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Abstract

Transmission switching has proven to be a highly useful post-contingency re-

covery technique by allowing power system operators increased levels of control

through leveraging the topology of the power system. However, transmission

switching remains only implemented in limited capacity because of concerns

over computational complexity, uncertainty of performance in AC systems, and

scalability to real-world, large-scale systems. We propose a heuristic which

uses a sophisticated guided undersampling procedure combined with logistic

regression to accurately identify transmission switching actions to reduce post-

contingency AC power flow violations. The proposed heuristic was tested on

real-world, large-scale AC power system data and consistently identified optimal

or near optimal transmission switching actions. Because the proposed heuris-

tic is computationally inexpensive, addresses an AC system, and is validated

on real-world large-scale data, it directly addresses the aforementioned issues

regarding transmission switching implementation.
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1. Introduction1

The robustness of the electrical power grid is one of the most vital fea-2

tures of our critical infrastructure. Therefore, research efforts which accurately3

model operation of the grid and validate its robustness are of great importance4

going forward. In particular, methods concerning post-contingency operations5

are noteworthy because they mitigate the harm which the grid may undergo6

following component failure. One notable analytical technique is contingency7

analysis, which allows operators to study the impacts of various contingencies8

and develop corrective measures which may be applied should such a failure9

occur. One example of a post-contingency corrective measure is transmission10

switching, also known as topology control, which we herein study.11

In the past, the power grid has been modeled using a fixed configuration12

(Dehghanian et al., 2015). Using such a modeling paradigm, control on the grid13

is exerted only by making dispatch decisions. However, transmission switching14

allows system operators an additional method of control by physically switching15

transmission lines in and out of the grid. Previous research has demonstrated16

that transmission switching has a myriad of potential benefits. In one of the17

initial papers on the technique, Fisher et al. (2008) showed that transmission18

switching can produce significant reductions in generation fuel costs. Other19

works have echoed this conclusion with focuses on sensitivity analysis (Hed-20

man et al., 2008; Ruiz et al., 2012) and contingency analysis (Hedman et al.,21

2009). In addition to cost, transmission switching has demonstrated usefulness22

in preventing loadshed (Escobedo et al., 2014; Dehghanian et al., 2015; Brown &23

Moreno-Centeno, 2020), improving system reliability (Korad & Hedman, 2013),24

and, as studied herein, reducing post-contingency violations (Li et al., 2017).25

The herein studied problem, optimal transmission switching, lies within a26

class of computationally complex optimization problems in the area of power27

systems planning and operations. These problems are of substantial interest to28

the operations research community because of their challenging nature and their29
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clear value to practitioners. Important recent work on transmission switching30

in particular includes novel formulations and valid inequalities (Kocuk et al.,31

2016), development of techniques to solve for transmission switching actions un-32

der stochastic conditions (Pichler & Tomasgard, 2016), application of transmis-33

sion switching within the unit commitment problem (Schumacher et al., 2017),34

and accounting for variable renewable energy sources (Cavalheiro et al., 2018).35

A problem fundamentally related to transmission switching is transmission ex-36

pansion planning (TEP), wherein optimal solutions suggest new transmission37

lines to be invested in and added to the power grid. Skolfield et al. (2022)38

derived path-based valid inequalities to ease the difficulty in solution of TEP,39

Ghaddar & Jabr (2019) solved TEP using semidefinite programming, and Mor-40

eira et al. (2021) developed a three-stage approach to solve TEP under climate41

uncertainty.42

There are other problems in power systems planning and operations which43

are of similar interest to the operations research community. Such problems in-44

clude power generation expansion, similar to TEP, wherein new generators are45

added to the power system (Lohmann & Rebennack, 2017; Pineda & Morales,46

2016). Another related problem is in the planning and application of power47

grid defense Alguacil et al. (2014), in which transmission lines identified as crit-48

ical are hardened from malicious or weather-related events. A third problem49

of interest is the optimal phasor measurement unit placement problem (Car-50

valho et al., 2018), which seeks to give full real-time visibility of the network at51

minimum cost. A class of problems regularly-studied by the operations research52

community are the unit commitment and security-constrained unit commitment53

problems, wherein generators are scheduled for operations either with or with-54

out consideration of potential critical contingencies (Lorca et al., 2016; Zheng55

et al., 2013, 2016; Zuniga Vazquez et al., 2022). Finally, a recent topic of interest56

from the academic community is in relation to electric vehicles, wherein oper-57

ations research techniques can be used to account for power system operations58

impacted by vehicle charge and discharge scheduling (Umetani et al., 2017), in-59

ventory management (Sun et al., 2019), and relocation (Gambella et al., 2018).60
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We refer the reader to the work by Skolfield & Escobedo (2022), which provides61

a robust literature review on applications of operations research techniques in62

power systems.63

This work develops a data mining method which identifies transmission64

switching actions to reduce post-contingency voltage magnitude and branch65

flow violations. The use of transmission switching to alleviate violations has66

been an issue of academic interest over recent years. Balasubramanian et al.67

(2016) analyzed switching actions by a major ISO for this expressed purpose.68

Zhao et al. (2019) developed a decomposition-based methodology to identify69

optimal switching actions to reduce violations in light-load settings. Khodaei70

et al. (2010) utilized transmission switching to alleviate violations within the71

context of security-constrained unit commitment. Li et al. (2020) developed72

sensitivity-based factors to identify switching actions to relieve violations. Shen73

et al. (2019) developed a multi-stage approach to reduce voltage violations with74

transmission switching. Most noteworthy to this work is (Li et al., 2017), in75

which several heuristics to identify switching actions to reduce violations were76

developed on real-world, large-scale power system data.77

The proposed methodology applies a guided undersampling method pro-78

posed by (Sung et al., 2022) and then utilizes logistic regression to identify79

post-contingency transmission switching candidates to reduce AC power flow80

(ACPF) violations. Notably, these data mining methods are computationally81

inexpensive and can be quickly executed on real-world AC power system data,82

providing greater certainty regarding both AC system performance and large-83

scale implementation. This is notable because it addresses three of the four84

explanations mentioned in (Li et al., 2017) as to why transmission switching is85

currently being used only in limited capacity: computational complexity, uncer-86

tainty of impact on real-world large-scale power systems, uncertainty of impact87

when moving from DC to AC, and transient stability. These four items are88

substantiated in detail in the following paragraphs.89

1 – Computational complexity: The first explanation for lack of widespread90

implementation of transmission switching is in regard to computational com-91
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plexity or, equivalently, the scalability of algorithms. Mixed-integer nonlinear92

programs (MINLPs), such as the AC optimal transmission switching (ACOTS)93

problem, are notoriously difficult to solve. Because of this, researchers have pri-94

marily tested algorithms on small-scale networks and/or used linearizations to95

reduce the difficulty of the problem, which cast uncertainty over scalability and96

solution accuracy, respectively. These two approaches are discussed in greater97

detail in the following two paragraphs.98

2 – Impact on large-scale systems: The second explanation is that the99

overwhelming majority of research on transmission switching studies small-scale100

systems. A handful of noteworthy research projects have vetted their approaches101

on large-scale systems. Works relevant to the herein studied problem include102

(Li et al., 2016, 2017, 2020; Shen et al., 2019) which each utilize transmission103

switching at a large scale to reduce violations. There have been other note-104

worthy research efforts which study real-world electric power systems but are105

not directly applicable to the application discussed here. Carrión et al. (2021)106

study a related problem of optimal static VAR compensator location at a large107

scale. Li et al. (2021) extend the traditional DC optimal transmission switching108

model with connectivity constraints and test on a large-scale system. Ramesh109

et al. (2021) utilize a decomposition technique to study the security-constrained110

unit commitment problem with switching and test their results on the Polish111

test system. Other recent noteworthy projects which utilize real-world sized112

test cases include (Han et al., 2022a; Mohseni-Bonab et al., 2022; Altun et al.,113

2020).114

In contrast with the above, most works, including the bulk of works cited115

herein, test their approaches on small-scale systems such as the IEEE 118-bus116

test case which appear in test case archives such as (Christie, 2000). Real-world117

systems, however, have up to tens of thousands of buses, obscuring both the118

impact of complexity and scalability of current approaches. Given that most119

algorithms are tested on small systems, it remains unclear if these algorithms120

can be applied in the real world.121

3 – Impact on AC systems: The third item addresses the concern that122
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benefits derived from DC-based models may not translate to AC models. Be-123

cause of the issues associated with solving problems such as the ACOTS, the124

majority of transmission switching research focuses on DC-based models. In-125

deed, excluding noteworthy examples (Soroush & Fuller, 2014; Bai et al., 2017;126

Li et al., 2017, 2016; Kocuk et al., 2017; Shi & Oren, 2015), the papers herein127

cited use linearizations to address the various transmission switching problem128

variants. This is worrisome because, as demonstrated in (Potluri & Hedman,129

2012), transmission switching actions identified by DC models may be infeasible130

or result in negative outcomes when implemented in AC systems. Moreover, as131

aforesaid, most if not all of these models are only tested on unrealistically small132

networks, further clouding the issue of whether conclusions derived from DC133

models can be applied to AC systems.134

4 – Transient stability Finally, we note that relatively recent research has135

shown that transmission line switching may introduce disturbances into power136

systems resulting in transient instability issues (Liu et al., 2011). Despite this137

fact, the overwhelming majority of research in this area fails to account for tran-138

sient stability. There are a small group of noteworthy exceptions. Alhazmi et al.139

(2019) analyze the implications regarding stability and reliability of their trans-140

mission switching solutions, but do not account for them within the algorithm141

itself. Shi et al. (2019) introduce simple transient security constraints into a two-142

stage switching model. Han et al. (2022b) incorporate qualitative constraints to143

seek stability maintenance into their topology control model. Mak et al. (2017)144

propose a novel optimization model which incorporates constraints to seek tran-145

sient stability and an algorithm which incorporates their new model to further146

ensure stability. While the above works take steps to reduce concerns regarding147

transient stability, to the authors knowledge, the methods described by (De-148

hghanian et al., 2015) and (Mak et al., 2017) are the only ones to systematically149

verify stability within the algorithm itself. Moreover, the framework proposed150

in (Dehghanian et al., 2015) can be combined with virtually any approach.151

This work makes three primary contributions. First, to the authors’ knowl-152

edge, our proposed heuristic is the first true data mining technique to classify153
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strong AC transmission-switching actions using power flow information rather154

than a simple history of useful switching actions. Second, our method is unique155

in the literature in that it directly addresses three of the four issues regarding156

transmission switching implementation. Moreover, it can be directly combined157

with with the framework in (Dehghanian et al., 2015) to address the fourth158

issue. Finally, we make a much stronger empirical analysis than the analysis de-159

scribed in (Li et al., 2017), studying the impact of an exhaustive set of switching160

actions on real-world large-scale power system data, rather than a small subset161

of the actions or actions across a small system. A secondary contribution of this162

work is that we formalize the problem characterized in (Li et al., 2017).163

We note that, in recent years, several papers claim to use “previous knowl-164

edge” in the context of a data mining framework, but fail to do so in the way165

data mining is understood. The authors in (Li et al., 2016) propose a heuristic166

where a lookup table containing contingency-specific switching solutions is used167

to select potential switching candidates. The authors in (Hedman et al., 2009)168

propose a similar heuristic where previously-successful switches are considered169

as potential switching actions. Finally, the authors in (Li et al., 2017) extend170

the approach in (Hedman et al., 2009) by splitting previously-successful switches171

into training and testing sets; these switches are subsequently validated accord-172

ingly. However, this method does not incorporate any additional information173

other than the switching action itself.174

In contrast with the above methods, the herein proposed method incorpo-175

rates information about the current status of the grid into a sophisticated data176

mining method to predict the impact of a given candidate switching action.177

Succinctly, the resulting method is a true data mining approach which exploits178

the set of available information to identify candidate switching actions.179

The remainder of this paper is organized as follows. Section 2 presents and180

describes two optimization models for post-contingency ACPF violation reduc-181

tion. Section 3 proposes our data mining heuristic using guided undersampling182

and logistic regression. Section 4 discusses the experimental setup and several183

implementation issues which are inherent to the proposed methodology and the184
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herein studied problem. Section 5 presents our analysis and demonstrates that185

our proposed method identifies optimal and near-optimal switching solutions186

and is superior to existing heuristics based on distance to violation elements.187

Section 6 concludes the work.188

2. ACPF Violation Reduction Optimization Model with Transmis-189

sion Switching190

During post-contingency operations, system operators must be provided191

with corrective actions which are both quick to identify and can be implemented192

with confidence. We note that the execution of transmission switching to alle-193

viate power system violations may represent a decreased burden on the system194

operator than actions such as a generation re-dispatch (Li et al., 2017). As195

an example, ISO New England lists twelve actions to return the system to196

“normal” status. These actions, in order listed by ISO New England, are as197

follows: adjusting phase shifting transformers, adjusting reactive power flows,198

enacting weather-sensitive transmission facility ratings, deviation from economic199

dispatch, opening of circuit breakers, manually tripping generators, transmis-200

sion switching, exceeding generator maximums, load curtailment, capacity pur-201

chases, depletion of temporary reserves, and enacting enhanced facility ratings202

(ISO New England, Sep. 2022). It is frequently to the benefit of the system203

operator to avoid any of the above actions associated with a computationally204

expensive re-dispatch, particularly in the context of contingency response. In205

contrast, transmission switching, particularly when executed within the con-206

text of a data mining approach such as the one proposed herein, represents a207

computationally inexpensive solution to returning the grid to a violation-free208

status.209

One of the traditional manners to derive corrective actions, and in particular210

transmission switching actions, is through the solution of optimization models211

such as those described in this section. As such, we herein describe the math-212

ematical formulation of the ACPF optimization model for violation reduction213
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with transmission switching (ACPF-VR-TS). Note that these problems were214

described qualitatively by the authors in (Li et al., 2017). However, this work215

is the first to formally characterize these problems as optimization models.216

2.1. ACPF-VR-TS for Voltage Magnitude Violations217

The ACPF-VR-TS model for voltage magnitude violation reduction is char-

acterized as follows. We note that the notation utilized in this and the forth-

coming subsection is defined in Appendix A.

min
∑
n∈N

V +
n + V −

n (1a)

subject to

P g
i − P d

i =
∑

⟨i,j⟩∈K

pij i ∈ N (1b)

Qg
i −Qd

i =
∑

⟨i,j⟩∈K

qij i ∈ N (1c)

pij = Zij(gijV
2
i − ViVj(gij cos θij + bij sin θij)) ⟨i, j⟩ ∈ K (1d)

qij = Zij(bijV
2
i − ViVj(gij sin θij − bij cos θij)) ⟨i, j⟩ ∈ K (1e)

V −
n ≥ V min

n − Vn n ∈ N (1f)

V −
n ≥ 0 n ∈ N (1g)

V +
n ≥ Vn − V max

n n ∈ N (1h)

V +
n ≥ 0 n ∈ N (1i)∑

⟨i,j⟩∈K

1− Zij = 1 (1j)

Objective (1a) minimizes the sum of voltage magnitude violations. Constraints218

(1b) and (1c) model active and reactive power injections at bus i, respectively.219

Constraints (1d) and (1e) model the flow of active and reactive power from220

bus i to bus j, respectively, while accounting for transmission switching. Note221

that fixing all binary variables Zij to 1 reduces constraints (1b)-(1e) to the222

constraints which characterize the ACPF. Constraints (1f) and (1g) model the223

violation of the voltage magnitude lower bounds. Constraints (1h) and (1i)224

model the violation of the voltage magnitude upper bounds.225

Finally, Constraint (1j) dictates that the number of allowable transmission226

line switches is equal to one. There are two primary practical explanations for227
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this constraint. First, significant concerns exist regarding transient stability228

with multiple switching actions. Second, physical implementation of transmis-229

sion switching requires substantial effort. This effort magnifies as the number230

of switches increases. We refer the reader to (Brown & Moreno-Centeno, 2020)231

for a detailed discussion on these two topics.232

2.2. ACPF-VR-TS for Branch flow Violations233

The ACPF-VR-TS model for branch flow violation reduction is characterized

as follows.

min
∑

⟨i,j⟩∈K

fij (2a)

subject to

(1b)–(1e), (1j) (2b)–(2e),(2j)

f i
ij ≥ p2ij + q2ij − S2

k ⟨i, j⟩ ∈ K (2f)

f j
ij ≥ p2ji + q2ji − S2

k ⟨i, j⟩ ∈ K (2g)

fij ≥ f i
ij ⟨i, j⟩ ∈ K (2h)

fij ≥ 0 ⟨i, j⟩ ∈ K (2i)

Objective (2a) minimizes the sum of branch flow violations. Constraints234

(2f) and (2g) model violation of thermal limits as a function of apparent power.235

Constraint (2h)-(2i) dictates that the flow violation for transmission line k is236

equal to either zero or the larger of the two violations at each end of the line.237

3. Methodology238

Traditionally speaking, optimal transmission switching actions are sought239

out by characterizing the power system in a steady state. That is, an optimal240

power flow (OPF) or optimal transmission switching (OTS) model is solved,241

and the switching actions are either obtained directly from the solution (when242

using OTS) or further derived from the solution (when using OPF). However,243

as discussed in Section 1 the solution of MINLPs is exceedingly computationally244
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expensive. When considered in the context of real-time operations, this com-245

putational cost is unlikely to be to be satisfied. As such, less computationally-246

intensive methods are required, such as the one proposed in the forthcoming247

paragraphs.248

It is important to note that, as in (Li et al., 2017), we do not solve the249

models outlined in Section 2 via the use of an optimization solver. The primary250

reason for this is because of the computational difficulty associated with solving251

MINLPs. As such, most work addressing problems similar to those in Section252

2 either use linearizations or solve across small systems. In contrast, this work253

seeks solutions to these models via a data mining-based heuristic in a manner254

tractable at a large scale without linearization. The following two paragraphs255

discuss an important feature of transmission switching which contextualizes the256

problem within a data mining framework – imbalanced data. Following this,257

we present our dual-component guided undersampling method, introduce the258

classification methodology, and formalize the proposed method.259

It is well established in the literature that, regardless of objective (e.g., vi-260

olation reduction or cost savings), there are typically only a small number of261

transmission switching actions which result in a substantial objective improve-262

ment. Thus, in a data mining context, identifying strong transmission switching263

actions should be viewed as an imbalanced-data classification problem. In a two-264

class setting, imbalanced data refers to a dataset where one class (the majority265

class) has cardinality substantially larger than that of the opposing (minority)266

class. In such settings, traditional classification algorithms can suffer poor per-267

formance because they can simply classify all instances as majority and still268

achieve a high classification rate. Therefore, when developing a data mining269

approach for transmission switching, one must take care to adequately handle270

the problems inherent to imbalanced data.271

The proposed methodology addresses the imbalanced data problem as fol-272

lows. First, we utilize a guided undersampling procedure (Sung et al., 2022)273

which undersamples the majority class using two instance-selecting techniques.274

The first technique, ensemble outlier-filtering, utilizes a unique ensemble classi-275
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fier to remove both majority and minority outliers from the training data. The276

second technique, normalized-cut sampling, undersamples the majority class277

such that the density distribution of the majority class is preserved. After our278

guided undersampling method, we apply logistic regression to develop the clas-279

sification boundary; i.e., to predict which transmission lines are strong candi-280

dates. The following subsections detail each of the components of the proposed281

methodology.282

3.1. Ensemble Outlier-Filtering283

The first component of the guided undersampling method used herein is en-284

semble outlier-filtering. From a data-analytic perspective, outlier removal is a285

critical component of building an effective classifier. However, when the training286

data is imbalanced, many outlier filtering techniques demonstrate poor perfor-287

mance. To address this, the authors in (Sung et al., 2022) proposed an ensemble288

outlier-filtering technique which utilizes the power of an ensemble classifier in289

which each training set is balanced. The ensemble outlier-filtering technique is290

described as follows. Note that, throughout the remainder of this section, an291

important value is the ratio of majority instances to minority instances, known292

as the imbalance ratio.293

Given a set of n-dimensional data X = Xmaj ∪Xmin, with imbalance ratio294

r =
|Xmaj|
|Xmin| , ensemble outlier-filtering proceeds as follows.295

1. Partition the majority class Xmaj into r subsets of equal size, where each296

subset has cardinality |Xmin|. Construct r distinct training subsets: Xmin297

and one subset of Xmaj.298

2. Train r logistic regression classifiers, one for each subset of the training299

data.300

3. Predict the class of every instance in X using the majority voting scheme:301

instance Xi is assigned to a class if it is predicted as such by at least r
2302

classifiers.303

4. Remove from the training data the outliers – instances whose predicted304

class differs from their true class.305
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One salient characteristic of the method described above is that it seeks to306

remove both minority and majority from the training data. While the removal307

of minority data may appear counterintuitive, as shown in (Sung et al., 2022),308

it is critical to strong imbalanced data classification performance.309

3.2. Normalized-Cut Sampling310

One traditional approach to imbalanced data classification is majority sub-311

sampling, in which a subset of the instances from the majority class is selected312

from the training data in an effort to address class imbalance. However, as313

described in (Sung et al., 2022), the user must take great care to construct their314

majority subsample, as they risk an inaccurate decision boundary if there are315

regions where the density distribution of the greater majority class does not316

persist. To address this, the authors in (Sung et al., 2022) proposed a new317

technique, normalized-cut sampling. This method utilizes the normalized-cut318

segmentation technique proposed in (Shi & Malik, 2000) to iteratively cluster319

the majority class such that the density distribution is preserved and the num-320

ber of majority-class clusters is equal to the cardinality of the minority class.321

The medoids of the clusters are then selected as the majority class subsample.322

Given training data X = Xmaj ∪Xmin, with k = |Xmin|, the normalized-cut323

sampling procedure is described as follows.324

1. Construct graph G1 = (V,E), where V denotes all majority instances and

E contains edges between all node pairs in V . Set edge weights between

node pair (i, j) as

Lij = exp(||Xi −Xj ||2) (3)

2. Initialize an empty set C.325

3. For i = 1 . . . k326

(a) Utilizing the procedure from (Shi & Malik, 2000), bipartition Gi into327

clusters C1
i and C2

i . Add these two clusters to C.328

(b) Construct Gi+1 using the instances from the cluster in C with max-329

imum cardinality (Cmax).330
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(c) Update C = C \Cmax.331

4. Form the majority subsample with the medoids of the clusters in C.332

3.3. Logistic Regression333

Logistic regression is a classification model which estimates the probability

that a given categorical dependent variable belongs to a particular category

(James et al., 2013). Given two categories, denoted numerically as 0 and 1,

and a set of n-dimensional data Xi with target variable Yi ∈ {0, 1}, the logistic

regression model estimates the probability that the target variable is in category

1 as

P (Yi|Xi) =
eβ0+

∑n
j=1 βjX

j
i

1 + eβ0+
∑n

j=1 βjX
j
i

, (4)

where β0 is the intercept of the regression function and βj is the multiplica-

tive regression coefficient associated with the j-th dimension of the data. The

regression coefficients are those which maximize the log-likelihood function

lnL(β|Y ) =

m∑
i=1

Yi lnP (Yi|Xi)

+

m∑
i=1

(1− Yi) ln(1− P (Yi|Xi)),

(5)

where m denotes the number of observations in the data set.334

Note that the output of the logistic regression model from Equation (4) is the335

probability that a given datum Xi belongs to the class of focus. In our case, this336

value can be interpreted as the probability that a transmission switching action337

results in a substantial reduction in post-contingency violation. Therefore, we338

use this probability to rank the set of all transmission lines.339

3.4. Proposed Methodology340

The previous subsections detailed the two components of the guided under-341

sampling method as well as a specific classification methodology. Given training342

data X = Xmaj ∪Xmin, the proposed method is formalized as follows.343

1. Apply ensemble outlier-filtering to the training data X to obtain the clean344

subsample X ′ = X ′
maj ∪X ′

min345
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2. Apply normalized-cut sampling to X ′
maj to further subset the majority346

class and obtain X ′′
maj, where |X ′′

maj| = |X ′
min|347

3. Train a logistic regression model on the clean and balanced training data348

X ′′
maj ∪X ′

min to derive the classification model349

The logistic regression model which is trained in Step (3) can then be uti-350

lized as follows. Given an m × n-dimensional data set where m is the number351

of transmission lines and n denotes the number of variables describing post-352

contingency ACPF information, the model trained in Step (3) can be directly353

applied to such data to predict which transmission lines are strong switching354

candidates. We elaborate on this process in the following section.355

From a practical setting, the above-proposed methodology can be imple-356

mented as follows. The model should be trained and validated in an off-line set-357

ting to account for the computational time associated with the dimensionality358

of the data. Following this, whenever a contingency occurs, a post-contingency359

state should be established. The ISO can then gather the system information360

associated with this post-contingency state. This system information can be fed361

into the model as described above, each viable switching action predicted for362

impact, and the superior switching action implemented.363

4. Experimental Setup364

4.1. Test Case365

The test case utilized for analysis herein consists of emergency management366

system snapshots from the Pennsylvania New Jersey Maryland Interconnection367

(PJM). These snapshots span 167 hours, each with a different load profile, and368

total of 8064 critical contingencies across the entire test case. For a detailed369

description on how these contingencies were identified, we refer the reader to370

(Li et al., 2017). The PJM system consists of approximately 15,500 buses,371

2,800 generators, and 20,500 transmission lines. The total active power load is372

approximately 139 GW and the total reactive power load is approximately 22373

GW.374
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4.2. Data Development375

4.2.1. Exhaustive Search of Switching Actions376

To develop the training data which drives the predictive model, we per-377

formed an exhaustive search (henceforth referred to as the “exhaustive search”)378

of non-radial transmission switching actions across all critical contingencies from379

(Li et al., 2017) as described in the following paragraph. Because it is indeed380

exhaustive, this search guarantees that, for each contingency, we will identify381

the switching action that reduces the most violations (i.e., the optimal switching382

action). This is a salient point which allows this work to be the first to conduct383

a thorough analysis using the true optimality gap (as defined in Section 5.1) for384

the herein studied heuristics and for a problem of this size. We note that the385

exhaustive search is conducted using a series of AC power flow solutions before386

and after a switching action has occurred. The analysis of such actions allow for387

the data mining approach proposed in Section 3.4 to identify strong switching388

actions in seconds, rather than via an optimization methodology, dramatically389

reduce the computational cost associated traditional approaches as discussed in390

Section 3.391

We perform the exhaustive search for each hour and critical contingency.392

For contingencies which did not include generator failure, all generator outputs393

remained at the pre-contingency level with the exception of the slack bus. For394

contingencies which simulate generator failure, re-dispatch was performed using395

a participation factor as outlined in (LI et al.). Finally, only a single corrective396

line switch is implemented. The procedure utilized to generate the data is thus397

described in the following steps. Given a power system instance with n non-398

radial lines, the exhaustive search proceeds as follows.399

1. Run ACPF using given input data400

2. Simulate contingency401

3. Calculate re-dispatch (if necessary)402

4. Run ACPF403

5. Record system information404
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6. For i = 1 . . . n405

(a) Perform line switch406

(b) Run ACPF407

(c) Record remaining violation magnitude (if any)408

Note that, in Steps (5) and (6c), information gathered includes both voltage409

magnitude and branch flow violations. As such, the exhaustive search generates410

data for both problems outlined in Section 2. The exhaustive search outlined411

above was run systematically to include all critical contingencies identified in412

(Li et al., 2017) and all feasible line switches. Doing so yields a rich data set413

which can be exploited via the use of data mining techniques.414

4.2.2. Data Features415

There are several important pieces of data collected during step (5) which416

drive the prediction methodology. The first set of features describes the switch-417

ing element. This set includes branch resistance, reactance, susceptance, ther-418

mal rating, and active and reactive power flow. Next, we gathered the mag-419

nitude of all violations within a set of distances, calculated using undirected420

distance, around the switching element. The third group of data we gathered421

were characteristics of the violation elements including bus type, active and re-422

active power demand, node degree, resistance, reactance, MVA rating, active423

power flow, and reactive power flow. Next, we measured the undirected distance424

from the switching element to each violation element, the distance from each425

violation element to the contingency element, and the distance from the switch-426

ing element to the contingency element. Finally, we gathered distance data in427

a directed fashion, using the flow of active power to construct a directed graph.428

From this graph we identified distances identical to those described above.429

We note that the model herein developed is sensitive to the set of features430

used to train it. As such, we conducted feature selection prior to training the431

model. We utilized the first 83 hours (approximately on half of the data set), to432

conduct a forward-stepwise procedure to select a set of features which minimized433
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the optimality gap. As such, all forthcoming experiments were conducted on434

the remaining 84 hours of data described in Section 4.1.435

4.2.3. Training Data436

To train the classification model outlined in Section 3, we took the top437

100 switching actions according to the exhaustive search for each hour, crit-438

ical contingency, and violation type. We took only the top 100 switches for439

three reasons. First, this allowed us to satisfy the memory requirements of the440

computational setup used to perform our experiments. Second, we note that441

even using the top 100 switching actions results in an imbalanced data set.442

Specifically, for voltage magnitude violations, approximately 2.5% of the top443

100 switches result in an optimality gap of less than ten percent. For branch444

flow violations, only 5.7% switches result in such an optimality gap. Finally, we445

note that it has been established in the literature that one successful approach446

to majority subsampling is to focus on regions where the majority and minority447

classes overlap (Japkowicz, 2000).448

4.3. Cross-Validation449

Cross-validation is imperative for the development of any predictive model to450

properly assess the model’s strength. However, it bears mentioning that cross-451

validation in this setting is different than in traditional contexts. In an effort452

to minimize bias from similar instances, each fold used during cross-validation453

consisted of all contingencies within a single hour out of the 84 hours used for454

testing as described in Section 4.2.2. The remaining data used to train the model455

consists of all contingencies within the remaining 83 hours. This resulted in an456

84-fold cross-validation procedure. On average, each cross-validation iteration457

took approximately 25.59 minutes for model training and testing. In addition,458

each contingency in the test fold was tested individually for the performance459

metric described in Section 5.1. That is, rather than a single data point for460

each fold, testing generates a number of data points equal to the number of461

contingencies within the given hour.462
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4.4. Computational Environment463

All computational experiments herein described for data generation (Section464

4.2) were conducted in a distributed environment on computing nodes which had465

22GB of RAM shared by two 2.8 GHz quad core Intel 503 Xeon 5560 processors466

using Texas A&M University supercomputing resources. The operating sys-467

tem was CentOS Linux version 7.6.1810. All power flows were solved using the468

MATPOWER toolbox (Zimmerman et al., 2011). All tasks related to model de-469

velopment, feature selection, and cross-validation were conducted on a machine470

equipped with 8 GB of RAM memory and a quad-core 1.8 GHz Intel i7-8565U471

processor. Ensemble outlier-filtering, normalized-cut sampling, and logistic re-472

gression models were implemented using the LIBLINEAR package Fan et al.473

(2008) within MATLAB.474

We note that supercomputing resources were utilized not because of the475

computational time associated with model training nor prediction nor the cost476

of solution of the power flow problem itself. In contrast, the supercomputing477

resources were utilized due to the sheer number of scenarios studied herein.478

Specifically, as described in Section 4.1 there were over 8000 contingencies to479

test across the 167 hours. Of the roughly 20,500 transmission lines, on the order480

of 16,000 resulted in valid switching solutions, resulting in approximately 128481

million power flows to solve. Though each such power flow can be solved in482

a fraction of a second either in a supercomputing infrastructure or a standard483

workstation, it was the number of cores available which made such an analy-484

sis feasible given the data provided. It merits mentioning that such data can485

be gathered within the context of a regularly-scheduled contingency analysis486

procedure.487

5. Results488

5.1. Performance Metric489

To measure the effectiveness of our data mining heuristic, we utilize the opti-

mality gap. This measure describes the relative difference between the percent-

19



age of violations reduced by the optimal switching action and the corresponding

value from the best action chosen by the heuristic. We utilize the percentage of

violations reduced because it dampens the impact of instances with a particu-

larly large or small initial violation magnitude. As mentioned in Section 4.2.1,

we note that the exhaustive search guarantees the identification of the optimal

solution. Therefore, the forthcoming analysis using the optimality gap provides

context on how closely a heuristic performs relative to the optimal solution. The

optimality gap is calculated as follows

Gap% =
V ∗ − V H

V ∗ × 100, (6)

where V ∗ denotes the percentage of violation reduction stemming from the op-490

timal switching action as identified by the exhaustive search, and V H denotes491

corresponding value stemming from the switching action proposed by the heuris-492

tic. Note that we calculate this value separately for voltage magnitude violations493

and branch flow violations.494

5.2. The Data Mininig Heuristic Consistently Identifies Optimal or Near-Optimal495

Transmission Switching Actions496

Table 1 shows the average and standard deviation of the optimality gap497

obtained for the top switching action according to Equation (4), fixed all other498

lines as closed, and solved the ACPF problem associated with that topology.499

The results are broken out by violation type.

Table 1: Summary statistics for optimality gap

Violation Type Mean St. Dev.

Voltage Magnitude 5.51% 17.60%

Branch Flow 5.89% 93.71%

500

Table 1 shows that the data mining heuristic produces strong performance in501

terms of optimality gap. Specifically, for both violation magnitude and branch502

flow violations, the average optimality gap of the top switch identified by the503

data mining heuristic is less than six percent, which is a very reasonable result504
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in practice for real-world, large-scale systems. However, the branch flow vio-505

lations produce a relatively large standard deviation. This is largely because506

of three instances, where the data mining heuristic produced optimality gaps507

substantially larger than 100%. Removing these three instances, the standard508

deviation drops to 17.5%, a much more reasonable value. The following para-509

graphs explore these results in greater detail.510

Figure 1 shows a histogram of the optimality gaps attained by the data511

mining heuristic for the two types of violations. The first finding shown in512

Figure 1 is that the bulk of instances fall either at zero or less than 0.1%. This513

means that, for the bulk of instances herein studied, the data mining heuristic514

identified optimal or near-optimal switching actions.
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Figure 1: The data mining heuristic attains optimality gaps at or near zero in the overwhelm-

ing majority of instances

515

One additional important finding from Figure 1 is the number of scenarios516

with optimality gaps greater than 50%. Specifically there are 135 such sce-517

narios for voltage magnitude violations and 176 such scenarios for branch flow518

violations. We note that these scenarios make up only approximately 1.7% and519

2.2% of studied instances, respectively, further demonstrating the strength of520

the method.521
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To put these results in context, we note that, as mentioned in Section 4.1,522

the data upon which the herein proposed approach was developed consists of 167523

distinct load profiles. Each a snapshot of the existing system operated by PJM.524

As such, the methodology is robust to changes in the system load. Moreover,525

if dramatic changes in the system should occur which significantly impact the526

load profile, it is simply a matter of data generation and model re-training to527

incorporate these changes into the herein proposed approach.528

5.3. The Data Mining Hueristic Attains an Optimality Gap Substantially Smaller529

than that of a Distance-based Heuristic530

While Section 5.2 showed that the data mining heuristic produced strong531

performance in its own right, it is also important to compare against the strongest-532

performing existing methods. The authors in (Li et al., 2017) developed distance-533

based heuristics which constitute the strongest-performing methods which are534

viable at a large scale for the problems outlined in Section 2. Specifically, the535

authors in (Li et al., 2017) developed a heuristic which obtains solutions based536

on the distance from the candidate branch to the violation element (CBVE).537

However, CBVE only identifies switches in the area around the violation element538

rather than focusing on characteristics of the switches themselves. Therefore,539

the following experiments utilize a candidate pool – a group of switching can-540

didates from which the best switch is selected. We note that, to achieve best541

performance, we re-conducted feature selection as described in Section 4.2.2 us-542

ing a candidate pool of ten. In the interest of full disclosure, we note that the543

authors in (Li et al., 2017) also developed a heuristic using the distance from the544

switch to the contingency element. However, in our experiments, this method545

was effectively dominated by CBVE. We therefore excluded it from our analysis.546

547

Table 2 summarizes the performance of the two heuristic methods in terms548

of the optimality gap using a candidate pool of size ten. Specifically, Table 2549

shows the mean and standard deviation of the optimality gap for the proposed550

data mining method, denoted DM-10, against that of the distance-based metric,551
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CBVE, when using a candidate pool of size ten. These results are broken out552

by the type of violation.553

Table 2: Summary statistics for optimality gap using a candidate pool of size ten

Violation Type Method Mean St. Dev.

Voltage Magnitude
DM-10 3.41% 15.91%

CBVE 28.94% 8.91%

Branch Flow
DM-10 0.04% 0.81%

CBVE 1.58% 10.04%

Table 2 shows that the data mining heuristic outperforms the distance based554

heuristic across the board. In regard to voltage magnitude violations, the pro-555

posed heuristic attains an average optimality gap over eight times smaller than556

that of the distance-based heuristic. Regarding branch flow violations, the aver-557

age optimality gap using the data mining heuristic is almost forty times smaller558

than that of the distance-based heuristic; the standard deviation is 12 times559

smaller using the same comparison. These results show that, at a high level,560

the data mining heuristic has extremely strong performance against distance-561

based heuristics in terms of the optimality gap. The remainder of this section562

explores these results in greater detail.563

Figure 2 plots the empirical cumulative distribution function (ECDF) of the564

optimality gaps obtained for voltage magnitude violation reduction by both the565

proposed data mining heuristic and the distance based heuristic. An ECDF566

plots the fraction of data points that are less than or equal to a certain value567

for all possible values of the metric of interest. We use this plot because it568

characterizes the fraction of instances for which each heuristic achieves a certain569

performance.570

There are two findings from Figure 2. First, for the data mining heuristic,571

there is a vertical line at zero which reaches almost 92% of instances. This572

means that, in approximately 92% of studied instances, the proposed heuristic573

identified the optimal switch. In contrast, the distance-based heuristic had no574
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Figure 2: DM-10 dramatically outperforms CBVE for voltage violation reduction in terms of

the optimality gap

such instances where the optimal switch was found within the candidate pool.575

This can be seen when the blue line diverges from the red line. These results576

show that, for the test case studied here, the data mining heuristic dramatically577

outperforms the distance-based heuristic in identifying optimal or near-optimal578

solutions.579

The second finding is the relative performance between the data mining580

heuristic and the distance-based heuristic. Specifically, the proposed data min-581

ing heuristic attains an acceptable optimality gap of less than ten percent in582

over 93% of instances and and optimality gap of less than 25 percent in over583

96% of instances, respectively. In contrast, the distance-based heuristic only at-584

tains such performance in and 3.3% and 29% of instances, respectively. We can585

therefore conclude that, for the test case studied here, the data mining heuris-586

tic dramatically outperforms the distance-based heuristic in the reduction of587

voltage magnitude violations.588

Next, we conducted an identical analysis to the one described above studying589

the impact of the two heuristics on branch flow violations. Figure 3 shows the590

ECDF for both the data mining heuristic and the distance-based heuristic.591
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Figure 3: DM-10 performs more strongly in branch flow violations than CBVE

Figure 3 shows that, while the two heuristics are much more competitive592

in the case of branch flow violation reduction, the data mining heuristic is still593

the superior method. The first finding from Figure 3 is that both heuristics594

have a long vertical line at or near zero. This shows that both methods have595

strong performance in this case. Specifically, the data mining heuristic attains596

an optimality gap of less than 0.1% in over 92.8% of instances. The distance-597

based heuristic attains such a performance in over 89.5% of instances. If we598

increase the threshold to an optimality gap of one percent, the data mining599

heuristic identifies such a switch in over 99.6% of solution and the distance-600

based heuristic identifies such a switch in over 97.2% of solutions. These results,601

and those described by Figure 2 show that the proposed data mining heuristic602

definitively outperforms the distance based heuristic for the test case studied603

here.604

6. Conclusion605

This work developed a data mining heuristic to identify transmission switch-606

ing candidates to reduce post-contingency voltage magnitude and branch flow607
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violations. We used real-world large-scale AC power system data to generate a608

robust data set to feed into our logistic regression model with guided undersam-609

pling. The resulting heuristic demonstrated considerable performance in identi-610

fying strong transmission switching solutions, even given the substantial size of611

the PJM system. Our methodology shows the ability of data mining methods to612

substantially reduce the workload associated with identifying strong transmis-613

sion switching candidates for post-contingency violation reduction. While the614

specific predictive model (i.e., the features chosen during feature selection and615

the regression coefficients) may not be specifically applicable to every system,616

the methodology herein proposed should generate a model which exhibits strong617

performance on alternate data sets.618

We first showed that the data mining heuristic has strong performance in619

terms of accuracy. Specifically, using only the top switch identified by the data620

mining heuristic, the proposed methodology attained an average optimality gap621

of 5.5% for voltage magnitude violations and 5.9% for branch flow violations.622

Moreover, for both violation types, the bulk of studied instances ( 92% and 93%,623

respectively ) result in optimality gaps of less than 0.1%. We therefore conclude624

that the data mining heuristic can regularly identify optimal or near-optimal625

solutions. We also showed that the data mining heuristic substantially outper-626

forms distance-based heuristics in terms of accuracy. Using a candidate pool627

of only ten switches, the proposed heuristic outperformed an existing distance-628

based heuristic in terms of average optimality gap by over eight times for voltage629

magnitude violations and over 35 times for branch flow violations. These find-630

ings show that data mining methods such as the data mining heuristic with631

guided undersampling developed herein are noteworthy techniques which can632

identify optimal and near-optimal candidate switching actions for the herein633

studied problem with extremely high regularity.634

One potential area of future study is the integration of transient stability635

integration into or alongside the herein studied method. As discussed in Section636

1, the proposed methodology can be paired with that of (Dehghanian et al.,637

2015) in order to fully validate transmission switching actions. Moreover, it638
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is possible that transient stability of the system can be integrated into the639

prediction step itself using sophisticated methods. An additional area of future640

work is in the area of data visualization. It would be beneficial to develop tools641

which, within the context of real-time contingency response, could identify either642

(1) areas of critical concern or (2) areas with significant improvement due to643

transmission switching, and highlight them and the associated impact in real-644

time. Such tools could be used in the context of other approach such as the one645

proposed by Li et al. (2017).646

Our method demonstrates the strong performance that data mining meth-647

ods can achieve in regard to power systems operation. Specifically, our proposed648

method is one of few which uses data mining techniques to address power sys-649

tems operations. Moreover, ours is the first true data mining technique applied650

to transmission switching in a large-scale AC context. As mentioned previ-651

ously, transmission switching is only implemented in limited capacity because652

of concerns over computational complexity, uncertainty of AC performance, and653

scalability to real-world systems. Because our data mining heuristic is compu-654

tationally inexpensive, addresses an AC system problem directly, and has been655

rigorously tested on real-world large-scale data, it addresses these three issues656

directly. Given the performance of our model, it should be strongly considered657

in the use of post-contingency violation reduction. More importantly, it should658

motivate the study and development of new data mining techniques to address659

this and similar power systems operations problems.660

Appendix A. Nomenclature661

Parameters662

gij , bij Real/imaginary components of admittance of transmission line ⟨i, j⟩

pdn, q
d
n Active/reactive power demand at bus n

pgn, q
g
n Active/reactive power output at bus n

Sij MVA rating for line ⟨i, j⟩

V min
n , V max

n Min/max voltage magnitude at bus n

663
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Sets664

⟨i, j⟩ ∈ K Set of transmission lines

n ∈ N Set of buses
665

Decision Variables666

gij , bij Real/imaginary components of admittance of transmission line ⟨i, j⟩

pdn, q
d
n Active/reactive power demand at bus n

pgn, q
g
n Active/reactive power output at bus n

Sij MVA rating for line ⟨i, j⟩

V min
n , V max

n Min/max voltage magnitude at bus n

667
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