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Production of gravitational waves in the early Universe is discussed in a cosmologically consistent

analysis within a first-order phase transition involving a hidden sector feebly coupled with the visible

sector. Each sector resides in its own heat bath leading to a potential dependent on two temperatures and on

two fields: one a standard model Higgs field and the other a scalar arising from a hidden sector Uð1Þ gauge

theory. A synchronous evolution of the hidden and visible sector temperatures is carried out from the reheat

temperature down to the electroweak scale. The hydrodynamics of two-field phase transitions, one for the

visible and the other for the hidden is discussed, which leads to separate tunneling temperatures and

different sound speeds for the two sectors. Gravitational waves emerging from the two sectors are

computed and their imprint on the measured gravitational wave power spectrum vs frequency is analyzed in

terms of bubble nucleation signature, i.e., detonation, deflagration, and hybrid. It is shown that the two-field

model predicts gravitational waves accessible at several proposed gravitational wave detectors: LISA,

DECIGO, BBO, and Taiji, and their discovery would probe specific regions of the hidden sector parameter

space and may also shed light on the nature of bubble nucleation in the early Universe. The analysis

presented here indicates that the cosmologically preferred models are those where the tunneling in the

visible sector precedes the tunneling in the hidden sector and the sound speed cs lies below its maximum,

i.e., c2s <
1
3
. It is of interest to investigate if these features are universal and applicable to a wider class of

cosmologically consistent models.
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I. INTRODUCTION

The observation of gravitational waves in black hole

mergers in 2016 [1] opened up a new avenue to explore

fundamental physics in a broader context using stochastic

background of gravitational waves that arise from a variety

of phenomena including those from cosmic phase transi-

tions. The cosmic phase transitions occur at finite temper-

atures [2–6] and give rise to stochastic gravitational waves

[7–9]. Several other sources of stochastic gravitational

waves exist such as from the decay of the inflaton into

standard model particles at the end of inflation [10–12]. It is

also suggested that phase transitions may be linked to

generation of matter-antimatter asymmetry, and especially

to baryogenesis [13–17]. The study of cosmic phase

transitions involves finite temperature field theory which

has been investigated in several early works [18,19].

A significant amount of further work already exists in

this area, see, e.g., [20–43]. For reviews of phase tran-

sitions, see [44–46].

In the current analysis we discuss phase transitions

and gravitational wave generation from hidden sectors that

arise in supergravity, string, and extra-dimensional models,

which improves on some of the previous works in that

the analysis is cosmologically consistent. This implies a

number of things that we mention briefly. First, the

gravitational wave models need to satisfy constraints at

different temperatures, e.g., at the tunneling temperature

(10–100) GeV and at the big bang nucleosynthesis (BBN)

temperature ∼1 MeV which requires an extrapolation over

4–5 orders of magnitude. This is due to the fact that at the

tunneling temperature the phase transition is controlled in

part by the parameter α ¼ ϵ=ρ, where ϵ is the latent heat in
the phase transition and ρ is the total energy density, which

includes the energy density of the standard model and of

the hidden sector. In general, the hidden sector and the

visible sector are at different temperatures and we need to
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know their precise correlation as a function of temperatures

to compute α correctly. Further, as noted, we need to

extrapolate to BBN time which constrains the extra degrees

of freedom ΔNeff above the standard model prediction,

which requires we determine the hidden sector temperature

at BBN time. Often this correlation is done by assuming

separate entropy conservation in the visible sector and in

the hidden sector. In this case, the ratio ξðTÞ ¼ Th=T,
where Th is the temperature in the hidden sector and T is

the temperature in the visible sector, is correlated with the

ratio ξðT0Þ at temperature T0 so that

hheffðξðT0ÞT0Þ

hveffðT0Þ
ξ3ðT0Þ ¼

hheffðξðTÞTÞ

hveffðTÞ
ξ3ðTÞ; ð1:1Þ

where hveff and hheff are the entropy degrees of freedom at

their respective temperatures of the visible sector and of

the hidden sector. However, it was shown in [47,48] that the

separate entropy conservation approximation is highly

inaccurate and leads to erroneous results for ΔNeff by

up to 500%. There is another basic problem with relations

of the type above for cases where the decoupling in the dark

sector occurs below the mass threshold of the dark

particles. In this case the assumption of using thermal

equilibrium to compute the effective degrees of freedom in

the hidden sector breaks down as it gives essentially

hheffðT0Þ ¼ 0 requiring ξðT0Þ to blow up. Here the accurate

analysis used in this work is essential, as explained in

Appendix E.

In the analysis we carry out a synchronous evolution of

the temperatures in the visible and in the hidden sectors.

Central to the analysis is the evolution equation for ξðTÞ
which is solved together with the yield equations for the

particles in the hidden sector and the visible sector with an

assumed boundary condition on ξðTÞ at the reheat temper-

ature, which leads to an accurate prediction for ξðTÞ at any
temperature. There are also other aspects of the analysis

that we briefly comment on. In the current analysis, we

have nucleation arising from two bubble formations, one in

the visible sector and the other in the hidden sector, and we

give a combined treatment of both. This leads to two

different critical temperatures and tunnelings arising from

the visible sector and from the hidden sector. Further, often

in gravitational wave analyses a sound speed of c2s ¼ 1=3 is
assumed, which is the terminal relativistic speed of sound

waves in a fluid. However, in the presence of true (broken)

and false (symmetric) vacua for the visible and hidden

sectors four different possibilities for the sound speed arise:

with two possibilities for the visible sector depending on

whether the vacuum is true or false and similarly for the

hidden sector. We discuss these possibilities and show that

the gravitational wave power spectrum depends sensitively

on sound speed. Finally, we have investigated the possibil-

ity of identifying the nature of bubble dynamics and

nucleation, i.e., detonation, deflagration, and hybrid for

their possible imprint on the gravitational wave spectrum.

While we draw no firm conclusion, we notice that among

the candidate models that satisfy all the constraints (i.e.,

constraints from first-order phase transition, from relic

density, and from ΔNeff), the hybrid nucleation modes

exhibit the largest gravitational wave power spectrum.

The outline of the rest of the paper is as follows: In

Sec. II we write the hidden sector model and discuss its

temperature-dependent potential including thermal contri-

butions to the field-dependent masses including the daisy

summed multiloop contribution. Then we define the two-

field potential including the temperature-dependent poten-

tial for the standard model Higgs field. In this section we

also give a brief discussion of synchronous evolution of

coupled hidden and visible sectors. In Sec. III we discuss

nucleation and vacuum decay during phase transition for

the case of a single field and then for the two-field case. In

Sec. IV we discuss the hydrodynamics of bubble formation

during phase transition. Here we discuss the sound velocity

in the visible and in the hidden sectors for symmetric and

broken phases and give an analysis of relativistic fluid

equations and of bubble dynamics. Gravitational wave

spectra arising from first-order phase transitions from the

visible and the hidden sectors are discussed in Sec. V. A

detailed numerical analysis of the gravitational wave power

spectrum is given in Sec. VI. Thus, in Sec. VI Awe exhibit

the parameter space of models investigated in Monte Carlo

simulations and the theoretical and experimental con-

straints placed on the allowed set of models. The nucleation

temperature and the resulting gravity power spectrum are

discussed in Sec. VI B. In Sec. VI C we discuss the effect of

sound velocity on the gravitational wave power spectrum,

and in Sec. VI D we investigate the dependence of sound

velocity on the nucleation temperature. An analysis of the

ΔNeff constraint is given in Sec. VI D 1. In Sec. VI E we

discuss the gravity power spectrum for different nucleation

modes, i.e., detonation, deflagration, and hybrid. It is

shown that a significant part of the parameter space of

the assumed hidden sector model can be accessed by the

planned space-based gravity experiments such as LISA,

DECIGO, BBO, Taiji, and others. Conclusions are given in

Sec. VII.

Additional details of the analysis are given in the

Appendixes A–E. Thus, in Appendix A, we give further

details of the temperature-dependent potential for the

hidden sector and computation of temperature-dependent

corrections to the bosonic masses for a Uð1Þ gauge theory
including the contribution of the daisy resummation. In

Appendix B, we give a summary of the known results on

the temperature-dependent Higgs potential for the visible

sector. In Appendix C, we give further details of visible and

hidden sector interactions that enter in the combined

analysis of the two sectors, and in Appendix D, we give

the scattering cross sections that enter in the yield equations

for the dark scalar, the dark fermion, and the dark gauge
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boson. Finally, in Appendix E, we discuss the energy and

pressure densities away from equilibrium as they are

relevant for freeze-out and decoupling in the hidden sector.

II. TWO-FIELD PHASE TRANSITION

INVOLVING THE STANDARD MODEL

AND A HIDDEN SECTOR

As noted in the Introduction, cosmological phase tran-

sitions have been investigated in a significant number of

previous works (for reviews, e.g., [45,49–51]). Most of the

previous works using beyond the standard model (BSM)

physics involve dynamics of only one field. Such an

analysis does not fully take into account the effect of the

standard model on computing the strength of the phase

transition α in tunneling and the proper imposition of the

ΔNeff constraint at BBN time. Thus, as noted earlier a more

complete analysis needs to consider an analysis involving

BSM physics along with the standard model, which in our

case implies a two-field analysis including the Higgs field

of the standard model along with the Higgs field of the

hidden sector. Further, since the visible sector and the

hidden sector would normally be in different heat baths,

the thermal potential governing the phase transition will

depend on two temperatures, one of the visible and the

other of the hidden sector. In the presence of a coupling

between the two, as is most likely via a variety of portals,

a synchronous evolution of the visible and the hidden

sector temperature is essential for reliable predictions of

phenomena related to the cosmological phase transition and

specifically on predictions of the power spectrum of gravity

waves resulting from the phase transition. This aspect of the

cosmological phase transition is one of the focus points of

the current analysis.

A. The hidden sector model and its

temperature-dependent potential

We discuss now the case of phase transitions that involve

two scalar fields, one of which is the standard models Higgs

field and the other is a hidden sector Higgs scalar. In this

case, we consider the Lagrangian of the form

L ¼ LSM þ ΔL; ð2:1Þ

whereLSM is the standard model Lagrangian, andΔL is the

hidden sector Lagrangian given by

ΔL ¼ −
1

4
AμνA

μν − jð∂μ − igxAμÞΦj2 − Vh
effðΦÞ

− D̄

!

1

i
γμ∂μ þmD

"

D −
δ

2
AμνB

μν − gxQDD̄γμDAμ;

ð2:2Þ

where Aμ is the gauge field of the Uð1ÞX of the hidden

sector, D is the dark fermion, Φ is a complex scalar

field, and Bμ is the gauge field of the Uð1ÞY , and

Aμν ¼ ∂μAν − ∂νAμ and Bμν ¼ ∂μBν − ∂νBμ. Thermal con-

tributions to the zero temperature potential Vh
effðΦÞ will

allow a first-order phase transition and a vacuum expect-

ation value growth for the scalar field Φ generating a mass

for the gauge boson Aμ and the scalar field in the hidden

sector. Thus, the effective temperature-dependent hidden

sector potential including loop corrections is given by

Vh
effðΦ;ThÞ ¼ V0h þ V

ð0Þ
1h þ ΔV

ðThÞ
1h þ V

daisy
h ðThÞ: ð2:3Þ

Here V0h is the zero temperature tree potential, V
ð0Þ
1h is the

one-loop Coleman-Weinberg zero temperature contribu-

tion, ΔV
ðThÞ
1h is the one-loop thermal contribution,

V
daisy
1h ðThÞ is the daisy contribution from multiloop sum-

mation, and divergences are canceled off by counterterms.

Thus, we have

V0h ¼ −μ2hΦΦ
% þ λhðΦ

%
ΦÞ2; Φ ¼

1
ffiffiffi

2
p ðχc þ χ þ iG0

hÞ;

ð2:4Þ

where χc is the background field that enters in the tree level

potential. Further, V
ð0Þ
1h ðχÞ, the one-loop effective potential

at T ¼ 0, is given by

V
ð0Þ
1h ðχcÞ¼

X

i

Nið−1Þ
2si

64π2
m4

i ðχcÞ

$

ln

!

m2
i ðχcÞ

Λ
2
h

"

−Ci

%

; ð2:5Þ

where Ni is the degrees of particle i and where the field-

dependent masses of the hidden sector fields Aμ; χ; G
0
h that

enter the potential are given by

m2
AðχcÞ ¼ g2xχ

2
c; m2ðχcÞ ¼ −μ2h þ 3λhχ

2
c;

m2

G0
h

ðχcÞ ¼ −μ2h þ λhχ
2
c: ð2:6Þ

For the one-loop thermal correction, we have

ΔV
ðThÞ
1h ðχc;ThÞ¼

T4
h

2π2

$

3JB

!

mA

Th

"

þJB

!

mχ

Th

"

þJB

!

mG0
h

Th

"%

;

ð2:7Þ

where Ji (i ¼ B;F) is defined so that at one loop

Ji

!

mi

Th

"

¼

Z

∞

0

dqq2 ln
h

1 ∓ exp
&

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þm2
i =T

2
h

q

'i

;

i ¼ ðB;FÞ; ð2:8Þ
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where ðB;FÞ stand for bosonic and fermionic cases. The

daisy loop contributions are only for the longitudinal mode

of A and χ and are given for mode i ¼ A; χ so that

Vdaisyði; ThÞ ¼ −
Th

12π
f½m2

i þ ΠiðThÞ'
3=2 −m3

i g; ð2:9Þ

where ΠiðThÞ is thermal contribution to the zero temper-

ature mass m2
i . For the longitudinal mode of A and for χ

they are given by

ΠAðThÞ¼
2

3
g2xT

2
h; ΠχðThÞ¼

1

4
g2xT

2
hþ

1

3
λhT

2
h: ð2:10Þ

A deduction of Eqs. (2.9) and (2.10) is given in

Appendix A. We note that the daisy resummation correc-

tion to the effective potential is equivalent to replacing the

particle mass in JB function so that

m2
i → ½m

ðThÞ
i '2 ≡m2

i þ ΠiðThÞ; ð2:11Þ

where ΠiðThÞ is the self-energy of the bosonic field for

particle i at finite temperature Th, known as “Debye mass.”

Making the replacement of Eq. (2.11), the effective

potential of Eq. (2.3) now takes the form

Vh
effðχc; ThÞ ¼ V0h þ V

ð0Þ
1h ðχcÞ þ VT

1 ðχc; ThÞ

¼
μ2h
2
χ2h þ

λh

4
χ4h þ

X

i

gið−1Þ
2si

64π2
m4

i ðχcÞ

$

ln

!

m2
i ðχcÞ

Λ
2
h

"

− Ci

%

þ
T4
h

2π2

X

B

gB

Z

∞

0

dqq2 ln

$

1 − exp

!

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ
h

m
ðThÞ
B

i

2
=T2

h

r
"%

−
T4
h

2π2

X

F

gF

Z

∞

0

dqq2 ln

$

1þ exp

!

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ
h

m
ðThÞ
F

i

2
=T2

h

r
"%

: ð2:12Þ

This is the potential that is used in the analysis here. In this

work we analyze a whole range of temperatures that

encompass the regions Th ≪ m, Th ≫ m and the regions

in between. For this reason we do not use high Th and low

Th expansions but rather use the full integral forms for JB
(and also for JF in the standard model case). Further details

on the thermal masses for the hidden sector are given in

Appendix A and a summary of the temperature-dependent

potential for the standard model including corrections due

to thermal masses and daisy contributions is given in

Appendix B.

Let us now consider the case of two sectors together but

with no interactions between the scalar fields so that the

scalar potential is simply a sum of potentials in the two

sectors, i.e.,

Veffðϕc; T; χc; ThÞ ¼ Vv
effðϕc; TÞ þ Vh

effðχc; ThÞ: ð2:13Þ

where Vv
effðϕc; TÞ is the effective temperature-dependent

Higgs potential in the standard model, which is well

known, but for easy reference it is given in Appendix B.

Here the minimization conditions are

Vv
eff;ϕc

¼ 0; Vh
eff;χc

¼ 0; Vv
eff;ϕcϕc

> 0; Vh
eff;χcχc

> 0; ð2:14Þ

which imply that if the minimization conditions are

individually satisfied in each sector then the minimization

of the potential overall is also satisfied for the combined

system of the visible and the hidden sectors. At the

minimum of the potential we define v ¼ ϕc and vh ¼ χc.

We note, however, that the two potentials are at different

temperatures, one at T and the other at Th, and for a

synchronous minimization to occur in the two sectors T and

Th must be related by

Th ¼ ξðTÞT; ð2:15Þ

where ξðTÞ is determined by a synchronous evolution of

the visible sector and the hidden sector from the reheating

scale to the low temperature scale, where phase transitions

occur with given initial condition on ξ0 at the reheat

temperature. In the absence of a synchronous evolution,

ξ has been used [52] as a free parameter. However, such a

procedure does not allow one to use temperature constraints

consistently at different temperatures such as at the time of

tunnelings, which occur at different temperatures for the

visible and the hidden sector and to correlate them with

the ΔNeff constraint the BBN time. In this work, we will

solve ξðTÞ as a function of T which gives more reliable

results. Further, as noted earlier we can reliably extrapolate

the data to BBN time to include the constraint from ΔNeff

[47,48,53] and from the relic density of dark matter.

B. Synchronous evolution of coupled hidden

and visible sectors

We discuss below an analysis for the evolution of ξðTÞ
which, in general, allows for any type of thermal contact
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between the visible and the hidden sectors. Since the

standard model explains quite accurately a large amount

of data at the electroweak scale, the couplings between the

hidden and the visible sectors need to be extra weak [54] or

feeble. Such couplings could arise via a Higgs portal [55],

kinetic mixing [56], or Stueckelberg mass mixing [57],

or both [58], as well as other possible combinations such

as a Stueckelberg-Higgs portal [59] or some higher-

dimensional operator connecting the two sectors.

Synchronous thermal evolution between the visible and

one hidden sector was discussed in [60], the case with two

hidden sectors was discussed in [61], and for multiple

hidden sectors in [62]. Here we give a brief review of

synchronous evolution central to the analysis of this work.

Thus, the energy densities for the visible and the hidden

sectors obey the following coupled Boltzmann equations in

an expanding universe:

dρv

dt
þ 3Hðρv þ pvÞ ¼ jv;

dρh

dt
þ 3Hðρh þ phÞ ¼ jh: ð2:16Þ

Here ρv and pv are the energy and momentum densities for

the visible sector, and where ðjv; jhÞ encode in them all the

possible processes exchanging energy between these sec-

tors. They are defined in Appendixes C and D. The total

energy density ρ ¼ ρv þ ρh satisfies the equation

dρ

dt
þ 3Hðρþ pÞ ¼ 0; ð2:17Þ

where p¼pvþph is the total pressure density. We intro-

duce the functions σi ¼
3
4
ð1þ pi

ρi
Þ, where σ1 ¼ σv, σ2 ¼ σh,

where σi ¼
3
4
for matter dominance, and σi ¼ 1 for radi-

ation dominance. Similarly, we define σ ¼ 3
4
ð1þ p

ρ
Þ. We

note that σv, σh, and σ are temperature dependent and this

dependence is taken into account in the evolution equa-

tions. Using σi and σ, the ρi and ρ evolution equations read

dρi

dt
þ4Hσiρi¼ ji;ði¼v;hÞ;

dρ

dt
þ4Hσρ¼0: ð2:18Þ

We will use temperature instead of time and temperature of

the visible sector T as the clock. In this case we can write

the evolution equations in terms of T using the relation

dT

dt
¼ −4Hσρ

!

dρ

dT

"

−1

; ð2:19Þ

and dρi=dt ¼ ðdρi=dTÞðdT=dtÞ. Further, we can deduce

the following evolution equation for ξðTÞ which governs

the temperature evolution of the hidden sector relative to

that of the visible sector

dξ

dT
¼

$

−ξ
dρh

dTh

þ
4Hσhρh − jh

4Hσρ − 4Hσhρh þ jh

dρv

dT

%!

T
dρh

dTh

"

−1

;

ð2:20Þ

where jh is defined in Eq. (D6). The above analysis is

general, allowing for any type of thermal contact via any

type of portal. In the analysis here we assume a kinetic

mixing and do not consider Stueckelberg mass mixing as it

would lead to millicharges for dark matter [57,63–65].

Thus, we include in the Lagrangian a term − δ
2
AμνBμν

where Bμν is the field strength of Uð1ÞY hypercharge field

Bμ. Further details of the interactions between the visible

and the hidden sector in the canonically diagonalized basis

are given in Appendix C.

The evolution equation for ξðTÞ, Eq. (2.20) involves jh
which depends on the yields of the hidden sector YD; Yγ0,

and Yχ (see Appendix D). We discuss the Boltzmann

equations for the yields below

dYD

dT
¼ −

s

H

!

dρv=dT

4σρ − 4σhρh þ jh=H

"$

1

2
hσviDD̄→iīðTÞðY

eq
D ðTÞ

2 − Y2
DÞ −

1

2
hσviDD̄→γ0γ0ðThÞ

!

Y2
D − Y

eq
D ðThÞ

2
Y2
γ0

Y
eq

γ0 ðThÞ
2

"%

;

ð2:21Þ

dYγ0

dT
¼ −

s

H

!

dρv=dT

4σρ − 4σhρh þ jh=H

"$

1

2
hσviDD̄→γ0γ0ðThÞ

!

Y2
D − Y

eq
D ðThÞ

2
Y2
γ0

Y
eq

γ0 ðThÞ
2

"

þ
1

2
hσviχχ̄→γ0γ0ðThÞ

!

Y2
χ − Y

eq
χ ðThÞ

2
Y2
γ0

Y
eq

γ0 ðThÞ
2

"

þ hσviiī→γ0ðTÞY
eq
i ðTÞ

2

−
1

s

hΓγ0→iīðThÞiYγ0 þ hΓχ→γ0γ0ðThÞi
!

Yχ − Y
eq
χ ðThÞ

Y2
γ0

Y
eq

γ0 ðThÞ
2

"%

; ð2:22Þ
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dYχ

dT
¼ −

s

H

!

dρv=dT

4σρ − 4σhρh þ jh=H

"$

−
1

2
hσviχχ̄→γ0γ0ðThÞ

!

Y2
χ − Y

eq
χ ðThÞ

2
Y2
γ0

Y
eq

γ0 ðThÞ
2

"

−
1

s

hΓχ→γ0γ0ðThÞi
!

Yχ − Y
eq
χ ðThÞ

Y2
γ0

Y
eq

γ0 ðThÞ
2

"%

; ð2:23Þ

where s is the entropy density and yield for particle i is
defined by Yi ¼ ni=s. In the analysis here we take account

of the hidden sector energy density and pressure density, ρh
and ph, not only through thermal equilibrium analysis but

also by accounting for the contribution of relic abundance.

A further discussion of it is provided in Appendix E. For

the computation of the visible sector density and pressure

we use the precalculated values of gveff and hveff which are

tabulated results from micrOMEGAs [66]. We discuss next the

bubble nucleation for the case of the single field first and

then for the case of two fields.

III. NUCLEATION AND VACUUM DECAY

A. Single-field nucleation

Before proceeding to a discussion of nucleation for the

two-field case, we first summarize the first-order phase

transition involving the decay of the false vacuum into the

true vacuum involving bubble nucleation of a generic scalar

field ϕ. We define the temperature when bubbles start

to nucleate as Tn. Here at zero temperature the decay

probability per unit time and per unit volume is given by

Γ ¼ Ke−S4 , where S4 is the Euclidean action in four

dimensions and K is typically of the fourth-order power

of the energy involved in the phase transition [20]. At finite

temperature the decay probability per unit time and per unit

volume takes the form Γ ¼ KðTÞe−S3=T where T is the

temperature, and KðTÞ ∼ T4. Thus, for the case of a single

scalar field, S3ðTÞ is given by

S3ðTÞ ¼

Z

∞

0

4πr2dr

$

1

2

!

dϕ

dr

"

2

þ Vv
effðϕ; TÞ

%

; ð3:1Þ

with the scalar field satisfying the Euclidean O(3) sym-

metry equation of motion and the appropriate boundary

conditions

d2ϕ

dr2
þ
2

r

dϕ

dr
¼

∂

∂ϕ
Vv
effðϕ; TÞ; lim

r→∞
ϕ ¼ 0;

dϕ

dr

(

(

(

r¼0
¼ 0: ð3:2Þ

We use the Mathematica package FindBounce [67,68]

to numerically compute S3. Once S3ðTÞ is determined,

the nucleation temperature Tn is defined so that

Z

Tn

0

Γdt

H3
¼

Z

∞

Tn

dT

T

!

90

8π3geff

"

2
!

MPl

T

"

4

e−S3ðTÞ=T≃1: ð3:3Þ

This equation is well approximated by
S3ðTnÞ
Tn

∼ 140. Then

the whole vacuum decay process can be characterized by

the following temperatures: (1) critical temperature Tc,

when the effective potential has two degenerate minima;

(2) nucleation temperature Tn, when the transition occurs

or when one bubble is nucleated in one casual Hubble

volume; and (3) destabilization temperature T0, when

the original vacuum is no longer a minimum or when

the potential barriers between the false vacuum and true

vacuum disappears.

B. Two-field nucleation

For the two-field nucleation, the calculation here will

become complicated because the over-undershoot imple-

mentation by some numerical analysis (like CosmoTransitions)

is not reliable anymore. The work of [69] discusses such a

problem in detail. Thus, here we provided a way that can

deal with such a situation with the potential given by

Eq. (2.13). For the visible (hidden) sector, there will be

corresponding temperatures Tc; Tn; T0 (Th;c; Th;n; Th;0)

with the following orders:

T0 < Tn < Tc ðTh;0 < Th;n < Th;cÞ: ð3:4Þ

Since we have ξðTÞ to give us the temperature ratio of two

sectors at each moment, if we know the temperature of the

visible sector, we can then easily find the temperature in the

hidden sector, with Eq. (2.15). Correspondingly, we define

another function

T ¼ ζðThÞTh; ð3:5Þ

which allows us to fix the temperature in the visible sector

given the temperature in the hidden sector. We note that

Eqs. (2.15) and (3.5) are equivalent so that ζðThÞ ¼ ξðTÞ−1.
It is convenient to use Eq. (2.15) [Eq. (3.5)] when the visible

(hidden) sector temperature T (Th) is used as the clock. Next

we discuss different cases for the nucleation process.

Case 1: For this case, we have one of the scalar field’s

nucleation occurring first and then the other scalar field

nucleation occurring separately at different time, which

means the first scalar field already reaches its destabili-

zation temperature before the other scalar field reaches
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its critical temperature, i.e., ðT0; TcÞ ∩ ðζðTh;0ÞTh;0;

ζðTh;cÞTh;cÞ ¼ ∅. For this case, the original vacuum

decays first to an intermediate vacuum and then decays

into the true vacuum. In this case, we can treat the

two-field nucleation as two single-field vacuum decay

problems. Here Tn and Th;n can be determined by

Eqs. (3.1)–(3.3).

Case 2: For the second case, we have the visible

scalar field nucleation and the hidden scalar field nucleation

going through the vacuum decay at the same time,

which means one of the scalar fields reaches its critical

temperature before the other scalar field reaches its

destabilization temperature, i.e., ðT0; TcÞ ∩ ðζðTh;0ÞTh;0;

ζðTh;cÞTh;cÞ ≠ ∅. For this case, it is possible that the

original vacuum decays directly to the final true vacuum

and we will have only one transition. Here let us first

assume that Tc < ζðTh;cÞTh;c, so we have

T0 < ζðTh;0ÞTh;0 < Tc < ζðTh;cÞTh;c: ð3:6Þ

Figure 1 shows a schematic diagram for such a case. If the

first nucleation occurs at Tc < T < ζðTh;cÞTh;c, then it will

be the same as in case 1 where there will be an intermediate

vacuum. If not, then we need consider the possibility that

the original vacuum decays directly to the final true

vacuum. According to Eq. (2.13), there is no interaction

between two scalar fields in the potential, i.e., there is no

term like ϕχ. In this case S3totalðTÞ is given by

S3totalðTÞ ¼

Z

∞

0

4πr2dr

$

1

2

!

dϕ

dr

"

2

þ
1

2

!

dχ

dr

"

2

þ Veffðϕ; T; χ; ξðTÞTÞ

%

¼

Z

∞

0

4πr2dr

$

1

2

!

dϕ

dr

"

2

þ Vv
effðϕ; TÞ

%

þ

Z

∞

0

4πr2dr

$

1

2

!

dχ

dr

"

2

þ Vh
effðχ; ξðTÞTÞ

%

¼ S3vðTÞ þ S3hðξðTÞTÞ: ð3:7Þ

Here the equations of motion are to be solved with EuclideanOð3Þ symmetry and with appropriate boundary conditions so

that

d2ϕ

dr2
þ
2

r

dϕ

dr
¼

∂

∂ϕ
Veffðϕ; T; χ; ξðTÞTÞ ¼

∂

∂ϕ
Vv
effðϕ; TÞ; lim

r→∞
ϕ ¼ 0;

dϕ

dr

(

(

(

(

r¼0

¼ 0: ð3:8Þ

d2χ

dr2
þ
2

r

dχ

dr
¼

∂

∂χ
Veffðϕ; T; χ; ξðTÞTÞ ¼

∂

∂χ
Vh
effðχ; ThÞ; lim

r→∞
χ ¼ 0;

dχ

dr

(

(

(

(

r¼0

¼ 0: ð3:9Þ

Since the above two equations can be solved independently,

we can just treat each as a single-field case. To find Tn for

the case where the original vacuum decays directly to the

final true vacuum, we first assume that such a nucleation

happens at Tn;total and get

S3totalðTn;totalÞ

Tn;total

¼
S3vðTn;totalÞ

Tn;total

þ
S3hðξðTn;totalÞTn;totalÞ

Tn;total

∼ 140;

ð3:10Þ

which tells us that
S3vðTn;totalÞ

Tn;total
< 140. However, S3v=T is a

monotonic increasing function of T which leads to

∃Tn > Tn;total∶
S3vðTnÞ

Tn

∼ 140: ð3:11Þ

It tells us that, before the original vacuum decays directly

into the final true vacuum, it must decay into an inter-

mediate vacuum first. However, it takes some time for the

phase transition to complete after the temperature reaches

FIG. 1. Schematic plot for Case 2. S3ðTÞ=T vs T for S3v
and S3h.
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the nucleation temperature. Thus, it is possible that the

other sector also reaches its nucleation temperature during

this process. It will become more complicated but inter-

esting because now the gravitational wave will be gen-

erated by the collision of two types of bubbles from two

different sectors. We note, however, that the interaction

between the sectors is too feeble to produce any effect.

Further, we assume the phase transition is completed

immediately after it reaches the nucleation temperature to

avoid this problem altogether. Therefore, case 2 can be

treated the same as case 1 and we have shown that, in any

case, we can treat the problem as two single-field vacuum

decay problems. The whole transition will undergo

through two-step phase transition at two different nucle-

ation temperatures Tn and Th;n. For each phase transition,

there will be a “relative symmetry phase” and a “relative

broken phase.” A schematic diagram of the entire nucle-

ation process is given by Fig. 2.

IV. HYDRODYNAMICS OF BUBBLE FORMATION

DURING PHASE TRANSITION

To investigate the gravitational wave generation from

cosmological phase transition, we need to first study the

hydrodynamics of bubble formation during the phase

transition. One of the important elements in the hydro-

dynamics of bubbles is the sound velocity in the fluid in the

symmetric phase and in the broken phase and it is model

dependent. We discuss this next.

A. Sound velocities in the visible

and in the hidden sectors

Sound velocity in fluids is known to have a terminal

value so that c2s ¼ 1=3. However, its actual value depends
on whether the phase is unbroken or broken and on the type

of the broken phase. We start with the thermodynamic

quantities: energy density e, pressure p, and enthalpy

density w. They are, in general, given by the following

equations:

p ¼ −F ; e ¼ T
∂p

∂T
− p; w ¼ pþ e: ð4:1Þ

Here F is the free energy density where p is given by

pðϕ; T; χ; ThÞ ¼ pvðϕ; TÞ þ phðχ; ThÞ; ð4:2Þ

pvðϕ; TÞ ¼
π2

90
gveffT

4 − Vv
effðϕ; TÞ; ð4:3Þ

phðχ; ThÞ ¼
π2

90
gheffT

4
h − Vh

effðχ; ThÞ: ð4:4Þ

Correspondingly, we have

eðϕ; T; χ; ThÞ ¼ evðϕ; TÞ þ ehðχ; ThÞ þ emixðϕ; T; χ; ThÞ;

ð4:5Þ

FIG. 2. A schematic diagram for the two-step phase transition. The phase of the whole Universe transfers from the symmetry phase to

the relative broken phase before ultimately reaching the fully broken phase. The plots of Vv
eff vs ϕ and Vh

eff vs χ are shown for different

temperatures.
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evðϕ;TÞ¼T
∂pv

∂T
−pv; ehðχ;ThÞ¼Th

∂ph

∂Th

−ph; ð4:6Þ

emixðϕ; T; χ; ThÞ ¼ T2
∂ph

∂Th

∂ξ

∂T
; ð4:7Þ

and for the sound velocity c2s ¼ dp=de (total derivative

here), we have

c2sðϕ; χ;T; ThÞ ¼

∂ðpvÞ
∂T

þ ∂ðphÞ
∂Th

∂ðThÞ
∂T

∂ðevÞ
∂T

þ ∂ðehÞ
∂Th

∂ðThÞ
∂T

þ ∂emix

∂T

; ð4:8Þ

where

∂Th

∂T
¼

∂ðξTÞ

∂T
¼

∂ξ

∂T
T þ ξðTÞ; ð4:9Þ

and where we used
dpv

dT
¼ ∂pv

∂T
; dev
dT

¼ ∂ev
∂T

since we are

interested in sound velocity in vacuums. Further, since

explicit integrals for ph, eh are known, and numerical

tables for the corresponding visible sector quantities

are known, an evaluation of ∂ðpvÞ=∂T; ∂ðevÞ=∂T and

∂ðphÞ=∂Th; ∂ðehÞ=∂Th can be numerically carried out.

According to the analysis in Sec. III, there will actually

be two sets of symmetry phase velocities and broken phase

velocities possible. For the visible scalar field nucleation,

the sound velocity in the symmetric phase and in the broken

phase, i.e., sound velocity outside and inside the bubble of

the visible scalar field nucleation, will be labeled cs;þ;v and

cs;−;v. Similarly, for the hidden scalar field nucleation, we

have cs;þ;h and cs;−;h.

We label vacua in the broken phase case for the visible

and hidden sectors to be ϕmin and χmin, and they are found

numerically. For the case when nucleation in the visible

sector occurs before nucleation in the hidden sector, i.e.,

Tn > ζðTh;nÞTh;n, these four velocities are given by

c2s;þ;v ¼ c2sð0; 0; Tn; ξðTnÞTnÞ;

c2s;−;v ¼ c2sðϕmin; 0; Tn; ξðTnÞTnÞ;

c2s;þ;h ¼ c2sðϕmin; 0; ζðTh;nÞTh;n; Th;nÞ;

c2s;−;h ¼ c2sðϕmin; χmin; ζðTh;nÞTh;n; Th;nÞ; ð4:10Þ

where the arguments of c2s;þ;v etc. are as defined in

Eq. (4.8). Thus, e.g., c2sðϕmin; 0; Tn; ξðTnÞTnÞ denotes

the velocity of the sound wave traveling inside the bubble

of the visible phase transition. The visible scalar field is in

its broken vacuum while the hidden scalar field is still in

its symmetric vacuum. The tunneling temperature of the

visible scalar field nucleation is Tn and the synchronous

temperature of the hidden scalar to it is ξðTnÞTn.

On the other hand, when Tn < ζðTh;nÞTh;n, these four

velocities are given by

c2s;þ;h ¼ c2sð0; 0; ζðTh;nÞTh;n; Th;nÞ;

c2s;−;h ¼ c2sð0; χmin; ζðTh;nÞTh;n; Th;nÞ;

c2s;þ;v ¼ c2sð0; χmin; Tn; ξðTnÞTnÞ;

c2s;−;v ¼ c2sðϕmin; χmin; Tn; ξðTnÞTnÞ: ð4:11Þ

B. Relativistic fluid equations and bubble dynamics

Next, we discuss hydrodynamics of the bubble expan-

sion [6,9,70–73]. First, we describe the plasma, as a

relativistic fluid, by its energy-momentum tensor

Tμν ¼ wuμuν þ pgμν: ð4:12Þ

Here we are using the metric gμν ¼ diagð−1; 1; 1; 1Þ where
w ¼ eþ p, and e and p are the energy density and pressure

as defined in Sec. IVA, and uμ ¼ γðvÞð1; v⃗Þðγ ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

Þ is the four-velocity field. The fluid equation

of motion is given by the conservation of Tμν,

∂μT
μν ¼ μν∂μðu

μwÞ þ uμw∂μu
ν þ ∂

νp ¼ 0: ð4:13Þ

The conservation equation can be projected into the

parallel and perpendicular directions to the flow direction

by using uμ ¼ γðvÞð1; v⃗Þ and ūμ ¼ γðvÞðv; v⃗=vÞ such that

ūμu
μ ¼ 0; uν∂μu

ν ¼ 0; ū2 ¼ 1; u2 ¼ −1 which give

uν∂μT
μν ¼ ∂μðu

μwÞ þ uμ∂μp ¼ 0; ð4:14Þ

ūν∂μT
μν ¼ ūνu

μw∂μu
ν þ ūμ∂μp ¼ 0: ð4:15Þ

These are the continuity equation and the relativistic Euler

equation. Further, one assumes a spherically symmetric

configuration and since there is no characteristic distance

scale in the problem, the solution depends only on a self-

similarity coordinate η≡ r=t, where r is the distance to the

bubble center and t is the time since the bubble nucleation.

Further, we assume that the bubble reaches a constant

terminal velocity after a short expansion time. Thus, we

can assume that vb ¼ ηw. The above two equations then

take the form

ðη − vÞ
∂ηe

w
¼ 2

v

η
þ γ2ð1 − ηvÞ∂ηv; ð4:16Þ

ð1 − ηvÞ
∂ηp

w
¼ γ2ðη − vÞ∂ηv; ð4:17Þ

COSMOLOGICALLY CONSISTENT ANALYSIS OF … PHYS. REV. D 110, 015020 (2024)

015020-9



where vðηÞ is the fluid velocity at r ¼ ηt in the frame of the

bubble center. Using the definition c2s ¼
dp=dT
de=dT

, one gets the

following equations:

2
v

η
¼ γ2ð1 − vηÞ

!

μðη; vÞ2

c2s
− 1

"

dv

dη
; ð4:18Þ

dw

dη
¼ wγ2μðη; vÞ

!

1

c2s
þ 1

"

dv

dη
; ð4:19Þ

where μðη; vÞ ¼ η−v
1−ηv

. In fact, with a steady terminal

velocity ηw, we can use this Lorentz-boost transformation

to transform between the bubble wall frame and center

of the bubble frame by the expressions μðηw; vÞ ¼ v̄ and

μðηw; v̄Þ ¼ v. In addition to the equations of motion of the

plasma given above, we also need junction conditions to

connect the symmetry phase and the broken phase. We use

subscriptsþ to denote the symmetric phase and − to denote

the broken phase. We note that the junction conditions are

to be used infinitely close to the boundary. Then assuming

the wall is expanding in the z direction, the matching

equations are

ðTzν
þ −Tzν

− Þnν¼0; ðTtν
þ−Ttν

− Þnν¼0; nμ¼ð0;0;0;1Þ

ð4:20Þ

and we get the continuity equation in the bubble wall frame

to be

wþv̄þγ̄
2
þ ¼ w−v̄−γ̄

2
−; ð4:21Þ

wþv̄
2
þγ̄

2
þ þ pþ ¼ w−v̄

2
−γ̄

2
− þ p−: ð4:22Þ

Rearranging it, we can get the following equation:

v̄þv̄− ¼
pþ − p−

eþ − e−
; ð4:23Þ

v̄þ

v̄−
¼

e− þ pþ

eþ þ p−

: ð4:24Þ

With boundary conditions (4.23) and (4.24) and the

evolution equation (4.18), we can solve for vðηÞ, and there

are three different expansion modes: deflagration, hybrid,

and detonation. If the wall velocity of the bubble vw is

subsonic, i.e., vw < cs;−, it gives rise to deflagration where

a region of larger density precedes the bubble wall. For the

supersonic case where vw > cs;−, the higher density region

ahead of the wall does not materialize since the wall

velocity is larger than the sound velocity. This is the

detonation region. The region where vw ∼ cs is a mixture

of the two and is referred to as the hybrid region. Once we

determine vðξÞ we can apply Eqs. (4.19) and (4.21) to find

wðηÞ ¼ w0 exp

$
Z

vðηÞ

v0

!

1þ
1

c2s

"

γ2μdv

%

: ð4:25Þ

The ratio of bulk kinetic energy over the vacuum energy

gives the efficiency factor κ as

κ ¼
3

ϵη3w

Z

wðηÞv2γ2η2dη:

In most analyses of first-order phase transition (FOPT),

sound velocities are treated approximately often assuming

c2s;− ¼ c2s;þ ¼ 1
3
(see, e.g., [70,71]). In this case, the phase

transition strength α is given by

α ¼
T dΔVeff

dT
− ΔVeff

ρrad
ð4:26Þ

or

α0 ¼
4

3

ϵþ − ϵ−

wþ

¼
T
4

dΔVeff

dT
− ΔVeff

ρrad
: ð4:27Þ

However, in this work we will take into account sound

velocity dependence in the analysis as in [74,75]. Here the

phase transition strength parameter is given by

αθ̄n ≡
Dθ̄ðTnÞ

3wn

θ̄≡ e −
p

c2s;−
; ð4:28Þ

DXðTnÞ ¼ XsðTnÞ − XbðTnÞ; ð4:29Þ

with X ¼ e, p, w and the efficiency factor is defined by

κ ¼
4

αθ̄nη
3
w

Z

dηη2v2γ2
w

wn

: ð4:30Þ

In this case αθ̄n and κ are both velocity dependent, in that κ

depends on cs;þ, cs;−, αθ̄n and vw. We note that for the case

c2s;þ ¼ c2c;b ¼ 1=3, it is equivalent to the second definition,

Eq. (4.27). A Python snippet is provided in [74] and we

utilize it in our analysis.

V. GRAVITATIONAL WAVE SPECTRUM WITH

VISIBLE AND HIDDEN SECTORS

The phase transition phenomena is controlled by four

parameters, which are the nucleation temperature Tn, the

strength of the phase transition α, the inverse duration of the

transition β in comparison withHn whereHn is the Hubble

parameter at the time of nucleation and the bubble

wall velocity vw. Tn and α were discussed in Sec. IV.

The timescale of the phase transition is the inverse of the

parameter β defined by

β ¼ −
dðS3=TÞ

dt

(

(

(

(

t¼tn

≃
1

Γ

dΓ

dt

(

(

(

(

t¼tn

; ð5:1Þ
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where S3 is the Euclidean action as already defined.

Usually β is normalized by Hn and is given by

β

H
¼ T

dðS3ðTÞ=TÞ

dT

(

(

(

(

T¼fTn;Th;ng
: ð5:2Þ

We note here that a larger α means a stronger phase

transition and a larger value of β means a faster phase

transition.

The gravitational wave power spectrum has been dis-

cussed in a variety of settings (see, e.g., [31,36,71,76–88]).

It is given by

ΩGWðfÞ ¼
1

ρc

dρGW

d ln f
≃NΔ

!

κα

1þ α

"

p
!

H

β

"

q

sðfÞ;

ΩGW ≃ Ωϕ þ Ωsw þ Ωtb: ð5:3Þ

Here Ωϕ is the contribution to energy density of the

gravitational wave produced by dynamics of the scalar field,

Ωsw is the contribution from the sound waves, Ωtb is the

contribution by turbulence, ρc is the critical density, and f is

the frequency of the gravitational wave. The rest of the

parameters are as discussed in the text of this section.

Further, a detailed discussion of the various contributions

can be found in [52,89–92]. For the current analysis, all the

relevant parameters that enter in the computation of

Ωϕ;Ωsw;Ωtb which contribute in Eq. (5.3) are given in

Table I. However, we still need to consider the redshift both

on the energy density and frequency to deduce the power

spectrumΩ
0
GWðf0Þ at current temperature T0 from the power

spectrumΩGW gotten at the tunneling temperature T tun. This

is accomplished by the following extrapolation [36,52]:

Ω
0
GWðf0Þ ¼ RΩGW

!

a0

a
f0

"

; ð5:4Þ

where

a0

a
¼

!

heffðT tunÞ

hEQeff

"

1=3
!

T tun

T0

"

; ð5:5Þ

R≡

!

a

a0

"

4
!

H

H0

"

2

≃ 2.473 × 10−5h−2
!

hEQeff
heffðT tunÞ

"4=3!geffðT tunÞ

2

"

; ð5:6Þ

geffðT tunÞ ¼ gveffðT tunÞ þ gheffðT tunÞξðT tunÞ
4; ð5:7Þ

heffðT tunÞ ¼ hveffðT tunÞ þ hheffðT tunÞξðT tunÞ
3; ð5:8Þ

h
EQ
eff ¼ 3.91þ hheffðTeqÞξðTeqÞ

3: ð5:9Þ

In the above T tun ¼ Tn for the visible sector nucleation and

T tun ¼ ζðTh;nÞTh;n for the hidden sector nucleation.

It is also necessary to classify whether the bubble

wall velocity reaches a terminal velocity. If the bubble

wall keeps accelerating, it is called the runaway scenario.

If it reaches a terminal velocity, it is called a nonrunaway

scenario. A detailed discussion can be found in

[52,70,92,93]. To classify these two scenarios, a critical

phase transition strength α∞ is introduced. For the visible

sector and hidden sector nucleation, it is given by

αv∞¼
ðTnÞ

2

ρradðTnÞ

!

X

i¼bosons

ni
Δm2

i

24
þ

X

i¼fermions

ni
Δm2

i

48

"

; ð5:10Þ

αh∞¼
ðTh;nÞ

2

ρradðζðTh;nÞTh;nÞ

!

X

i¼bosons

ni
Δm2

i

24
þ

X

i¼fermions

ni
Δm2

i

48

"

:

ð5:11Þ

When α∞ > α, it is in the nonrunaway regime. In this case,

we have

κϕ ¼ 0; κsw ¼ κðα; c2s;þ; c
2
s;−; vwÞ: ð5:12Þ

When α∞ < α, it is in the runaway regime and we have

κϕ ¼ 1 −
α∞

α
; κsw ¼

α∞

α
κðα∞; c

2
s;þ; c

2
s;−; vwÞ: ð5:13Þ

The bubble wall velocity depends on the transition strength

α and on the friction between the scalar field and the

surrounding particle plasma, described by a friction

parameter. Thus, vw is highly model dependent. Since

the bubble wall is in the runaway region, it will keep

accelerating, and for that reason we take vw ∼ 1. In the

nonrunaway region, the bubble wall velocity reaches a

terminal value and is model dependent, so we treat it as a

free parameter. It is legal to do so since it is equivalent to

introducing additional particles that couple exclusively to

TABLE I. Values of the parameters N ; κ; p; q;Δ; fp; sðfÞ that
appear in the gravitational wave power spectrum of Eq. (5.3) for

the three different contributions: Ωϕ from the scalar field, Ωsw

from sound waves, and Ωtb from turbulence.

Scalar field Ωϕ Sound waves Ωsw Turbulence Ωturb

N 1 1.59 × 10−1 2.01 × 101

κϕ κ κsw ϵturbκsw
p 2 2 3

2

q 2 1 1

Δ 0.11v3w
0.42þv2w

vw vw

fp
0.62β

1.8−0.1vwþv2w

2β
ffiffi

3
p

vw

3.5β
2vw

sðfÞ 3.8ðf=fpÞ
2:8

1þ2.8ðf=fpÞ
3:8

ðf=fpÞ
3ð 7

4þ3ðf=fpÞ
2Þ7=2 ðf=fpÞ

3

ð1þf=fpÞ
11=3ð1þ8πf=HÞ
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the scalar field and affect the friction parameter only (for

recent work on determining wall velocity from initial inputs

see, e.g., [74,75,94,95]).

VI. SIMULATION OF GRAVITATIONAL WAVE

POWER SPECTRUM

There are several ongoing gravitational wave experiments

and those being proposed that will probe gravitational waves

at different frequency regions and with different sensi-

tivity. These include Laser Interferometer Space Antenna

(LISA) [96–98], EPTA [99,100], aLIGO/aVIRGO/KAGRA

[101–106], BBO [107], DECIGO [108], Einstein Telescope

(ET) [109], Cosmic Explorer (CE) [110], Taiji [111],

TianQin [112], μAres [113], NANOGrav [114,115],

Parkes Pulsar Timing Array (PPTA) [116], International

Pulsar Timing Array (IPTA) [117], and Square Kilometer

Array (SKA) [118]. We plot the predictions of the hidden

sector model discussed here along with the expected reach of

proposed gravitational wave experiments. Figure 3 provides

an example of gravitational wave power spectrum with these

experimental constraints for model (a) of Table II. Since the

major parameters for the standard model (SM) are already

known, we have the visible sector nucleation temperature

to be about 161.284 GeV, the phase transition strength

αv ∼ 4 × 10−5, and the inverse duration of the transition

βv ∼ 2.7 × 106. As a result, the direct contribution from

the visible sector is very small, which is about

Ωvisibleh
2 ∼ 10−30.

Based on the previous discussion, we calculate the phase

transition dynamics and the final gravitational wave power

spectrumwith different benchmarks on our model. For each

model, there are eight free parameters in total, which are

dark fermion mass mD, dark photon mass mγ0 , coupling of

dark photon and dark fermion gx, kinetic mixing δ, initial

temperature ratio ξ0, hidden Higgs field parameter μh, λh,

and the bubble wall velocity for hidden sector nucleation

vwh. Here we provide a table of benchmark models in

Table II with their outputs given in Table III.

A. Constraints and Monte Carlo simulation

In the beginning of this section we discussed eight

parameters that enter in the analysis of the gravitational

wave spectrum. For simulations we take the following

ranges for these parameters:

mD ∈ ð10−1; 104Þ GeV; mγ0 ∈ ð10−1; 104Þ GeV;

gx ∈ ð10−4; 100Þ; δ∈ ð10−12; 10−6Þ;

ξ0 ∈ ð0; 1Þ; μh ∈ ð10−1; 104Þ GeV;

λh ∈ ð10−5; 101Þ; vwh ∈ ð0; 1Þ: ð6:1Þ

TABLE II. A set of benchmarks covering a range of input parameters used in the computation of tunneling temperature in the hidden

sector and other relevant outputs in Table III that enter in the computation of the gravitational wave spectrum consistent with all

constraints on the dark photon [120]. These benchmarks pass all the constraints mentioned in Sec. VI A and are cosmologically

consistent candidate models for the computation of gravitational waves.

Number mD (GeV) mγ0 (GeV) gX δ (in 10−9) ξ0 μh (GeV) λh vwh

(a) 551.7 108.5 0.02059 0.01038 0.671 18.63 0.04973 0.5993

(b) 204.1 52.52 0.01975 0.01441 0.463 9.922 0.03953 0.5619

(c) 594.4 221.5 0.002922 0.0281 0.778 41.78 0.08802 0.9599

(d) 710 138.6 0.003161 0.03012 0.917 22.03 0.02939 0.6472

(e) 1111 113.7 0.02739 0.01174 0.821 18.49 0.03857 0.2674

(f) 2854 249.5 0.00821 0.03464 0.795 41.44 0.04183 0.5871

(g) 530.7 124.7 0.04001 0.02102 0.757 17.14 0.01621 0.6159

FIG. 3. An exhibition of the gravitational wave power spectrum

for model (a) in Table II illustrating the relative contributions

from sound wave and turbulence. This is a nonrunaway case and

Ωϕ ¼ 0. The solid lines are for the hidden sector phase transition

while the dashed lines are for the visible sector. In the analysis we

take ϵturb ¼ 0.1 as in [90,92]. The regions in color are the power-

law integrated sensitivity curves for different experiments,

including LISA [96–98], EPTA [99,100], HLVK ¼
aLIGO=aVIRGO=KAGRA [101–106], BBO [107], DECIGO

[108], ET [109], CE [110], Taiji [111], TianQin [112], μAres

[113], NANOGrav [114,115], PPTA [116], IPTA [117], and SKA

[118]. The data and calculations are from [119].
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In order to investigate the distribution of different nucle-

ation modes, as discussed in Sec. VI C, for each event we

select vwh corresponding to three different nucleation

modes so that the total number for each type of mode is

the same. In the Monte Carlo simulation we impose the

following constraints:

(1) FOPT constraints: For the first-order phase transi-

tion, we require that there must be a potential barrier

between the false vacuum and the true vacuum. The

further constraint is an upper limit of sound velocity

so that c2s ≤ 1=3.
(2) ΔNeff constraint at BBN: The number of effective

relativistic degrees of freedom Neff at BBN is one of

the important constraints on new physics beyond the

standard model of particle physics. The relevant

constraint is given by the allowed corridor for the

difference between the experimental result and the

standard model result at the BBN time represented

by ΔNeff. For the hidden sector model the extra

degrees of freedom are given by

ΔNeff ¼
4

7
gheff

!

11

4

"

4=3

ξ4: ð6:2Þ

Current experiment observations give us the con-

straint ΔNeff < 0.25 [121].

(3) Relic density constraint: After solving for the yield

equations, the relic densities for χ and D can be

gotten from their individual yields so that

Ωih
2 ¼

s0miY
0
i h

2

ρc
; i∈ ðD; χÞ; ð6:3Þ

where Y0
i is the yield for the ith particle and Ωih

2 is

its relic density, while the total relic density is the

sum of them. In the analysis we use dark matter relic

density as an upper limit. Currently, it is given by the

Planck experiment [121] so that

ΩDMh
2 ¼ 0.120( 0.001: ð6:4Þ

Specifically, we impose the constraint 0.01 <

Ωhiddenh
2 < 0.12.

For each benchmark model, there will be a corresponding

power spectrum curve just like Fig. 3. However, plotting the

full curve for each model point would not be illuminating

because they would be space filling. For that reason we will

do a scatter plot on the gravitational wave power spectrum,

with each model point represented by the peak of its power

spectrum curve at the frequency where that peak occurs.

An illustration of it is given in Fig. 4.

B. Nucleation temperature and GW power spectrum

Nucleation temperature is one of the key factors in the

computation of the gravitational wave power spectrum. It

affects the spectrum in the following ways:

(1) It enters the phase transition strength α as discussed

below

α ¼
ϵ

ρrad
: ð6:5Þ

Although there are several different definitions to

the latent heat ϵ as discussed earlier, the total

radiation density of the Universe ρrad is the same

and is given by

ρrad ¼
π2

30
ðgveffðζTh;nÞTh;n

4ζ4 þ gheffðTh;nÞTh;n
4Þ:

ð6:6Þ

It tells us that α ∝ Th;n
−4. Thus, a smaller Th;n leads

to a larger α and a larger gravitational wave power

spectrum.

(2) According to Eq. (5.4), we have f0 ∝ Th;n, which

implies that a larger power spectrum will arise at

lower frequencies.

The analysis of Fig. 4 is consistent with the observation

above that a larger power spectrum will appear at a lower

frequency. We also note that, for the two-field case,

TABLE III. Computation of the nucleation temperature Th;n, sound velocities in the symmetric and broken phases c2s;þ;h; c
2
s;−;h, the

strength of the phase transition αh, the inverse duration of the transition βh=Hn, and the efficiency factor κh all for the hidden sector. Also

listed is the dark matter relic density ΩDMh
2, frequency fðzÞ of the power spectrum at the peak value of the gravitational wave power

spectrum, and the gravitational wave power spectrum ΩGWh
2 at peak value. DET, HYB, and DEF stand for the nucleation modes

detonation, hybrid, and deflagration.

Number Th;n ξðTnÞ c2s;þ;h c2s;−;h αh βh=Hn κh ΩDMh
2 f½Hz' ΩGWh

2 Mode

(a) 18.2 0.6724 0.307 0.306 0.0172 294.8 0.223 0.013 0.00257 1.591 × 10−13 HYB

(b) 18.02 0.4635 0.309 0.309 0.00053 1563. 0.0463 0.0267 0.0204 1.172 × 10−18 HYB

(c) 29.93 0.7794 0.309 0.308 0.043 158.8 0.0523 0.0198 0.0012 1.524 × 10−13 DET

(d) 35.52 0.9181 0.308 0.306 0.0151 871.3 0.0984 0.0385 0.0102 8.604 × 10−15 DET

(e) 19.73 0.8227 0.309 0.308 0.0367 319.7 0.0413 0.0115 0.0055 9.823 × 10−15 DEF

(f) 54.78 0.7956 0.318 0.317 0.0107 845.6 0.187 0.0228 0.0191 1.42 × 10−14 HYB

(g) 28.07 0.758 0.308 0.307 0.0127 565.9 0.175 0.0216 0.00631 2.843 × 10−14 HYB
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satisfaction of FOPTand other constraints is affected by the

order in which nucleation in the visible and in the hidden

sector occurs. Thus, we classify all FOPT events into two

groups: (1) the standard model Higgs scalar nucleation

happens first, i.e., ζðTh;nÞTh;n < Tn (red points) or (2) the

hidden Higgs scalar nucleation happens first, i.e.,

ζðTh;nÞTh;n > Tn (blue points). The analysis for these

two cases is shown in Fig. 5. Here the analysis shows that

after the FOPT constraints, ΔNeff constraint, and the relic

density constraint are taken into account most of the blue

points are eliminated, which implies that the hidden sector

nucleation occurs after nucleation in the visible sector.

C. Sound velocity and GW power spectrum

We discussed above the effect of sound velocity on the

final power spectrum via αðc2s;−;hÞ according to Eq. (4.28)

and via κðα; c2s;þ;h; c
2
s;−;h; vwÞ according to Eq. (4.30). To

demonstrate to what extent sound velocity can change the

power spectrum, we investigate the power spectrum for

model (b) from Table II keeping all parameters fixed except

for the sound velocity c2c;b;h. The analysis of Fig. 6 shows

that the changes to power spectrums can be as large as a

factor of Oð103Þ. This approach allows us to isolate the

effects of sound velocity from other factors, such as the

nucleation temperature noted earlier. The reason we need to

discuss this dependence is because there are multiple

different analyses on sound velocity among existing works

that lead to different results. We classify these as follows:

(A) This is the case when one considers just the hidden

sector and assumes that the sound velocity takes

its maximum value allowed in fluids which is

c2s ¼ 1=3. Such an assumption is the one most

commonly made, see, e.g., [52,122].

(B) Here one considers one hidden sector model but

including sound velocity dependence. For this class

of models α is given by Eq. (4.28) and κ will also be

velocity dependent. The sound velocity is given by

c2s ¼
dph=dTh

deh=dTh

; ð6:7Þ

FIG. 5. Monte Carlo analysis of gravitational wave power spectrum classified by two possible orderings in which nucleation occurs in

the visible and hidden sector with red model points for Tn > ζðTh;nÞTh;n and blue model points for ζðTh;nÞTh;n > Tn. Left: scatter plot

of the candidate models satisfying the FOPT constraints. Middle: same as the left panel satisfying the FOPT constraints and the ΔNeff

constraint. Right: same as the left panel with models satisfying the FOPT constraints, ΔNeff constraint, and the relic density constraint.

Here one finds that the residual set of models left after all the constraints are applied are those where the nucleation in the hidden sector

happens after nucleation in the visible sector.

FIG. 4. Gravitational wave power spectrum resulting from Monte Carlo analysis on eight free parameters. Left: scatter plot of the peak

value of candidate models at the frequency where the peak value occurs after FOPT constraints are applied. Middle: same as the left

panel including FOPT constraints and the ΔNeff constraint. Right: same as the left panel including the FOPT constraints, ΔNeff

constraint, and the relic density constraint.
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where ph and eh are the pressure and the energy

density for the hidden sector. Analyses of this type

are discussed in, for example, [74,123].

(C) In this work, we discuss sound velocity involving

two sectors, i.e., the visible and the hidden, and take

into account velocity dependence, which is given by

Eq. (4.8). This type of analysis has not been

discussed in the existing literature to our knowledge.

Applying the above three types of analyses (A)–(C) to

model (b), we get sound velocities such that c2
s;−;h;ðAÞ¼

0.333;c2
s;−;h;ðBÞ¼0.234;c2

s;−;h;ðCÞ¼0.309. Correspondingly,

the gravitational wave power spectrum for the three cases is

significantly affected due to variations in the sound velocity

as illustrated in Fig. 6.

D. Nucleation temperature and sound velocity

In this section, we will analyze how the sound velocity

depends on the nucleation temperature. Again, we will

focus on c2s;−;h, with sound velocity defined as by Eq. (4.8).

The scatter plot is shown in Fig. 7. We observe that some

of the points in Fig. 7 are gathered around the curve of

c2s ¼
dðpvÞ=dT
dðevÞ=dT

. This phenomenon happens because the

visible sector dominates, i.e., we have the sound velocity

so that

c2sðϕ;χ;T;ThÞ¼
dðpvþphÞ=dT

dðevþehþemixÞ=dT
≃
dðpvÞ=dT

dðevÞ=dT
: ð6:8Þ

The reason that the visible sector can dominate is because

pv ∼
π2

90
gveffT

4 and ph ∼
π2

90
gheffT

4
h according to Eqs. (4.3),

(4.4) and T > Th when ξ < 1 and also gveff > gheff .

One may note from Fig. 7 that, for the case when

the hidden Higgs scalar nucleation occurs first, i.e.,

ζðTh;nÞTh;n > Tn, the red curve stays at c2 ∼ 1=3.

However, when the standard model Higgs scalar nucleation

occurs first, i.e., Tn > ζðTh;nÞTh;n, we have c2s systemati-

cally less than 1=3. The different behavior for the two cases
arises due to two different constraints, i.e., Eqs. (4.10)

and (4.11), for these two different cases. In the analysis of

Sec. VI B, it is found that most of events that pass all the

relevant constraints are those where Tn > ζðTh;nÞTh;n and

where the approximation c2s ∼ 1=3 is typically invalid. In

simple terms the cosmologically preferred model points are

those where Tn > ζðTh;nÞTh;n and c2s < 1=3.

1. ΔNeff vs ξðTÞ

According to Eq. (6.6), the hidden sector nucleation

happens at Th;n which lies in the range 18–55 GeV

according to Table III, while the BBN temperature is

Oð1Þ MeV. This means we need to extrapolate the Neff

FIG. 6. An exhibition of the gravitational wave power

spectrum for different types of sound velocities for a example

model. All other parameters, such as the nucleation temper-

ature, are kept fixed when c2s;−;h varies for cases A, B, and C

discussed in the text.

FIG. 7. Scatter plots for c2s;−;h vs ζðTh;nÞTh;n for a set of candidate models in the parameter ranges given by Eq. (6.1). Here the standard

model dominates over the hidden sector in the computation of sound velocity and the sound velocity is close to the one for the visible

sector, i.e., c2s ¼
dðpvÞ=dT
dðevÞ=dT

shown by the red curve. The vertical black lines give the value of Tn. Left: scatter plot of c
2
s;−;h vs ζðTh;nÞTh;n

with inclusion of FOPT constraints. Middle: same as the left panel including the FOPT constraints and the ΔNeff constraint. Right: same

as the left panel with FOPT constraints, ΔNeff constraint, and the relic density constraint.
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between the two temperatures in a precise way so as to

take account of the ΔNeff constraint at BBN time, which

we take to be ΔNeff < 0.25. In some previous works

separate entropy conservation in the visible and hidden

sectors is used to extrapolate Neff from high temperatures

to low temperatures. Such a procedure is shown to be

flawed as it can yield highly inaccurate estimates on

ΔNeff . Thus, a more accurate analysis is needed as

discussed in Sec. II and Appendix E. An analysis relevant

to the current case is given in Fig. 8. Here we first show

that the two sectors decouple at 10−2 GeV and the dark

photon also decays out at 10−2 GeV. The left panel

exhibits the decoupling more clearly where ni
P

ihσvi
for all three hidden sector particles falls below HðTÞ at
T ∼ 10−2 GeV, which means the complete decoupling

of the hidden and visible sectors (see Appendix E),

and the density of dark relics freezes out as exhibited

in the left-middle panel. The right-middle panel exhibits

ξðTÞ vs T, which is used to constraint ΔNeff at the BBN

time as shown in the right panel. The right panel shows

that ΔNeff drops below the BBN constraint when decou-

pling happens.

E. Gravitational wave power spectrum and the

nucleation modes: Detonation, deflagration, hybrid

Now we discuss the gravitational wave power spectrum

for different nucleation modes: detonation, deflagration,

and hybrid. Chapman-Jouguet velocity [72,73,124] is

used in part to distinguish different bubble nucleation

modes, specifically the detonation and the hybrid modes.

It is given by [74,75]

vJ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3αθ̄ð1 − c2s þ 3c2sαθ̄Þ
p

1=cs þ 3csαθ̄
: ð6:9Þ

The bubble nucleation modes are distinguished by the

following constraints:

(1) Detonations: vw > cs;− and vw > vJ.
(2) Hybrid: vw > cs;− and vw < vJ.
(3) Deflagrations: vw < cs;−.

Here, vw is the bubble wall velocity. We apply such

classification to all data points in Monte Carlo analysis

to produce Fig. 9. The figure shows that the hybrid modes

are typically the ones with the highest power spectrum.

FIG. 8. Left: an exhibition of the decouplings of hidden sector particles with plots of ni
P

ihσvi and HðTÞ vs T for i ¼ D; γ0; χ. Here
we have nD

P

Dhσvi ¼ nDðhσviDD̄→iī þ hσviDD̄→γ0γ0Þ, nγ0
P

γ0hσvi ¼ nγ0ðhσviDD̄→γ0γ0 þ hσviχχ̄→γ0γ0 þ hΓγ0→iīðThÞiþ hΓχ→γ0γ0ðThÞiÞ,
nχ
P

χhσvi ¼ nχðhσviχχ̄→γ0γ0 þ hΓχ→γ0γ0ðThÞiÞ. Left middle: an exhibition of the decay of dark photon γ0. The dark photon decays out at

about 10−3 GeV. Right middle: evolution of ξðTÞ vs T for model (e) of Table II. Right: ΔNeffðTÞ vs T. The red dashed line is the current
limit ΔNeff < 0.25.

FIG. 9. Gravitational wave power spectrum for Monte Carlo analysis classified by different nucleation modes: detonation,

deflagration, hybrid. Left: allowed set of models satisfying the FOPT constraints. Middle: same as the left panel with models

satisfying FOPT constraints and the ΔNeff constraint. Right: residual set of models satisfying the FOPT constraint,ΔNeff constraint, and

the relic density constraint.
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VII. CONCLUSION

In this work we have carried out a cosmologically

consistent analysis of gravity wave power spectrum arising

from a first-order phase transition involving two sectors:

the visible sector and the hidden sector, since the two

sectors are intrinsically entangled in several ways. Thus, the

Hubble expansion involves energy densities of all sectors,

hidden and visible. Further, the strength of the first-order

phase transition in the hidden sector at tunneling time Th;n

depends on αðTh;nÞ ¼ ϵ=ρrad where ϵ is the latent heat and

ρrad ¼ ρhradðTh;nÞ þ ρvradðTÞ where T ¼ ζðTh;nÞTh;n and

involves the evolution function ζðThÞ. The same evolu-

tion function enters when we impose the ΔNeff constraint

at BBN time. Thus, imposition of ΔNeff at BBN requires

a knowledge of the hidden sector temperature at BBN

time which in the visible sector is ∼1 MeV. Again one

needs the evolution function to deduce the effective

degrees of freedom in the hidden sector at the temperature

synchronous to ∼1 MeV in the visible sector. In brief,

since the visible and the hidden sectors reside in different

heat baths, a consistent analysis requires that one takes

into account the dependence of the effective potential on

two temperatures: one for the visible and the other for the

hidden. In this work, we have presented an analysis of the

gravitational wave power spectrum which takes into

account the synchronous evolution of the visible and

the hidden sectors. Within this framework we discuss

nucleation which involves bubble dynamics in two

sectors. The analysis involves a solution to the evolution

function ξðTÞ ¼ Th=T along with a solution to yield

equations for the hidden sector particles. Thus, the

formalism discussed in this work allows one to correlate

physics at nucleation time and at BBN time and allows

for precision computation of ΔNeff at BBN and of relic

density. The formalism presents an improvement over

current analyses where synchronous evolution of the

visible and the hidden sectors is not utilized.

Several aspects of the gravitational wave power spectrum

are analyzed within the two temperature evolution formal-

ism. Thus, we analyze the sensitivity of the gravitational

wave power spectrum to sound speed for symmetric and

broken phases. The analysis includes nucleation involving

two fields, one from the hidden and the other from the

visible. Here it is shown that, for the case two-field

nucleation, models that pass all the constraints are those

where the tunneling in the visible sector precedes tunneling

in the hidden sector. Further, we discuss the possible

imprint of the nucleation modes, i.e., detonation, deflagra-

tion, and hybrid on the characteristics of the gravitational

power spectrum.We show that a part of the parameter space

of the specific gauged Uð1Þ extension of the standard

model discussed here is testable at the proposed gravita-

tional wave detectors.

Finally, we mention below the novel material contained

in the paper.

All the published works on gravitational wave produc-

tion in hidden sector models thus far, that we are aware

of, do not qualify as cosmologically consistent models

since there is no synchronous thermal evolution of the

visible and the hidden sectors in these works, and our work

is the first one that has accomplished that. Details of how a

synchronous evolution of the visible and the hidden sectors

is achieved in a two sector/two temperature universe is

discussed in detail in Secs. II–IV and in Appendixes A–E.

Thus, currently this paper is the only cosmologically

consistent model and no comparable analysis exists in

the literature. This is reflected in the first three words of the

title of this paper: “Cosmologically consistent analysis.”

This paper is the first work where the imprint of different

nucleation modes, i.e., detonation, deflagration, and hybrid,

on the gravitational wave power spectrum is analyzed (see

Fig. 9). This aspect of the paper is of great significance

since it tells us that experimental data on gravitational

waves can be used to probe the very early history of the

Universe when the current Universe was in the process of

creation via bubble formation. No comparable analysis

exists in any of the previous works.

Among other novel things, in this work we discussed

sound speeds involving two sectors (see Sec. IV), i.e., the

visible and the hidden, which have a very significant effect

on the gravitational power spectrum when both sound

speeds are taken into account as seen in Fig. 6. Here the

very large effect that inclusion of sound speeds of both the

visible and of the hidden sector can generate on the power

spectrum is exhibited. This type of analysis has not been

discussed in the existing literature to our knowledge, and

thus our analysis is more complete than what appears in the

previous works for the two sector case.

Note added. Recently, the Ref. [125] appeared which uses

dimensionally reduced 3D thermal field theory to minimize

the uncertainty of the gravitational wave signal. This work

along with those referenced in it are a useful tool in making

the thermal analysis more precise. It is of interest to extend

the analysis of this work to a two sector/two temperature

case so as to be applicable to gravitational power spectrum

involving the standard model and the hidden sector dis-

cussed in this work.
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APPENDIX A: THERMAL MASS CALCULATION

FOR A GENERAL Uð1Þ THEORY

We discuss here the calculation of thermal masses for

the hidden sector Lagrangian given by Eqs. (2.2) and (2.4).

The calculation is done in the high temperature regime,
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where the temperature is much higher than the energy scale of the particles’ masses. We also take all the external momenta

to zero. In thermal field theory, at some nonzero temperature T, the 1PI graphs are defined in the Euclidean space (t ¼ iτ)

with a periodicity in τ. The computations are governed by the conventional Feynman rules, while replacing the k0 integral
by a sum over Matsubara frequencies [126] so that

Z

d4k

ð2πÞ4
fðk0;kÞ→ T

X

n

Z

d3k

ð2πÞ3
fðk0 ¼ iωn;kÞ; ωb

n ¼ 2nπT; ωf
n ¼ ð2nþ 1ÞπT; ðA1Þ

where ωb
n is for bosonic modes and ωf

n is for fermionic modes. For the rest of the calculation it is useful to define a

function qðTÞ so that

qðzÞ ¼ 1þ
2ς

ez=T − ς
; ðA2Þ

with ς ¼ þ1 for bosons and ς ¼ −1 for fermions. Some of the integrals that appear in the thermal masses can then be given

in terms of ξðzÞ. Thus, we have

T
X

n

Z

d3k

ð2πÞ3
1

ω2
n þ jkj2 ¼

Z

∞

0

dkk2

2π2
qðkÞ

2k
¼

)

T2=12 bosons

−T2=24 fermions
ðA3Þ

T
X

n

Z

d3k

ð2πÞ3
ω2
n

ðω2
n þ jkj2Þ2 ¼

Z

∞

0

dkk2

2π2
kþ 2TqðkÞ − kq2ðkÞ

8kT
¼

)

−T2=24 bosons

T2=48 fermions
ðA4Þ

T
X

n

Z

d3k

ð2πÞ3
jkj2

ðω2
n þ jkj2Þ2 ¼

Z

∞

0

dkk2

2π2
−kþ 2TqðkÞ þ kq2ðkÞ

8kT
¼

)

T2=8 bosons

−T2=16 fermions
ðA5Þ

where we dropped the nonthermal contribution in the integral which is UV divergent and is removed by the counterterms.

There are no thermal corrections to the fermion masses, and only the scalar boson and the longitudinal components of the

gauge boson gain thermal corrections.

1. Thermal mass correction to scalar χ

We discuss the thermal corrections to the scalar boson first. Here the thermal mass corrections come from the scalar

loops, from the neutral Goldstone loop, and from the gauge boson loop as shown in Fig. 10.

The scalar loop contribution from χ4 term is given by

scalar loop from χ4 ¼ 3λhi

Z

d4k

ð2πÞ4
1

k2
→ 3λhT

X

n

Z

d3k

ð2πÞ3
1

ω2
n þ jkj2 ¼

λh

4
T2: ðA6Þ

FIG. 10. Left: thermal mass correction to the scalar field χ complex scalar loop exchange indicated by the dashed line. Middle: same as

the left figure except that the thermal loop correction is from the Goldstone loop (small dashed line). Right: same as the left figures

except that the thermal loop correction is from the Uð1Þ gauge field loop (wavy line).
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The prefactors can be understood as the following: The contraction of hχðxÞj λh
4
χχχχðzÞjχðyÞi has in total 4 × 3 ways and

gives rise to a factor 3λ, and the additional I in the front is from the computation of the amplitudes, i.e., iM. The scalar loop

contribution from χ2ðG0
hÞ

2 term is given by

Goldstone loop from χ2ðG0
hÞ

2 ¼ λhi

Z

d4k

ð2πÞ4
1

k2
→ λhT

X

n

Z

d3k

ð2πÞ3
1

ω2
n þ jkj2 ¼

λh

12
T2; ðA7Þ

where the contraction of hχðxÞj λh
2
χχðzÞG0

hG
0
hðzÞjχðyÞi has two ways and thus gives rise to a factor 2 × ð−i λh

2
Þ ¼ −iλh. Thus,

the total scalar thermal contribution is the sum of the two above results,

scalar andGoldstone loops ¼
λh

4
T2 þ

λh

12
T2 ¼

λh

3
T2; ðA8Þ

which is different from the SM Higgs thermal mass λ
2
T2, owing to the fact that there are also contributions from the two

charged Goldstone bosons. The gauge boson loop contributions to the scalar mass is given by

Gauge boson loop ¼ iðig2xÞ

Z

d4k

ð2πÞ4
Tr½ΔμνðkÞ' → 3g2xT

X

n

Z

d3k

ð2πÞ3
1

ω2
n þ jkj2 ¼

g2x

4
T2; ðA9Þ

where ΔμνðkÞ is the gauge boson propagator in the Landau

gauge given by ΔμνðkÞ ¼
−i
k2
ðgμν − kμkν

k2
Þ. The contraction of

hχðxÞj 1
2
gx2χχðzÞAAðzÞjχðyÞi gives rise to a total front

factor 2 × ði 1
2
g2xÞ ¼ ig2x.

Thus, in this case the total thermal mass for the dark

scalar field ΠχðTÞ is given by

Πχ ¼
1

3
λhT

2 þ
1

4
g2xT

2: ðA10Þ

2. Thermal mass for the Uð1Þ gauge boson

Next we compute the thermal mass for the longitudinal

contribution to the Uð1Þ gauge boson mass γ0. Here the

polarization tensors of vector bosons can split into com-

ponents of longitudinal (L) and transverse (T) polarization

so that

Π
μν ¼ Π

TTμν þ Π
LLμν ðA11Þ

with projection operators Tμν ¼ diagf0; 2; 2; 2g and Lμν ¼
diagf−1; 0; 0; 0g in the IR limit [127]. The gauge boson

thermal mass corrections come from scalar and fermion

contributions: In this case the thermal mass corrections to

the γ0 mass come from scalar and fermion loop contribu-

tions as shown in Fig. 11. The calculation of the scalar loop

contribution is easier to be performed considering the

complex Uð1ÞX field Φ which has 2 degrees of freedom

and it represented by the double dashed line in Fig. 11. The

corresponding Lagrangian reads

L ⊃ jDμΦj2 → g2xA
2
ΦΦ

% þ igxAμðΦ
%
∂
μ
Φ −Φ∂

μ
Φ

%Þ;

ðA12Þ

which gives i2g2x for the four-point vertex AAΦΦ
% and

−2gxk
μ for the three-point vertex Aμ

ΦΦ
%. The scalar loop

contribution is

scalar loop

¼ 2 ×
i

2

Z

d4k

ð2πÞ4

$

ði2g2xg
μνÞ

i

k2
þ
ð2gkμÞð−2gxk

νÞðiÞ2

ðk2Þ2

%

;

ðA13Þ

where the prefactor 2 is fromΦ being a complex scalar, and

1=2 is the symmetric factor due to the two external gauge

FIG. 11. Thermal mass corrections to the gauge boson mass from the complex scalar loop with a four point vertex (left) and with a

three point vertex (middle), and from the Dirac fermion loop (right).
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boson legs. One still needs to multiply the 2 from the complex Φ. For the nonzero contribution to the longitudinal part

we get

Π
L ¼ −Π00 ¼ i2g2x

Z

d4k

ð2πÞ4

$

1

k2
−

2k20
ðk2Þ2

%

→ 2g2xT
X

n

Z

d3k

ð2πÞ3

$

1

ω2
n þ jkj2 −

2ω2
n

ðω2
n þ jkj2Þ2

%

¼
g2x

3
T2: ðA14Þ

The Uð1ÞX charged fermion loop contribution given by the right diagram in Fig. 11 is given by

fermion loop ¼ ð−Þi

Z

d4k

ð2πÞ4
ðigxÞ

2
ðiÞ2Trðγμ=kγν=kÞ

ðk2Þ2
¼ −i4g2x

Z

d4k

ð2πÞ4
2kμkν − k2gμν

ðk2Þ2
; ðA15Þ

which gives contribution to ΠL so that

Π
L ¼ −Π00 ¼ i4g2x

Z

d4k

ð2πÞ4
k20 þ jkj2
ðk2Þ2

→ −4g2xT
X

n

Z

d3k

ð2πÞ3
ω2
n þ jkj2

ðω2
n þ jkj2Þ2 ¼

g2x

3
T2: ðA16Þ

This is the contribution from a Dirac fermion exchange. For

a chiral fermion exchange, either left- or right-handed, the

contribution to the thermal mass is
g2x
6
T2. For an Abelian

gauge theory there is no gauge boson loop contribution.

From the above analysis we deduce that, if in addition to

the complex scalar field Φ, there are n numbers of dark

chiral fermion Xi (either left- or right-handed) with the

Uð1ÞX charge Qi, then the thermal mass for the dark sector

gauge boson γ0 is given by

Πγ0 ¼
1

3
g2xT

2 þ
X

n

i¼1

1

6
g2xQ

2
i T

2; ðA17Þ

where the first term on the right-hand side arises from a

complex scalar loop and the second term from N chiral

fermion loops.

3. Daisy resummation

As discussed in a number of works in temperature-

dependent perturbation theory, the summation over higher

loops can produce the same size correction as the one loop

and should be taken into account [44,127–129]. Thus, one

finds that at the nth order, the n-loop daisy diagram with

n − 1 petals (see Fig. 12), also called the ring diagram,

gives the dominant contribution. The daisy diagrams can be

resumed by adding up propagators with increasing number

of attached loops. Each loop can contribute a thermal mass

correction ΠðThÞ ¼ Π1ðThÞ, where Π1ðThÞ is the one-loop
thermal mass correction, derived above. The sum of all the

propagators can be written as

1

p2 −m2
þ

ΠðThÞ

ðp2 −m2Þ2
þ

Π
2ðThÞ

ðp2 −m2Þ3
þ ) ) )

¼
1

p2 −m2 − ΠðThÞ
;

which is equivalent to adding a thermal contribution to the

mass in the propagator, i.e.,

m2ðχcÞ → m2ðχcÞ þ ΠðThÞ: ðA18Þ

Now the one-loop contribution at zero temperature is

given by

V
ð0Þ
1h ðχcÞ ¼

X

i

Ni

2

Z

d4kE

ð2πÞ4
ln½k2E þm2

i ðχcÞ'; ðA19Þ

where i runs over all the particles that enter the loop and Ni

are the degrees of freedom for particle i. The regularized

and renormalized one-loop potential as given by the right-

hand side under the MS scheme is the familiar Coleman-

Weinberg potential. From here on we follow the procedure

FIG. 12. A daisy or ring diagram which contributes to thermal

potential.
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in the preceding analysis and using the imaginary time formalism we replace the integral over k0E by a summation over the

Matsubara frequencies as given by Eq. (A1), where ωb
n are for bosons and ωf

n are for fermions and ΔV
Th

1hðχc; ThÞÞ at finite
temperature is given by

ΔV
Th

1hðχc; ThÞ ¼
X

i

NiTh

2

X

þ∞

n¼−∞

Z

d3k

ð2πÞ3
ln½k2 þ ω2

n þm2
i ðχcÞ': ðA20Þ

After the replacement Eq. (A18), the thermal one-loop potential ΔV
ðThÞ
1h ðχc; ThÞ reads

ΔV
ðThÞ
1h ðχc; ThÞ →

X

i

NiTh

2

(

X

n≠0

Z

d3k

ð2πÞ3
ln½k2 þ ω2

n þm2
i ðχcÞ' þ

Z

d3k

ð2πÞ3
ln½k2 þm2

i ðχcÞ þ ΠðThÞ'

)

¼
X

i

NiTh

2

(

X

n≠0

Z

d3k

ð2πÞ3
ln½k2 þ ω2

n þm2
i ðχcÞ' þ

Z

d3k

ð2πÞ3
ln½k2 þm2

i ðχcÞ'

þ

Z

d3k

ð2πÞ3
ln

$

1þ
ΠðThÞ

k2 þm2
i ðχcÞ

%

)

¼
X

i

NiTh

2

X

þ∞

n¼−∞

Z

d3k

ð2πÞ3
ln½k2 þ ω2

n þm2
i ðχcÞ' þ

X

i

N̄iTh

2

Z

d3k

ð2πÞ3
ln

$

1þ
ΠðThÞ

k2 þm2
i ðχcÞ

%

¼ ΔV
ðThÞ
1h ðχc; ThÞ þ V

daisy
h ðχc; ThÞ;

where N̄i are the bosonic degrees of freedom which incur the mass shift. The daisy diagram contribution to the effective

potential from one particle is computed to be

V
daisy
h ðχc; ThÞ ¼

Th

2

Z

d3k

ð2πÞ3
ln

$

1þ
ΠðThÞ

k2 þm2ðχcÞ

%

¼ lim
Λ→þ∞

Th

4π2

Z

Λ

0

dkk2 ln

$

1þ
ΠðThÞ

k2 þm2ðχcÞ

%

¼ lim
Λ→þ∞

Th

4π2
×

1

3

)

2ΛΠðThÞ þ Λ
3 ln

$

1þ
ΠðThÞ

m2ðχcÞ þ Λ
2

%

þ 2m3ðχcÞtan
−1

!

Λ

m

"

− 2½m2ðχcÞ þ ΠðThÞ'
3=2tan−1

$

Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2ðχcÞ þ ΠðThÞ
p

%*

→ −
Th

12π
f½m2ðχcÞ þ ΠðThÞ'

3=2 −m3ðχcÞg; ðA21Þ

where on the last line we drop the divergent pieces which

are canceled by counterterms, and tan−1ð Λ

m
×

Þ → π
2
when

taking Λ → þ∞ where m
×
is a mass taken positive.

APPENDIX B: EFFECTIVE THERMAL

POTENTIAL OF THE VISIBLE SECTOR

The effective Higgs potential in the standard model,

including the temperature-dependent part, is well known. It

is given by the sum of the zero temperature tree and zero

temperature Coleman-Weinberg one-loop potential [130],

temperature-dependent one-loop correction, and “daisy

diagrams” [44,45,49,128,129,131–133]. We give a brief

discussion of it here for completeness. Thus, consider the

tree level potential for the standard model with the complex

Higgs doublet field H so that

VðH;H†Þ ¼ −μ2H†H þ λðH†HÞ2: ðB1Þ

We write the doublet of the Higgs field H so that

H ¼

 

Gþ

ðϕcþϕþiG3Þ
ffiffi

2
p

!

; ðB2Þ

where ϕc is the background fields, ϕ is the Higgs field, and

Gþ ¼ ðG1 þ iG2Þ=
ffiffiffi

2
p

whereG1;2;3 are the three Goldstone

bosons. The tree level potential is given by

V0ðϕcÞ ¼ −
μ2

2
ϕ2
c þ

λ

4
ϕ4
c: ðB3Þ

To one-loop order, the effective potential of the standard

model including temperature-dependent contributions is

given by

Veffðϕc; TÞ ¼ V0ðϕcÞ þ V
ð0Þ
1 ðϕcÞ þ ΔV

ðTÞ
1 ðϕc; TÞ

þ Vdaisyðϕc; TÞ þ δVðTÞðϕc; TÞ; ðB4Þ
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where V
0Þ
1 is the zero temperature one-loop potential,

ΔV
ðTÞ
1 is the temperature-dependent one-loop contribution,

Vdaisy is the daisy loop contribution, and δVðTÞ are the

counterterms to remove divergent terms. Thus, V
ð0Þ
1 ðϕcÞ is

given by

V
ð0Þ
1 ðϕcÞ ¼

X

i

Nið−1Þ
2si

64π2
m4

i ðϕcÞ

$

ln

!

m2
i ðϕcÞ

Λ
2

"

− Ci

%

;

ðB5Þ

where the sum i runs over all particles in the theory with Ni

degrees of freedom for particle iwith massmiðϕcÞ and spin
si, Λ is the renormalization scale, and Ci equals 5=6 for

gauge bosons and 3=2 for fermions and scalars in MS

renormalization. The relevant contribution arises from the

gauge bosons Z and W(, the top quark, the Higgs boson,

and the Goldstone bosons. Thus, for the SM i runs through

fZ;W; t; H;G3; G
(g and the corresponding front factors

are Ni ¼ f3; 6; 12; 1; 1; 1; 1g. The field-dependent masses

m2
i ðϕcÞ are given by

m2
hðϕcÞ ¼ −μ2 þ 3λϕ2

c; m2
t ðϕcÞ ¼

1

2
y2tϕ

2
c; ðB6Þ

m2
WðϕcÞ ¼

1

4
g22ϕ

2
c; M2

ZðϕcÞ ¼
1

4
ðg22 þ g2YÞϕ

2
c; ðB7Þ

mG3
¼ mG( ¼ −μ2 þ λϕ2

c: ðB8Þ

The thermal correction in one-loop order arise from

bosons and fermions which couple to the Higgs field

and is given by

ΔV
ðTÞ
1 ðϕ; TÞ ¼

T4

2π2

$

6JB

!

mW

T

"

þ 3JB

!

mZ

T

"

þ JB

!

mh

T

"

þ 3JB

!

mG

T

"

− 12JF

!

mt

T

"%

; ðB9Þ

where the functions JB and JF are defined as in Eq. (2.8).

Further, as noted earlier one needs to include the daisy

resummation contribution to the potential, which in this

case is given by

V
daisy
1 ðϕ; TÞ

¼
T

12π

X

B0¼Z;W;H

gB0fm3
B0ðϕÞ − ½m2

B0ðϕÞ þ ΠB0ðTÞ'3=2g;

ðB10Þ

where the sum runs only over scalars and longitudinal

vectors. Here gB0 ¼ f1; 2; 1g for B0 ¼ fZ;W;Hg, and there

are no contributions to the transverse modes and to the

fermion masses. Thus, the thermal contributions to the

masses ΠB0ðTÞ are given by [127]

ΠHðTÞ ¼

$

1

6
ð3g22 þ g2YÞ þ

1

4
y2t þ

1

2
λ

%

T2; ðB11Þ

ΠWðTÞ ¼ ΠZðTÞ ¼
11

6
g22T

2; ðB12Þ

at the leading order in T2 where yt is defined so that

mt ¼
1
ffiffi

2
p ytv and v ≃ 246 GeV.

APPENDIX C: FURTHER DETAILS OF VISIBLE

AND HIDDEN SECTOR INTERACTIONS

As noted in Sec. II the analysis of synchronous

evolution is very general and applicable to a wide array

of portals connecting the hidden and the visible sectors.

In this work for the specific hidden sector with a Uð1Þ
gauge invariance broken by the Higgs mechanism, we

used the kinetic mixing between the hidden and the

visible sectors as noted in Sec. II B. Here one includes a

mixing term − δ
2
AμνBμν in the Lagrangian, where Aμν is

the field strength of the hidden sector Uð1Þ field Aμ and

Bμν is the field strength of the Uð1ÞY hypercharge field Bμ

of the visible sector. Since the standard model is based on

the group SUð2Þ ×Uð1ÞY we will have a coupling of three
gauge fields A

μ
3; B

μ; Aμ, where A
μ
3 is the third component

of the SUð2ÞL gauge field A
μ
a (a ¼ 1; 2; 3) of the standard

model. After electroweak symmetry breaking and in the

canonical basis where the kinetic energies of the gauge

fields are diagonalized and normalized, the physical

fields are Zμ; A
μ
γ ; A

μ

γ0 , where Z is the Z boson of the

standard model, Aγ is the photon, and Aγ0 is the dark

photon. Thus, the couplings governing the dark sector

and the feeble interactions of the dark sector with the

visible sector are given by

ΔLint ¼ D̄γμðgγ0A
γ0
μ þ gZZμ þ gγA

γ
μÞD

þ
g2

2 cos θ
ψ̄fγ

μ½ðv0f − γ5a
0
fÞA

γ0
μ 'ψf − ΔVh;ΔVh

¼
1

2
m2

χχ
2 þ

1

2
m2

γ0A
γ0
μAγ0μ þ g2xvhχA

γ0
μAγ0μ

þ
1

2
g2xχ

2A
γ0
μAγ0μ; ðC1Þ

v0f ¼ − cosψ ½ðtanψ − sδ sin θÞT3f

− 2sin2θð−sδ csc θ þ tanψÞQf'; ðC2Þ

a0f ¼ − cosψðtanψ − sδ sin θÞT3f: ðC3Þ
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Here sδ ¼ sinh δ and cδ ¼ cosh δ, and f runs over all SM

fermions, mγ0 ¼ gxvh and mχ ¼
ffiffiffiffiffiffiffi

2λh
p

vh. Further, T3f is

the third component of isospin, and Qf is the electric

charge for the fermion. The couplings gZ, gγ , and gγ0 that

appear above are given by

gγ0 ¼ gXQXðR11 − sδR21Þ;

gγ ¼ gXQXðR13 − sδR23Þ;

gZ ¼ gXQXðR12 − sδR22Þ: ðC4Þ

Here the matrix R is given by Eq. (23) of [58] and it

involves three Euler angles ðθ;ϕ;ψÞ which are given by

tanϕ ¼ −sδ; tan θ ¼
gY

g2
cδ cosϕ;

tan 2ψ ¼
2δ̄m2

Z sin θ

m2
γ0 −m2

Z þ ðm2
γ0 þm2

Z −m2
WÞδ̄

2
; ðC5Þ

where δ̄ ¼ −δ=
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − δ2
p

. In addition to the above, there is

also a modification of the standard model couplings.

Thus, in the canonically diagonalized basis the couplings

of Zμ and A
γ
μ are given by [58,63]

ΔL0
SM ¼

g2

2 cos θ
ψ̄fγ

μ½ðvf − γ5afÞZμ'ψf þ eψ̄fγ
μQfA

γ
μψf:

ðC6Þ

Modifications to the visible sector interactions appear in

the vector and axial vector couplings so that (see

[60,61,65,134])

vf ¼ cosψ ½ð1þ sδ tanψ sin θÞT3f

− 2sin2θð1þ sδ csc θ tanψÞQf';

af ¼ cosψð1þ sδ tanψ sin θÞT3f: ðC7Þ

APPENDIX D: SCATTERING CROSS SECTIONS

FOR ξðTÞ AND YIELD EQUATIONS FOR THE

HIDDEN SECTOR FIELDS

The analysis of yields in Eqs. (2.21)–(2.23) requires

several cross sections. The cross sections σDD̄→γ0γ0 , σDD̄→iī,

σiī→γ0γ0 , and Γγ0→iī are given in [47,61]. The additional cross

section needed is σχχ→γ0γ0 . The Feynman diagrams for it are

in Fig. 13. This cross section is given by

σχχ→γ0γ0ðs; ThÞ ¼
g4xð12m

4
γ0 − 4m2

γ0sþ s2Þ

512πmγ0s
2

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs− 4m2
χÞðs− 4m2

γ0Þ
q

ðm2
χ − sÞ2ðm4

χ − 4mχ2m2
γ0 þm2

γ0sÞ
ð8g4xv

4
hðm

2
χ − sÞ2

þ ðm2
χ − sÞ2ðm4

χ −m2
χm

2
γ0 þm2

γ0sÞÞ þ
8g2xv

2
h

2m4
χ − 3m2

χsþ s2
ðlogAðm2

χð2v
2
hg

2
x − 3sÞ þ sð2v2hg

2
x þ sÞ þ 2m4

χÞÞ

!

;

ðD1Þ

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs − 4m2
χÞðs −m2

γ0Þ
q

− 2m2
χ þ s

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs − 4m2
χÞðs −m2

γ0Þ
q

− 2m2
χ þ s

; ðD2Þ

where s is the Mandelstam variable. The cross section for the reverse process is then given by

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s − 4m2
χ

q

σχχ→γ0γ0ðs; ThÞ ¼ 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s − 4m2
γ0

q

σγ
0γ0→χχðs; ThÞ: ðD3Þ

FIG. 13. The Feynman diagram for the annihilation process χχ → γ0γ0.
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Additionally, we also need the decay width for the process χ → γ0γ0. This is given by

Γχ→γ0γ0ðsÞ ¼
g4xv

2
h

128πmχm
4
γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
4m2

γ0

m2
χ

s

ð−4m2
χm

2
γ0 þm4

χ þ 12m4
γ0Þ: ðD4Þ

We also define here jh that enters Eq. (2.20),

jh ¼
X

i

½2Yeq
i ðTÞ

2Jðiī → DD̄ÞðTÞ þ Y
eq
i ðTÞ

2Jðiī → γ0ÞðTÞ's2 − Yγ0Jðγ
0
→ iīÞðThÞs; ðD5Þ

Y
eq
i ¼

n
eq
i

s

¼
gi

2π2s
m2

iTK2ðmi=TÞ; ðD6Þ

whereK2 is the modified Bessel function of the second kind and degree two. Further, gi is the number of degrees of freedom

of particle i and massmi and the source functions J are defined so that The J functions that appear in Eq. (D5) are defined as

n
eq
i ðTÞ

2Jðiī → DD̄ÞðTÞ ¼
T

32π4

Z

∞

s0

dsσDD̄→iīsðs − s0ÞK2ð
ffiffiffi

s
p

=TÞ; ðD7Þ

n
eq
i ðTÞ

2Jðiī → γ0ÞðTÞ ¼
T

32π4

Z

∞

s0

dsσiī→γ0sðs − s0ÞK2ð
ffiffiffi

s
p

=TÞ; ðD8Þ

nγ0Jðγ
0
→ iīÞðThÞ ¼ nγ0mγ0Γγ0→iī; ðD9Þ

n
eq
i ðTÞ

2hσviiī→γ0ðTÞ ¼
T

32π4

Z

∞

s0

dsσðsÞ
ffiffiffi

s
p

ðs − s0ÞK1ð
ffiffiffi

s
p

=TÞ; ðD10Þ

where K1 is the modified Bessel function of the second

kind and degree one and s0 is the minimum of the

Mandelstam variable s. We note that there are additional

contributions one can include in the analysis, i.e.,

iī → γ0γ; γ0Z; γ0γ0. Their contributions are relatively small

compared to iī → γ0 and are neglected.

APPENDIX E: ENERGY AND PRESSURE

DENSITIES AWAY FROM EQUILIBRIUM

If one assumes that the hidden sector was in thermal

equilibrium at all times, then the particle distributions will

follow the Fermi-Dirac or Bose-Einstein statistics as appro-

priate. In this case, the energy density ρh and the pressure

density ph in the hidden sector are given by [135,136]

ρh ¼
X

i

ρi ¼
X

i

giT
4
h

2π2

Z

∞

xi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − x2i
p

ex ( 1
x2dx; i∈ fγ0; D; χg;

ph ¼
X

i

pi ¼
X

i

giT
3
h

6π2

Z

∞

xi

ðx2 − x2i Þ
3
2

ex ( 1
dx; i∈ fγ0; D; χg;

ðE1Þ

where gγ0 ¼ 3, gD ¼ 4, gχ ¼ 3, xi ¼
mi

Th
and plus is for

fermions, while minus is for bosons. If a massive particle

remained in thermal equilibrium until today, its energy

density, ρi ∼ ðmi=TÞ
3=2 exp ð−mi=TÞ, would be negligible

because of the exponential factor. However, as pointed out

in [137] if the interactions of the particles freeze out

before complete annihilation, the particles may have a

significant relic abundance today. Often in the discussion

of freeze-out, it is generally assumed that ρ ¼ ρeq where

ρeq refers to the equilibrium density. However, the more

precise way to compute the energy density in a freeze-out

situation is to take

ρh ¼ ρh;eq þ ρh;relic: ðE2Þ

As suggested in [137], ρh;relic could be computed using

the yield equation to obtain the number density

Yh;relic ¼
nh;relic

s

⇒ nh;relic ¼ Yh;relics; ðE3Þ

which allows a computation of the number density nh;relic
from where we can compute the ghn;relic so that

nh;relic ¼
ζð3Þ

π2
ghn;relicT

3
h: ðE4Þ
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Next we set the effective energy degrees of freedom from

the relic density so that

ghρ;relic ¼ ghn;relic ðE5Þ

and use the relation

ρh;relic ¼
π2

30
ghρ;relicT

4
h ðE6Þ

to find ρh;relic and ρh. In most cases, this analysis is not

necessary since ρh;relic ≪ ρh;eq. However, such an analysis

becomes relevant when we are dealing with the decou-

pling of the entire hidden sector since in this situation

we have ρh;relic ≫ ρh;eq. A similar analysis holds for the

pressure density ph. Aside from the correction to the

density discussed above, the density of the hidden sector

should freeze out when the two sectors are fully

decoupled. This analysis will be similar to the analysis

in cannibalism dark matter [138]. For the current model,

the decoupling happens when (i) all interactions between

the hidden sector and the visible sector decouple and

(ii) the dark photon decays out.
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