitment and security-constrained unit commitment
problems, wherein generators are scheduled for operations either with or with-
out consideration of potential critical contingencies (Lorca et al., 2016; Zheng
et al., 2013, 2016; Zuniga Vazquez et al., 2022). Finally, a recent topic of interest
from the academic community is in relation to electric vehicles, wherein oper-
ations research techniques can be used to account for power system operations
impacted by vehicle charge and discharge scheduling (Umetani et al., 2017), in-

ventory management (Sun et al., 2019), and relocation (Gambella et al., 2018).
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We refer the reader to the work by Skolfield & Escobedo (2022), which provides
a robust literature review on applications of operations research techniques in
power systems.

This work develops a data mining method which identifies transmission
switching actions to reduce post-contingency voltage magnitude and branch
flow violations. The use of transmission switching to alleviate violations has
been an issue of academic interest over recent years. Balasubramanian et al.
(2016) analyzed switching actions by a major ISO for this expressed purpose.
Zhao et al. (2019) developed a decomposition-based methodology to identify
optimal switching actions to reduce violations in light-load settings. Khodaei
et al. (2010) utilized transmission switching to alleviate violations within the
context of security-constrained unit commitment. Li et al. (2020) developed
sensitivity-based factors to identify switching actions to relieve violations. Shen
et al. (2019) developed a multi-stage approach to reduce voltage violations with
transmission switching. Most noteworthy to this work is (Li et al., 2017), in
which several heuristics to identify switching actions to reduce violations were
developed on real-world, large-scale power system data.

The proposed methodology applies a guided undersampling method pro-
posed by (Sung et al., 2022) and then utilizes logistic regression to identify
post-contingency transmission switching candidates to reduce AC power flow
(ACPF) violations. Notably, these data mining methods are computationally
inexpensive and can be quickly executed on real-world AC power system data,
providing greater certainty regarding both AC system performance and large-
scale implementation. This is notable because it addresses three of the four
explanations mentioned in (Li et al., 2017) as to why transmission switching is
currently being used only in limited capacity: computational complexity, uncer-
tainty of impact on real-world large-scale power systems, uncertainty of impact
when moving from DC to AC, and transient stability. These four items are

substantiated in detail in the following paragraphs.

1 — Computational complexity: The first explanation for lack of widespread

implementation of transmission switching is in regard to computational com-
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plexity or, equivalently, the scalability of algorithms. Mixed-integer nonlinear
programs (MINLPs), such as the AC optimal transmission switching (ACOTS)
problem, are notoriously difficult to solve. Because of this, researchers have pri-
marily tested algorithms on small-scale networks and/or used linearizations to
reduce the difficulty of the problem, which cast uncertainty over scalability and
solution accuracy, respectively. These two approaches are discussed in greater
detail in the following two paragraphs.

2 — Impact on large-scale systems: The second explanation is that the
overwhelming majority of research on transmission switching studies small-scale
systems. A handful of noteworthy research projects have vetted their approaches
on large-scale systems. Works relevant to the herein studied problem include
(Li et al., 2016, 2017, 2020; Shen et al., 2019) which each utilize transmission
switching at a large scale to reduce violations. There have been other note-
worthy research efforts which study real-world electric power systems but are
not directly applicable to the application discussed here. Carrién et al. (2021)
study a related problem of optimal static VAR compensator location at a large
scale. Li et al. (2021) extend the traditional DC optimal transmission switching
model with connectivity constraints and test on a large-scale system. Ramesh
et al. (2021) utilize a decomposition technique to study the security-constrained
unit commitment problem with switching and test their results on the Polish
test system. Other recent noteworthy projects which utilize real-world sized
test cases include (Han et al., 2022a; Mohseni-Bonab et al., 2022; Altun et al.,
2020).

In contrast with the above, most works, including the bulk of works cited
herein, test their approaches on small-scale systems such as the IEEE 118-bus
test case which appear in test case archives such as (Christie, 2000). Real-world
systems, however, have up to tens of thousands of buses, obscuring both the
impact of complexity and scalability of current approaches. Given that most
algorithms are tested on small systems, it remains unclear if these algorithms
can be applied in the real world.

3 — Impact on AC systems: The third item addresses the concern that
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benefits derived from DC-based models may not translate to AC models. Be-
cause of the issues associated with solving problems such as the ACOTS, the
majority of transmission switching research focuses on DC-based models. In-
deed, excluding noteworthy examples (Soroush & Fuller, 2014; Bai et al., 2017;
Li et al., 2017, 2016; Kocuk et al., 2017; Shi & Oren, 2015), the papers herein
cited use linearizations to address the various transmission switching problem
variants. This is worrisome because, as demonstrated in (Potluri & Hedman,
2012), transmission switching actions identified by DC models may be infeasible
or result in negative outcomes when implemented in AC systems. Moreover, as
aforesaid, most if not all of these models are only tested on unrealistically small
networks, further clouding the issue of whether conclusions derived from DC
models can be applied to AC systems.

4 — Transient stability Finally, we note that relatively recent research has
shown that transmission line switching may introduce disturbances into power
systems resulting in transient instability issues (Liu et al., 2011). Despite this
fact, the overwhelming majority of research in this area fails to account for tran-
sient stability. There are a small group of noteworthy exceptions. Alhazmi et al.
(2019) analyze the implications regarding stability and reliability of their trans-
mission switching solutions, but do not account for them within the algorithm
itself. Shi et al. (2019) introduce simple transient security constraints into a two-
stage switching model. Han et al. (2022b) incorporate qualitative constraints to
seek stability maintenance into their topology control model. Mak et al. (2017)
propose a novel optimization model which incorporates constraints to seek tran-
sient stability and an algorithm which incorporates their new model to further
ensure stability. While the above works take steps to reduce concerns regarding
transient stability, to the authors knowledge, the methods described by (De-
hghanian et al., 2015) and (Mak et al., 2017) are the only ones to systematically
verify stability within the algorithm itself. Moreover, the framework proposed
in (Dehghanian et al., 2015) can be combined with virtually any approach.

This work makes three primary contributions. First, to the authors’ knowl-

edge, our proposed heuristic is the first true data mining technique to classify
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strong AC transmission-switching actions using power flow information rather
than a simple history of useful switching actions. Second, our method is unique
in the literature in that it directly addresses three of the four issues regarding
transmission switching implementation. Moreover, it can be directly combined
with with the framework in (Dehghanian et al., 2015) to address the fourth
issue. Finally, we make a much stronger empirical analysis than the analysis de-
scribed in (Li et al., 2017), studying the impact of an exhaustive set of switching
actions on real-world large-scale power system data, rather than a small subset
of the actions or actions across a small system. A secondary contribution of this
work is that we formalize the problem characterized in (Li et al., 2017).

We note that, in recent years, several papers claim to use “previous knowl-
edge” in the context of a data mining framework, but fail to do so in the way
data mining is understood. The authors in (Li et al., 2016) propose a heuristic
where a lookup table containing contingency-specific switching solutions is used
to select potential switching candidates. The authors in (Hedman et al., 2009)
propose a similar heuristic where previously-successful switches are considered
as potential switching actions. Finally, the authors in (Li et al., 2017) extend
the approach in (Hedman et al., 2009) by splitting previously-successful switches
into training and testing sets; these switches are subsequently validated accord-
ingly. However, this method does not incorporate any additional information
other than the switching action itself.

In contrast with the above methods, the herein proposed method incorpo-
rates information about the current status of the grid into a sophisticated data
mining method to predict the impact of a given candidate switching action.
Succinctly, the resulting method is a true data mining approach which exploits
the set of available information to identify candidate switching actions.

The remainder of this paper is organized as follows. Section 2 presents and
describes two optimization models for post-contingency ACPF violation reduc-
tion. Section 3 proposes our data mining heuristic using guided undersampling
and logistic regression. Section 4 discusses the experimental setup and several

implementation issues which are inherent to the proposed methodology and the
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herein studied problem. Section 5 presents our analysis and demonstrates that
our proposed method identifies optimal and near-optimal switching solutions
and is superior to existing heuristics based on distance to violation elements.

Section 6 concludes the work.

2. ACPF Violation Reduction Optimization Model with Transmis-

sion Switching

During post-contingency operations, system operators must be provided
with corrective actions which are both quick to identify and can be implemented
with confidence. We note that the execution of transmission switching to alle-
viate power system violations may represent a decreased burden on the system
operator than actions such as a generation re-dispatch (Li et al., 2017). As
an example, ISO New England lists twelve actions to return the system to
“normal” status. These actions, in order listed by ISO New England, are as
follows: adjusting phase shifting transformers, adjusting reactive power flows,
enacting weather-sensitive transmission facility ratings, deviation from economic
dispatch, opening of circuit breakers, manually tripping generators, transmis-
sion switching, exceeding generator maximums, load curtailment, capacity pur-
chases, depletion of temporary reserves, and enacting enhanced facility ratings
(ISO New England, Sep. 2022). It is frequently to the benefit of the system
operator to avoid any of the above actions associated with a computationally
expensive re-dispatch, particularly in the context of contingency response. In
contrast, transmission switching, particularly when executed within the con-
text of a data mining approach such as the one proposed herein, represents a
computationally inexpensive solution to returning the grid to a violation-free
status.

One of the traditional manners to derive corrective actions, and in particular
transmission switching actions, is through the solution of optimization models
such as those described in this section. As such, we herein describe the math-

ematical formulation of the ACPF optimization model for violation reduction



214

215

216

217

218

219

220

221

222

223

224

225

226

227

with transmission switching (ACPF-VR-TS). Note that these problems were
described qualitatively by the authors in (Li et al., 2017). However, this work

is the first to formally characterize these problems as optimization models.

2.1. ACPF-VR-TS for Voltage Magnitude Violations
The ACPF-VR-TS model for voltage magnitude violation reduction is char-
acterized as follows. We note that the notation utilized in this and the forth-

coming subsection is defined in Appendix A.

min Y V.4V, (1a)
neN

subject to

Pf—Pl= Y py ie N  (1b)
(1,§)yEK

QI -Qf = Z Qij ieN (1c)
(i,jyEK

pij = Zij(gi Vi — ViV;(gij cos 0i; + bij sin0;;)) (i,7) € K (1d)

Gij = Zij(bi;Vi¥ = ViVj(gij sin0i5 — bi; cos 0;5)) (i,7) € K (le)

Vo > vmin_y, neN (1f)

V.. >0 neN  (lg)

Vi >V = v neN  (ih)

ViE>o0 neN (1)

> 1-Zy=1 (1j)
(1,j)EK

Objective (1a) minimizes the sum of voltage magnitude violations. Constraints
(1b) and (1c) model active and reactive power injections at bus 4, respectively.

Constraints (1d) and (le) model the flow of active and reactive power from
bus ¢ to bus j, respectively, while accounting for transmission switching. Note
that fixing all binary variables Z;; to 1 reduces constraints (1b)-(1le) to the
constraints which characterize the ACPF. Constraints (1f) and (1g) model the
violation of the voltage magnitude lower bounds. Constraints (1h) and (1i)
model the violation of the voltage magnitude upper bounds.

Finally, Constraint (1j) dictates that the number of allowable transmission

line switches is equal to one. There are two primary practical explanations for
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this constraint. First, significant concerns exist regarding transient stability
with multiple switching actions. Second, physical implementation of transmis-
sion switching requires substantial effort. This effort magnifies as the number
of switches increases. We refer the reader to (Brown & Moreno-Centeno, 2020)

for a detailed discussion on these two topics.

2.2. ACPF-VR-TS for Branch flow Violations

The ACPF-VR-TS model for branch flow violation reduction is characterized

as follows.
min Y fi (2a)

(i,4)EK

subject to
(1b)—(1e), (1j) (2b)~(2e),(2))
fi > vl + iy — Sk (i,j) € K (2f)
z]] > p?i + q]Q'z' ~ S; (i,7) € K (2g)
fis = 1 (i,j) € K (2h)
fij 20 (1,j) € K (2i)

Objective (2a) minimizes the sum of branch flow violations. Constraints
(2f) and (2g) model violation of thermal limits as a function of apparent power.
Constraint (2h)-(2i) dictates that the flow violation for transmission line k& is

equal to either zero or the larger of the two violations at each end of the line.

3. Methodology

Traditionally speaking, optimal transmission switching actions are sought
out by characterizing the power system in a steady state. That is, an optimal
power flow (OPF) or optimal transmission switching (OTS) model is solved,
and the switching actions are either obtained directly from the solution (when
using OTS) or further derived from the solution (when using OPF). However,

as discussed in Section 1 the solution of MINLPs is exceedingly computationally

10
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expensive. When considered in the context of real-time operations, this com-
putational cost is unlikely to be to be satisfied. As such, less computationally-
intensive methods are required, such as the one proposed in the forthcoming
paragraphs.

It is important to note that, as in (Li et al., 2017), we do not solve the
models outlined in Section 2 via the use of an optimization solver. The primary
reason for this is because of the computational difficulty associated with solving
MINLPs. As such, most work addressing problems similar to those in Section
2 either use linearizations or solve across small systems. In contrast, this work
seeks solutions to these models via a data mining-based heuristic in a manner
tractable at a large scale without linearization. The following two paragraphs
discuss an important feature of transmission switching which contextualizes the
problem within a data mining framework — imbalanced data. Following this,
we present our dual-component guided undersampling method, introduce the
classification methodology, and formalize the proposed method.

It is well established in the literature that, regardless of objective (e.g., vi-
olation reduction or cost savings), there are typically only a small number of
transmission switching actions which result in a substantial objective improve-
ment. Thus, in a data mining context, identifying strong transmission switching
actions should be viewed as an imbalanced-data classification problem. In a two-
class setting, imbalanced data refers to a dataset where one class (the majority
class) has cardinality substantially larger than that of the opposing (minority)
class. In such settings, traditional classification algorithms can suffer poor per-
formance because they can simply classify all instances as majority and still
achieve a high classification rate. Therefore, when developing a data mining
approach for transmission switching, one must take care to adequately handle
the problems inherent to imbalanced data.

The proposed methodology addresses the imbalanced data problem as fol-
lows. First, we utilize a guided undersampling procedure (Sung et al., 2022)
which undersamples the majority class using two instance-selecting techniques.

The first technique, ensemble outlier-filtering, utilizes a unique ensemble classi-

11
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fier to remove both majority and minority outliers from the training data. The
second technique, normalized-cut sampling, undersamples the majority class
such that the density distribution of the majority class is preserved. After our
guided undersampling method, we apply logistic regression to develop the clas-
sification boundary; i.e., to predict which transmission lines are strong candi-
dates. The following subsections detail each of the components of the proposed

methodology.

3.1. Ensemble Outlier-Filtering

The first component of the guided undersampling method used herein is en-
semble outlier-filtering. From a data-analytic perspective, outlier removal is a
critical component of building an effective classifier. However, when the training
data is imbalanced, many outlier filtering techniques demonstrate poor perfor-
mance. To address this, the authors in (Sung et al., 2022) proposed an ensemble
outlier-filtering technique which utilizes the power of an ensemble classifier in
which each training set is balanced. The ensemble outlier-filtering technique is
described as follows. Note that, throughout the remainder of this section, an
important value is the ratio of majority instances to minority instances, known
as the imbalance ratio.

Given a set of n-dimensional data X = Xy, U Xpin, with imbalance ratio

‘Xmajl

Bt ensemble outlier-filtering proceeds as follows.

T =

1. Partition the majority class Xy,,j into r subsets of equal size, where each
subset has cardinality |Xpin|. Construct r distinct training subsets: Xpin
and one subset of X,;.

2. Train r logistic regression classifiers, one for each subset of the training
data.

3. Predict the class of every instance in X using the majority voting scheme:
instance X; is assigned to a class if it is predicted as such by at least 3
classifiers.

4. Remove from the training data the outliers — instances whose predicted

class differs from their true class.

12
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One salient characteristic of the method described above is that it seeks to
remove both minority and majority from the training data. While the removal
of minority data may appear counterintuitive, as shown in (Sung et al., 2022),

it is critical to strong imbalanced data classification performance.

8.2. Normalized-Cut Sampling

One traditional approach to imbalanced data classification is majority sub-
sampling, in which a subset of the instances from the majority class is selected
from the training data in an effort to address class imbalance. However, as
described in (Sung et al., 2022), the user must take great care to construct their
majority subsample, as they risk an inaccurate decision boundary if there are
regions where the density distribution of the greater majority class does not
persist. To address this, the authors in (Sung et al., 2022) proposed a new
technique, normalized-cut sampling. This method utilizes the normalized-cut
segmentation technique proposed in (Shi & Malik, 2000) to iteratively cluster
the majority class such that the density distribution is preserved and the num-
ber of majority-class clusters is equal to the cardinality of the minority class.
The medoids of the clusters are then selected as the majority class subsample.

Given training data X = Xyaj U Xmin, with & = | Xyin|, the normalized-cut

sampling procedure is described as follows.

1. Construct graph G; = (V, E), where V denotes all majority instances and
FE contains edges between all node pairs in V. Set edge weights between
node pair (i, ) as

Lij = exp(||X; — X,%) ()

2. Initialize an empty set C.

3. Fori=1...k

(a) Utilizing the procedure from (Shi & Malik, 2000), bipartition G; into
clusters C! and C?. Add these two clusters to C.

(b) Construct G;4+1 using the instances from the cluster in C' with max-

imum cardinality (Cryax)-

13
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(¢) Update C' = C'\ Cpax-

4. Form the majority subsample with the medoids of the clusters in C.

3.3. Logistic Regression

Logistic regression is a classification model which estimates the probability
that a given categorical dependent variable belongs to a particular category
(James et al., 2013). Given two categories, denoted numerically as 0 and 1,
and a set of n-dimensional data X; with target variable Y; € {0, 1}, the logistic
regression model estimates the probability that the target variable is in category

1 as )
eBot+227-1 B X7

1 4 ePotia B X7’

P(Yi|Xi) = (4)

where By is the intercept of the regression function and g; is the multiplica-
tive regression coefficient associated with the j-th dimension of the data. The

regression coefficients are those which maximize the log-likelihood function

In L(B|Y) = zm: Yiln P(Y;]X;)

£3°0 - V) (1 - PYIX,)).
=1

where m denotes the number of observations in the data set.

Note that the output of the logistic regression model from Equation (4) is the
probability that a given datum X; belongs to the class of focus. In our case, this
value can be interpreted as the probability that a transmission switching action
results in a substantial reduction in post-contingency violation. Therefore, we

use this probability to rank the set of all transmission lines.

3.4. Proposed Methodology
The previous subsections detailed the two components of the guided under-
sampling method as well as a specific classification methodology. Given training

data X = Xmaj U Xmin, the proposed method is formalized as follows.
1. Apply ensemble outlier-filtering to the training data X to obtain the clean
subsample X' = X! .U X/

maj min

14
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2. Apply normalized-cut sampling to XI’naj to further subset the majority
where | X[ .| = |X],

maj in |

class and obtain X7 .,
3. Train a logistic regression model on the clean and balanced training data
Xl/

maj U X iy to derive the classification model

The logistic regression model which is trained in Step (3) can then be uti-
lized as follows. Given an m X n-dimensional data set where m is the number
of transmission lines and n denotes the number of variables describing post-
contingency ACPF information, the model trained in Step (3) can be directly
applied to such data to predict which transmission lines are strong switching
candidates. We elaborate on this process in the following section.

From a practical setting, the above-proposed methodology can be imple-
mented as follows. The model should be trained and validated in an off-line set-
ting to account for the computational time associated with the dimensionality
of the data. Following this, whenever a contingency occurs, a post-contingency
state should be established. The ISO can then gather the system information
associated with this post-contingency state. This system information can be fed
into the model as described above, each viable switching action predicted for

impact, and the superior switching action implemented.

4. Experimental Setup

4.1. Test Case

The test case utilized for analysis herein consists of emergency management
system snapshots from the Pennsylvania New Jersey Maryland Interconnection
(PJM). These snapshots span 167 hours, each with a different load profile, and
total of 8064 critical contingencies across the entire test case. For a detailed
description on how these contingencies were identified, we refer the reader to
(Li et al., 2017). The PJM system consists of approximately 15,500 buses,
2,800 generators, and 20,500 transmission lines. The total active power load is
approximately 139 GW and the total reactive power load is approximately 22
GW.
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4.2. Data Development

4.2.1. Ezhaustive Search of Switching Actions

To develop the training data which drives the predictive model, we per-
formed an exhaustive search (henceforth referred to as the “exhaustive search”)
of non-radial transmission switching actions across all critical contingencies from
(Li et al., 2017) as described in the following paragraph. Because it is indeed
exhaustive, this search guarantees that, for each contingency, we will identify
the switching action that reduces the most violations (i.e., the optimal switching
action). This is a salient point which allows this work to be the first to conduct
a thorough analysis using the true optimality gap (as defined in Section 5.1) for
the herein studied heuristics and for a problem of this size. We note that the
exhaustive search is conducted using a series of AC power flow solutions before
and after a switching action has occurred. The analysis of such actions allow for
the data mining approach proposed in Section 3.4 to identify strong switching
actions in seconds, rather than via an optimization methodology, dramatically
reduce the computational cost associated traditional approaches as discussed in
Section 3.

We perform the exhaustive search for each hour and critical contingency.
For contingencies which did not include generator failure, all generator outputs
remained at the pre-contingency level with the exception of the slack bus. For
contingencies which simulate generator failure, re-dispatch was performed using
a participation factor as outlined in (LI et al.). Finally, only a single corrective
line switch is implemented. The procedure utilized to generate the data is thus
described in the following steps. Given a power system instance with n non-

radial lines, the exhaustive search proceeds as follows.

1. Run ACPF using given input data
2. Simulate contingency

3. Calculate re-dispatch (if necessary)
4. Run ACPF
5

. Record system information
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6. Fori=1...n
(a) Perform line switch
(b) Run ACPF

(¢) Record remaining violation magnitude (if any)

Note that, in Steps (5) and (6¢), information gathered includes both voltage
magnitude and branch flow violations. As such, the exhaustive search generates
data for both problems outlined in Section 2. The exhaustive search outlined
above was run systematically to include all critical contingencies identified in
(Li et al., 2017) and all feasible line switches. Doing so yields a rich data set

which can be exploited via the use of data mining techniques.

4.2.2. Data Features

There are several important pieces of data collected during step (5) which
drive the prediction methodology. The first set of features describes the switch-
ing element. This set includes branch resistance, reactance, susceptance, ther-
mal rating, and active and reactive power flow. Next, we gathered the mag-
nitude of all violations within a set of distances, calculated using undirected
distance, around the switching element. The third group of data we gathered
were characteristics of the violation elements including bus type, active and re-
active power demand, node degree, resistance, reactance, MVA rating, active
power flow, and reactive power flow. Next, we measured the undirected distance
from the switching element to each violation element, the distance from each
violation element to the contingency element, and the distance from the switch-
ing element to the contingency element. Finally, we gathered distance data in
a directed fashion, using the flow of active power to construct a directed graph.
From this graph we identified distances identical to those described above.

We note that the model herein developed is sensitive to the set of features
used to train it. As such, we conducted feature selection prior to training the
model. We utilized the first 83 hours (approximately on half of the data set), to

conduct a forward-stepwise procedure to select a set of features which minimized
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the optimality gap. As such, all forthcoming experiments were conducted on

the remaining 84 hours of data described in Section 4.1.

4.2.8. Training Data

To train the classification model outlined in Section 3, we took the top
100 switching actions according to the exhaustive search for each hour, crit-
ical contingency, and violation type. We took only the top 100 switches for
three reasons. First, this allowed us to satisfy the memory requirements of the
computational setup used to perform our experiments. Second, we note that
even using the top 100 switching actions results in an imbalanced data set.
Specifically, for voltage magnitude violations, approximately 2.5% of the top
100 switches result in an optimality gap of less than ten percent. For branch
flow violations, only 5.7% switches result in such an optimality gap. Finally, we
note that it has been established in the literature that one successful approach
to majority subsampling is to focus on regions where the majority and minority

classes overlap (Japkowicz, 2000).

4.3. Cross-Validation

Cross-validation is imperative for the development of any predictive model to
properly assess the model’s strength. However, it bears mentioning that cross-
validation in this setting is different than in traditional contexts. In an effort
to minimize bias from similar instances, each fold used during cross-validation
consisted of all contingencies within a single hour out of the 84 hours used for
testing as described in Section 4.2.2. The remaining data used to train the model
consists of all contingencies within the remaining 83 hours. This resulted in an
84-fold cross-validation procedure. On average, each cross-validation iteration
took approximately 25.59 minutes for model training and testing. In addition,
each contingency in the test fold was tested individually for the performance
metric described in Section 5.1. That is, rather than a single data point for
each fold, testing generates a number of data points equal to the number of

contingencies within the given hour.
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4.4. Computational Environment

All computational experiments herein described for data generation (Section
4.2) were conducted in a distributed environment on computing nodes which had
22GB of RAM shared by two 2.8 GHz quad core Intel 503 Xeon 5560 processors
using Texas A&M University supercomputing resources. The operating sys-
tem was CentOS Linux version 7.6.1810. All power flows were solved using the
MATPOWER toolbox (Zimmerman et al., 2011). All tasks related to model de-
velopment, feature selection, and cross-validation were conducted on a machine
equipped with 8 GB of RAM memory and a quad-core 1.8 GHz Intel i7-8565U
processor. Ensemble outlier-filtering, normalized-cut sampling, and logistic re-
gression models were implemented using the LIBLINEAR package Fan et al.
(2008) within MATLAB.

We note that supercomputing resources were utilized not because of the
computational time associated with model training nor prediction nor the cost
of solution of the power flow problem itself. In contrast, the supercomputing
resources were utilized due to the sheer number of scenarios studied herein.
Specifically, as described in Section 4.1 there were over 8000 contingencies to
test across the 167 hours. Of the roughly 20,500 transmission lines, on the order
of 16,000 resulted in valid switching solutions, resulting in approximately 128
million power flows to solve. Though each such power flow can be solved in
a fraction of a second either in a supercomputing infrastructure or a standard
workstation, it was the number of cores available which made such an analy-
sis feasible given the data provided. It merits mentioning that such data can
be gathered within the context of a regularly-scheduled contingency analysis

procedure.

5. Results

5.1. Performance Metric

To measure the effectiveness of our data mining heuristic, we utilize the opti-

mality gap. This measure describes the relative difference between the percent-
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age of violations reduced by the optimal switching action and the corresponding
value from the best action chosen by the heuristic. We utilize the percentage of
violations reduced because it dampens the impact of instances with a particu-
larly large or small initial violation magnitude. As mentioned in Section 4.2.1,
we note that the exhaustive search guarantees the identification of the optimal
solution. Therefore, the forthcoming analysis using the optimality gap provides
context on how closely a heuristic performs relative to the optimal solution. The

optimality gap is calculated as follows

* H

V-V
———F— x 100 6
— <, (6)

Gap% =
where V* denotes the percentage of violation reduction stemming from the op-
timal switching action as identified by the exhaustive search, and V¥ denotes
corresponding value stemming from the switching action proposed by the heuris-

tic. Note that we calculate this value separately for voltage magnitude violations

and branch flow violations.

5.2. The Data Mininig Heuristic Consistently Identifies Optimal or Near-Optimal
Transmission Switching Actions
Table 1 shows the average and standard deviation of the optimality gap
obtained for the top switching action according to Equation (4), fixed all other
lines as closed, and solved the ACPF problem associated with that topology.

The results are broken out by violation type.

Table 1: Summary statistics for optimality gap
Violation Type Mean St. Dev.

Voltage Magnitude 5.51%  17.60%
Branch Flow 5.89%  93.71%

Table 1 shows that the data mining heuristic produces strong performance in
terms of optimality gap. Specifically, for both violation magnitude and branch
flow violations, the average optimality gap of the top switch identified by the

data mining heuristic is less than six percent, which is a very reasonable result
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in practice for real-world, large-scale systems. However, the branch flow vio-
lations produce a relatively large standard deviation. This is largely because
of three instances, where the data mining heuristic produced optimality gaps
substantially larger than 100%. Removing these three instances, the standard
deviation drops to 17.5%, a much more reasonable value. The following para-
graphs explore these results in greater detail.

Figure 1 shows a histogram of the optimality gaps attained by the data
mining heuristic for the two types of violations. The first finding shown in
Figure 1 is that the bulk of instances fall either at zero or less than 0.1%. This
means that, for the bulk of instances herein studied, the data mining heuristic

identified optimal or near-optimal switching actions.
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Figure 1: The data mining heuristic attains optimality gaps at or near zero in the overwhelm-

ing majority of instances

One additional important finding from Figure 1 is the number of scenarios
with optimality gaps greater than 50%. Specifically there are 135 such sce-
narios for voltage magnitude violations and 176 such scenarios for branch flow
violations. We note that these scenarios make up only approximately 1.7% and
2.2% of studied instances, respectively, further demonstrating the strength of

the method.
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To put these results in context, we note that, as mentioned in Section 4.1,
the data upon which the herein proposed approach was developed consists of 167
distinct load profiles. Each a snapshot of the existing system operated by PJM.
As such, the methodology is robust to changes in the system load. Moreover,
if dramatic changes in the system should occur which significantly impact the
load profile, it is simply a matter of data generation and model re-training to

incorporate these changes into the herein proposed approach.

5.8. The Data Mining Hueristic Attains an Optimality Gap Substantially Smaller

than that of a Distance-based Heuristic

While Section 5.2 showed that the data mining heuristic produced strong
performance in its own right, it is also important to compare against the strongest-
performing existing methods. The authors in (Li et al., 2017) developed distance-
based heuristics which constitute the strongest-performing methods which are
viable at a large scale for the problems outlined in Section 2. Specifically, the
authors in (Li et al., 2017) developed a heuristic which obtains solutions based
on the distance from the candidate branch to the violation element (CBVE).
However, CBVE only identifies switches in the area around the violation element
rather than focusing on characteristics of the switches themselves. Therefore,
the following experiments utilize a candidate pool — a group of switching can-
didates from which the best switch is selected. We note that, to achieve best
performance, we re-conducted feature selection as described in Section 4.2.2 us-
ing a candidate pool of ten. In the interest of full disclosure, we note that the
authors in (Li et al., 2017) also developed a heuristic using the distance from the
switch to the contingency element. However, in our experiments, this method

was effectively dominated by CBVE. We therefore excluded it from our analysis.

Table 2 summarizes the performance of the two heuristic methods in terms
of the optimality gap using a candidate pool of size ten. Specifically, Table 2
shows the mean and standard deviation of the optimality gap for the proposed

data mining method, denoted DM-10, against that of the distance-based metric,
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CBVE, when using a candidate pool of size ten. These results are broken out

by the type of violation.

Table 2: Summary statistics for optimality gap using a candidate pool of size ten

Violation Type Method  Mean  St. Dev.
DM-10 341%  15.91%
CBVE 28.94%  8.91%
DM-10  0.04% 0.81%
CBVE  1.58%  10.04%

Voltage Magnitude

Branch Flow

Table 2 shows that the data mining heuristic outperforms the distance based
heuristic across the board. In regard to voltage magnitude violations, the pro-
posed heuristic attains an average optimality gap over eight times smaller than
that of the distance-based heuristic. Regarding branch flow violations, the aver-
age optimality gap using the data mining heuristic is almost forty times smaller
than that of the distance-based heuristic; the standard deviation is 12 times
smaller using the same comparison. These results show that, at a high level,
the data mining heuristic has extremely strong performance against distance-
based heuristics in terms of the optimality gap. The remainder of this section
explores these results in greater detail.

Figure 2 plots the empirical cumulative distribution function (ECDF) of the
optimality gaps obtained for voltage magnitude violation reduction by both the
proposed data mining heuristic and the distance based heuristic. An ECDF
plots the fraction of data points that are less than or equal to a certain value
for all possible values of the metric of interest. We use this plot because it
characterizes the fraction of instances for which each heuristic achieves a certain
performance.

There are two findings from Figure 2. First, for the data mining heuristic,
there is a vertical line at zero which reaches almost 92% of instances. This
means that, in approximately 92% of studied instances, the proposed heuristic

identified the optimal switch. In contrast, the distance-based heuristic had no
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Figure 2: DM-10 dramatically outperforms CBVE for voltage violation reduction in terms of

the optimality gap

such instances where the optimal switch was found within the candidate pool.
This can be seen when the blue line diverges from the red line. These results
show that, for the test case studied here, the data mining heuristic dramatically
outperforms the distance-based heuristic in identifying optimal or near-optimal
solutions.

The second finding is the relative performance between the data mining
heuristic and the distance-based heuristic. Specifically, the proposed data min-
ing heuristic attains an acceptable optimality gap of less than ten percent in
over 93% of instances and and optimality gap of less than 25 percent in over
96% of instances, respectively. In contrast, the distance-based heuristic only at-
tains such performance in and 3.3% and 29% of instances, respectively. We can
therefore conclude that, for the test case studied here, the data mining heuris-
tic dramatically outperforms the distance-based heuristic in the reduction of
voltage magnitude violations.

Next, we conducted an identical analysis to the one described above studying
the impact of the two heuristics on branch flow violations. Figure 3 shows the

ECDF for both the data mining heuristic and the distance-based heuristic.

24



592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

DM-10
.4~ — —CBVE |

0.98 -=-" b

o
©
N

°
©
>

Cumulative Proportion
©o o o o
© © © ©0
n w > (5]
. . . .

o
©
.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Optimality Gap

o
©

o

Figure 3: DM-10 performs more strongly in branch flow violations than CBVE

Figure 3 shows that, while the two heuristics are much more competitive
in the case of branch flow violation reduction, the data mining heuristic is still
the superior method. The first finding from Figure 3 is that both heuristics
have a long vertical line at or near zero. This shows that both methods have
strong performance in this case. Specifically, the data mining heuristic attains
an optimality gap of less than 0.1% in over 92.8% of instances. The distance-
based heuristic attains such a performance in over 89.5% of instances. If we
increase the threshold to an optimality gap of one percent, the data mining
heuristic identifies such a switch in over 99.6% of solution and the distance-
based heuristic identifies such a switch in over 97.2% of solutions. These results,
and those described by Figure 2 show that the proposed data mining heuristic
definitively outperforms the distance based heuristic for the test case studied

here.

6. Conclusion

This work developed a data mining heuristic to identify transmission switch-

ing candidates to reduce post-contingency voltage magnitude and branch flow
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violations. We used real-world large-scale AC power system data to generate a
robust data set to feed into our logistic regression model with guided undersam-
pling. The resulting heuristic demonstrated considerable performance in identi-
fying strong transmission switching solutions, even given the substantial size of
the PJM system. Our methodology shows the ability of data mining methods to
substantially reduce the workload associated with identifying strong transmis-
sion switching candidates for post-contingency violation reduction. While the
specific predictive model (i.e., the features chosen during feature selection and
the regression coefficients) may not be specifically applicable to every system,
the methodology herein proposed should generate a model which exhibits strong
performance on alternate data sets.

We first showed that the data mining heuristic has strong performance in
terms of accuracy. Specifically, using only the top switch identified by the data
mining heuristic, the proposed methodology attained an average optimality gap
of 5.5% for voltage magnitude violations and 5.9% for branch flow violations.
Moreover, for both violation types, the bulk of studied instances ( 92% and 93%,
respectively ) result in optimality gaps of less than 0.1%. We therefore conclude
that the data mining heuristic can regularly identify optimal or near-optimal
solutions. We also showed that the data mining heuristic substantially outper-
forms distance-based heuristics in terms of accuracy. Using a candidate pool
of only ten switches, the proposed heuristic outperformed an existing distance-
based heuristic in terms of average optimality gap by over eight times for voltage
magnitude violations and over 35 times for branch flow violations. These find-
ings show that data mining methods such as the data mining heuristic with
guided undersampling developed herein are noteworthy techniques which can
identify optimal and near-optimal candidate switching actions for the herein
studied problem with extremely high regularity.

One potential area of future study is the integration of transient stability
integration into or alongside the herein studied method. As discussed in Section
1, the proposed methodology can be paired with that of (Dehghanian et al.,

2015) in order to fully validate transmission switching actions. Moreover, it
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is possible that transient stability of the system can be integrated into the
prediction step itself using sophisticated methods. An additional area of future
work is in the area of data visualization. It would be beneficial to develop tools
which, within the context of real-time contingency response, could identify either
(1) areas of critical concern or (2) areas with significant improvement due to
transmission switching, and highlight them and the associated impact in real-
time. Such tools could be used in the context of other approach such as the one
proposed by Li et al. (2017).

Our method demonstrates the strong performance that data mining meth-
ods can achieve in regard to power systems operation. Specifically, our proposed
method is one of few which uses data mining techniques to address power sys-
tems operations. Moreover, ours is the first true data mining technique applied
to transmission switching in a large-scale AC context. As mentioned previ-
ously, transmission switching is only implemented in limited capacity because
of concerns over computational complexity, uncertainty of AC performance, and
scalability to real-world systems. Because our data mining heuristic is compu-
tationally inexpensive, addresses an AC system problem directly, and has been
rigorously tested on real-world large-scale data, it addresses these three issues
directly. Given the performance of our model, it should be strongly considered
in the use of post-contingency violation reduction. More importantly, it should
motivate the study and development of new data mining techniques to address

this and similar power systems operations problems.

Appendix A. Nomenclature

Parameters
Gij, bij Real/imaginary components of admittance of transmission line (7, j)
pd qd Active/reactive power demand at bus n
pd,q7 Active/reactive power output at bus n
Sij MVA rating for line (i, j)

ymin fjmax - ©Mip /max voltage magnitude at bus n
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ees  Sets

(i,j) € K Set of transmission lines
665

neN Set of buses

e Decision Variables

Gij, bij Real/imaginary components of admittance of transmission line (7, j)
pd qd Active/reactive power demand at bus n

o7 pdoqd Active/reactive power output at bus n
Sij MVA rating for line (i, j)

ymin fjmax - ©Mip /max voltage magnitude at bus n
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