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Abstract: Ni-rich Li(NixCoyMnz)O2 (x ≥ 0.8)-layered oxide materials are highly promising as cathode
materials for high-energy-density lithium-ion batteries in electric and hybrid vehicles. However,
their tendency to undergo side reactions with electrolytes and their structural instability during
cyclic lithiation/delithiation impairs their electrochemical cycling performance, posing challenges
for large-scale applications. This paper explores the application of an Al2O3 coating using an
atomic layer deposition (ALD) system on Ni-enriched Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode
material. Characterization techniques, including X-ray diffraction, scanning electron microscopy,
and transmission electron microscopy, were used to assess the impact of alumina coating on the
morphology and crystal structure of NCM811. The results confirmed that an ultrathin Al2O3 coating
was achieved without altering the microstructure and lattice structure of NCM811. The alumina-
coated NCM811 exhibited improved cycling stability and capacity retention in the voltage range of
2.8–4.5 V at a 1 C rate. Specifically, the capacity retention of the modified NCM811 was 5%, 9.11%,
and 11.28% higher than the pristine material at operating voltages of 4.3, 4.4, and 4.5 V, respectively.
This enhanced performance is attributed to reduced electrode–electrolyte interaction, leading to fewer
side reactions and improved structural stability. Thus, NCM811@Al2O3 with this coating process
emerges as a highly attractive candidate for high-capacity lithium-ion battery cathode materials.

Keywords: Ni-rich cathode; surface coating; lithium-ion batteries; atomic layer deposition

1. Introduction

Rechargeable lithium-ion batteries (LIBs) are pivotal in the evolution of microelec-
tronics and serve as primary power sources for portable electronic devices. Their superior
energy density, both in terms of weight and volume compared to other rechargeable battery
technologies, has made them ubiquitous, integral, and essential components of modern
life [1–3]. The burgeoning demand for electric vehicles (EVs) and hybrid electric vehicles
(HEVs) has positioned LIBs as a promising solution to meet the requirements for high
energy and power density [4,5]. Among all types of cathode materials, LiNixCoyMnzO2
(NCM, where x + y + z = 1)-layered oxide materials have attracted attention due to their
low cost, high capacity, and long stability [6]. In particular, Li(Ni0.8Co0.1Mn0.1)O2, as a
crucial component of lithium-ion batteries, has garnered considerable attention due to its
high reversible specific capacity (200 mAh g−1) resulting from the double-redox reaction of
Ni2+/Ni4+ and its relatively favorable cost profile [7]. Following the commercial success
of NCM with moderate nickel content, it has been demonstrated that producing Ni-rich
NCM-layered oxides (≥0.8) with higher nickel and lower cobalt content is an effective
strategy to enhance the cathode’s specific capacity and operating voltage while reducing
costs [8,9]. This approach is particularly well-suited for practical applications in the EV
sector. Nevertheless, the practical adoption of Ni-enriched NCM materials faces challenges
such as rapid capacity decay and increased impedance upon cycling due to pronounced
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structural instability and an unstable electrode–electrolyte interface [10–12]. The main
mechanisms for electrochemical degradation are as follows: (i) irreversible migration of
Ni ions to Li sites due to the similar ionic radii of Ni2+ (0.69 Å) and Li+ (0.76 Å), leading
to Ni/Li mixing [13]; (ii) the reaction of residual lithium on the surface with moisture in
the air, forming passivating layers such as Li2CO3 and LiOH on the cathode surface [14];
(iii) the dissolution of transition metals, resulting in interfacial resistance and capacity
deterioration; and (iv) irreversible detrimental phase transitions among three hexagonal
structures (H1, H2, and H3) that manifest when Ni-rich cathode materials undergo repeated
Li insertion/extraction, particularly during highly charged/discharged states, leading to
microcrack propagation and pulverization [15,16]. The mentioned drawbacks hinder the
commercialization of high-Ni-content cathode materials in LIBs.

Surface modification has emerged as a great strategy for enhancing the electrochemical
performance of Ni-rich cathode materials and resolving the mentioned technical issues, as a
continuous coating can effectively decrease the occurrence of parasitic surface reactions and
stabilize both surface and bulk structure of the materials [17,18]. A suitable coating is char-
acterized by properties such as conformality, low thickness, integrity, and continuity [19].
Metal oxides such as TiO2 [20], ZrO2 [21], Al2O3 [22], and MgO [23] are the most common
materials used for their low cost and high protection properties. Among these, Al2O3 has
been widely utilized as a coating for cathode active materials in LIBs, which can be applied
using wet chemistry or atomic layer deposition (ALD) techniques [24]. The ALD method
has earned a good reputation for producing ultrathin films with atomic-level control using
sequential, self-limiting surface reactions [25]. It has been reported that ZrO2 [26], TiO2 [27],
and MgF2 [28] coatings applied to cathode active materials using ALD have enhanced the
stability of the surface-modified samples.

Herein, an ultrathin Al2O3 coating (2 nm) using an ALD machine was adopted for
the surface of NCM811 cathode active material for LIBs using trimethylaluminum (TMA)
and H2O in a process consisting of two half-reaction steps. The resultant Al2O3-coated
NCM811 was assembled as cathode electrodes, demonstrating significantly improved
stability compared to pristine electrodes upon prolonged cycling.

2. Materials and Methods
2.1. Materials Synthesis

NCM811 powder was produced by the solid-state method. All the reagents used
in this research were purchased from Sigma-Aldrich company (St. Louis, MO, USA). A
mixture of high-purity NiSO4.6H2O, CoSO4·7H2O, and MnSO4·H2O was dissolved in
distilled water (1 mol/L), maintaining a molar ratio of Ni:Co:Mn = 8:1:1. Then, a 2 mol/L
NaOH solution was added to the transition metals solution under a N2 atmosphere while
mixing the two solutions. The pH was adjusted to 10.0–11.0 using NH3·H2O, and the
temperature was maintained at 50 ◦C for 24 h. The resultant powder was then filtered and
washed using distilled water. Following this, the obtained powder (Ni0.8Co0.1Mn0.1(OH)2)
was kept in a vacuum oven at 120 ◦C for 24 h. Finally, Ni0.8Co0.1Mn0.1(OH)2 and LiOH.H2O
were mixed at a 1.00:1.05 molar ratio and ball-milled, followed by calcination of the mixture
at 750 ◦C for 12 h under a pure oxygen atmosphere in a tube furnace.

Al2O3 on NCM811 was performed in an Angstrom-Dep ALD machine (Albuquerque,
NM, USA), which was equipped with a rotary reactor. NCM811 powder served as the active
material to be coated with Al2O3. Nine grams of NCM811 powder were loaded into the
rotary reactor. N2 gas was employed as the carrier and purging gas, with the temperature
of TMA and water set at 90 ◦C, while the batch reactor was maintained at 120 ◦C. The
two half-reaction steps consisted of injecting TMA and H2O with 0.2 and 0.5 s purging,
respectively, between each pulse, and purging of 30 s after the last pulse. Three ALD
growth cycles were used to prepare the Al2O3-coated powders. However, the resulting film
thickness was 2 nm, which is approximately 6–7 times thicker than expected from ALD.
This suggests that chemical vapor deposition (CVD) might contribute significantly to the
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growth process. The deviation in thickness is likely due to the short pulse and purge times
used during the process.

2.2. Material Characterizations

Powder X-ray diffraction (XRD) analysis was conducted using a Bruker AXS D8
(Billerica, MA, USA) Focus diffractometer equipped with a LynxEye position-sensitive
detector (PSD), utilizing Cu Kα radiation (λ = 0.15406 nm) and a 0.2 mm slit (Empyrean
XRD PANalytical, UK) on pristine and alumina-coated NCM811. The diffraction pattern
was recorded in the 2θ range of 10–80◦ with a step size of 0.02◦ and a count time of 3 s per
step. Morphological characteristics and particle size were examined using a field emission
scanning electron microscope (Hitachi FESEM Model SU7000, Tokyo, Japan) equipped with
an elemental energy dispersive spectroscopy (EDS) detector. The chemical composition
of samples was determined by EDS. A transmission electron microscope (TEM) operated
at 200 kV was employed to identify the thickness and continuity of the coating on the
powder’s surface.

2.3. Electrochemical Measurements

The as-prepared materials underwent electrochemical measurements in CR2032 coin
cells at room temperature. Cathode electrodes were prepared using a slurry coating
procedure. The slurry comprised 80 wt.% NCM811 (active material), 10 wt.% Super-P
carbon black (conductive agent), and 10 wt.% polyvinylidene difluoride (PVDF, binder)
dissolved in N-methyl-2-pyrrolidene (NMP). The solution was stirred overnight with a
magnetic stirrer, and the cathode electrodes were fabricated by tape-casting the mixed
slurry onto battery-grade aluminum foil using the doctor blade method. After tape casting,
the cathodes were dried overnight at 120 ◦C in a vacuum oven. The CR2032 coin cells
were assembled in an argon-filled glove box under a dry argon atmosphere and <0.1 ppm
water and oxygen. The electrolyte used was 1 M LiPF6 dissolved in a 1:1 mixture of
ethylene carbonate (EC) and diethyl carbonate (DEC). Lithium foil served as the anode,
and a Celgard 2400 membrane acted as the separator. The cathode electrode mass loading
was approximately 2.3–2.5 mg cm−2. Following assembly, the cells rested for 10 h before
electrochemical characterization.

For the rate capability test, cells were charged in the galvanostatic mode to cutoff
voltages of 4.3, 4.4, and 4.5 V with varying current densities (0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 C,
1 C = 200 mAh g−1, where g refers to the mass loading of the active material) followed by
discharging to 2.8 V at the same rate as charging using a NEWARE battery testing machine.
A 10 min resting period was applied prior to each step. Long-term cycling was conducted
at 1 C for 150 cycles. The half-cells were cycled at 0.1 C for 3 cycles before cycling at 1 C.

Three-electrode cells were employed for cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS), with lithium foil as the reference and counter electrode in a
three-electrode cell system. Cyclic voltammograms of the electrodes were recorded within
the potential range of 2.8–4.6 V at a scanning rate of 0.1 mV s−1. The samples were cycled
at 0.05 C for 3 cycles before CV measurements. EIS measurements were performed in a
frequency range of 100 kHz to 10 mHz with a perturbation amplitude of ±10 mV when
the samples were charged to the upper cutoff voltage. The measurements were conducted
using a CHI 660E electrochemical workstation.

3. Results and Discussion
3.1. X-ray Diffraction Analysis

Pristine and coated samples were analyzed by XRD to evaluate crystal ordering and
determine any impurities and phase changes during powder synthesis and the Al2O3
deposition process. As shown in Figure 1, the XRD patterns of both samples indicate that
the powder structures are well indexed to the layered hexagonal α-NaFeO2 type belonging
to the R-3m space group. There are no significant shifts in peak positions or any new phases
related to impurities. The I(003)/I(104) ratio of both samples is approximately the same



Micromachines 2024, 15, 894 4 of 11

and exceeds 1.2, 1.78, and 1.71 for uncoated and coated samples, respectively. Any change
in the I(003)/I(104) ratio is attributed to changes in lithium content in the unit cell, which
typically occurs during additional heat treatment in the coating process [29]. It is generally
accepted that a peak intensity ratio greater than 1.2 signifies a good layered structure and a
lower degree of Li+/Ni2+ cation mixing in the lattice [30]. Moreover, the obvious splitting
of the (006), (102) and (108), (110) peaks indicates the maintenance of a well-ordered layered
structure as well as a high degree of crystallinity [31]. Additionally, there is no shift in the
(003) reflection in the coated sample, which significantly implies two points: first, powder
synthesis is highly accurate, and second, the Al2O3 coating process has no effect on the host
crystal structure of NCM811 powder and does not introduce a new phase into the particles.
This might be related to the fact that the coating deposition process was performed at a
low temperature (120 ◦C), which inhibited Al diffusion into the lattice structure, ensuring
no changes occurred in the crystal structure during the coating synthesis. The distinct
diffraction peak of the Al2O3 phase is not detected in the NCM811@Al2O3 XRD pattern.
This suggests that an ultrathin alumina coating covered the NCM811 particle surfaces and
that the coating has a very low content and is an amorphous structure, which would be
expected for a growth temperature of 120 ◦C.
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Figure 1. XRD patterns comparing the (a) pristine and (b) NCM811 surface modified with Al2O3.

3.2. Morphology

SEM images (Figure 2a,b) were captured to analyze the surface morphology and
microstructure of the samples. Both samples exhibited secondary microspherical-like shape
particles due to the aggregation of numerous nanometer-sized primary particles. Notably,
the surface morphology of NCM811 particles remained unchanged, indicating a thin Al2O3
layer. EDS mapping of transition metals and Al (Figure 2c,d) was conducted to determine
the element distribution on the particle surface. The images confirm the homogeneous
distribution of transition metals and Al in the coated sample, indicating the desirable
conformality and uniformity of the applied coating. TEM observation (Figure 2e) reveals a
smooth and uniform Al2O3 coating achieved on the NCM811 particles, with an ultrathin
thickness. The coating thickness is critical; too thick a coating inhibits Li+ ion intercalation
and extraction, while too thin a coating is ineffective in protecting the cathode material
from reactions with the electrolyte [32]. More measurements for the coating thickness are
provided in Figure S1.
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Figure 2. SEM images showing (a) pristine and (b) NCM811 coated with Al2O3, along with EDS-
mapping of (c) pristine NCM811 and (d) Al2O3-coated NCM811 particles. Additionally, TEM images
depicting the Al2O3-coated NCM811 particle are shown in (e).

3.3. Electrochemical Properties

The impact of Al2O3 using the ALD coating system on the enhancement of the electro-
chemical performance of the NCM811 cathode material was assessed through cycling at
1 C across the voltage ranges of 2.8–4.3, 4.4, and 4.5 V vs. Li/Li+ at 25 ◦C, as depicted in
Figure 3. The results reveal that the coated sample demonstrated superior electrochemical
performance across all upper cutoff voltages. Particularly noteworthy is the significant
difference in capacity retention as the upper cutoff voltage increased, with values of 82.00%,
75.68%, and 63.64% for pristine NCM811 compared to 87.00%, 84.79%, and 74.92% for the
modified sample at 4.3, 4.4, and 4.5 V, respectively. Furthermore, both samples exhibited
Coulombic Efficiency (CE) exceeding 95%. At the critical 4.5 V cutoff voltage, the Al2O3-
coated sample delivered a discharge capacity of 198.93 mAh g−1 at 1 C discharge current,
slightly lower than pristine NCM811, which yielded 200.66 mAh g−1. After 150 cycles,
the former delivered 149.04 mAh g−1, while the latter achieved 127.69 mAh g−1. The
diminished capacity retention of the uncoated sample compared to the coated counterpart
can be attributed to the high polarization and deterioration of the interface structure of
NCM811, particularly under high upper cutoff voltage operation [33]. Indeed, the uniform
nano-Al2O3 coating reduced the electrode–electrolyte reaction at the interface and delayed
the formation of a thick passive layer, thereby postponing polarization at the material
interface. Additionally, the formation of HF in the electrolyte leads to damage to cathode
materials, while an ultrathin layer can significantly prolong the onset of severe degradation
of the active material [34]. The relevant electrochemical stability results corresponding
to this experiment are provided in Table 1. The data in Table 1 suggest that although the
discharge capacity of the samples in the first few cycles is higher at 4.5 V cutoff potential,
the capacity loss is comparable. Therefore, an operating voltage of 4.4 V can be identified
as the optimized working condition for NCM811@Al2O3, striking a balance between capac-
ity retention and high-capacity delivery. One plausible explanation for the poor cycling
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stability of NCM811 when charging to a 4.5 V potential is electrolyte oxidation and the side
reactions between the cathode and electrolyte [35].
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while the lower ones illustrate the voltage fading after 150 cycles.

Table 1. Electrochemical data for stability of bare and Al2O3-coated NCM811 over 150 cycles between
2.8 and 4.5 V.

Sample 1st Discharge
Capacity (mAh g−1)

150th Discharge
Capacity (mAh g−1)

Capacity
Retention (%)

Voltage Fading
(V)

Upper Cutoff
Voltage (V)

Pristine
NCM811

179.46 147.51 82.00 0.0986 4.3

189.62 144.52 75.68 0.1559 4.4

200.66 127.69 63.64 0.3522 4.5

Al2O3-Coated
NCM811

179.61 152.25 87.00 0.0710 4.3

187.23 158.74 84.79 0.1413 4.4

198.93 149.04 74.92 0.2930 4.5

Voltage fading in Ni-rich NCM cathode materials occurs during cycling, primarily due
to the destruction of the crystal structure and irreversible phase transitions. Galvanostatic
voltage profiles recorded with a discharge current density of 1 C for both pristine and
coated samples for the 1st and 150th cycles are illustrated in Figure 4 to compare the voltage
decay over cycling. It is evident that, for all samples, the discharge profiles gradually
shifted to lower voltage plateaus during cycling, accompanied by a decrease in discharge
capacity. This phenomenon is attributed to the dissolution of transition metals from the
active material due to structural and interfacial instabilities [36]. Moreover, the voltage
fading increased as the upper cutoff voltage increased. Specifically, the pristine NCM811
experienced voltage fading of 0.0986 V, 0.1559 V, and 0.3522 V during cycling at cutoff
voltages of 4.3 V, 4.4 V, and 4.5 V, respectively. In contrast, the Al2O3-coated sample
exhibited lower voltage decay in this experiment, with values of 0.0710 V, 0.1413 V, and
0.2930 V for the corresponding cutoff voltages. The reduced voltage decay during cycling
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can be attributed to the successful suppression of polarization in the NCM811 electrode by
the Al2O3 coating, which improved the structural stability and phase reversibility of the
active material while protecting the bulk from direct contact with the electrolyte [37].
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The results of rate capability performance for the samples at various charging cutoff
voltages are shown in Figure 4. The samples were charged and discharged at current
densities ranging from 0.1 to 5 C. Due to the low diffusion efficiency of Li+ at high current
densities, the discharge capacity of both cathode materials decreased as the discharge
current density increased. However, the coated sample exhibited higher discharge capacity,
especially at higher rates (2 and 5 C) and upper cutoff voltages (4.4 and 4.5 V).

At low current densities and in the initial cycles (1–25), both samples demonstrated
similar reversible discharge capacity. In contrast, at higher rates (5 C) and in later cycles
(26–55), the coated sample delivered more capacity, attributed to the improved stability of
the surface structure. For instance, at the 4.5 V charging cutoff, pristine and coated NCM811
exhibited a reversible capacity of 217.28 and 213.54 mAh g−1 in the first cycle, respectively.
The difference in initial discharge capacity might be due to the electrochemical inactivity of
Al2O3. Over multiple charging and discharging cycles at different rates, the Al2O3-coated
NCM811 demonstrated an impressive reversible capacity of 210.90 mAh g−1, compared to
202.16 mAh g−1 for the pristine NCM811.

It is worth noting that while the Al2O3 coating did not significantly inhibit Li+ ion
diffusion at different rates, it enhanced the stability of the sample, enabling it to deliver
more capacity than the pristine sample, irrespective of the charging voltage. The cycling
and rate performances of the samples confirm that the structural stability of NCM811
cathode materials has been effectively improved by the Al2O3 coating.

3.4. EIS Measurements

An EIS test was conducted to further investigate the positive influence of the Al2O3
coating on the NCM811 cathode material. The Nyquist plots of the samples and the
equivalent electrical circuit at the charged state at various upper cutoff voltages before
cycling and after 150 cycles are illustrated in Figure 5. Each EIS plot consists of two
semicircles and a straight line in different frequency regions. In the circuit, Rs, RSEI, and Rct
represent the electrolyte resistance, the film resistance due to the solid electrolyte interface,
and the charge transfer resistance related to the interface between the electrolyte and the
electrode, respectively. In addition, the straight line at a low frequency corresponds to
Warburg impedance (W), which is related to Li+ diffusion in the particle [38].
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Figure 5. EIS curves of charged bare and Al2O3-coated NCM811 at 4.3–4.5 voltage range before
cycling and after 150 cycles.

The Rs value for all samples is nearly the same, as identical electrolytes were used
for this experiment. The Rct value is listed in Table 2. Although the Rct values for both
electrodes were nearly the same before cycling, the value increased after cycling. However,
the increase in charge transfer resistance was significantly higher for the uncoated sample
compared to the coated one. This sharp increase in Rct correlates with the surface distortion
induced by side reactions with the electrolyte. In contrast, the alumina-coated NCM
experienced a lower increase in Rct indicating a superior charge-transfer rate during long-
term cycling. The EIS results are consistent with the cycling and rate capability results. It is
worth noting that cycling at a 4.5 V upper cutoff potential induced a significant increase in
Rct, which can justify the drastic capacity retention deterioration over cycling.

Table 2. Rct values for pristine and Al2O3-coated NCM811 before cycling and after 150 cycles.

Sample Rct before Cycling
(Ω)

Rct after 150 Cycles
(Ω)

Upper Cutoff
Voltage (V)

Pristine NCM811

34.18 114.8 4.3

75.88 164.00 4.4

91.34 307.10 4.5

Al2O3-Coated
NCM811

62.59 75.58 4.3

92.97 126.53 4.4

72.42 205.8 4.5

3.5. Cyclic Voltammetry Measurements

To further understand the electrochemical behavior of NCM811 and NCM811@Al2O3,
cyclic voltammograms of the cathode electrodes were recorded over 15 cycles within a
2.8–4.6 V voltage range at a scan rate of 0.1 mV s−1, as shown in Figure 6. The curves for
both samples exhibited similar profiles, indicating that the Al2O3 coating did not participate
in the electrochemical reactions. The main paired peaks correspond to the typical phase
transitions for layered oxide cathode materials.
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Figure 6. CV curves of (a) pristine and (b) Al2O3-coated NCM811 at a scan rate of 0.1 mV s−1 within
a 2.8–4.6 V voltage range.

The potential difference between the oxidation and reduction peaks is a key kinetic
factor influenced by the formation of the cathode solid electrolyte interface or by side
reactions on the electrode surface. This potential difference reflects the reversibility of the
electrochemical reaction [30]. For the coated sample, the oxidation and reduction peaks are
located at 3.848 V and 3.682 V, respectively, with a corresponding potential difference of
0.166 V for the first cycle. In contrast, the uncoated sample has a higher potential difference
of 0.191 V.

After 15 cycles, the coated sample exhibited a smaller voltage gap, indicating higher
structural stability and a greater degree of reversibility. These results reveal that the
ultrathin Al2O3 coating effectively reduced electrochemical polarization and enhanced
electrochemical performance. This improvement is attributed to the coating’s ability to
suppress side reactions at the electrode/electrolyte interface.

4. Conclusions

In this manuscript, NCM811 cathode active material was synthesized, and an ultrathin
Al2O3 coating was established on the NCM811 surface using the ALD technique. The
alumina coating was demonstrated to exist on the surface of the cathode particles without
altering their morphology or crystal structure, attributed to the low-temperature coating
process. This coating significantly improved the cycling stability and rate capability of the
cathode electrode, which is related to the enhanced structural stability of NCM811 powder.
Additionally, the coating suppressed irreversible phase transitions and side reactions at the
electrode–electrolyte interface, confirmed by EIS and CV measurements. Electrochemical
measurements showed that cycling at higher upper cutoff voltages drastically reduced
capacity retention for pristine NCM811. However, Al2O3 surface treatment stabilized the
cathode material’s structure, with a 2.8–4.4 V cutoff potential identified as the optimized
cycling condition for NCM811@Al2O3 in this research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi15070894/s1, Figure S1. Al2O3 ALD Coating thickness from
two different locations of NCM811@Al2O3 particles.
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