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Production of gravitational waves in the early Universe is discussed in a cosmologically consistent
analysis within a first-order phase transition involving a hidden sector feebly coupled with the visible
sector. Each sector resides in its own heat bath leading to a potential dependent on two temperatures and on
two fields: one a standard model Higgs field and the other a scalar arising from a hidden sector U(1) gauge
theory. A synchronous evolution of the hidden and visible sector temperatures is carried out from the reheat
temperature down to the electroweak scale. The hydrodynamics of two-field phase transitions, one for the
visible and the other for the hidden is discussed, which leads to separate tunneling temperatures and
different sound speeds for the two sectors. Gravitational waves emerging from the two sectors are
computed and their imprint on the measured gravitational wave power spectrum vs frequency is analyzed in
terms of bubble nucleation signature, i.e., detonation, deflagration, and hybrid. It is shown that the two-field
model predicts gravitational waves accessible at several proposed gravitational wave detectors: LISA,
DECIGO, BBO, and Taiji, and their discovery would probe specific regions of the hidden sector parameter
space and may also shed light on the nature of bubble nucleation in the early Universe. The analysis
presented here indicates that the cosmologically preferred models are those where the tunneling in the
visible sector precedes the tunneling in the hidden sector and the sound speed ¢ lies below its maximum,
ie, c? < % It is of interest to investigate if these features are universal and applicable to a wider class of

cosmologically consistent models.
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I. INTRODUCTION

The observation of gravitational waves in black hole
mergers in 2016 [1] opened up a new avenue to explore
fundamental physics in a broader context using stochastic
background of gravitational waves that arise from a variety
of phenomena including those from cosmic phase transi-
tions. The cosmic phase transitions occur at finite temper-
atures [2—6] and give rise to stochastic gravitational waves
[7-9]. Several other sources of stochastic gravitational
waves exist such as from the decay of the inflaton into
standard model particles at the end of inflation [10-12]. It is
also suggested that phase transitions may be linked to
generation of matter-antimatter asymmetry, and especially
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to baryogenesis [13—17]. The study of cosmic phase
transitions involves finite temperature field theory which
has been investigated in several early works [18,19].
A significant amount of further work already exists in
this area, see, e.g., [20—43]. For reviews of phase tran-
sitions, see [44—46].

In the current analysis we discuss phase transitions
and gravitational wave generation from hidden sectors that
arise in supergravity, string, and extra-dimensional models,
which improves on some of the previous works in that
the analysis is cosmologically consistent. This implies a
number of things that we mention briefly. First, the
gravitational wave models need to satisfy constraints at
different temperatures, e.g., at the tunneling temperature
(10-100) GeV and at the big bang nucleosynthesis (BBN)
temperature ~1 MeV which requires an extrapolation over
4-5 orders of magnitude. This is due to the fact that at the
tunneling temperature the phase transition is controlled in
part by the parameter @ = ¢/p, where ¢ is the latent heat in
the phase transition and p is the total energy density, which
includes the energy density of the standard model and of
the hidden sector. In general, the hidden sector and the
visible sector are at different temperatures and we need to
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know their precise correlation as a function of temperatures
to compute a correctly. Further, as noted, we need to
extrapolate to BBN time which constrains the extra degrees
of freedom AN above the standard model prediction,
which requires we determine the hidden sector temperature
at BBN time. Often this correlation is done by assuming
separate entropy conservation in the visible sector and in
the hidden sector. In this case, the ratio &(7) =T,/T,
where T, is the temperature in the hidden sector and 7 is
the temperature in the visible sector, is correlated with the
ratio £(T) at temperature T, so that

Rl (E(To)To)
hee(To)

he(E(T)T)

3
() <

£(Ty) = (1.1)

where hl; and h{c’ff are the entropy degrees of freedom at
their respective temperatures of the visible sector and of
the hidden sector. However, it was shown in [47,48] that the
separate entropy conservation approximation is highly
inaccurate and leads to erroneous results for AN ; by
up to 500%. There is another basic problem with relations
of the type above for cases where the decoupling in the dark
sector occurs below the mass threshold of the dark
particles. In this case the assumption of using thermal
equilibrium to compute the effective degrees of freedom in
the hidden sector breaks down as it gives essentially
hl(Ty) = 0 requiring &(T) to blow up. Here the accurate
analysis used in this work is essential, as explained in
Appendix E.

In the analysis we carry out a synchronous evolution of
the temperatures in the visible and in the hidden sectors.
Central to the analysis is the evolution equation for &(7)
which is solved together with the yield equations for the
particles in the hidden sector and the visible sector with an
assumed boundary condition on &(T) at the reheat temper-
ature, which leads to an accurate prediction for £(T) at any
temperature. There are also other aspects of the analysis
that we briefly comment on. In the current analysis, we
have nucleation arising from two bubble formations, one in
the visible sector and the other in the hidden sector, and we
give a combined treatment of both. This leads to two
different critical temperatures and tunnelings arising from
the visible sector and from the hidden sector. Further, often
in gravitational wave analyses a sound speed of ¢2 = 1/3 is
assumed, which is the terminal relativistic speed of sound
waves in a fluid. However, in the presence of true (broken)
and false (symmetric) vacua for the visible and hidden
sectors four different possibilities for the sound speed arise:
with two possibilities for the visible sector depending on
whether the vacuum is true or false and similarly for the
hidden sector. We discuss these possibilities and show that
the gravitational wave power spectrum depends sensitively
on sound speed. Finally, we have investigated the possibil-
ity of identifying the nature of bubble dynamics and
nucleation, i.e., detonation, deflagration, and hybrid for

their possible imprint on the gravitational wave spectrum.
While we draw no firm conclusion, we notice that among
the candidate models that satisfy all the constraints (i.e.,
constraints from first-order phase transition, from relic
density, and from AN.), the hybrid nucleation modes
exhibit the largest gravitational wave power spectrum.

The outline of the rest of the paper is as follows: In
Sec. I we write the hidden sector model and discuss its
temperature-dependent potential including thermal contri-
butions to the field-dependent masses including the daisy
summed multiloop contribution. Then we define the two-
field potential including the temperature-dependent poten-
tial for the standard model Higgs field. In this section we
also give a brief discussion of synchronous evolution of
coupled hidden and visible sectors. In Sec. III we discuss
nucleation and vacuum decay during phase transition for
the case of a single field and then for the two-field case. In
Sec. IV we discuss the hydrodynamics of bubble formation
during phase transition. Here we discuss the sound velocity
in the visible and in the hidden sectors for symmetric and
broken phases and give an analysis of relativistic fluid
equations and of bubble dynamics. Gravitational wave
spectra arising from first-order phase transitions from the
visible and the hidden sectors are discussed in Sec. V. A
detailed numerical analysis of the gravitational wave power
spectrum is given in Sec. VI. Thus, in Sec. VI A we exhibit
the parameter space of models investigated in Monte Carlo
simulations and the theoretical and experimental con-
straints placed on the allowed set of models. The nucleation
temperature and the resulting gravity power spectrum are
discussed in Sec. VI B. In Sec. VI C we discuss the effect of
sound velocity on the gravitational wave power spectrum,
and in Sec. VID we investigate the dependence of sound
velocity on the nucleation temperature. An analysis of the
AN constraint is given in Sec. VID 1. In Sec. VIE we
discuss the gravity power spectrum for different nucleation
modes, i.e., detonation, deflagration, and hybrid. It is
shown that a significant part of the parameter space of
the assumed hidden sector model can be accessed by the
planned space-based gravity experiments such as LISA,
DECIGO, BBO, Taiji, and others. Conclusions are given in
Sec. VIIL.

Additional details of the analysis are given in the
Appendixes A-E. Thus, in Appendix A, we give further
details of the temperature-dependent potential for the
hidden sector and computation of temperature-dependent
corrections to the bosonic masses for a U(1) gauge theory
including the contribution of the daisy resummation. In
Appendix B, we give a summary of the known results on
the temperature-dependent Higgs potential for the visible
sector. In Appendix C, we give further details of visible and
hidden sector interactions that enter in the combined
analysis of the two sectors, and in Appendix D, we give
the scattering cross sections that enter in the yield equations
for the dark scalar, the dark fermion, and the dark gauge
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boson. Finally, in Appendix E, we discuss the energy and
pressure densities away from equilibrium as they are
relevant for freeze-out and decoupling in the hidden sector.

II. TWO-FIELD PHASE TRANSITION
INVOLVING THE STANDARD MODEL
AND A HIDDEN SECTOR

As noted in the Introduction, cosmological phase tran-
sitions have been investigated in a significant number of
previous works (for reviews, e.g., [45,49-51]). Most of the
previous works using beyond the standard model (BSM)
physics involve dynamics of only one field. Such an
analysis does not fully take into account the effect of the
standard model on computing the strength of the phase
transition « in tunneling and the proper imposition of the
AN, constraint at BBN time. Thus, as noted earlier a more
complete analysis needs to consider an analysis involving
BSM physics along with the standard model, which in our
case implies a two-field analysis including the Higgs field
of the standard model along with the Higgs field of the
hidden sector. Further, since the visible sector and the
hidden sector would normally be in different heat baths,
the thermal potential governing the phase transition will
depend on two temperatures, one of the visible and the
other of the hidden sector. In the presence of a coupling
between the two, as is most likely via a variety of portals,
a synchronous evolution of the visible and the hidden
sector temperature is essential for reliable predictions of
phenomena related to the cosmological phase transition and
specifically on predictions of the power spectrum of gravity
waves resulting from the phase transition. This aspect of the
cosmological phase transition is one of the focus points of
the current analysis.

A. The hidden sector model and its
temperature-dependent potential
We discuss now the case of phase transitions that involve
two scalar fields, one of which is the standard models Higgs
field and the other is a hidden sector Higgs scalar. In this
case, we consider the Lagrangian of the form

E - ‘CSM + A,C, (21)

where Lg); is the standard model Lagrangian, and AL is the
hidden sector Lagrangian given by

1

AL = = AN = (0, = ig,A,)® 2 = Vig(®)

_ (1 o _
-D <7 yﬂaﬂ + mD>D - EA;WBMD - ngDDyﬂDA/p

(2.2)

where A, is the gauge field of the U(1)y of the hidden
sector, D is the dark fermion, ® is a complex scalar

field, and B, is the gauge field of the U(1)y, and
A, =90,A,-0,A, and B,, = 9,B, — 9,B,. Thermal con-

tnbutlons to the zero temperature potenual Vh (@) will
allow a first-order phase transition and a vacuum expect-
ation value growth for the scalar field @ generating a mass
for the gauge boson A, and the scalar field in the hidden
sector. Thus, the effective temperature-dependent hidden
sector potential including loop corrections is given by

0 X is;
VI (@.T,) = Vo + Vi) + AVIY 1 Vi (T,). (2.3)

Here V, is the zero temperature tree potential, V(l(;l) is the

one-loop Coleman-Weinberg zero temperature contribu-
tion, AV(IZ’“) is
VE(T,) is the daisy contribution from multiloop sum-
mation, and divergences are canceled off by counterterms.
Thus, we have

the one-loop thermal contribution,

Von = —up @@ + 1, (0* D)%, +x +iGj),

1
© = NG (e
(2.4)

where y . is the background field that enters in the tree level

potential. Further, VE(;,) (1), the one-loop effective potential
at T =0, is given by

4(;&)[ ( 0”)—&}, (2.5)

where N; is the degrees of particle i and where the field-
dependent masses of the hidden sector fields A, v, G2 that
enter the potential are given by

Ni _1)2s;
V(l(l?()(c):Z 242)

m?(xe) = —Hj + 302,
= —j, + Az

mi(xc) = g)z()(g’

For the one-loop thermal correction, we have

s pon( ) e () +u (7))

(2.7)

AV(ITf;h) ()(07 Th)

where J; (i = B, F) is defined so that at one loop

Jl-<n1") = /mdqqzln[l F exp(—\/q2+m%/T%l)},
T, 0

i=(B,F), (2.8)
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where (B, F) stand for bosonic and fermionic cases. The
daisy loop contributions are only for the longitudinal mode
of A and y and are given for mode i = A, y so that

. T
VS (i, T,) = ==~ {[m? + IL,(T},)]*? — m}},

n (2.9)

where I1;(7),) is thermal contribution to the zero temper-
ature mass m?. For the longitudinal mode of A and for y
they are given by

2 1 1
(7)) =>g2T5. TL(T)) Zzg)ch% +34T5. (2.10)

3 3
|

A deduction of Egs. (2.9) and (2.10) is given in
Appendix A. We note that the daisy resummation correc-
tion to the effective potential is equivalent to replacing the
particle mass in Jp function so that

m? — [m{"2 = m2 4+ 11,(T)),

; (2.11)
where II;(T),) is the self-energy of the bosonic field for
particle 7 at finite temperature 7', known as “Debye mass.”

Making the replacement of Eq. (2.11), the effective
potential of Eq. (2.3) now takes the form

VA (e To) = Vou + VO () + V(e Th)

2 25 2
) Ay 4 gi(_]) " m; c)
=5 Xt AT Z:Wmi (xc)|In A2 -G

T4 o0 2
+ ﬁZgB / dgg’*In [1 —exp (—\/qz + [mgh)} /T,zz)]
B 0

T4 ) 2
_T;ZQFA dqq? ln{l +exp<—\/q2 + [mgh)} /Tﬁ)}
F

This is the potential that is used in the analysis here. In this
work we analyze a whole range of temperatures that
encompass the regions 7, < m, T), > m and the regions
in between. For this reason we do not use high 7', and low
T, expansions but rather use the full integral forms for Jp
(and also for J in the standard model case). Further details
on the thermal masses for the hidden sector are given in
Appendix A and a summary of the temperature-dependent
potential for the standard model including corrections due
to thermal masses and daisy contributions is given in
Appendix B.

Let us now consider the case of two sectors together but

with no interactions between the scalar fields so that the
scalar potential is simply a sum of potentials in the two
sectors, i.e.,
Veff(¢w T;)(cv Th) = Vfo(Ql)w T) + ngf()(cv Th)' (213)
where VY (¢..T) is the effective temperature-dependent
Higgs potential in the standard model, which is well
known, but for easy reference it is given in Appendix B.
Here the minimization conditions are

v _ h
Veff,qﬁc =0, Veff,)(c

=0,V

Yigog, > O yh >0,

eff yexe (2' 14)

which imply that if the minimization conditions are
individually satisfied in each sector then the minimization
of the potential overall is also satisfied for the combined
system of the visible and the hidden sectors. At the

(2.12)

|
minimum of the potential we define v = ¢, and v, = y..
We note, however, that the two potentials are at different
temperatures, one at 7 and the other at 7, and for a
synchronous minimization to occur in the two sectors 7" and
T, must be related by

(2.15)

where &(T) is determined by a synchronous evolution of
the visible sector and the hidden sector from the reheating
scale to the low temperature scale, where phase transitions
occur with given initial condition on &, at the reheat
temperature. In the absence of a synchronous evolution,
£ has been used [52] as a free parameter. However, such a
procedure does not allow one to use temperature constraints
consistently at different temperatures such as at the time of
tunnelings, which occur at different temperatures for the
visible and the hidden sector and to correlate them with
the AN constraint the BBN time. In this work, we will
solve &(T) as a function of T which gives more reliable
results. Further, as noted earlier we can reliably extrapolate
the data to BBN time to include the constraint from AN
[47,48,53] and from the relic density of dark matter.

B. Synchronous evolution of coupled hidden
and visible sectors

We discuss below an analysis for the evolution of &(T')
which, in general, allows for any type of thermal contact
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between the visible and the hidden sectors. Since the
standard model explains quite accurately a large amount
of data at the electroweak scale, the couplings between the
hidden and the visible sectors need to be extra weak [54] or
feeble. Such couplings could arise via a Higgs portal [55],
kinetic mixing [56], or Stueckelberg mass mixing [57],
or both [58], as well as other possible combinations such
as a Stueckelberg-Higgs portal [59] or some higher-
dimensional operator connecting the two sectors.
Synchronous thermal evolution between the visible and
one hidden sector was discussed in [60], the case with two
hidden sectors was discussed in [61], and for multiple
hidden sectors in [62]. Here we give a brief review of
synchronous evolution central to the analysis of this work.

Thus, the energy densities for the visible and the hidden
sectors obey the following coupled Boltzmann equations in
an expanding universe:

o Py + Pv) = Jus

dp .
L 3H(py + pi) = -

2 (2.16)

Here p, and p, are the energy and momentum densities for
the visible sector, and where (j,,, j,) encode in them all the
possible processes exchanging energy between these sec-
tors. They are defined in Appendixes C and D. The total
energy density p = p, + p, satisfies the equation

d
L L 3H(p+p) =0.

o (2.17)

where p=p,+ p,, is the total pressure density. We intro-

duce the functions ; = 3 (1 + ﬁ—) where 6, = 6,6, = 0},

where o; :% for matter dominance, and o; = 1 for radi-

ation dominance. Similarly, we define ¢ =3 (1 + £). We

note that ¢, 6, and o are temperature dependent and this

dY, s dp,/dT
dT  H \dop —4doup), + j,/H

av, §< dp,/dT
dr 4op —4oupy + ju/H

= - T + (e T

) [3terhonanrm -

dependence is taken into account in the evolution equa-
tions. Using ¢; and o, the p; and p evolution equations read

d
| 4Hop=0.

do:
ﬂ‘&'4‘}101"0[ di

di =Ji(i=v.h), (2.18)

We will use temperature instead of time and temperature of

the visible sector T as the clock. In this case we can write
the evolution equations in terms of 7 using the relation

dT dp\ !
Y 5
dt o <dT> '

(2.19)
and dp;/dt = (dp;/dT)(dT/dt). Further, we can deduce
the following evolution equation for £(7") which governs
the temperature evolution of the hidden sector relative to
that of the visible sector

[ dpy
dr ~ | *ar,

4HO'[7—4Hthh +.]h dT dTh
(2.20)

4Howpp — Jjn dl)y} (T%>_l

where j, is defined in Eq. (D6). The above analysis is
general, allowing for any type of thermal contact via any
type of portal. In the analysis here we assume a kinetic
mixing and do not consider Stueckelberg mass mixing as it
would lead to millicharges for dark matter [57,63-65].
Thus, we include in the Lagrangian a term —gA/“’BW
where B,, is the field strength of U(1), hypercharge field
B,. Further details of the interactions between the visible
and the hidden sector in the canonically diagonalized basis
are given in Appendix C.

The evolution equation for £(T'), Eq. (2.20) involves j,
which depends on the yields of the hidden sector Y, Y,
and Y, (see Appendix D). We discuss the Boltzmann
equations for the yields below

1 . Y?
Y3) — 3 (6)ppoyy (Th) <Y%) - YR(Ty)? Y;T;W)] ;

(2.21)
Y?
) [300100rr (T (13 - YETP o)
i ov) e <Th>(Y§—Y;Q<Th>2%) + {o0) oy (T)V(TY?
2 xx V}’ Yy’ (Th) 7
Y?
Y, - Y3(T,) WYT;)Z)] , (2.22)
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dp,/dT ) {_1
dop —4oypy + ju/H 2

dr ~  H

av, S(

- é Ty (Th)) <Y)r = V(T

where s is the entropy density and yield for particle i is
defined by Y; = n;/s. In the analysis here we take account
of the hidden sector energy density and pressure density, p;,
and p,,, not only through thermal equilibrium analysis but
also by accounting for the contribution of relic abundance.
A further discussion of it is provided in Appendix E. For
the computation of the visible sector density and pressure
we use the precalculated values of g and hl; which are
tabulated results from micrOMEGAs [66]. We discuss next the
bubble nucleation for the case of the single field first and
then for the case of two fields.

III. NUCLEATION AND VACUUM DECAY

A. Single-field nucleation

Before proceeding to a discussion of nucleation for the
two-field case, we first summarize the first-order phase
transition involving the decay of the false vacuum into the
true vacuum involving bubble nucleation of a generic scalar
field ¢. We define the temperature when bubbles start
to nucleate as T,. Here at zero temperature the decay
probability per unit time and per unit volume is given by
I' = Ke™+, where S, is the Euclidean action in four
dimensions and K is typically of the fourth-order power
of the energy involved in the phase transition [20]. At finite
temperature the decay probability per unit time and per unit
volume takes the form I' = K(T)e~5/T where T is the
temperature, and K(T) ~ T*. Thus, for the case of a single
scalar field, S3(7) is given by

S5(T) = Am Anrdr B (‘;—‘f)Q + V(. T)} . (3.

with the scalar field satisfying the Euclidean O(3) sym-
metry equation of motion and the appropriate boundary
conditions

Py 2dp 0

i rdr op Vig(@. T), rlgilo(/) =0,
dg
2 =0 (3.2)

We use the Mathematica package FindBounce [67,68]
to numerically compute S;. Once S3(7) is determined,
the nucleation temperature 7, is defined so that

&1
Y

Y?
<Gv>)(;‘(—>y'}/(Th) <Y§ - Y)e(q(Th)z YjT%—W)

Y?
r__)|, 2.23
7)) 22
|
. 2 4
T"F_dt:/ ar( 90 M eI~ (3.3)
o H' Jr, T \87gy r
. . . . S5(T,)
This equation is well approximated by 3T—” ~ 140. Then

the whole vacuum decay process can be characterized by
the following temperatures: (1) critical temperature T,
when the effective potential has two degenerate minima;
(2) nucleation temperature 7,, when the transition occurs
or when one bubble is nucleated in one casual Hubble
volume; and (3) destabilization temperature 7,, when
the original vacuum is no longer a minimum or when
the potential barriers between the false vacuum and true
vacuum disappears.

B. Two-field nucleation

For the two-field nucleation, the calculation here will
become complicated because the over-undershoot imple-
mentation by some numerical analysis (like CosmoTransitions)
is not reliable anymore. The work of [69] discusses such a
problem in detail. Thus, here we provided a way that can
deal with such a situation with the potential given by
Eq. (2.13). For the visible (hidden) sector, there will be
corresponding temperatures 7., T,,To (Tpc: T, Tho)
with the following orders:

T() < Tn < Tc (Th.O < Th.n < Th.c)' (34)
Since we have &(T') to give us the temperature ratio of two
sectors at each moment, if we know the temperature of the
visible sector, we can then easily find the temperature in the
hidden sector, with Eq. (2.15). Correspondingly, we define
another function
T =(T))Th, (35)
which allows us to fix the temperature in the visible sector
given the temperature in the hidden sector. We note that
Eqs. (2.15) and (3.5) are equivalent so that {(7,) = &(T)~".
It is convenient to use Eq. (2.15) [Eq. (3.5)] when the visible
(hidden) sector temperature 7" (T'},) is used as the clock. Next
we discuss different cases for the nucleation process.

Case 1: For this case, we have one of the scalar field’s
nucleation occurring first and then the other scalar field
nucleation occurring separately at different time, which
means the first scalar field already reaches its destabili-
zation temperature before the other scalar field reaches
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its critical temperature, i.e., (To,7.) N ({(Tho)T o
{(Ty.)Th.) =9. For this case, the original vacuum
decays first to an intermediate vacuum and then decays
into the true vacuum. In this case, we can treat the
two-field nucleation as two single-field vacuum decay
problems. Here 7T, and T,, can be determined by
Egs. (3.1)—(3.3).

Case 2: For the second case, we have the visible
scalar field nucleation and the hidden scalar field nucleation
going through the vacuum decay at the same time,
which means one of the scalar fields reaches its critical
temperature before the other scalar field reaches its
destabilization temperature, i.e., (To.7.) N ({(Th0)Tho-
C(Tye)Th.) # 9. For this case, it is possible that the
original vacuum decays directly to the final true vacuum
and we will have only one transition. Here let us first
assume that T, < {(T,.)T.., so we have

To <{(Tho)Tho <Te <&(The)The- (3.6)

Figure 1 shows a schematic diagram for such a case. If the

first nucleation occurs at 7, < T < {(T},.) T}, then it will

be the same as in case 1 where there will be an intermediate
1

|
dp\?
(@)

do\2 v
<$> + Veff

1

Ssora(T) = /oo4ﬂr2dr [5
0

© 1
_ Y 211 -
A g r|:2

107
108
10°
10*
10°
10?
10"
100
107"
1072
1073

Sy/T

i — Sanigden/Th
— Sauvisible/ T

To {(Tho)Tho Te C(The) Thye
T(Visible sector temperature)[GeV]

FIG. 1.
and S3h'

Schematic plot for Case 2. S3(7)/T vs T for S,

vacuum. If not, then we need consider the possibility that
the original vacuum decays directly to the final true
vacuum. According to Eq. (2.13), there is no interaction
between two scalar fields in the potential, i.e., there is no
term like ¢y. In this case Sz (7) is given by

(%) + Ven(@. T

(&, T)] + A * Anrdr B <%>2 V(. §(T)T)}

= 83,(T) + $3,(S(T)T). (3.7)

Here the equations of motion are to be solved with Euclidean O(3) symmetry and with appropriate boundary conditions so
that

d*¢ 2dp 0 0 d¢

— F+——==V T, 0, 8(T)T) = —=V¥. (0, T), li =0, — = 3.8

a2 dr o Y eff(¢ x.&( ) ) o eff(¢ ) rl{gfﬁ dr| ( )

d’>y 2dy 0 d dy

=4+ -—===V T, E(TT) = V(. Ty), limy =0, — =0. 39

dr2 rdr (3)( eff(¢ X ‘f( ) ) a)( eff()( h) rgg)( dr o ( )

Since the above two equations can be solved independently,
we can just treat each as a single-field case. To find 7', for
the case where the original vacuum decays directly to the
final true vacuum, we first assume that such a nucleation
happens at T, (o, and get

S 3total (Tn.total )

S3v (Tn.total)

+ S3h (g(Tn,total)Tn,total)

Tn Jtotal

~ 140,

Tn Jtotal Tn.total

(3.10)

which tells us that M < 140. However, S3,/T is a

n.total

monotonic increasing function of 7 which leads to

S3V(Tn) ~ 140

3 Tn > Tn,total : (3 1 1)

n

It tells us that, before the original vacuum decays directly
into the final true vacuum, it must decay into an inter-
mediate vacuum first. However, it takes some time for the
phase transition to complete after the temperature reaches

015020-7



WAN-ZHE FENG, JINZHENG LI, and PRAN NATH

PHYS. REV. D 110, 015020 (2024)

Visible Sector
Temperature (T)
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A4

FIG. 2. A schematic diagram for the two-step phase transition. The phase of the whole Universe transfers from the symmetry phase to
the relative broken phase before ultimately reaching the fully broken phase. The plots of VY vs ¢ and Vi vs y are shown for different

temperatures.

the nucleation temperature. Thus, it is possible that the
other sector also reaches its nucleation temperature during
this process. It will become more complicated but inter-
esting because now the gravitational wave will be gen-
erated by the collision of two types of bubbles from two
different sectors. We note, however, that the interaction
between the sectors is too feeble to produce any effect.
Further, we assume the phase transition is completed
immediately after it reaches the nucleation temperature to
avoid this problem altogether. Therefore, case 2 can be
treated the same as case 1 and we have shown that, in any
case, we can treat the problem as two single-field vacuum
decay problems. The whole transition will undergo
through two-step phase transition at two different nucle-
ation temperatures 7', and T, ,,. For each phase transition,
there will be a “relative symmetry phase” and a “relative
broken phase.” A schematic diagram of the entire nucle-
ation process is given by Fig. 2.

IV. HYDRODYNAMICS OF BUBBLE FORMATION
DURING PHASE TRANSITION

To investigate the gravitational wave generation from
cosmological phase transition, we need to first study the
hydrodynamics of bubble formation during the phase
transition. One of the important elements in the hydro-
dynamics of bubbles is the sound velocity in the fluid in the
symmetric phase and in the broken phase and it is model
dependent. We discuss this next.

A. Sound velocities in the visible
and in the hidden sectors

Sound velocity in fluids is known to have a terminal
value so that ¢2 = 1/3. However, its actual value depends
on whether the phase is unbroken or broken and on the type
of the broken phase. We start with the thermodynamic
quantities: energy density e, pressure p, and enthalpy
density w. They are, in general, given by the following
equations:

0
e:T—p—p, w=p+e. (4.1)

p==% oT

Here F is the free energy density where p is given by

P& Ty, Ty) = po($.T) + pulr. Tr),  (4.2)
77,'2

Py((lb’ T) = %ggffT4 - szf((ﬁv T)’ (4-3)
7[2

Pult: Th) = o= 9t Ty = Vi (. T).- (4.4)

90
Correspondingly, we have

e(d. Ty, Ty) = e(&h.T) + e (x, Tp) + emix(b, T, T)),
(4.5)
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ap, dp
ey(d’vT):TaT —Po eh()(aTh):Tha—T::_ph’ (4.6)
aPh o
: Ty, T),) = 4.7
€mix (¢v X h) 0Th aT ( )

and for the sound velocity ¢? = dp/de (total derivative
here), we have

2 . o or or
@ T Th) =57 senorn , e 48
of T or, or T or
where
oT, d(T) 0
Cn A _%p 4.9
oT oT oT +§( ) ( )
and where we used d”t =9 dey 9 gince we are

oT *dT — oT
interested in sound ve1001ty in vacuums. Further, since
explicit integrals for p,, e, are known, and numerical
tables for the corresponding visible sector quantities
are known, an evaluation of 9d(p,)/dT,d(e,)/dT and
(pn)/ 0Ty, 0(ey,)/0T;, can be numerically carried out.
According to the analysis in Sec. III, there will actually
be two sets of symmetry phase velocities and broken phase
velocities possible. For the visible scalar field nucleation,
the sound velocity in the symmetric phase and in the broken
phase, i.e., sound velocity outside and inside the bubble of
the visible scalar field nucleation, will be labeled c; . , and
Cs.— - Similarly, for the hidden scalar field nucleation, we
have ¢, , and ¢ _ .

We label vacua in the broken phase case for the visible
and hidden sectors to be ¢, and y i, and they are found
numerically. For the case when nucleation in the visible
sector occurs before nucleation in the hidden sector, i.e.,
T, > ¢{(Ty,,)T) ,, these four velocities are given by

s+1) :C%(O 0,7,.4(T,)T,).
5w = € (Bin, 0. T, E(T,)T ),
x+h = ¢3(hmin, 0, C(Th)Thns Thon)s
-h = C?(gbmln?)(mln’ C(Thu)Thns Thon)s (4.10)

where the arguments of c% 4+ etc. are as defined in
Eq. (4.8). Thus, e.g., ¢2(¢pmin,0,T,,E(T,)T,) denotes
the velocity of the sound wave traveling inside the bubble
of the visible phase transition. The visible scalar field is in
its broken vacuum while the hidden scalar field is still in
its symmetric vacuum. The tunneling temperature of the
visible scalar field nucleation is 7', and the synchronous
temperature of the hidden scalar to it is &(T,)T,,.

On the other hand, when T, < {(T},,,)T},,, these four
velocities are given by

% = C?(O 0 C(Thn)ThmTh n)

? h C?(O me’ (Th n)Th n» Th n)

% = C%(O Xmins Tn» (Tn)T )’

Cs—v = C%(¢mm7lmm7Tm§( ) ) (411)

B. Relativistic fluid equations and bubble dynamics
Next, we discuss hydrodynamics of the bubble expan-
sion [6,9,70-73]. First, we describe the plasma, as a
relativistic fluid, by its energy-momentum tensor
™" = wu'u” + pg™. (4.12)
Here we are using the metric ¢ = diag(—1, 1, 1, 1) where
w = e + p, and e and p are the energy density and pressure
as defined in Sec. IVA, and u' =y(v)(1,7)(y =
1/V1 —1?) is the four-velocity field. The fluid equation
of motion is given by the conservation of T+,
0,T" = p¥o,(u'w) + u'wo,u’ + & p = 0. (4.13)
The conservation equation can be projected into the

parallel and perpendicular directions to the flow direction
by using w* = y(v)(1, %) and #* = y(v)(v,v/v) such that

u,ut = 0, ul,aﬂu” =0,7% = 1,u%> = —1 which give
u,0,T" = d,(uw'w) + u*d,p = 0, (4.14)
u,0,T" = u,u*wo,u” + "d,p = 0. (4.15)

These are the continuity equation and the relativistic Euler
equation. Further, one assumes a spherically symmetric
configuration and since there is no characteristic distance
scale in the problem, the solution depends only on a self-
similarity coordinate n = r/t, where r is the distance to the
bubble center and ¢ is the time since the bubble nucleation.
Further, we assume that the bubble reaches a constant
terminal velocity after a short expansion time. Thus, we
can assume that v, = n,,. The above two equations then
take the form

d,e
(ﬂ—v)%:2%+y2(l —10)0,v (4.16)
0P _ 5
(1 —no) it (n—v)o,v, (4.17)
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where v(7) is the fluid velocity at r = #t in the frame of the

bubble center. Using the definition ¢? = ‘fé’ ;j;,

one gets the
following equations:

v 1}2 v
25:%(1—@;7)(”(’7’ ) —1)d— (4.18)

e}

dw 1 dv
d_ﬂ = wrlu(n. v) <? + 1> —,

4.19
n (4.19)

n—u
1—nv*

velocity 7,,, we can use this Lorentz-boost transformation
to transform between the bubble wall frame and center
of the bubble frame by the expressions u(7,, ) = 7 and
u(n,y, ©) = v. In addition to the equations of motion of the
plasma given above, we also need junction conditions to
connect the symmetry phase and the broken phase. We use
subscripts + to denote the symmetric phase and — to denote
the broken phase. We note that the junction conditions are
to be used infinitely close to the boundary. Then assuming
the wall is expanding in the z direction, the matching
equations are

where p(n,v) = In fact, with a steady terminal

(T¥=T*)n, =0, (T*=T")n,=0, n,=(0,0,0,1)

(4.20)

”:

and we get the continuity equation in the bubble wall frame
to be

W D 7t = w_b_y*, (4.21)
wo AP 4+ pr =w P + p_. (4.22)
Rearranging it, we can get the following equation:
B9 = %, (4.23)
be_e-tpe (4.24)
v_ ey +p_

With boundary conditions (4.23) and (4.24) and the
evolution equation (4.18), we can solve for v(n), and there
are three different expansion modes: deflagration, hybrid,
and detonation. If the wall velocity of the bubble v, is
subsonic, i.e., v,, < ¢, _, it gives rise to deflagration where
a region of larger density precedes the bubble wall. For the
supersonic case where v,, > ¢, _, the higher density region
ahead of the wall does not materialize since the wall
velocity is larger than the sound velocity. This is the
detonation region. The region where v,, ~ ¢, is a mixture
of the two and is referred to as the hybrid region. Once we
determine v(&) we can apply Egs. (4.19) and (4.21) to find

v(n) 1
w(n) = wyexp {/ <1 + ?> yzudv} )
vy s

(4.25)

The ratio of bulk kinetic energy over the vacuum energy
gives the efficiency factor x as

3
— / w(n) v y*ndy.

K=
3
€rIH/

In most analyses of first-order phase transition (FOPT),

sound velocities are treated approximately often assuming

c2_=c?, =1(see, e.g, [70,71]). In this case, the phase

transition strength « is given by

dAV,,
o T dT *— AVeff

a= (4.26)
Prad

or

T dAV
e —e. g —AVes

o =
3 Wy Prad

(4.27)

However, in this work we will take into account sound
velocity dependence in the analysis as in [74,75]. Here the
phase transition strength parameter is given by

Do(T,) P
ap = 3 O=e— 2 (4.28)
DX(Tn) = Xs(Tn) - Xb(Tn)’ (4'29)

with X = e, p, w and the efficiency factor is defined by

4
K=— 3/d;7172112yzi. (4.30)
0‘9”’1w Wh

In this case a and « are both velocity dependent, in that k

depends on ¢, ., ¢, _, a5 and v,,. We note that for the case

i =ct, =1/3,itis equivalent to the second definition,

Eq. (4.27). A Python snippet is provided in [74] and we
utilize it in our analysis.

V. GRAVITATIONAL WAVE SPECTRUM WITH
VISIBLE AND HIDDEN SECTORS

The phase transition phenomena is controlled by four
parameters, which are the nucleation temperature 7, the
strength of the phase transition a, the inverse duration of the
transition f in comparison with H,, where H,, is the Hubble
parameter at the time of nucleation and the bubble
wall velocity v,. T, and a were discussed in Sec. IV.
The timescale of the phase transition is the inverse of the
parameter  defined by

d(S3/T)

P=="ar

1dr

~ (5.1)
., Tdi

s
1=t,
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where S3 is the Euclidean action as already defined.
Usually f is normalized by H,, and is given by

d(S5(T)/T)

. (5.2)
dT T:{Tanh.n}

LA
H

We note here that a larger o means a stronger phase
transition and a larger value of f means a faster phase
transition.

The gravitational wave power spectrum has been dis-
cussed in a variety of settings (see, e.g., [31,36,71,76-88]).
It is given by

d
Qoutr) = e (%) () s

Qaw = Qp + Qg + Qp,.

(5.3)

Here Q is the contribution to energy density of the
gravitational wave produced by dynamics of the scalar field,
Q. is the contribution from the sound waves, Qg is the
contribution by turbulence, p.. is the critical density, and f is
the frequency of the gravitational wave. The rest of the
parameters are as discussed in the text of this section.
Further, a detailed discussion of the various contributions
can be found in [52,89-92]. For the current analysis, all the
relevant parameters that enter in the computation of
Qy, Q. €y, which contribute in Eq. (5.3) are given in
Table 1. However, we still need to consider the redshift both
on the energy density and frequency to deduce the power
spectrum Q2 (fo) at current temperature 7° from the power
spectrum Qgyw gotten at the tunneling temperature 7',,,. This
is accomplished by the following extrapolation [36,52]:

Qgw(fo) = RQGw <%fo> : (5.4)

where

TABLE L. Values of the parameters N, k, p, g, A fp, s(f) that
appear in the gravitational wave power spectrum of Eq. (5.3) for
the three different contributions: Q, from the scalar field, €,
from sound waves, and Qg from turbulence.

Scalar field Q; Sound waves Qg,  Turbulence €y

N 1 1.59 x 107! 2.01 x 10!

K¢ K Ksw €rurbKsw

p 2 2 3

q 2 1 1

A 0.11v3 vy, v,

0.424172

f 0.625 25 3.58

P 1.8=0.10,+12 V3o, 20,

s 38(f/f,)*8 3(—T1___ /2 (/1)

D i Y e it

ap heff(Ttun) 173 Ttun

() (7)) eo
m=(2) (@)
o Hy
B\ (g (Tun)

~2.473 x 10-5h—2( eff > ( eff L~ tun ) 5.6
heff(Ttun) 2 ( )
geff(Ttun) = ggff(Ttun) + ggff(Ttun>§(Ttun)47 (57)
hegt(Tun) = hi(Twn) 4 Ml (Twn)E(Twn)? (5.8)
By =391 + hli(Teg)E(Tey). (5.9)

In the above T, = T, for the visible sector nucleation and
Twn = C(T),,)T), for the hidden sector nucleation.

It is also necessary to classify whether the bubble
wall velocity reaches a terminal velocity. If the bubble
wall keeps accelerating, it is called the runaway scenario.
If it reaches a terminal velocity, it is called a nonrunaway
scenario. A detailed discussion can be found in
[52,70,92,93]. To classify these two scenarios, a critical
phase transition strength @, is introduced. For the visible
sector and hidden sector nucleation, it is given by

(T,)? Am? Am?
= —— —= ], (5.10
oo Prad (Tn) i:;)nsnl 24 i Z " 48 ( )

i=fermions

Am? Am?
> Mgt > ”"48)'

i=bosons i=fermions

ol —

prad(g(Th,n)Th,n)

(5.11)

When a,, > a, it is in the nonrunaway regime. In this case,
we have
(5.12)

_ _ 22
Ky =0, Kew = K(at, c5 1. C5, 1),

When a,, < a, it is in the runaway regime and we have

Qoo Qoo 5,
Ky =1 — Kew = o K(Qoos €545 C5ms V).

(5.13)

The bubble wall velocity depends on the transition strength
a and on the friction between the scalar field and the
surrounding particle plasma, described by a friction
parameter. Thus, v, is highly model dependent. Since
the bubble wall is in the runaway region, it will keep
accelerating, and for that reason we take v, ~ 1. In the
nonrunaway region, the bubble wall velocity reaches a
terminal value and is model dependent, so we treat it as a
free parameter. It is legal to do so since it is equivalent to
introducing additional particles that couple exclusively to
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FIG. 3. An exhibition of the gravitational wave power spectrum
for model (a) in Table II illustrating the relative contributions
from sound wave and turbulence. This is a nonrunaway case and
Q, = 0. The solid lines are for the hidden sector phase transition
while the dashed lines are for the visible sector. In the analysis we
take ey, = 0.1 as in [90,92]. The regions in color are the power-
law integrated sensitivity curves for different experiments,
including LISA [96-98], EPTA [99,100], HLVK =
alLIGO/aVIRGO/KAGRA [101-106], BBO [107], DECIGO
[108], ET [109], CE [110], Taiji [111], TianQin [112], uAres
[113], NANOGrav [114,115], PPTA [116], IPTA [117], and SKA
[118]. The data and calculations are from [119].

the scalar field and affect the friction parameter only (for
recent work on determining wall velocity from initial inputs
see, e.g., [74,75,94,95]).

VI. SIMULATION OF GRAVITATIONAL WAVE
POWER SPECTRUM

There are several ongoing gravitational wave experiments
and those being proposed that will probe gravitational waves
at different frequency regions and with different sensi-
tivity. These include Laser Interferometer Space Antenna
(LISA) [96-98], EPTA [99,100], aLIGO/aVIRGO/KAGRA

TABLE II.

[101-106], BBO [107], DECIGO [108], Einstein Telescope
(ET) [109], Cosmic Explorer (CE) [110], Taiji [111],
TianQin [112], wpAres [113], NANOGrav [114,115],
Parkes Pulsar Timing Array (PPTA) [116], International
Pulsar Timing Array (IPTA) [117], and Square Kilometer
Array (SKA) [118]. We plot the predictions of the hidden
sector model discussed here along with the expected reach of
proposed gravitational wave experiments. Figure 3 provides
an example of gravitational wave power spectrum with these
experimental constraints for model (a) of Table II. Since the
major parameters for the standard model (SM) are already
known, we have the visible sector nucleation temperature
to be about 161.284 GeV, the phase transition strength
a, ~4x 107>, and the inverse duration of the transition
p,~2.7x% 10°. As a result, the direct contribution from
the visible sector is very small, which is about
Qyisipleh® ~ 107

Based on the previous discussion, we calculate the phase
transition dynamics and the final gravitational wave power
spectrum with different benchmarks on our model. For each
model, there are eight free parameters in total, which are
dark fermion mass mp, dark photon mass m,, coupling of
dark photon and dark fermion g,, kinetic mixing ¢, initial
temperature ratio &y, hidden Higgs field parameter py,, 4,
and the bubble wall velocity for hidden sector nucleation
vy Here we provide a table of benchmark models in
Table II with their outputs given in Table IIL

A. Constraints and Monte Carlo simulation

In the beginning of this section we discussed eight
parameters that enter in the analysis of the gravitational
wave spectrum. For simulations we take the following
ranges for these parameters:

mp € (1071,10%) GeV,  m, €(1071,10*) GeV,

g € (1074,100), 5€(107'12,1079),

& e(0,1), uy € (1071, 10%) GeV,

Ay € (107,101, vyn € (0, 1). (6.1)

A set of benchmarks covering a range of input parameters used in the computation of tunneling temperature in the hidden

sector and other relevant outputs in Table III that enter in the computation of the gravitational wave spectrum consistent with all
constraints on the dark photon [120]. These benchmarks pass all the constraints mentioned in Sec. VI A and are cosmologically
consistent candidate models for the computation of gravitational waves.

Number mp (GeV) m, (GeV) Ix 8 (in 107 & w, (GeV) Ay Van

(a) 551.7 108.5 0.02059 0.01038 0.671 18.63 0.04973 0.5993
(b) 204.1 52.52 0.01975 0.01441 0.463 9.922 0.03953 0.5619
©) 594.4 2215 0.002922 0.0281 0.778 41.78 0.08802 0.9599
) 710 138.6 0.003161 0.03012 0.917 22.03 0.02939 0.6472
@) 1111 113.7 0.02739 0.01174 0.821 18.49 0.03857 0.2674
® 2854 249.5 0.00821 0.03464 0.795 41.44 0.04183 0.5871
(2 530.7 124.7 0.04001 0.02102 0.757 17.14 0.01621 0.6159
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TABLE III. Computation of the nucleation temperature 7, ,, sound velocities in the symmetric and broken phases cf’ e cf,_' »» the
strength of the phase transition a;,, the inverse duration of the transition /3, / H,,, and the efficiency factor x;, all for the hidden sector. Also
listed is the dark matter relic density Qpy/h%, frequency f(z) of the power spectrum at the peak value of the gravitational wave power
spectrum, and the gravitational wave power spectrum Qgwh? at peak value. DET, HYB, and DEF stand for the nucleation modes
detonation, hybrid, and deflagration.

Number T, &T,) i, ci_y, a, Bu/H, K, Qpmh? f[Hz] Qawh? Mode
(a) 18.2 0.6724  0.307 0306  0.0172 2948  0.223 0.013 0.00257 1.591 x 10~13 HYB
(b) 18.02  0.4635 0.309  0.309  0.00053 1563. 0.0463 0.0267 0.0204 1.172 x 10~'8 HYB
() 2093  0.7794 0309 0308 0.043 158.8  0.0523  0.0198  0.0012 1.524 x 10-13 DET
(d) 3552 09181 0.308 0.306  0.0151 871.3 0.0984 0.0385 0.0102 8.604 x 10715 DET
(e) 19.73 0.8227 0.309  0.308 0.0367 319.7  0.0413 0.0115 0.0055 9.823 x 10~1 DEF
) 54.78 0.7956 0318  0.317 0.0107 845.6  0.187 0.0228 0.0191 1.42 x 10714 HYB
(2) 28.07 0.758 0.308  0.307 0.0127 5659  0.175 0.0216 0.00631 2.843 x 10714 HYB

In order to investigate the distribution of different nucle-
ation modes, as discussed in Sec. VIC, for each event we
select vy, corresponding to three different nucleation
modes so that the total number for each type of mode is
the same. In the Monte Carlo simulation we impose the
following constraints:

(1) FOPT constraints: For the first-order phase transi-
tion, we require that there must be a potential barrier
between the false vacuum and the true vacuum. The
further constraint is an upper limit of sound velocity
so that ¢ < 1/3.

(2) AN constraint at BBN: The number of effective
relativistic degrees of freedom N at BBN is one of
the important constraints on new physics beyond the
standard model of particle physics. The relevant
constraint is given by the allowed corridor for the
difference between the experimental result and the
standard model result at the BBN time represented
by AN4. For the hidden sector model the extra
degrees of freedom are given by

4 11)\4/3
ANeff:_ggff<_> &

— (3 (6.2)

Current experiment observations give us the con-
straint AN < 0.25 [121].

(3) Relic density constraint: After solving for the yield
equations, the relic densities for y and D can be
gotten from their individual yields so that

o SomiY?hz

Pec

o ie(D.y), (63)

where YV is the yield for the ith particle and Q;4? is
its relic density, while the total relic density is the
sum of them. In the analysis we use dark matter relic
density as an upper limit. Currently, it is given by the
Planck experiment [121] so that

Qpyih? = 0.120 = 0.001. (6.4)

Specifically, we impose the constraint 0.01 <
Qpidgenh® < 0.12.

For each benchmark model, there will be a corresponding
power spectrum curve just like Fig. 3. However, plotting the
full curve for each model point would not be illuminating
because they would be space filling. For that reason we will
do a scatter plot on the gravitational wave power spectrum,
with each model point represented by the peak of its power
spectrum curve at the frequency where that peak occurs.
An illustration of it is given in Fig. 4.

B. Nucleation temperature and GW power spectrum

Nucleation temperature is one of the key factors in the
computation of the gravitational wave power spectrum. It
affects the spectrum in the following ways:

(1) It enters the phase transition strength « as discussed

below

(6.5)

a=—-.
Prad

Although there are several different definitions to
the latent heat e as discussed earlier, the total
radiation density of the Universe p.q is the same
and is given by

2

Prad = 30 (ggff<CTh,n)Th,n4C4 + ggt't'(Th,r1)Th.n4)'

(6.6)

It tells us that @ « T,,,~*. Thus, a smaller T}, leads
to a larger a and a larger gravitational wave power
spectrum.

(2) According to Eq. (5.4), we have fy « T, which
implies that a larger power spectrum will arise at
lower frequencies.

The analysis of Fig. 4 is consistent with the observation
above that a larger power spectrum will appear at a lower
frequency. We also note that, for the two-field case,
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FIG. 4. Gravitational wave power spectrum resulting from Monte Carlo analysis on eight free parameters. Left: scatter plot of the peak
value of candidate models at the frequency where the peak value occurs after FOPT constraints are applied. Middle: same as the left
panel including FOPT constraints and the AN constraint. Right: same as the left panel including the FOPT constraints, AN

constraint, and the relic density constraint.
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Monte Carlo analysis of gravitational wave power spectrum classified by two possible orderings in which nucleation occurs in

the visible and hidden sector with red model points for T, > {(T,,) T}, and blue model points for {(7, )T}, > T, Left: scatter plot
of the candidate models satisfying the FOPT constraints. Middle: same as the left panel satisfying the FOPT constraints and the AN ¢
constraint. Right: same as the left panel with models satistying the FOPT constraints, AN constraint, and the relic density constraint.
Here one finds that the residual set of models left after all the constraints are applied are those where the nucleation in the hidden sector

happens after nucleation in the visible sector.

satisfaction of FOPT and other constraints is affected by the
order in which nucleation in the visible and in the hidden
sector occurs. Thus, we classify all FOPT events into two
groups: (1) the standard model Higgs scalar nucleation
happens first, i.e., {(7,,) T, < T, (red points) or (2) the
hidden Higgs scalar nucleation happens first, i.e.,
{(Tp,)Th, > T, (blue points). The analysis for these
two cases is shown in Fig. 5. Here the analysis shows that
after the FOPT constraints, AN constraint, and the relic
density constraint are taken into account most of the blue
points are eliminated, which implies that the hidden sector
nucleation occurs after nucleation in the visible sector.

C. Sound velocity and GW power spectrum
We discussed above the effect of sound velocity on the
final power spectrum via a(c?’_’h) according to Eq. (4.28)
and via k(a. ¢}, ,.c3_,.v,) according to Eq. (4.30). To
demonstrate to what extent sound velocity can change the

power spectrum, we investigate the power spectrum for
model (b) from Table II keeping all parameters fixed except

for the sound velocity cg.b’h. The analysis of Fig. 6 shows
that the changes to power spectrums can be as large as a
factor of O(10%). This approach allows us to isolate the
effects of sound velocity from other factors, such as the
nucleation temperature noted earlier. The reason we need to
discuss this dependence is because there are multiple
different analyses on sound velocity among existing works
that lead to different results. We classify these as follows:

(A) This is the case when one considers just the hidden
sector and assumes that the sound velocity takes
its maximum value allowed in fluids which is
c2 =1/3. Such an assumption is the one most
commonly made, see, e.g., [52,122].

(B) Here one considers one hidden sector model but
including sound velocity dependence. For this class
of models « is given by Eq. (4.28) and x will also be
velocity dependent. The sound velocity is given by

b dp,/dT),
Gy =—"7—

deh/dTh ’ (67)
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FIG. 6. An exhibition of the gravitational wave power
spectrum for different types of sound velocities for a example
model. All other parameters, such as the nucleation temper-
ature, are kept fixed when ci__h varies for cases A, B, and C
discussed in the text.

where p;, and e, are the pressure and the energy
density for the hidden sector. Analyses of this type
are discussed in, for example, [74,123].

(C) In this work, we discuss sound velocity involving
two sectors, i.e., the visible and the hidden, and take
into account velocity dependence, which is given by
Eq. (4.8). This type of analysis has not been
discussed in the existing literature to our knowledge.

Applying the above three types of analyses (A)—(C) to

model (b), we get sound velocities such that cf’_’h’( N

0.333.¢; _ 5 =0.234,¢;_, )=0.309. Correspondingly,

the gravitational wave power spectrum for the three cases is
significantly affected due to variations in the sound velocity
as illustrated in Fig. 6.

0.34

D. Nucleation temperature and sound velocity

In this section, we will analyze how the sound velocity
depends on the nucleation temperature. Again, we will
focus on cf’_. »» With sound velocity defined as by Eq. (4.8).

The scatter plot is shown in Fig. 7. We observe that some

of the points in Fig. 7 are gathered around the curve of

2 — d(p,)/dT
s 7 d(e,)/dT"

visible sector dominates, i.e., we have the sound velocity
so that

This phenomenon happens because the

d<ev +ep +emix)/dT_ d(ev)/dT.

C?(fﬁ’)(a T7Th) = (68)

The reason that the visible sector can dominate is because
Py Ng—éggffT“ and pj, ~ g—éggffT;‘L according to Egs. (4.3),
(4.4) and T > T, when & < 1 and also g% > ¢’

One may note from Fig. 7 that, for the case when
the hidden Higgs scalar nucleation occurs first, i.e.,
STy)Thn>T,, the red curve stays at c*~1/3.
However, when the standard model Higgs scalar nucleation
occurs first, i.e., T,, > {(T),.,)Tj..» We have ¢? systemati-
cally less than 1/3. The different behavior for the two cases
arises due to two different constraints, i.e., Eqgs. (4.10)
and (4.11), for these two different cases. In the analysis of
Sec. VIB, it is found that most of events that pass all the
relevant constraints are those where 7', > {(T, )T, and
where the approximation ¢2 ~ 1/3 is typically invalid. In
simple terms the cosmologically preferred model points are
those where T, > ¢(T},,)T),, and ¢ < 1/3.

1. ANeff Vs g(T)

According to Eq. (6.6), the hidden sector nucleation
happens at 7, which lies in the range 18-55 GeV
according to Table III, while the BBN temperature is
O(1) MeV. This means we need to extrapolate the N

0.32
<030
L

0.28 0.28

0.26 0.26

0.34

0.32

0.26

10’ 102 T, 10° 10'

10?2 T, 10° 10’ 102 T, 10°

¢(Thn) ThrlGeV] ¢(To) ThnlGeV] ¢(Ton) ThrlGeV]
FIG. 7. Scatter plots for ci__ w V8 C(T).,) T}, Tor a set of candidate models in the parameter ranges given by Eq. (6.1). Here the standard

model dominates over the hidden sector in the computation of sound velocity and the sound velocity is close to the one for the visible
sector, i.e., ¢z = % shown by the red curve. The vertical black lines give the value of T,,. Left: scatter plot of cfi’ W VS ST )Ty

with inclusion of FOPT constraints. Middle: same as the left panel including the FOPT constraints and the AN constraint. Right: same
as the left panel with FOPT constraints, AN constraint, and the relic density constraint.
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FIG. 8. Left: an exhibition of the decouplings of hidden sector particles with plots of n; >, {(ev) and H(T) vs T for i = D,y', y. Here

we have np ZD <61)> = nD(<6v>Df)—>ﬁ + <O-v>Df)—>y’y’)’ n,

14 Zy' <61)> = ny’(<6”>DD—>y’y’ + <51}>)(;'(—>y’y’ + <Fy’—>i?(Th)> + <F)(—>y’y'(Th)>)’

n, >, lov) =n,({ov);,y + ([ympy (Th))). Left middle: an exhibition of the decay of dark photon y'. The dark photon decays out at
about 10~ GeV. Right middle: evolution of &(T) vs T for model (e) of Table II. Right: AN (T) vs T. The red dashed line is the current

limit AN < 0.25.

between the two temperatures in a precise way so as to
take account of the ANy constraint at BBN time, which
we take to be AN < 0.25. In some previous works
separate entropy conservation in the visible and hidden
sectors is used to extrapolate N.g from high temperatures
to low temperatures. Such a procedure is shown to be
flawed as it can yield highly inaccurate estimates on
AN . Thus, a more accurate analysis is needed as
discussed in Sec. IT and Appendix E. An analysis relevant
to the current case is given in Fig. 8. Here we first show
that the two sectors decouple at 107> GeV and the dark
photon also decays out at 1072 GeV. The left panel
exhibits the decoupling more clearly where n; > ;(ov)
for all three hidden sector particles falls below H(T) at
T ~ 1072 GeV, which means the complete decoupling
of the hidden and visible sectors (see Appendix E),
and the density of dark relics freezes out as exhibited
in the left-middle panel. The right-middle panel exhibits
&(T) vs T, which is used to constraint AN at the BBN
time as shown in the right panel. The right panel shows
that AN drops below the BBN constraint when decou-
pling happens.
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E. Gravitational wave power spectrum and the
nucleation modes: Detonation, deflagration, hybrid

Now we discuss the gravitational wave power spectrum
for different nucleation modes: detonation, deflagration,
and hybrid. Chapman-Jouguet velocity [72,73,124] is
used in part to distinguish different bubble nucleation
modes, specifically the detonation and the hybrid modes.
It is given by [74,75]

1+ /Bap(1 - 2 +3c2ap)
N 1/cy + 3cs0p

. (6.9)

vy

The bubble nucleation modes are distinguished by the
following constraints:

(1) Detonations: v,, > ¢, _ and v,, > v;.

(2) Hybrid: v,, > ¢, _ and v,, < v,.

(3) Deflagrations: v,, < ¢, _.
Here, v,, is the bubble wall velocity. We apply such
classification to all data points in Monte Carlo analysis
to produce Fig. 9. The figure shows that the hybrid modes
are typically the ones with the highest power spectrum.

- Deflagrations
« Hybrid
- Detonations

10728 P s
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FIG. 9. Gravitational wave power spectrum for Monte Carlo analysis classified by different nucleation modes: detonation,
deflagration, hybrid. Left: allowed set of models satisfying the FOPT constraints. Middle: same as the left panel with models
satisfying FOPT constraints and the AN ¢ constraint. Right: residual set of models satistying the FOPT constraint, AN constraint, and
the relic density constraint.
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VII. CONCLUSION

In this work we have carried out a cosmologically
consistent analysis of gravity wave power spectrum arising
from a first-order phase transition involving two sectors:
the visible sector and the hidden sector, since the two
sectors are intrinsically entangled in several ways. Thus, the
Hubble expansion involves energy densities of all sectors,
hidden and visible. Further, the strength of the first-order
phase transition in the hidden sector at tunneling time 7, ,,
depends on a(T,,,) = €/praq Where € is the latent heat and
Prad = p?ad(Th,n) +p:ad(T) where T = g(Tll,ﬂ)Th.ﬂ and
involves the evolution function {(7,). The same evolu-
tion function enters when we impose the AN constraint
at BBN time. Thus, imposition of AN at BBN requires
a knowledge of the hidden sector temperature at BBN
time which in the visible sector is ~1 MeV. Again one
needs the evolution function to deduce the effective
degrees of freedom in the hidden sector at the temperature
synchronous to ~1 MeV in the visible sector. In brief,
since the visible and the hidden sectors reside in different
heat baths, a consistent analysis requires that one takes
into account the dependence of the effective potential on
two temperatures: one for the visible and the other for the
hidden. In this work, we have presented an analysis of the
gravitational wave power spectrum which takes into
account the synchronous evolution of the visible and
the hidden sectors. Within this framework we discuss
nucleation which involves bubble dynamics in two
sectors. The analysis involves a solution to the evolution
function &(T) = T,/T along with a solution to yield
equations for the hidden sector particles. Thus, the
formalism discussed in this work allows one to correlate
physics at nucleation time and at BBN time and allows
for precision computation of AN at BBN and of relic
density. The formalism presents an improvement over
current analyses where synchronous evolution of the
visible and the hidden sectors is not utilized.

Several aspects of the gravitational wave power spectrum
are analyzed within the two temperature evolution formal-
ism. Thus, we analyze the sensitivity of the gravitational
wave power spectrum to sound speed for symmetric and
broken phases. The analysis includes nucleation involving
two fields, one from the hidden and the other from the
visible. Here it is shown that, for the case two-field
nucleation, models that pass all the constraints are those
where the tunneling in the visible sector precedes tunneling
in the hidden sector. Further, we discuss the possible
imprint of the nucleation modes, i.e., detonation, deflagra-
tion, and hybrid on the characteristics of the gravitational
power spectrum. We show that a part of the parameter space
of the specific gauged U(1) extension of the standard
model discussed here is testable at the proposed gravita-
tional wave detectors.

Finally, we mention below the novel material contained
in the paper.

All the published works on gravitational wave produc-
tion in hidden sector models thus far, that we are aware
of, do not qualify as cosmologically consistent models
since there is no synchronous thermal evolution of the
visible and the hidden sectors in these works, and our work
is the first one that has accomplished that. Details of how a
synchronous evolution of the visible and the hidden sectors
is achieved in a two sector/two temperature universe is
discussed in detail in Secs. II-IV and in Appendixes A-E.
Thus, currently this paper is the only cosmologically
consistent model and no comparable analysis exists in
the literature. This is reflected in the first three words of the
title of this paper: “Cosmologically consistent analysis.”

This paper is the first work where the imprint of different
nucleation modes, i.e., detonation, deflagration, and hybrid,
on the gravitational wave power spectrum is analyzed (see
Fig. 9). This aspect of the paper is of great significance
since it tells us that experimental data on gravitational
waves can be used to probe the very early history of the
Universe when the current Universe was in the process of
creation via bubble formation. No comparable analysis
exists in any of the previous works.

Among other novel things, in this work we discussed
sound speeds involving two sectors (see Sec. IV), i.e., the
visible and the hidden, which have a very significant effect
on the gravitational power spectrum when both sound
speeds are taken into account as seen in Fig. 6. Here the
very large effect that inclusion of sound speeds of both the
visible and of the hidden sector can generate on the power
spectrum is exhibited. This type of analysis has not been
discussed in the existing literature to our knowledge, and
thus our analysis is more complete than what appears in the
previous works for the two sector case.

Note added. Recently, the Ref. [125] appeared which uses
dimensionally reduced 3D thermal field theory to minimize
the uncertainty of the gravitational wave signal. This work
along with those referenced in it are a useful tool in making
the thermal analysis more precise. It is of interest to extend
the analysis of this work to a two sector/two temperature
case so as to be applicable to gravitational power spectrum
involving the standard model and the hidden sector dis-
cussed in this work.
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APPENDIX A: THERMAL MASS CALCULATION
FOR A GENERAL U(1) THEORY

We discuss here the calculation of thermal masses for
the hidden sector Lagrangian given by Egs. (2.2) and (2.4).
The calculation is done in the high temperature regime,
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where the temperature is much higher than the energy scale of the particles’ masses. We also take all the external momenta
to zero. In thermal field theory, at some nonzero temperature 7', the 1PI graphs are defined in the Euclidean space (t = i7)
with a periodicity in 7. The computations are governed by the conventional Feynman rules, while replacing the k° integral
by a sum over Matsubara frequencies [126] so that

d* k
/ (2,,) TZ / —iw,. k), b =2nal,  of,=2n+1)aT, (A1)

where @}, is for bosonic modes and f is for fermionic modes. For the rest of the calculation it is useful to define a
function ¢(7T') so that

26
q(z) =1+ 77— - (A2)
with ¢ = 41 for bosons and ¢ = —1 for fermions. Some of the integrals that appear in the thermal masses can then be given
in terms of &(z). Thus, we have
Z/ /  dkk* g(k) { T?/12  bosons (A3)
(2r)? w2 + |k|2 o 22° 2k | -T2/24 fermions
d3k o dkk?k 4 2Tg(k) — kqg*(k -T%/24 b
TZ/ o, / . +2Tq(k) CI():{ / OSO'HS (A4)
2+k?)? o 2x 8kT T?/48  fermions
&’k k[? o dkk? —k + 2T'q(k) + kq?(k T?/8  bosons
TZ/ 3 2||22:/ 2 * Q()+Q():{ / . (A5)
" 2m) + |k[?) 0o 2=« 8kT —T?/16 fermions

where we dropped the nonthermal contribution in the integral which is UV divergent and is removed by the counterterms.
There are no thermal corrections to the fermion masses, and only the scalar boson and the longitudinal components of the
gauge boson gain thermal corrections.

1. Thermal mass correction to scalar y

We discuss the thermal corrections to the scalar boson first. Here the thermal mass corrections come from the scalar
loops, from the neutral Goldstone loop, and from the gauge boson loop as shown in Fig. 10.
The scalar loop contribution from y* term is given by

d*k 1 d’k 1 A
lar loop fi =3) 3 —=—T2 A6
scalar loop from y* hl/( )4k2 " Z/ P KP4 (A6)
.-'-.‘-_-\--\-"\ ..rl ----- "a
& L] b
[ i v L
| Y
i I : :
it ¢ . o
5 ) R -
H""' .u."_r_____ _____._"L._u_. ______

FIG. 10. Left: thermal mass correction to the scalar field y complex scalar loop exchange indicated by the dashed line. Middle: same as
the left figure except that the thermal loop correction is from the Goldstone loop (small dashed line). Right: same as the left figures
except that the thermal loop correction is from the U(1) gauge field loop (wavy line).
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/1]1

The prefactors can be understood as the following: The contraction of (y(x)|% xxxx(z)|x(y)) has in total 4 x 3 ways and
gives rise to a factor 3/, and the additional I in the front is from the computation of the amplitudes, i.e., iM. The scalar loop

contribution from y*(GY)? term is given by

d4k 1 K 2
Goldstone loop from 2(G9)? = A, / o Ay Z / Ao

where the contraction of {y(x)| %h 2x(2)GYGY(2)|x(y)) has two ways and thus gives rise to a factor 2 x (—

, A7
27)% w2 +|k|2 12 (A7)

i) = —i;. Thus,

the total scalar thermal contribution is the sum of the two above results,

An
scalar and Goldstone loops = — hp2 20

ﬂh Tz /1h

2
4 12 30 (A8)

which is different from the SM Higgs thermal mass %TZ, owing to the fact that there are also contributions from the two
charged Goldstone bosons. The gauge boson loop contributions to the scalar mass is given by

Gauge boson loop = i 1gx)/

where A, (k) is the gauge boson propagator in the Landau
gauge given by A, (k) = 7 (¢ — ©£&). The contraction of

(r(x)|3 9x*xx(z)AA(z)|x(y)) gives rise to a total front
factor 2 x (i1 ¢g2) = ig.

Thus, in this case the total thermal mass for the dark
scalar field I (7') is given by

1 1
I, = -4, 7%+~ g*T%. (A10)

3 4

2. Thermal mass for the U(1) gauge boson

Next we compute the thermal mass for the longitudinal
contribution to the U(1) gauge boson mass y’. Here the
polarization tensors of vector bosons can split into com-
ponents of longitudinal (L) and transverse (T) polarization
so that

I =r'rw + kL (A11)
with projection operators 7% = diag{0,2,2,2} and L* =
diag{—1,0,0,0} in the IR limit [127]. The gauge boson
thermal mass corrections come from scalar and fermion

ﬁ-r-'lh- _F‘"
&+ L &
o L1 F
§ v r
L ] L
i i W"\“.
L ] J* %
* ®
% * %
P P -

FIG. 11.

!

(A9)

1 A
T =272
Z/ 2+|k|2 4

contributions: In this case the thermal mass corrections to
the y’ mass come from scalar and fermion loop contribu-
tions as shown in Fig. 11. The calculation of the scalar loop
contribution is easier to be performed considering the
complex U(1)y field @ which has 2 degrees of freedom
and it represented by the double dashed line in Fig. 11. The
corresponding Lagrangian reads

LD |D,®f - GA?PD* +ig A, (DD — D' P¥),
(A12)
which gives i2g> for the four-point vertex AA®®* and

—2g.k* for the three-point vertex A*®®*. The scalar loop
contribution is

scalar loop
i d*k i (29k*)(=2g.k")(i)?
=2X= 292" = ,
X2/(27z) {(l 79" et (K2)?

(A13)

where the prefactor 2 is from @ being a complex scalar, and
1/2 is the symmetric factor due to the two external gauge

Thermal mass corrections to the gauge boson mass from the complex scalar loop with a four point vertex (left) and with a

three point vertex (middle), and from the Dirac fermion loop (right).

015020-19



WAN-ZHE FENG, JINZHENG LI, and PRAN NATH

PHYS. REV. D 110, 015020 (2024)

boson legs. One still needs to multiply the 2 from the complex ®. For the nonzero contribution to the longitudinal part

we get
d*k 1 &’k 2w?
Nt = —M% =i2 / — - 22T / =
) e [kz ] by R G W
2
=&, (A14)
3
The U(1)y charged fermion loop contribution given by the right diagram in Fig. 11 is given by
: : d*k . (1)*Tr(y* 1y §) . d*k 2Kk‘KY — K> g
fermion loop = (—)1/(271)4 (ig,)? ) = —i4 3/(2 ey , (A15)
which gives contribution to I1; so that
d*k k3 + k|? d3k oy + kg,
It = -1 = i4 2/ L — —4g2T / - =T Al6
H9 ] ey 2 e s (A1)

This is the contribution from a Dirac fermion exchange. For
a chiral fermion exchange, either left- or right-handed, the

contribution to the thermal mass is %TZ. For an Abelian
gauge theory there is no gauge boson loop contribution.

From the above analysis we deduce that, if in addition to
the complex scalar field @, there are n numbers of dark
chiral fermion X; (either left- or right-handed) with the
U(1)y charge Q;, then the thermal mass for the dark sector
gauge boson y’ is given by

1
H _ _ TZ 2T2
S0 +Z6ng

(A17)
where the first term on the right-hand side arises from a
complex scalar loop and the second term from N chiral
fermion loops.

3. Daisy resummation

As discussed in a number of works in temperature-
dependent perturbation theory, the summation over higher
loops can produce the same size correction as the one loop
and should be taken into account [44,127-129]. Thus, one
finds that at the nth order, the n-loop daisy diagram with
n —1 petals (see Fig. 12), also called the ring diagram,
gives the dominant contribution. The daisy diagrams can be
resumed by adding up propagators with increasing number
of attached loops. Each loop can contribute a thermal mass
correction I1(7),) = I, (T},), where I1,(T},) is the one-loop
thermal mass correction, derived above. The sum of all the
propagators can be written as

1 II(T (T
2 >t 2<h)22 2<h23+"'
p’=m> (p*—=m")" (p*—m?)
1

P =mt=1(T,)

which is equivalent to adding a thermal contribution to the
mass in the propagator, i.e.,

mz()(c) - mz()(c) +H<Th)'

Now the one-loop contribution at zero temperature is
given by

d*k
1h Z / E

where i runs over all the particles that enter the loop and N;
are the degrees of freedom for particle i. The regularized
and renormalized one-loop potential as given by the right-
hand side under the MS scheme is the familiar Coleman-
Weinberg potential. From here on we follow the procedure

(A18)

In[kz + m?(y.)],  (A19)

FIG. 12. A daisy or ring diagram which contributes to thermal
potential.
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in the preceding analysis and using the imaginary time formalism we replace the integral over k% by a summation over the
Matsubara frequencies as given by Eq. (A1), where !, are for bosons and o/, are for fermions and AVIT;; (¢, Ty)) at finite

temperature is given by

T,
AV]}IL(ZC9 Th

/ ¢k ln[k2 + w2+ m*(y.)].

(A20)

After the replacement Eq. (A18), the thermal one-loop potential AV%”>(;(C, T),) reads

AV1? (Zu Th)

N”{Z/<
_ZNTh{Z/
+/%ln[l+%”
—ZNTh

= AV Th (Xcv Th) + Vhdlby()(c’ Th)?

sIn[k? + o} + mi(y.)] +

d’k
~In[k? + @} + m?(y.)] + / -

k T gk
/d In[k? + @} + m3(x.)] —l—ZN i d {

Pk
(2z)?

In[k? + m? (y,) + H(Th)]}

3

24+ m?(x.
(271_) ln[k + l()(c)]

(T,) ]
k> +m(x.)

where N, are the bosonic degrees of freedom which incur the mass shift. The daisy diagram contribution to the effective

potential from one particle is computed to be

&’k
dalsy o
T In|l
e T =3 | G|+ e b

(T})

= lim
A—>+oo 4717

—ﬂww»+mnm%w*[

12

where on the last line we drop the divergent pieces which

are canceled by counterterms, and tan~'(:2) - % when

taking A — +oo where m, is a mass taken positive.

APPENDIX B: EFFECTIVE THERMAL
POTENTIAL OF THE VISIBLE SECTOR

The effective Higgs potential in the standard model,
including the temperature-dependent part, is well known. It
is given by the sum of the zero temperature tree and zero
temperature Coleman-Weinberg one-loop potential [130],
temperature-dependent one-loop correction, and ‘“‘daisy
diagrams” [44,45,49,128,129,131-133]. We give a brief
discussion of it here for completeness. Thus, consider the
tree level potential for the standard model with the complex
Higgs doublet field H so that

V(H,H") =

—W?H'H + A(H'H)%. (B1)

+m(r.)
T, 1
—x X3 {ZAH(T;,) +A’ln [1 -

im L2
_/\—>+00471’ 0

" ki In [1 + “Q?){c)]

(l;[{(;h) ] +2m? (y )tan™! C;:)

A
mzofc) + H(Th):| }
[m* (o) + TU(T,)]? = m (x.)}

(A21)

|
We write the doublet of the Higgs field H so that

G+
H = ( (e ++iGs) ) ;
N

where ¢,. is the background fields, ¢ is the Higgs field, and
G* = (G, + iG,)/V/2 where G| , 5 are the three Goldstone
bosons. The tree level potential is given by

(B2)

2 A
Volghe) = =542 + 5 ¢ (B3)

To one-loop order, the effective potential of the standard
model including temperature-dependent contributions is
given by

Veff(¢c’ ) V0(¢c) + V

+ VY (¢, T) 4 sV

(o) + AV (. T)

(¢pe: T), (B4)
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where V(1)>

is the zero temperature one-loop potential,
AV(IT) is the temperature-dependent one-loop contribution,

V4aisy is the daisy loop contribution, and §V(7) are the

counterterms to remove divergent terms. Thus, V (qﬁc) is
given by
V(O)(¢ ) — ZNi(_l)zgi (¢ ) m2(¢c) —C.
bore — 64’ ‘ A? a
(B5)

where the sum i runs over all particles in the theory with N;
degrees of freedom for particle i with mass m;(¢,..) and spin
s;» /A is the renormalization scale, and C; equals 5/6 for
gauge bosons and 3/2 for fermions and scalars in MS
renormalization. The relevant contribution arises from the
gauge bosons Z and W=, the top quark, the Higgs boson,
and the Goldstone bosons. Thus, for the SM i runs through
{Z,W,t,H,G5,G*} and the corresponding front factors
are N; = {3,6,12,1,1, 1, 1}. The field-dependent masses
m?(¢,) are given by

m%l(¢L) = _l’lz + 3l¢%’ (¢L) - _yt (B6)

1 1
miy(be) =1 Bde  Mi(¢) = 7 (55 + g)de,  (BT)
mg, = mg= = —p* + 2. (BS)

The thermal correction in one-loop order arise from
bosons and fermions which couple to the Higgs field

and is given by
[6JB< ) +3JB< ) +JB<T)
+3J, <%> —12J, <%)] : (B9)

where the functions Jp and J are defined as in Eq. (2.8).
Further, as noted earlier one needs to include the daisy
resummation contribution to the potential, which in this
case is given by

(g T) =

Vit (. T)
T

= 3 g @) - ) + (1]},

B'=Z,W.H
(B10)

where the sum runs only over scalars and longitudinal
vectors. Here g = {1,2,1} for B = {Z, W, H}, and there

are no contributions to the transverse modes and to the
fermion masses. Thus, the thermal contributions to the
masses [z (7) are given by [127]

1 1 1
Mu(T) = |3 +93) + 37 +54 7% (BI)
1,
My () =TI,(T) = 5 637", (B12)

at the leading order in 72 where y, is defined so that
m, = %ylv and v ~ 246 GeV.

APPENDIX C: FURTHER DETAILS OF VISIBLE
AND HIDDEN SECTOR INTERACTIONS

As noted in Sec. II the analysis of synchronous
evolution is very general and applicable to a wide array
of portals connecting the hidden and the visible sectors.
In this work for the specific hidden sector with a U(1)
gauge invariance broken by the Higgs mechanism, we
used the kinetic mixing between the hidden and the
visible sectors as noted in Sec. II B. Here one includes a
mixing term ——A/‘”B in the Lagrangian, where A is
the field strength of the hidden sector U(1) field A# and
B, is the field strength of the U(1) hypercharge field B,
of the visible sector. Since the standard model is based on
the group SU(2) x U(1), we will have a coupling of three
gauge fields A5, B#, A¥, where Af is the third component
of the SU(2), gauge field A, (a = 1,2, 3) of the standard
model. After electroweak symmetry breaking and in the
canonical basis where the kinetic energies of the gauge
fields are diagonalized and normalized, the physical
fields are Z”,A’;,A’;,, where Z is the Z boson of the
standard model, A, is the photon, and A, is the dark
photon. Thus, the couplings governing the dark sector
and the feeble interactions of the dark sector with the
visible sector are given by

AL = Dy# (gy/A + 972, + 9,A,)D
g !
t 3 coso ™" (v —ysd)ALlwy — AV, AV,
1 1,
=3 e —|—2m AyA” +g2v h;(AyA“‘
1 4 /
RPN 1)
vy = —cosy|(tany — s55in0) T,
— 2sin*0(—s;5csc O + tany)Q ], (C2)
a}- = —cosy(tany — s5s5in0)T5;. (C3)
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Here 55 = sinh 6 and c; = cosh 8, and f runs over all SM
fermions, m, = g,v, and m, = \/21,v;,. Further, T3, is
the third component of isospin, and Qy is the electric
charge for the fermion. The couplings g, g,, and g, that
appear above are given by

9y = 9xQx(Ri1 — 55Ra1)s
9, = 9xOx(Ri3 — $5Ra3),

9z = 9xOx(Ri2 — s5R22). (C4)

Here the matrix R is given by Eq. (23) of [58] and it
involves three Euler angles (6, ¢, y) which are given by

tan ¢p = —s;, tanf = g—Ycacosgb,
92
26m?% sin @
tan 2y = — 5 "z (Cs)

my, —my + (m, 4+ m5 — mi,)6*
where 6 = —§/v/1 — §°. In addition to the above, there is
also a modification of the standard model couplings.
Thus, in the canonically diagonalized basis the couplings
of Z, and Aj are given by [58,63]

|

ALGy = =" [(vp —ysap)Z, w s + ew ' QAL .

(Co)

9
2cos @

Modifications to the visible sector interactions appear in
the vector and axial vector couplings so that (see
[60,61,65,134])

vy = cosy[(1 + sstany sin 0)T5,
— 2sin*0(1 + sscscOtany) Q).

ap = cosy(1 + sstany sin6)T5;. (C7)

APPENDIX D: SCATTERING CROSS SECTIONS
FOR &(T) AND YIELD EQUATIONS FOR THE
HIDDEN SECTOR FIELDS

The analysis of yields in Egs. (2.21)-(2.23) requires
several cross sections. The cross sections 6pp_,,,,
yand I

Ciiyy's y—ii are given in [47,61]. The additional cross
section needed is ¢

—y'y- Lhe Feynman diagrams for it are
in Fig. 13. This cross section is given by

ODpD—ii>

L(12m), —
Uxx—w’r’(s’Th):g}C( ™y

\/(s —4m?)(s — 4m§,)

2

4mz,s + s%)
512zm,s? (m2 — s)*(m} — 4my?

8g* vt (m2 — )2
gy B )

8q2v2
+ (m2 = )2 (m} —m2m? + m2s)) + ————2—— (log A(m2(2v2 g% — 3s) + s (20} g% + 5) + 2m?)) |,
X roTy Y 2my —3m3s + s “ * * “
(D1)
\/(s —4m)(s —my) = 2my + s
= , (D2)
_\/(s —4m?)(s — mi,) —2ml +s
where s is the Mandelstam variable. The cross section for the reverse process is then given by
2\/s —4m2ew =17 (5,T)) = 94 /s — 4m; 26771 (5, T),). (D3)

- b e <
~ % - ,d-‘.r“-ru “
b =
L]
i
’ LLLLLL
T
r L
s -
’ L
rl
FIG. 13. The Feynman diagram for the annihilation process yy — y'y’.
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Additionally, we also need the decay width for the process y — y'y’. This is given by

gi”%l 4m ?( 4
L,y (s) = 1287rmxm4, 1 - Rt —4m + m, + 12m ). (D4)
b2 4
We also define here j, that enters Eq. (2.20),
Jn =Y _[RYJUTI(ii = DD)(T) + YT (ii = ¢ )(T))s? = Y, J(y' = ii)(T)s, (D5)
nsd g
Vit =" I TR (i T), (D6)

where K, is the modified Bessel function of the second kind and degree two. Further, g; is the number of degrees of freedom
of particle i and mass m; and the source functions J are defined so that The J functions that appear in Eq. (D5) are defined as

TG~ DD)(T) = 355 [ dsopis(s =) Kl Vi/T) (07)
WTRIGT ~ )(T) =5 / " dsogps(s = ) Ka(V/3/T), (03)
n}/"](}/ - ”)(Th) = nym ’Fy’—m’ (D9)

. T [
BTV o0} (1) = 55 [ dsao)V3(s = 50K (VE/T), (D10)

where K is the modified Bessel function of the second
kind and degree one and sy is the minimum of the
Mandelstam variable s. We note that there are additional
contributions one can include in the analysis, i.e.,
ii » y'y.YZ,y'y’. Their contributions are relatively small
compared to ii — y’ and are neglected.

APPENDIX E: ENERGY AND PRESSURE
DENSITIES AWAY FROM EQUILIBRIUM

If one assumes that the hidden sector was in thermal
equilibrium at all times, then the particle distributions will
follow the Fermi-Dirac or Bose-Einstein statistics as appro-
priate. In this case, the energy density p;, and the pressure
density p,, in the hidden sector are given by [135,136]

gT /X
Zpl— ) — Ly, ie{y.D.y}.
:I:l
3
9T}, °°<x2 )5
= i — d € ) ) )
Ph Zp, ﬂz/Xi S iy Dy}
(E1)
where g, =3, gp =4, g, =3, x; :';l—;' and plus is for

fermions, while minus is for bosons. If a massive particle

remained in thermal equilibrium until today, its energy
density, p; ~ (m;/T)*?exp (—m;/T), would be negligible
because of the exponential factor. However, as pointed out
in [137] if the interactions of the particles freeze out
before complete annihilation, the particles may have a
significant relic abundance today. Often in the discussion
of freeze-out, it is generally assumed that p = p., where
Peq Tefers to the equilibrium density. However, the more
precise way to compute the energy density in a freeze-out
situation is to take

Ph = Pheq + Ph.relic- (EQ’)

As suggested in [137], pj ,.1;c could be computed using
the yield equation to obtain the number density

nh,relic
Yh.rclic = s = Ny relic = Yh,relic§7

(E3)

which allows a computation of the number density 7, i
from where we can compute the g" .. so that

¢B3) 4

Ny relic = —ﬂz n.relic

T3 (E4)
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Next we set the effective energy degrees of freedom from
the relic density so that

h _ . h
gp,relic - gn.relic (ES)
and use the relation
2

T
Ph.relic = %gz,relicT?t (E6)

to find pj, i and p,. In most cases, this analysis is not
necessary Since pj, reiic <K Ppeq- However, such an analysis

becomes relevant when we are dealing with the decou-
pling of the entire hidden sector since in this situation
we have pj, relic > pjeq- A similar analysis holds for the
pressure density p,. Aside from the correction to the
density discussed above, the density of the hidden sector
should freeze out when the two sectors are fully
decoupled. This analysis will be similar to the analysis
in cannibalism dark matter [138]. For the current model,
the decoupling happens when (i) all interactions between
the hidden sector and the visible sector decouple and
(i1) the dark photon decays out.
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