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ARTICLE INFO ABSTRACT

Keywords: In this paper, we derive a dynamic surface elasticity model for the two-dimensional midsur-
Elasticity face of a thin, three-dimensional, homogeneous, isotropic, nonlinear gradient elastic plate of
Thin plates thickness h. The resulting model is parameterized by five, conceivably measurable, physical

Koiter’s energy
Surface elasticity
Gradient elasticity
Wave propagation

properties of the plate, and the stored surface energy reduces to Koiter’s plate energy in a
singular limiting case. The model corrects a theoretical issue found in wave propagation in
thin sheets and, when combined with the author’s theory of Green elastic bodies possessing
gradient elastic material boundary surfaces, removes the singularities present in fracture within
traditional/classical models. Our approach diverges from previous research on thin shells and
plates, which primarily concentrated on deriving elasticity theories for material surfaces from
classical three-dimensional Green elasticity. This work is the first in rigorously developing a
surface elasticity model based on a parent nonlinear gradient elasticity theory.

1. Introduction
1.1. Classical thin plates and shells

Much of modern theoretical research into thin plates and shells has focused on either rigorously deriving surface elasticity theories
from, or linking them to, classical three-dimensional Green elasticity. The idea (or expectation) is that passing to a two-dimensional
surface model significantly decreases the complexity needed to solve problems for the three-dimensional body, while only slightly
sacrificing accuracy. The mathematical methods involved include:

+ using gamma convergence to obtain limiting variational problems (Friesecke, James, & Miiller, 2002, 2006; Le Dret & Raoult,
1995, 1996),

» performing asymptotic expansions of the weak and strong forms of the equilibrium equations (Ciarlet, 2000; Fox, Raoult, &
Simo, 1993; Song & Dai, 2016; Song, Wang, & Dai, 2019),

+ obtaining leading order-in-thickness expressions for the kinetic and stored energy of a surface contained in the body from
classical three-dimensional stored and kinetic energies (Hilgers & Pipkin, 1992a, 1996, 1997; Shirani & Steigmann, 2019;
Steigmann, 2013).

One attractive aspect of the third approach, adopted in this paper, is its simplicity in incorporating both bending and stretching
effects for the surface model. The equations governing the motion of the surface are subsequently derived by applying Hamilton’s
variational principle (see, e.g., Hilgers, 1997; Hilgers & Pipkin, 1992b).
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An especially important example of a stored surface energy is Koiter’s plate energy. Consider a homogeneous, isotropic, nonlinearly
elastic plate B = Sx[-h/2, h/2] c E? with middle surface (midsurface) S, thickness 4, and stored energy per unit reference area W.!
Here, S is a domain in the two-dimensional Euclidean plane. In what follows, Greek indices range in {1,2}. For a smooth motion of
the midsurface, y : S x [ty,#;] = E3, two key tensors on S are used to express Koiter’s plate energy: the surface Green-Saint-Venant
tensor E and the relative curvature tensor K defined via

E=Eg e ®ef, E,= %(6ay <05 = 8up).

_ a Vi .32 _ 01yXdpy
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Koiter’s plate energy U, (Koiter, 1966) is then given by
Au
A+2u

h_3( A

trE)? E2)
(trE)” + ulE| +57 pry

Ukoiter = h( (trK)? + ;4|K|2). (1.1
In the above expression, 4 and u represent the usual Lamé parameters of the material, trE = EZ, and E|? = EaﬂE“ﬁ. One has a
generalization of (1.1) for thin shells with curved midsurfaces, but for simplicity, we will restrict our discussion to plates. Steigmann
(2013) elegantly derived Koiter’s plate (and shell) energy by expanding and integrating-in-thickness the three-dimensional stored
energy under the assumption of small midplane strains. In particular, he showed that
h/2
W dZ = Ug jer + 0(R), 1.2)
—h/2
where y = y|,_, is a motion of the midsurface induced by a motion of the three-dimensional plate y : B x [t,,7;] — E>. An earlier
proof of (1.2) was obtained by Hilgers and Pipkin in Hilgers and Pipkin (1996), but there, the nature of the surface in B that is
evolving according to y is unclear.? In Chapter 4 of Ciarlet (2005), Ciarlet presents a compelling body of evidence supporting the
claim that (1.1) represents the “best” stored surface energy for thin plates (and shells). His key argument is the fact that solutions
to the linearized equilibrium equations® arising from (1.1) exhibit the same asymptotic behavior as 4 — 0, in the same function
spaces, as displacements, averaged across thickness, that solve the full three-dimensional linearized elasticity problem. To the best
of our knowledge, the only derivation of an analogous cubic-order-in-thickness kinetic energy for a plate is due to Hilgers and Pipkin
(1997). They obtained the following expression,

o2
12+ 2u2
where py is the plate’s reference density. Again, the nature of the surface evolving by y is still ambiguous. Moreover, when combined
with (1.1) to obtain a dynamic theory, the phase velocities for longitudinal infinitesimal harmonic plane waves have the degenerate
property of vanishing in the short wavelength limit (see Section 4.3).

As far as the author is aware, no previous effort has been made, using any method, to rigorously derive surface elasticity theories
for thin plates or shells from three-dimensional, nonlinear, non-classical gradient elasticity. This work represents the first in this new
direction.

1 h?
Kyp = 5hpR(|a,y|2 + Itro,E| + E|a,n|2), (1.3)

1.2. Gradient elasticity

We now give a brief overview of (second-) gradient elasticity and our motivation for this work. In what follows, x = y :
Bx [ty,1;] = E3 is a smooth motion of a body with reference configuration B C E?, reference density pg : B — (0, ), and Eulerian
velocity field v(x, ). We recall that classical Green elasticity posits that the stored energy V and kinetic energy T of a part P C B
at time ¢ are of the form,

V(P) = / W(F)dV, T(P)= / Sorloxiav,
P P

where F = dya y'e;®e? is the deformation gradient. The equations of motion neglecting external body forces and boundary tractions
can then be obtained via applying Hamilton’s variational principle to the action functional with Lagrangian density L =T — V.
Gradient elasticity is a subtheory of gradient continuum mechanics in which the kinetic energy and stored energy densities can
also depend on the spatial derivatives of 9, ¥y and F respectively (Maugin, 2017). As before, the equations of motion are then obtained
via Hamilton’s variational principle. Piola was the first to conceive of continua where the body’s internal work expenditures depend
on spatial derivatives of higher order than classical Cauchy continua, dating back to 1846 (Dell’Isola, Andreaus, & Placidi, 2015;

1 In this work, we denote three-dimensional Euclidean space by E? and identify its translation space with R? via a fixed orthonormal basis (e,}le. Upon
choosing an origin o € E?, we identify subsets of E*> with subsets of R* via their position vectors: E* 5 p — p — o € R3. Throughout this work, we use standard
vector and tensor operations in R’. We also raise and lower indices using the flat metric on R?, and we use the Einstein summation convention that repeated
indices in upper and lower positions imply summation.

Finally, we use standard big-oh and little-oh notation, e.g., A = O(B) means that there exists C > 0 such that |A| < CB. We say that a big-oh term depends
on D if C depends on D, C = (D).

2 This is due to the fact that y := h~! '/_hh//z2

3 The equilibrium equations with prescribed tractions t applied on dS correspond to the Euler-Lagrange equations for V = Js Ukoiter — [55 1 - udA where E
and K are replaced by their linearizations in the displacement field u.

x dZ in their work.
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Piola, 1846). However, significant progress in this area did not emerge until the latter half of the 20th century. During this period, a
surge of activity by prominent figures including Germain (1973a, 1973b), Green and Rivlin (1964a, 1964b), Mindlin (1964, 1965),
Mindlin and Eshel (1968) and Toupin (1962, 1964) resulted in the development of comprehensive theories of gradient continua,
including gradient elasticity. A detailed review of the extensive work and applications of gradient continuum models since then
is beyond the scope of this work. For further insights, we refer to the reviews (Askes & Aifantis, 2011; Dell’Isola, Della Corte, &
Giorgio, 2017; Dell’Isola, Seppecher, & Della Corte, 2020; Maugin, 2017) and the references cited therein.

In theories of gradient continua, an added layer of complexity emerges since it becomes necessary to prescribe additional
boundary conditions. In particular, for the equilibrium theory derived from a stored energy density that depends on the spatial
gradient of F and satisfies strong ellipticity, the resulting equilibrium equations form an elliptic system of partial differential
equations that include the fourth-order spatial derivatives of the configuration y. It is then necessary to specify a boundary condition
in addition to the traditional prescription of either boundary placement, y|,z, or boundary surface tractions, PN|,z, to ensure a
well-posed boundary value problem in general.* For the case of placement, it is mathematically natural (but perhaps unclear from
a physical standpoint) to additionally specify the normal derivative of the configuration dy x|,53. For the case of boundary surface
tractions, it is physically natural (but perhaps mathematically cumbersome) to also specify the distribution of boundary surface
couples since these arise (in addition to boundary surface tractions) as natural boundary conditions from a variational point of view
(see, e.g., Sections 3—4 in Mindlin, 1964, Sections 5-6 of Toupin, 1964, Section 5 of Germain, 1973a). The analogous problem of
determining boundary conditions for Rivlin-Ericksen fluids is briefly discussed in Section 6.2 of Truesdell and Rajagopal (2000) and
thoroughly discussed in Section 2.5 of Cioranescu, Girault, and Rajagopal (2016). We emphasize that their overarching philosophy
applies equally well in the case of solids. In particular, when prescribing boundary conditions for a specific problem, convenience
should not be the criterion. Instead, these conditions “should reflect some physical idea” (Truesdell & Rajagopal, 2000) related to
the situation at hand and involve considering both “the structure of the material that is being enveloped by the boundary as well
as the structure of the environment” (Cioranescu et al., 2016).

In this work, we consider especially simple energies for a homogeneous, isotropic, gradient elastic body that introduce the
smallest number of additional constants: the frame-indifferent stored energy is

3
A A
V(P):/[E(trE)z+/4|E|2+ffZ(E(axctrE)z+/4|6XEE|2)]dV, (1.4)
P c=1
and the kinetic energy is
1 _
1) = [ Son(l0x + o,y )av s
P
1 2, 2 2
= —pl|v|”+¢;|gradv|” |dv,
/25(7’)2 ( g )

where gradv = d,;v'e; ® ¢/ is the velocity gradient, p = pg(det F)~! is the current density, and ¢, and 7, are two additional positive
length parameters. For the case of infinitesimal motions, the kinetic energy (1.5) was first suggested by Mindlin (1964), and the
stored energy (1.4) appeared first in Aifantis and Altan’s work (Aifantis & Altan, 1992), inspired by earlier work of Aifantis (1984,
1987) and Aifantis and Triantafyllidis (1986) on gradient continua. The values of the length parameters #, and ¢, in terms of
conceivably measurable physical properties has been a source of debate for some years with most values given in terms of the
body’s natural inter-particle spacing d (see, e.g., Section 4 of Askes & Aifantis, 2011).

In a recent work by the author (Rodriguez, 2023), an equilibrium theory was developed for a classical three-dimensional Green
elastic bulk solid with a gradient elastic boundary surface. This theory was applied to a mode-III fracture problem, effectively
eliminating the problematic singularities present in both stresses and strains that arise from classical linear elastic fracture mechanics.
The model’s stored surface energy

Au
A+2u

h oA
UHP=h< (trE)2+y|E|2)+ﬂ(ﬁ 9,0y

2
1Y 10,0551
ap

was suggested in Hilgers and Pipkin’s research (Hilgers & Pipkin, 1992b, 1996) as an ad hoc modification of U, that satisfies
the strong ellipticity condition. The fulfillment of the strong ellipticity condition by U p played a crucial role in demonstrating that
the ensuing fracture model generated bounded stresses and strains up to the crack tips. However, the connection of Uy p to a parent
three-dimensional theory, in the spirit of work discussed in the previous section, is unclear. The primary motivation and outcome
of this work involve the introduction of an attractive alternative quadratic stored surface energy, denoted as U, such that:

» U satisfies the strong ellipticity condition and can be used in conjunction with Rodriguez (2023) to eliminate the singularities
present in linear elastic fracture mechanics.

« U is also expressed in terms of (conceivably measurable) physical properties of the plate.

» U is derived from a parent three-dimensional theory, in the spirit of (1.2).

4 Here, N is the outward-pointing normal vector field on 053 and P is the Piola-Kirchhoff tensor, which, in the classical setting is given by P = %e" Re,.

For strain energy densities depending also on the spatial gradient of F, the form of P is different (see (2.4)).
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h

Fig. 1. A body primarily made of a Green elastic material with an additional thin, gradient elastic region of thickness h extending from a section of its boundary
and our modeling scheme.

1.3. Main results and outline

For simplicity, in this work we will only consider the case of plates B = S x [-h/2,h/2], but we expect our results can be
generalized to shells with curved midsurfaces by using more differential geometric machinery (see, e.g., Ciarlet, 2005; Steigmann,
2013). In Section 2, we first discuss the necessary kinematics and set-up for our study. We then formally argue via averaging
linearized lattice dynamics that for a plate with kinetic and stored energies (1.5) and (1.4), reasonable identifications of the length
scales are z,”f =d?/12 and f,f = d? /6, where d is the inter-particle spacing of the physical plate in its natural configuration.

In Section 3, we perform an asymptotic expansion-in-thickness to obtain cubic order expressions for the stored surface energy
and kinetic energy of the plate’s midsurface in the spirit of (1.2). Based on the identifications indicated in Section 2, we assume
that fsz + f]% < Cyh? where C, is a fixed constant. This mathematical restriction reflects the reasonable physical assumption that the
plate’s thickness is not drastically smaller than the inter-particle spacing. For a motion y with small midsurface velocity and strain
(relative to fixed length and time scales), we prove that the assoc1ated stored surface energy per unit reference area, [~ h/22 wdZz,

and midsurface kinetic energy per unit reference area, / 12 KR dZ, where W is the integrand appearing in (1.4) and xy is the
integrand appearing in (1.5), satisfy

h/2 2 2 2
/ Wdz = h[/l 5B+ uEP 42 Z(

(trd,E)? + 4|0, E| )]

—h/2 +2u
P8
he? ( trK)>? KZ) o), 1.
+ (B +12) (53570 K2 + uIKE ) + O (1.6)
and
h/2 h? + 1262 2 h? + 1262
1 ) k A 2 k 2
dZ = *npe (10 — Tk A B+ —K9
[ e = o (1007 + ==t o w0+ = o
+£2|Vo,yP? ) +O(n'/?). 1.7

Here, y = y|,_, and the gradient operator is with respect to the midsurface variables: see Theorem 3.1 for the precise statement.
We denote by U and K the leading order expressions appearing in (1.6) and (1.7) respectively, and we observe that they are
characterized by five physical properties of the plate by using our identifications for the length scales: its reference density pg,
Young’s modulus E = @ Poisson’s ratio v = ——“— C A it thickness s, and natural configuration’s inter-particle spacing d (see
(3.20) and (3.21)). In the smgular limiting case ¢, = Oﬂwe recover Koiter’s classical shell energy (1.1), and in the case ¢, = 0 we
recover Hilgers and Pipkin’s kinetic energy (1.3). We conclude Section 3 by showing that U satisfies the strong ellipticity condition
(rather than the weaker Legendre-Hadamard condition) precisely when #; > 0 (see Proposition 3.2). In Section 4, we adopt U
and K as the stored surface energy and kinetic energy densities of an elastic material surface, respectively. By applying Hamilton’s
variational principle, we establish the field equations governing the motion of the surface. Our analysis then focuses on infinitesimal
harmonic plane waves, providing a detailed comparison between the setting when #, and ¢, are non-zero versus the case where
¢, = ¢, = 0. Specifically, waves moving in all directions (longitudinal, tangentially transverse, and normally transverse) exhibit
dispersion. Unlike the scenario with ¢, = #; = 0, the phase velocity of longitudinal waves is now consistently bounded below by a
fixed positive constant for all large wave numbers.

In the final section, we show how utilizing the stored energy density U in the framework proposed by the author in Rodriguez
(2023) eliminates the singularities in stresses and strains observed in linear elastic fracture mechanics, particularly in the context of
mode-III fracture. The overall model can be physically understood as representing a body primarily made of a Green elastic material
with an additional thin, gradient elastic region of thickness 4, extending from a section of its boundary. More precisely, we model
such a body by a Green elastic solid B possessing a gradient elastic boundary surface, S, with stored surface energy density U; see
Fig. 1 for a schematic. In particular, the fracture model is parameterized by the three-dimensional solid’s Young’s modulus, Poisson’s
ratio, and natural inter-particle spacing, and the sole parameter left undetermined is the thickness of the region emanating from the
crack front where gradient elastic, small-scale processes become significant.
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2. Preliminaries
2.1. Kinematics

Let B = S x [-h/2,h/2] C E3 where S is a smooth domain in R?. The domain 5 is the reference configuration of a three-
dimensional plate, and S is its two-dimensional midsurface. For a reference element with position vector X = X%, € B, we write
X =Y + Ze; =Y"e, + Ze; where Greek indices range over {1,2}.

For a smooth motion x = ¥ = f'e; : Bx [ty,1;] — E?, we denote the deformation gradient and second deformation gradient by

F=0,0'e,®e, A= e, e’ ®e,

where e = e, for a = 1,2, and 9, = azu' The velocity field in Eulerian coordinates x is denoted by &(x,1) = 9, ¥( 27 1x),1). The

- . L . AT o )
Green-Saint-Venant strain tensor is given by E = %(F F —I). We denote the normal to the convected midsurface }(S) by

n=10 x| 0xxaz|, .

and the surface Green-Saint-Venant strain tensor E and relative curvature tensor K for the midsurface are defined by

— . 2 a f— a f
E=0,% dﬁx‘zzoe ®el =E, N ®e’,
—n.02 % a p
K=n 0aﬂ;(‘z=0e R er.

In what follows, the absence of a caret indicates that the quantity is evaluated at Z =0, e.g., E 5 = E,,pl 20, and indices are raised
and lowered using the flat metric on R3.

2.2. Stored energy and kinetic energy assumptions

We assume that the plate B is homogeneous, isotropic, the reference configuration is its natural configuration, and the stored
energy per unit reference volume is of the simple strain-gradient form,

3
W= %(trﬁ)z +ulEP + 22 Z(%(actrﬁ)z + ,4|acE|2), @1
c=1
where 4 and y are the usual Lamé parameters of the material and ¢, is an internal length parameter. We denote
A o (A
W, = S@EP 4 uEP W, = Z(E(tracE)z + ,4|aCE|2).
c=1
We will also assume that the kinetic energy per unit reference volume xy of the plate includes a simple velocity gradient contribution,

1 N s
kr = 5or(102 7 + £210,FCFY' ), 2.2)

where pj, is the constant, reference mass density and ¢, is a second internal length parameter. We note that in terms of the velocity
field #, the kinetic energy per unit current volume, «, takes a more conventional looking form

1 /. X
K= Ep(|u|2+f,§|graclu|2), 2.3)
_ P N o' j

p=pr(det )™, gradd = —0xje,~®e .

As discussed in the introduction, the stored energy (2.1), kinetic energy (2.2) (equivalently (2.3)), and the identification of the
additional length parameters £, ¢, have been intensely studied for several decades.

We define the following second-order Piola-Kirchhoff tensors P and P, corresponding to the stored energies W and W, by
N 7} : N oW, .
P:(a—?—%%+§if_)e'®ea, P =—e¢®e, (2.4)
oFi  9X° 9Al t OFi oFi

where 1:"; = 6,13“;. As is well-known (see e.g., Toupin, 1964; Truesdell & Noll, 1992), for a body with stored energy W (or W), the
resultant contact force exerted on a subdomain R C B by B\R is given by F(R) = fR PN dA, where N is the unit normal vector
field on 0R pointing into B\R.®> From our expressions for W and xg, we have

P=P +0¢:+1}), (2.5)

where the big-oh term depends on the size of || ¥llc3sxiy.r, -

5 The expression for P, is classical while the static expression for P can be found in Section 10 of Toupin (1964). The dynamic expression for P can be
deduced via similar integration by parts calculations as in Toupin (1964).
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2.3. Identification of the length parameters via averaging lattice dynamics

We now give a formal argument for averaging lattice dynamics that suggests the identifications

b= ——d, £ =—d, (2.6)

where d > 0 is the inter-particle spacing for the plate’s natural, unstressed configuration.
We model the plate of thickness h by a three-dimensional lattice £, of identical particles with spacing ¢ > 0, each with mass
M, and with reference positions

Xym = (myd,myd,mzd), m=(mj,my,mg) €L

Let u, ,(#) be the displacement of the particle with reference position X, ,, at time , and we assume that the resultant force F,,
exerted on the particle with reference position X, ,, is a superposition of forces exerted by its nearest neighbors of linear Hookean

type,

3
=ky z Z(udﬂmtdej - ud,m)’
j=1 %

where k, > 0. The dynamics of the lattice are then determined by Newton’s laws of motion
Miiy (1) = kg Y, Z(ud,,,,idej ) —ugu®), meZ’ 2.7)
j=1 %
We now assume that there exists a vector field u(-,7) : B — R3? such that for each time ¢, and m € 73,
Uy () = UX gy 1) + 0(d*),

We interpret u(X,?) as the displacement at time 7 of the particle with reference position X in the homogenized plate modeled by
B. For d > 0, the average displacement of the d-cell centered at X is defined by

Xy+d  Xpkd pXi+d
u(X,t;d u(X,t)dv.
Xd) = =5 /x; /X / (X,1)

For a shearing motion with u, ,, =y, €, and u(X, 1) = u(X 1. fe,, we have that for all m € Z3,

Fym=kqlu(m d +d,0) +u(myd — d,t) = 2u(m,d, 1) + o(d*)]e,. (2.8)

In what follows, we denote X' by X, m; by m and X, , = md. By Newton’s laws, (2.7), and (2.8), the motion satisfies for all
me7Z,t eR,

MI[02u(X gy 1) + 0(d*)]
= k[u(Xd m+1> t) + M(Xd m—1> t) - Zu(Xd ms t) + 0(d4)] (29)

X+d

The average displacement u = u(X,1; d)e, with u(X,#;d) = 2 7 Jx—a u(X,1)d X, and by Taylor’s theorem, for all m € Z,

2
PUX gy 13 d) = 0PU(X g ) + %0262 U(X g s 1) + O(d*),

Xy 13 d) = 05 (X g o) + 04 Y U(X g e D)+ O(d?),
0t uXy e tid) = 0‘)‘(u(Xdﬂm, 1)+ 0(d?),
UK g oD+ UK g0 = 20K g ) = (X g1

+1—12d2¢)‘)‘(u(Xd’m, 1+ 0(d*) ) .

Thus, by (2.9) and for all X € {md | m € Z},
pa(PuX, 1) - —62 Qu(X. 1) + o(d?) )
2 . a4 . 2
= Gy (R utx.rid) - HojuX.1:d) + o) ). (2.10)

where p, = M /dh? is the mass density per unit reference volume and G, = k,d/h?* is the shear modulus.

We now assume that the plate modeled via B has stored energy and kinetic energy densities W and k. The nonlinear field
equations governing motion of the body are then derived via Hamilton’s variational principle applied to the action A([t,.7,]) =
ft;‘ /, ,?[KR —b W1dV dt. One may then verify that the linearized equations governing infinitesimal shearing of B, ¥ = X + w(X',t)e,,
are given by

X0 - 3050w X, 0 = 2 (B (X, = £20%w(X.n) (2.11)



C. Rodriguez International Journal of Engineering Science 197 (2024) 104026

where c% = pu/pg is the shear speed. Assuming that the continuum model consistently approximates the average lattice dynamics in
the sense that G,;/p; — c% and for d > 0, w = u solves (2.11) up to an o(d?) error, then (2.10) and (2.11) imply the identifications

fZ—d—z

d2
2= .
k™6

s_ﬁ’

3. Surface energies obtained as the leading order expressions from the plate energies

In this section, we obtain leading cubic order-in-4 expressions for the stored surface and kinetic energy densities

h/2 h/2
/ WdZ and / KrdZ, (3.1)
—h/2 —h/2

corresponding to motions with Taylor series
72 73 4
¥ X, H)=yX.,)+dX.t)Z + g(¥, 07 +h(Y, t)? +0(Z7). 3.2)

Here, y = ¥|,—, is the motion of the plate’s midsurface S, and the leading order expressions obtained involve kinematic quantities
associated to y (see Theorem 3.1).
The deformation gradient and second deformation gradient satisfy

F=Vy+d®e; +(Vd+g®e3)Z+(Vg+h®e3)272 +0(Z%),
A=VVy+(Vd®e)) +VdQ@e; +gQe; @ e3 + 0(2),

where V is the gradient operator with respect to Y,
Va = aie,-, Va = 0aaiei ®e*, VVa= 0ﬂ6aaie,- Re* ® e,

and (a® b® )" = a® c ® b. Throughout this paper, we will also often use the notation a, = d,a where a = 1,2. For the following
discussion, we define the following quantities,

F" =0 F|,. PY =0LP(F),.
so that

F=Vy+d®e;, F =Vd+g®e;, F'=Vg+hQes,
A=VVy+(Vd®e)  +Vd®e; +g® e; @ e;.

3.1. Size assumption between the length parameters and plate thickness

For the remainder of this work, we fix characteristic length and time scales L and T, and we will assume that 4/L is much
smaller than unity. In addition, we will also assume that the midsurface’s velocity satisfies |9, y| = O(h/T) (to be made more precise
below, see Theorem 3.1). We adopt T as our unit of time and L as our measure of length. After proper nondimensionlization and
relabeling of the variables, we may assume that X and ¢ are dimensionless, 4 is a dimensionless small parameter, and |9, x| = O(h).
Finally, we will assume that there exists a dimensionless constant C, > 0 such that

£+ 07 < Cyh. (3.3)

The identifications made in the previous section (2.6) suggest that (3.3) reflects the reasonable physical assumption that the plate’s
thickness is not significantly less than the natural inter-particle spacing.

3.2. Parameterizing the motions

Following the approaches of Hilgers and Pipkin (1992a, 1996, 1997) and Steigmann (2013), we require that the generalized
tractions
Peslyonp
vanish to first order in h. The resulting conditions imposed on d and g are as follows. By (2.5) and (3.3),
N h
Pesl iy = Poes £ P§e3§ +O0(£% + 1) + O(h?)
=Py + P;e3§ +0(h?),
where the final big-oh term depends on || 2||C3(Bx[x0,r1])- Therefore, Pe3| Z=xnj2 = 0 10 first order in 4 if and only if P.e; = 0 and
P'e; = 0. We compute
2

_ s
B aEabaEﬁ

s

0E 4

/

0. X, PSe3

w,
a3Eabacx + _003/Ys

P.e; =
s€3 aEC3
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and thus, P e; = 0 and Pe; = 0 if and only if for ¢ = 1,2,3 we have

oW, W,
=0, ———0E, =0. (3.4)
0E,; 0E,,0E, 3
The relations (3.4) are equivalent to
A
E;=0, a=12FEy= —mtr E, (3.5)
A
03E;3=0, a=1,2, 03E;3= Ty OstrE, (3.6)
and thus,
24
d=¢n, ¢*=1+2E;=1- trE, 3.7
¢n, ¢ +2E3; 1o r 3.7)

The precise form of g will be unnecessary, but it will be useful to have its structure on hand. Let M; " I =

. k
We note that A = A;;¢’ ® e/ is invertible for small / since W, is convex in a neighborhood of E = 0. Then Ple; = =0is equivalent to

g =—-(AHIM30,d" (3.8)
3.3. Leading cubic order-in-h expressions for the surface energies

Our main result of this section is the following cubic order-in- expansion of the stored surface and kinetic energies from (3.1).

Theorem 3.1. Let Cy,, C,, and C, be fixed positive numbers, and assume that
L2467 < Coh?. (3.9

Let y € C3(B X [ty,1,]) be a motion such that for each t € [ty,1;], ¥(-,1) is an immersion satisfying (3.2), (3.5), (3.6). Assume that }
satisfies the a priori bounds

2Nl e3(mxiig,n < Cis (3.10)
YY e R%Lt €[ty 1;],  [0,y(Y, 0| + |E(Y,0)| < Cyh. (3.11)

Then

h/2 2 2 2 2
_h/zlflfliz:h[/l (trEY + plE? + £2 Z( 3 0,E7 + ulo,El )]
n 2 2 2 4)

+(ﬁ+hfs)</1 —(ErKY + K| )+ o), (3.12)

and

n2 o
[ Son(10.2P + oy az
—h/2 2

2 2 2 2
1 , h+120 2 , k120 )
=L, (10 Tk A roEP+ ——— K)o
ZP: ( [0, y]" + 2 (/1+2H)2| E|" + 12 |o;n|
+£2|V0,y|? ) +OW'?), (3.13)

where p; = hpg and the O(-) terms depend only on Cy,C,, C,, 4, p and pg.

Proof. We first note that (3.5) and (3.11) imply that
VY € R%,t € [tg.1;],  19,y(Y.0)| + |EQY,0)| < C,yh, (3.14)

where G, = max(1, \/EA/(& +2u))C,. In what follows, big O(-) terms will depend only on C,, C;, C,, 4, u and p.

Via Taylor’s theorem and (3.3) we have
na o ny2
W, AdZ = / [Z[a" W,(F, A, 0]— + 0(23)]
/2 w2
h/2
/ [ﬂ JF D) +0(f22)]

= hW,(F) + ht>W,,(F, A) + ZaZZI/VS(ﬁ“)|Z:0 +0(h%).
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Direct computation then yields
OGW(F)l 7o = W, pp(F)F'] - F' + Py(F)- F"
=W, rr(Vy+d®e;)[Vd + g®e;]- (Vd + g® e3)
+P,(Vy+d®e;)-Vg+h-P(Vy+d® eze; (3.15)
=W, rr(Vy+d ®e;)[Vd + g®e;] - (Vd + g® e3)
+P(Vy+dQ®e;3)-Vg.
By (3.7) and (3.8), we have for all a = 1,2,
g=L[VVyl+0O(h), 0,8=L[VVI,yl+ O(h),
0,8 = L[VV0,y] + O(h), (3.16)
where L is a constant third-order tensor. By (3.10) and (3.14) we conclude that P (Vy + d ® e3) - Vg = O(h). This fact, (3.15), and

(3.9) show that
"2 2 n 4
WdZ = hE, +ht E, + ﬁEb + O(h),

—h/2
where

E,=W(Vy+d®es),

s = Wi (Vy+d ®e3,VVy +(Vd ® ;)"
+Vd®e;+gQe;Qes),
E, =W, pr(Vy+dQ®e3)[Vd +gQes]- (Vd + gQ e3).
Writing

(tr E)> = (trE)? + 2trE E33 + E2

3 |EP =|E* +2E,3E® + E3,

and inserting (3.5), we obtain

Au 2 2
B trE) + u|E|°.
/1+2;4( )"+ ulE|

m
To compute E, we first note that
0,d = 0,pn — PK 5y = 0, n — Ky y? + O(h), (3.17)
where {y”} is the dual basis, relative to {y 4}, that is tangent to y(S). Using (3.8), it follows that
_ 0%E,
 oryor

(see Section 3 of Hilgers & Pipkin, 1996). By the chain rule and (3.14),

E, d,d*0yd’.

0’E .
.—’"kek Qe = Ai—’;a”ﬂ&ﬂy + %(5“/’57/’ + 5“75/’1’)] y,®y,+0(h).
ayfﬁay’a H

Then by (3.17), we conclude
E, = Au
A+2u
In particular, we have that
3
n E, = h( Au
24 A+ 2u

(trK)? + ulK|? + O(h).

(trE)2+ﬂ|E|2)+§(

Au
A+2u

hE, + (trK)2+/4|K|2)

+O(h*),

with the first two terms on the right-hand side being Koiter’s classical shell energy (see Ciarlet, 2005; Koiter, 1966; Steigmann,
2013).
We now split Y (trd, E)? and > l0.E |? into parts with and without the index 3. Using (3.5) and (3.6) we compute

2 2 2

3
Y I0.EP =Y 10,EP+2 Y 0,E30,E® + Y0, Ex;)?
c=1 r=1 r=1 y=1

+203E,30; E® + 03 E, 303 EP + (03 E33)*

2 /12 2

=Y 10,El> + —L—— Y (trd,E)? + 0y E, ;0 E°F + (05 Ex3),
ST T G Z; ’ “@

9
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C. Rodriguez
3 2 2
Y Itro El* = ) |tro,E|* +20,trEd, E3; + Y (0, E33)?
c=1 r=1 y=1

+ (5tr E)? + 205tr Edy Eqy + (05 Ex3)?
2

4 2
Z(tra E)? + —(03E33)

(/1 +2 )2
Using (3.6) and the fact that for a, f = 1,2,
1, . & 1
05Eup = 303 )|,y = 300ud - 05y + 0,3 9pd) = ~ Koy,

we conclude that,

2 2 2 2 2 2
Ey = /1 2 Z(tra E) +,42|a EF + 555, ¢ K07 + ug?IKP

and thus,

(trE)2+M|E|2 fZZ( M(trdyE)2+y|()yE|2)]

+(h— n mﬂ)(m(trk)2 + ;4|K|2) +O(H).

This proves (3.12).
We now consider the kinetic energy. We have by (3.2), (3.9), (3.10), (3.16) and (3.14) that the kinetic energy satisfies

"2 2, 2215 -1 2
[, soe(10 + ctio P )iz
= L (1oyP + E10.ap + 210, FE P + Loy 0,8) + 02 + 00
_Epslty|+ﬁlt|+k|t()|+Ety'tg+(k)+()7

1 n? -
= 30,(105F + T510dP + 10, F ()7 ) + O(h), (3.18)

where p;, = hpy is the mass per unit reference area of the midsurface. By (3.14) and the polar decomposition theorem, we have
F = R(I + O(h'/%)) where R takes values in the group of rotations, and thus, by (3.2) we have

|0, F(F)™'|2 = |0, FRUI + O(h'/?))|? = |0,FR|* + O(h'/?) = |0,F|> + O(h'/?)

= |Vo,y|? + |9,d|> + O(h'/?).
By (3.9) and (3.18), we conclude that
"2 2, 205 #in-12
[, 3oe(10 + ctlo by )iz =
2

1 h? + 12¢2
50:(1091 + ——E10,dP + E1V9,y P ) + 0712, (3.19)

To simplify (3.19), we observe that since n is a unit normal vector, we have n - d,n = %c),lnl2 = 0. Thus, by (3.7)

h/zl L
/ 5or(102P + 2210, FB) ' )dz
—h/2

2 2 2 2
1 h” + 127 A2 h” + 127
= 5P5(|at}’|2 + Tkmltr(),Elz + Tkla,rdz + filV@,ylz),

concluding the proof. []

We can express the leading order energies appearing in (3.12) and (3.13), denoted U and K respectively, in terms of Young’s

modulus E = M:;“ and Poisson’s ratio v = € (0,1/2). Indeed, we have

20u+4) +/1)

2
U= S[eEP + 1= IEP + 22 Y (w0, B0 + (1 - Io,EF )|
y=1

+§(v(trK)2+(l -v)|K|2), (3.20)

and

1 2
K=Eps(|6,y|2+ . )2c|tra,E|2+c|a,n|2+f§|va,y|2) (3.21)

10
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where p, = hpyp and
2 2
S — (h—2+ 2), Ny (3.22)
1-v2 1—-v2\24 s 12

are all positive. Going forward we will utilize the expressions (3.20) and (3.21) due to their more compact form. If we identify the
length scales ¢ and ¢, via (2.6), then the surface energies (3.20) and (3.21) are parameterized by five physical properties for a
given material: its reference density pz, Young’s modulus E, Poisson’s ratio v, thickness 4, and natural configuration’s inter-particle
spacing d.

3.4. Strong ellipticity of the stored surface energy

We now show that the surface energy U defined as in (3.20) satisfies the following strong ellipticity condition as long as £ > 0.

Proposition 3.2. Let U be as in (3.20) with E > 0 and v € (0,1/2), and let y : S — E> be an immersion. Let
’U ‘
i iy
9Y.g0¥ 5,

If ¢, > 0, then U satisfies the strong ellipticity condition: for all Y € S, (a;,a,) € R*\{(0,0)}, and b € R3\{0},

CPré(yy = e®el.

a,aph - (C“ﬂ‘sy(Y)aéayb) > 0.
If ¢, =0, then U satisfies the weaker Legendre-Hadamard condition: for all Y € S, (a;,a,) € R2\{(0,0)}, and b € R*\{0},

a,apb- (C¥7 a5, (Y)b) 2 0, (3.23)

and the left-hand size of (3.23) is zero precisely when b - n(Y) = 0.

Proof. Via straightforward calculations, we have the relations

OE
pv 1
. §<5gy,v+63’y,ﬁ),
R
a(aanﬂ) 1
S 1 ),
»
(3.24)
YO ) _ 15050 4 s50 L (5050 4 5050
O v+ St 105
oK oK
aff :—J’Va/i"’ af — l( p§a+605p)n’
ay,v ay,pa 2 «h e

where g,; = y .-y 5 are the components of the metric tensor on the convected surface and y" 4 are the Christoffel symbols associated
to the metric g. These relations lead to the identities
02
9Y ap9¥ v
62
9Y 259 4p

(trK)?> =26*5""n @ n,
IK|? = (5976%7 + 5%°6")n @ n,

0? 2 _ 1 05p | sV cpb
— 2 Y (0, trE)? = = (6767 + 5% 51 (8798° + 575y, ®@ y .
Y 4p0¥ 5, z;‘ ¢ 2 T T Ye

and
_2 z |0strE|? = L srpom 4 876"y ® y 4
9 p0¥ yp ¢ 2 ’ '
+% [(87F 57 + 671500)5°0 + (67671 + 67157)6" |y, ® y 4.
For b€ R3, letb, = b-y . Then the previous imply that for all (a;,a,) € R?\{(0,0)}, and b € R*\{0},
2
a,a5b - (caﬁﬁVaéayb) =22 [(1 —vlal? Y67 + (1 + v)|a|2(2 aaba> ]
a a

+blal*(b - n)>. (3.25)

The conclusions of the proposition then follow immediately from (3.25) and the facts that a,b> 0, v € (0,1/2). [
4. Surface dynamics associated to the energies U and K

In this section we study the dynamics of an elastic material planar surface with stored surface energy density U and kinetic
energy density K, defined in (3.20) and (3.21) respectively.

11
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4.1. Field equations

The field equations governing the motion of a material planar surface S C R? with surface energy density U and kinetic energy
density K are derived via Hamilton’s variational principle, summarized as follows (see also Hilgers, 1997). Suppose that P C S is
the closure of a domain with C = 9P given by a smooth closed curve parameterized by arclength .S, with unit tangent ¢, and with
outward normal 7. For [ty,#,] C [0, ) and a motion y(-,?), the kinetic energy of the part P is T(P;1) = [7, K d A where K is given by
(3.21) stored energy of the part P is V(P;t) = fp U d A where U is given by (3.20). In what follows, we denote

To= Wi Meb= Y
Yy Y up

=T f4 9 e
Pe=T¢ - 9;M% + 2 1%,

. oK
el’ o = = el’
0V

Throughout the remainder of this work, we denote
of = 5P,
Using the relations (3.24) and [0,n|> = (g71)?"(n - 9,y y)(n - 9,y ,), we obtain
T = a( VBN + (1 = E? )y s + a2 (v(tr BN + (1 = OE? )y,
=b (v K7y 5, + (1= KPPy, Y,
M = £02[v((r 0 B + (tr0"E)6" ) + (1 = v)(°E + 'E )|y,

+b( Vtr K)o 4 (1 — v)KaP )n,

V2

e = ps[ et )6y 5+ c(g” ) (n - 0,y ﬂ)n]

1-
+psfk5” 0,y -

The action of the motion in P x [ty, ;] is AP X [ty 1;1; x) = fté‘ [T(P;t) — V(P;n)]dt. Let y. be a smooth one parameter family of
deformations of S such that yy =y and y := %YA eco S X[tg,1;] = R3 is a smooth variation. The field equations governing the
motion of S are the Euler-Lagrange equations associated to the variational equation: for all y,

3
+/ /f~q/dAdt
e=0 tg JP
1 t
+/ /(r~w+u-(n”w.ﬂ>)d5dt—/(psa,y~w+H“~w,a)dA|,; =0, 4.1
1y C P

where f is a prescribed external body force on S, and 7 and u are generalized tractions. We refer the reader to (4.4) and (4.5) and
their follow-up comments below for the interpretation of r and u in terms of resultant contact forces and couples, respectively.
Using the chain rule we compute

/ / po,y - + -y, )dAdt
—/ '/T"-wﬂ+M"ﬂy1aﬂ)dAdt
1 JP ' '

Via straightforward calculations repeatedly using the divergence theorem, we then conclude that (4.1) is satisfied for all variations
if and only if:

d
E-"‘-(P X [to, 1115 ¥e)

—A(P X [tg, 1115 ¥e)

P02y = 0,P" + f, on P x[ty, 1],
T =Py, — %(M"”ga ) on oP x [1g, 1,1, (4.2)
u=MPyns  on P x[ty,1].

4.2. Balance laws

By choosing the variation to be appropriate infinitesimal generators of spatial translations, spatial rotations, and temporal
translations, we obtain standard balance laws for the part P, expressed in the reference configuration.

Indeed, let a € R and y.(Y,!) = y(Y,) + ea so y = a. Since the action’s Lagrangian is clearly invariant with respect to
superimposed (constant) spatial translations of y, we conclude that < AP Xtg, 111 y0) = 0. Then (4.1) implies that

1 1 t
/ /f-adAdt+/ /1~adet—/psd,y~adA '=o.
v JP 1w Jc P o

Dividing the previous by #; — 1, and taking the limit r; — ¢, yields

jt/pt),y adA = /f adA+/1' ads. (4.3)
C

12



C. Rodriguez International Journal of Engineering Science 197 (2024) 104026
The Eq. (4.3) holding for all a € R? implies the following relation interpreted as the balance of linear momentum for the part P:

4 psa,ydA=/fdA+/rdS. (4.4)
dt Jp P c

From (4.4) we see that the generalized traction = contributes a resultant contact force exerted on P by S\P through the term /. 7 d.S.

Now, let 2 = ax be an arbitrary skew symmetric tensor with axial vector a and let y.(Y,7) = e?y(Y, ). Then y = axy. We note
that the strain tensors E, K and VE are invariant with respect to super-imposed rotations of y, and thus, %A(P X [to, 111 ¥.) = 0.
Then (4.1) and the circularity of the scalar triple product imply that

1 1
/ /(yxf)-adAdt+/ /(yxr+11"yv><;4)~adet
1 JP 1w Je ’

_/ p(yX 0y +y, x IT%) -adA
P

"oo.
fp
As before, the previous implies balance of angular momentum for the part P:

o ps(yxaty+yva><ﬂ")dA
tJjp

:/yxfdA+/(y><r+11"yvV><;4)dS. (4.5)
P c

Referring to (4.5), we can observe that IT* introduces a non-classical component, represented by the integral [,y , x II* d A, into
the angular momentum. Additionally, the generalized traction u contributes a resultant contact couple applied to P by S\P through

the term [, 'y, X udsS.
Finally, choosing y.(Y,f) = y(Y,t + ¢) and arguing similarly as above lead to balance of energy for the part P:

d

E(T(P;t)+V(P;t)):/pf~a,ydA+/c(r~a,y+y~(;1"a,yvv))dS.

4.3. Plane harmonic waves for infinitesimal displacements

Let u(Y,7) = y(Y,t) — Y be the displacement field for the material surface. We write
1
u=u+we;, u=u'e, €= E(aauﬂ + dpuy).
Assuming that |u|, |0,u| + |Vu|, and |Vo,u| + |VVu|, are bounded by § < 1, we have
Eup = €4p + O(8%), Koy = 9,050 + O(67),
To = a(v(tr €)5% + (1 — v)e? )e,, + 0@,
M = 222a[u((trd 15 + (06" ) + (1 = v) 9% + e ) e,

+b(v(dvavw)5"ﬁ +(1=v)o%o’ w>e3 +082),
2
oo ey o @p0,10)es3]

+p, 076 d50,u + O(87).

Ha:px[

The equations governing infinitesimal displacements correspond to the linearization of (4.2), i.e., we drop all terms that are 0(62),
leading to:

py0u=(1—- ffa,,aﬂ)a(vaﬂtre +(1- v)dae“ﬂ)eﬁ — b(0,0%) we,
(4.6)

V2
1-v)?

+as( coOr e+ 20,0702 ey + py(c + £1)0,0°0wes + f.

In terms of u, w, and standard notation wherein differential operators are with respect to the variables x = (x!,x?) = (Y!,Y?), we
may express (4.6) as

V2

ps((l — 2 0)9Pu - v afu> = diva(l — 2 A)(W(tr )P + (1 — v)e)
+f, 4.7)
pe(0Pw = (e + £Da02w) = ~baw+ 1,

where we have written f =f +/e;, f = f%¢,, and P =e, @ e; + e, @ e,. Now viewing S as the midsurface of a gradient elastic plate
with Young’s modulus E, Poisson’s ratio v, thickness 4, and inter-particle spacing d, we have the identifications

2 2
4 hE hE (h 2>’ c h

= E e L =L
1—v2 1—v2\24 % k

13
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We now consider a plane harmonic wave
u = Aexplitk - x — wt)]d, (4.8)

where x = x¥e,,, k = k¥e, # 0 is the wave vector, d = d’e; is the unit length direction of motion, w is the angular frequency, and
¢, = w/|k| is the phase velocity. We denote

k= % ki = —k2e1 + klez, d=d%,.
By inserting (4.8) into (4.7) we conclude that
2
2 21112 v
@, |[(1+ 2 KDd + ¢ k-dk]
puf+ kD e s )

1+v 1-v
= a(l 2k2[—k- K —k2]
a(l + 31| =Gk d)k + ——=[kI*d.
@ py(L+ (c + D)IkIP)(d - e3) = blk|*(d - e3).

The previous are equivalent to

A(d = c’d, 4.9)
where A(k) is the acoustical tensor defined by
A 1+221k? L a(l-v) 1+f§|k|2Izl ‘L
s 1+ (@21 = )2+ £2)|k|?2 205 1423k (4.10)
b IKP '
+ B e;Q e;.

P 1+ (c+ D)k
From (4.9) and (4.10) we conclude that for a given nonzero wave vector k, there are three types of plane harmonic waves
corresponding to the three linearly independent directions of motion:
« There is one longitudinal wave with direction of motion d = k and phase velocity satisfying
a 1+ £2|k|?
Py 1+ (@2(1 = )2+ £2)|k|2

(kD)=

» There is one tangentially transverse wave with direction of motion d = k" and phase velocity satisfying
a(v—1) 1+ 2|k?

2
e (kD = —_—
T 205 1+2k[2

+ There is one normally transverse wave with direction of motion d = e; and phase velocity satisfying

b k|2
CSZN(“(D: _#2_
’ Ps 1+ (c+ £ k|2

In our remaining discussion of the effects that the length parameters have on plane harmonic waves, we adopt the identifications
from (2.6), i.e.,
d? d?
2=, =
so127 ke
We denote the classical phase velocities where £ = ¢, =0 by
a 1

Ps 14 12021 — vy 2 k2

el a(kh =

h 02

a(v—1) 5 a ﬂ“‘l
2 ’ Cs,N,cl(lkl) = _T
Ps Ps 1+ E|k|2

C?,T,cl(lkl) =
and we point out the degenerate property of classical longitudinal waves that the phase velocity vanishes in the short wavelength
limit,

. 2 _
klggo CS,L,cl(k) =0.

Now, when it comes to tangentially transverse waves, things change from the classical setting. The phase velocities of these
waves show dispersion and are consistently slower than their classical counterparts: for all |k| # 0,

el r (kD) < el (KD

However, normally transverse waves behave differently. When |k|*> < %, their phase velocities are faster than the classical ones,
ci ~ kD > ci N,d(lkl), and when |k|? < :l—g their phase velocities are slower than the classical ones, ci Nk < cf‘N,d(lkl).

14
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Longitudinal waves also display a form of threshold behavior. When the wave number magnitude satisfies |k|? < ;—2(2+ (% —-1)?),
then the phase velocity is slower than the classical ones, cf Nk < cSZNC,(lkl). When the wave number magnitude is above this
threshold, |k|? > %(2 + (é — 1)), then the phase velocity is faster than the classical ones, ¢?  (Ik|) > ¢ (|k|). Moreover, in stark

s,N,cl
contrast to the classical setting, the phase velocity is positive in the short wavelength limit:
fZ
lim ¢, (k)=+——2 >0
koo s ev2(1 = )2 + ¢}
5. Using the stored surface energy to model crack fronts

In this final section, we briefly demonstrate how utilizing the stored energy density U in the framework proposed by the author
in Rodriguez (2023) eliminates the singularities in stresses and strains observed in linear elastic fracture mechanics, particularly
in the context of mode-III fracture. The overall model can be physically understood as representing a body primarily made of a
Green elastic material with an additional thin, gradient elastic region of thickness 4, extending from a section of its boundary. More
precisely, we model such a body by a Green elastic solid B possessing a gradient elastic boundary surface, S, with stored surface
energy density U; see Fig. 1 from Section 1 for a schematic. The fracture model is parameterized by the three-dimensional solid’s
Young’s modulus, Poisson’s ratio, and natural inter-particle spacing. The only remaining factor to determine is the width of the
region near the crack front where small-scale gradient elastic effects become significant.

5.1. Linearized equations for infinitesimal displacements

We recall from Rodriguez (2023) the following set-up. Consider a Green elastic body B c [E3, possessing a stored energy density
W. This body also contains a gradient elastic boundary surface S C dB. For our purposes we will also assume that § C R?. The
surface S has an associated stored surface energy density, denoted as U. Let f be an external body force, t a prescribed traction on
S, and y, a prescribed placement of 0/3\S. The field equations governing equilibrium configurations y : B — E? are given by

DivP+ f=0, on B,
PN =09,P*+t, onS, (5.1)
X =xo onodB\S,
where N is the outward-pointing normal vector field on S, P = P,%’ ® e, is the Piola stress with P,* = %, Div P = (0y.P;%)e,
and ‘

- a@l]] oM = 0? ¢, ﬁa:-'l'—a_aﬂMaﬁ.
Vi Oyyaﬁ

See Section 2 of Rodriguez (2023).

Now we assume that /3 is both homogeneous and isotropic, characterized by a Young’s modulus £ and Poisson’s ratio v.
Additionally, we make the assumption that U = U, where U is defined in Eq. (3.20). The equilibrium equations for infinitesimal
displacements u : B — R3 correspond to the linearization of (5.1). By results of Sections 4.1 and 4.3, these equations are given by

Dive+ f =0, on B,
N = (1= £20,0a(voPtre + (1= v)0,e™ )e
5P ) a B (5'2)
— b(3,0%we; +t, on S,
u=0, ondB\S

where 6 = 7= (5= (tre)] +¢) and ¢, = 3(u; + 0;u;).

Based on Theorem 3.1, the theory outlined can be physically interpreted as modeling a body primarily made of a Green elastic
material with an additional thin, gradient elastic region of thickness 4, extending from a section of its boundary. More precisely,
such a body is modeled by a Green elastic solid /3 possessing a gradient elastic boundary surface, $, with stored surface energy
density U. The complex interactions of the two distinct three-dimensional regions of the body are encapsulated by the boundary

conditions on S appearing in (5.2).
5.2. Modeling crack fronts under anti-plane shear

Consider a brittle, infinite plate B under anti-plane shear loading, lim,s_, ., o, = 0 and lims_
C={(x",x%,0) | x! € [-7,¢]} of length 27, illustrated by Fig. 2. For anti-plane shear of the form

0,3 = o, with a straight crack

1.2 .3 1.3
u(x',x°,x°) = u(x',x’)e,,
the only nonzero components of the stress are

e —E L e _E |
2720+n " BT 21+ B
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Fig. 2. The set-up for the mode-III problem with the crack C appearing in blue.

By the symmetry of the problem, u can be taken to be even in x! and odd in x3, so we will focus only on the strain and stress fields
for x3 > 0.

The equations determining the displacement are posited to be (5.2) on B = {(x',x%,x%) | x* >0} with S =C,t=0,and f =0. It
is physically reasonable to assume that £ = E and ¥ = v, where E and v are used in defining (3.20) through (3.22). This assumption
is rooted in the fact that any region near the crack front, S, is made of the same material as the bulk solid, unlike a coating of a
different material. If we identify ff = d?/12, with d representing the material’s natural inter-particle spacing, the only unspecified
parameter is h: the thickness of the region near § where small-scale gradient elastic effects become significant.

We define dimensionless variables

x! x2 x3

x _ X _x _ 1 1.3
7 Y= 2= V(x,Z)—f(U(x,x)

Then the field equations take the dimensionless form

x= 2w gy

E

0*v(x,2) + 02v(x,2) =0, z>0,

= v,(x,0) = av, (x,0) = BV, (X, 0) + 7, x€E(=1,1),

5.3
v(x,00=0, |x|>1, (5.3)
v (1,00 =0, lim[|o,v(x, 2)| + |0,v(x,2)|] = 0.
Z—00
The dimensionless parameters a, f and y are given by
2
h 4 o
=-=>0, =—>0, ==,
*=7z P=2 =
with g = % if we adopt (2.6). As discussed in Kim, Ru, and Schiavone (2013) and Walton (2012), the case #,; = 0 does not lead

to a model producing bounded stresses and strains up to the crack tips x = +1, i.e., we have
sup |V, v(z1,2)| = co.
z>0
By using the Hilbert transform (see Section 4 of Rodriguez, 2023), the problem (5.3) can be completely reduced to an
integro-differential equation on the boundary for f :=v|,_,
B —af" )+ Hf () =y, xe(=11),
f&E) = f'(x1)=0.

Since # > 0, the main result of Section 4 in Rodriguez (2023) directly applies to (5.4), showing that our model for fracture rooted
in Rodriguez (2023) and utilizing U from this work generates stresses and strains that remain bounded up to the crack tips.

5.4

Theorem 5.1 (Theorem 4.4, Rodriguez (2023)). There exists C > 0 depending on a and p such that the following hold. There exists a
unique classical solution f € C*([—1,1]) to (5.4), and f satisfies

||f||c4([_1,1]) <Clyl.

Moreover, the dimensionless displacement field v(x,z) = f_°:o P,(x — 5)f(s)ds, where P,(-) is the Poisson kernel for the upper half plane,
produces bounded stresses and strains up to the crack tips:

||V||c1((zzo)) <Clyl.
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