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A B S T R A C T

In this paper, we derive a dynamic surface elasticity model for the two-dimensional midsur-
face of a thin, three-dimensional, homogeneous, isotropic, nonlinear gradient elastic plate of
thickness ℎ. The resulting model is parameterized by five, conceivably measurable, physical
properties of the plate, and the stored surface energy reduces to Koiter’s plate energy in a
singular limiting case. The model corrects a theoretical issue found in wave propagation in
thin sheets and, when combined with the author’s theory of Green elastic bodies possessing
gradient elastic material boundary surfaces, removes the singularities present in fracture within
traditional/classical models. Our approach diverges from previous research on thin shells and
plates, which primarily concentrated on deriving elasticity theories for material surfaces from
classical three-dimensional Green elasticity. This work is the first in rigorously developing a
surface elasticity model based on a parent nonlinear gradient elasticity theory.

1. Introduction

1.1. Classical thin plates and shells

Much of modern theoretical research into thin plates and shells has focused on either rigorously deriving surface elasticity theories
from, or linking them to, classical three-dimensional Green elasticity. The idea (or expectation) is that passing to a two-dimensional
surface model significantly decreases the complexity needed to solve problems for the three-dimensional body, while only slightly
sacrificing accuracy. The mathematical methods involved include:

• using gamma convergence to obtain limiting variational problems (Friesecke, James, & Müller, 2002, 2006; Le Dret & Raoult,
1995, 1996),

• performing asymptotic expansions of the weak and strong forms of the equilibrium equations (Ciarlet, 2000; Fox, Raoult, &
Simo, 1993; Song & Dai, 2016; Song, Wang, & Dai, 2019),

• obtaining leading order-in-thickness expressions for the kinetic and stored energy of a surface contained in the body from
classical three-dimensional stored and kinetic energies (Hilgers & Pipkin, 1992a, 1996, 1997; Shirani & Steigmann, 2019;
Steigmann, 2013).

One attractive aspect of the third approach, adopted in this paper, is its simplicity in incorporating both bending and stretching
effects for the surface model. The equations governing the motion of the surface are subsequently derived by applying Hamilton’s
variational principle (see, e.g., Hilgers, 1997; Hilgers & Pipkin, 1992b).
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An especially important example of a stored surface energy is Koiter’s plate energy. Consider a homogeneous, isotropic, nonlinearly
elastic plate  = ×[−ℎ∕2, ℎ∕2] ⊂ E

3 with middle surface (midsurface) , thickness ℎ, and stored energy per unit reference area𝑊 .1

Here,  is a domain in the two-dimensional Euclidean plane. In what follows, Greek indices range in {1, 2}. For a smooth motion of
the midsurface, 𝒚 ∶  × [𝑡0, 𝑡1] → E

3, two key tensors on  are used to express Koiter’s plate energy: the surface Green-Saint-Venant
tensor 𝗘 and the relative curvature tensor 𝗞 defined via

𝗘 = 𝖤𝛼𝛽𝒆
𝛼 ⊗ 𝒆𝛽 , 𝖤𝛼𝛽 =

1

2
(𝜕𝛼𝒚 ⋅ 𝜕𝛽𝒚 − 𝛿𝛼𝛽 ),

𝗞 = 𝖪𝛼𝛽𝒆
𝛼 ⊗ 𝒆𝛽 , 𝖪𝛼𝛽 = 𝒏 ⋅ 𝜕2

𝛼𝛽
𝒚, 𝒏 =

𝜕1𝒚×𝜕2𝒚

|𝜕1𝒚×𝜕2𝒚|
.

Koiter’s plate energy 𝑈𝐾𝑜𝑖𝑡𝑒𝑟 (Koiter, 1966) is then given by

𝑈𝐾𝑜𝑖𝑡𝑒𝑟 = ℎ

(
𝜆𝜇

𝜆 + 2𝜇
(tr𝗘)2 + 𝜇|𝗘|2

)
+

ℎ3

24

(
𝜆𝜇

𝜆 + 2𝜇
(tr𝗞)2 + 𝜇|𝗞|2

)
. (1.1)

In the above expression, 𝜆 and 𝜇 represent the usual Lamé parameters of the material, tr𝗘 = 𝖤𝛼
𝛼
, and |𝗘|2 = 𝖤𝛼𝛽𝖤

𝛼𝛽 . One has a
generalization of (1.1) for thin shells with curved midsurfaces, but for simplicity, we will restrict our discussion to plates. Steigmann
(2013) elegantly derived Koiter’s plate (and shell) energy by expanding and integrating-in-thickness the three-dimensional stored
energy under the assumption of small midplane strains. In particular, he showed that

∫
ℎ∕2

−ℎ∕2

𝑊 𝑑𝑍 = 𝑈𝐾𝑜𝑖𝑡𝑒𝑟 + 𝑜(ℎ3), (1.2)

where 𝒚 = 𝝌|𝑍=0 is a motion of the midsurface induced by a motion of the three-dimensional plate 𝝌 ∶  × [𝑡0, 𝑡1] → E
3. An earlier

proof of (1.2) was obtained by Hilgers and Pipkin in Hilgers and Pipkin (1996), but there, the nature of the surface in  that is
evolving according to 𝒚 is unclear.2 In Chapter 4 of Ciarlet (2005), Ciarlet presents a compelling body of evidence supporting the
claim that (1.1) represents the ‘‘best’’ stored surface energy for thin plates (and shells). His key argument is the fact that solutions
to the linearized equilibrium equations3 arising from (1.1) exhibit the same asymptotic behavior as ℎ → 0, in the same function
spaces, as displacements, averaged across thickness, that solve the full three-dimensional linearized elasticity problem. To the best
of our knowledge, the only derivation of an analogous cubic-order-in-thickness kinetic energy for a plate is due to Hilgers and Pipkin
(1997). They obtained the following expression,

𝐾𝐻𝑃 =
1

2
ℎ𝜌𝑅

(
|𝜕𝑡𝒚|2 +

ℎ2

12

𝜆2

(𝜆 + 2𝜇)2
|tr 𝜕𝑡𝗘|2 +

ℎ2

12
|𝜕𝑡𝒏|2

)
, (1.3)

where 𝜌𝑅 is the plate’s reference density. Again, the nature of the surface evolving by 𝒚 is still ambiguous. Moreover, when combined
with (1.1) to obtain a dynamic theory, the phase velocities for longitudinal infinitesimal harmonic plane waves have the degenerate
property of vanishing in the short wavelength limit (see Section 4.3).

As far as the author is aware, no previous effort has been made, using any method, to rigorously derive surface elasticity theories
for thin plates or shells from three-dimensional, nonlinear, non-classical gradient elasticity. This work represents the first in this new
direction.

1.2. Gradient elasticity

We now give a brief overview of (second-) gradient elasticity and our motivation for this work. In what follows, 𝒙 = 𝝌 ∶

 × [𝑡0, 𝑡1] → E
3 is a smooth motion of a body with reference configuration  ⊆ E

3, reference density 𝜌𝑅 ∶  → (0,∞), and Eulerian
velocity field 𝒗(𝒙, 𝑡). We recall that classical Green elasticity posits that the stored energy 𝑉 and kinetic energy 𝑇 of a part  ⊆ 
at time 𝑡 are of the form,

𝑉 () = ∫ 𝑊 (𝑭 )𝑑𝑉 , 𝑇 () = ∫
1

2
𝜌𝑅|𝜕𝑡𝝌|2𝑑𝑉 ,

where 𝑭 = 𝜕𝑋𝑎𝜒 𝑖𝒆𝑖⊗𝒆
𝑎 is the deformation gradient. The equations of motion neglecting external body forces and boundary tractions

can then be obtained via applying Hamilton’s variational principle to the action functional with Lagrangian density 𝐿 = 𝑇 − 𝑉 .
Gradient elasticity is a subtheory of gradient continuum mechanics in which the kinetic energy and stored energy densities can

also depend on the spatial derivatives of 𝜕𝑡𝝌 and 𝑭 respectively (Maugin, 2017). As before, the equations of motion are then obtained
via Hamilton’s variational principle. Piola was the first to conceive of continua where the body’s internal work expenditures depend
on spatial derivatives of higher order than classical Cauchy continua, dating back to 1846 (Dell’Isola, Andreaus, & Placidi, 2015;

1 In this work, we denote three-dimensional Euclidean space by E
3 and identify its translation space with R

3 via a fixed orthonormal basis {𝒆𝑖}
3
𝑖=1
. Upon

choosing an origin 𝒐 ∈ E
3, we identify subsets of E3 with subsets of R3 via their position vectors: E3 ∋ 𝒑 ↦ 𝒑 − 𝒐 ∈ R

3. Throughout this work, we use standard
vector and tensor operations in R

3. We also raise and lower indices using the flat metric on R
3, and we use the Einstein summation convention that repeated

indices in upper and lower positions imply summation.
Finally, we use standard big-oh and little-oh notation, e.g., 𝐴 = 𝑂(𝐵) means that there exists 𝐶 ≥ 0 such that |𝐴| ≤ 𝐶𝐵. We say that a big-oh term depends

on 𝐷 if 𝐶 depends on 𝐷, 𝐶 = 𝐶̂(𝐷).
2 This is due to the fact that 𝒚 ∶= ℎ−1 ∫ ℎ∕2

−ℎ∕2
𝝌 𝑑𝑍 in their work.

3 The equilibrium equations with prescribed tractions 𝒕 applied on 𝜕 correspond to the Euler–Lagrange equations for 𝑉 = ∫ 𝑈𝐾𝑜𝑖𝑡𝑒𝑟 − ∫
𝜕 𝒕 ⋅ 𝒖 𝑑𝐴 where 𝗘

and 𝗞 are replaced by their linearizations in the displacement field 𝒖.
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Piola, 1846). However, significant progress in this area did not emerge until the latter half of the 20th century. During this period, a
surge of activity by prominent figures including Germain (1973a, 1973b), Green and Rivlin (1964a, 1964b), Mindlin (1964, 1965),
Mindlin and Eshel (1968) and Toupin (1962, 1964) resulted in the development of comprehensive theories of gradient continua,
including gradient elasticity. A detailed review of the extensive work and applications of gradient continuum models since then
is beyond the scope of this work. For further insights, we refer to the reviews (Askes & Aifantis, 2011; Dell’Isola, Della Corte, &
Giorgio, 2017; Dell’Isola, Seppecher, & Della Corte, 2020; Maugin, 2017) and the references cited therein.

In theories of gradient continua, an added layer of complexity emerges since it becomes necessary to prescribe additional
boundary conditions. In particular, for the equilibrium theory derived from a stored energy density that depends on the spatial
gradient of 𝑭 and satisfies strong ellipticity, the resulting equilibrium equations form an elliptic system of partial differential
equations that include the fourth-order spatial derivatives of the configuration 𝝌 . It is then necessary to specify a boundary condition
in addition to the traditional prescription of either boundary placement, 𝝌|𝜕, or boundary surface tractions, 𝑷𝑵|𝜕, to ensure a
well-posed boundary value problem in general.4 For the case of placement, it is mathematically natural (but perhaps unclear from
a physical standpoint) to additionally specify the normal derivative of the configuration 𝜕𝑁𝝌|𝜕. For the case of boundary surface
tractions, it is physically natural (but perhaps mathematically cumbersome) to also specify the distribution of boundary surface
couples since these arise (in addition to boundary surface tractions) as natural boundary conditions from a variational point of view
(see, e.g., Sections 3–4 in Mindlin, 1964, Sections 5–6 of Toupin, 1964, Section 5 of Germain, 1973a). The analogous problem of
determining boundary conditions for Rivlin–Ericksen fluids is briefly discussed in Section 6.2 of Truesdell and Rajagopal (2000) and
thoroughly discussed in Section 2.5 of Cioranescu, Girault, and Rajagopal (2016). We emphasize that their overarching philosophy
applies equally well in the case of solids. In particular, when prescribing boundary conditions for a specific problem, convenience
should not be the criterion. Instead, these conditions ‘‘should reflect some physical idea’’ (Truesdell & Rajagopal, 2000) related to
the situation at hand and involve considering both ‘‘the structure of the material that is being enveloped by the boundary as well
as the structure of the environment’’ (Cioranescu et al., 2016).

In this work, we consider especially simple energies for a homogeneous, isotropic, gradient elastic body that introduce the
smallest number of additional constants: the frame-indifferent stored energy is

𝑉 () = ∫
[
𝜆

2
(tr𝑬)2 + 𝜇|𝑬|2 + 𝓁2

𝑠

3∑

𝑐=1

(
𝜆

2
(𝜕𝑋𝑐 tr𝑬)2 + 𝜇|𝜕𝑋𝑐𝑬|2

)]
𝑑𝑉 , (1.4)

and the kinetic energy is

𝑇 () = ∫
1

2
𝜌𝑅

(
|𝜕𝑡𝝌|2 + 𝓁2

𝑘
|𝜕𝑡𝑭 (𝑭 )−1|2

)
𝑑𝑉 (1.5)

= ∫𝝌()

1

2
𝜌

(
|𝒗|2 + 𝓁2

𝑘
|grad 𝒗|2

)
𝑑𝑣,

where grad 𝒗 = 𝜕𝑥𝑗 𝑣
𝑖𝒆𝑖 ⊗ 𝒆

𝑗 is the velocity gradient, 𝜌 = 𝜌𝑅(det 𝑭 )
−1 is the current density, and 𝓁𝑠 and 𝓁𝑘 are two additional positive

length parameters. For the case of infinitesimal motions, the kinetic energy (1.5) was first suggested by Mindlin (1964), and the
stored energy (1.4) appeared first in Aifantis and Altan’s work (Aifantis & Altan, 1992), inspired by earlier work of Aifantis (1984,
1987) and Aifantis and Triantafyllidis (1986) on gradient continua. The values of the length parameters 𝓁𝑠 and 𝓁𝑘 in terms of
conceivably measurable physical properties has been a source of debate for some years with most values given in terms of the
body’s natural inter-particle spacing 𝑑 (see, e.g., Section 4 of Askes & Aifantis, 2011).

In a recent work by the author (Rodriguez, 2023), an equilibrium theory was developed for a classical three-dimensional Green
elastic bulk solid with a gradient elastic boundary surface. This theory was applied to a mode-III fracture problem, effectively
eliminating the problematic singularities present in both stresses and strains that arise from classical linear elastic fracture mechanics.
The model’s stored surface energy

𝑈𝐻𝑃 = ℎ

(
𝜆𝜇

𝜆 + 2𝜇
(tr𝗘)2 + 𝜇|𝗘|2

)
+

ℎ3

24

(
𝜆𝜇

𝜆 + 2𝜇

|||𝜕𝛼𝜕
𝛼𝒚

|||
2
+ 𝜇

∑

𝛼,𝛽

|𝜕𝛼𝜕𝛽𝒚|2
)

was suggested in Hilgers and Pipkin’s research (Hilgers & Pipkin, 1992b, 1996) as an ad hoc modification of 𝑈𝐾𝑜𝑖𝑡𝑒𝑟 that satisfies
the strong ellipticity condition. The fulfillment of the strong ellipticity condition by 𝑈𝐻𝑃 played a crucial role in demonstrating that
the ensuing fracture model generated bounded stresses and strains up to the crack tips. However, the connection of 𝑈𝐻𝑃 to a parent
three-dimensional theory, in the spirit of work discussed in the previous section, is unclear. The primary motivation and outcome
of this work involve the introduction of an attractive alternative quadratic stored surface energy, denoted as 𝑈 , such that:

• 𝑈 satisfies the strong ellipticity condition and can be used in conjunction with Rodriguez (2023) to eliminate the singularities
present in linear elastic fracture mechanics.

• 𝑈 is also expressed in terms of (conceivably measurable) physical properties of the plate.
• 𝑈 is derived from a parent three-dimensional theory, in the spirit of (1.2).

4 Here, 𝑵 is the outward-pointing normal vector field on 𝜕 and 𝑷 is the Piola–Kirchhoff tensor, which, in the classical setting is given by 𝑷 =
𝜕𝑊

𝜕𝐹 𝑖
𝑎

𝒆𝑖 ⊗ 𝒆𝑎.

For strain energy densities depending also on the spatial gradient of 𝑭 , the form of 𝑷 is different (see (2.4)).
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Fig. 1. A body primarily made of a Green elastic material with an additional thin, gradient elastic region of thickness ℎ extending from a section of its boundary
and our modeling scheme.

1.3. Main results and outline

For simplicity, in this work we will only consider the case of plates  =  × [−ℎ∕2, ℎ∕2], but we expect our results can be
generalized to shells with curved midsurfaces by using more differential geometric machinery (see, e.g., Ciarlet, 2005; Steigmann,
2013). In Section 2, we first discuss the necessary kinematics and set-up for our study. We then formally argue via averaging
linearized lattice dynamics that for a plate with kinetic and stored energies (1.5) and (1.4), reasonable identifications of the length
scales are 𝓁2

𝑠
= 𝑑2∕12 and 𝓁2

𝑘
= 𝑑2∕6, where 𝑑 is the inter-particle spacing of the physical plate in its natural configuration.

In Section 3, we perform an asymptotic expansion-in-thickness to obtain cubic order expressions for the stored surface energy
and kinetic energy of the plate’s midsurface in the spirit of (1.2). Based on the identifications indicated in Section 2, we assume
that 𝓁2

𝑠
+ 𝓁2

𝑘
≤ 𝐶0ℎ

2 where 𝐶0 is a fixed constant. This mathematical restriction reflects the reasonable physical assumption that the
plate’s thickness is not drastically smaller than the inter-particle spacing. For a motion 𝝌 with small midsurface velocity and strain
(relative to fixed length and time scales), we prove that the associated stored surface energy per unit reference area, ∫ ℎ∕2

−ℎ∕2
𝑊 𝑑𝑍,

and midsurface kinetic energy per unit reference area, ∫ ℎ∕2

−ℎ∕2
𝜅𝑅 𝑑𝑍, where 𝑊 is the integrand appearing in (1.4) and 𝜅𝑅 is the

integrand appearing in (1.5), satisfy

∫
ℎ∕2

−ℎ∕2

𝑊 𝑑𝑍 = ℎ

[
𝜆𝜇

𝜆 + 2𝜇
(tr𝗘)2 + 𝜇|𝗘|2 + 𝓁2

𝑠

2∑

𝛾=1

(
𝜆𝜇

𝜆 + 2𝜇
(tr 𝜕𝛾𝗘)

2 + 𝜇|𝜕𝛾𝗘|2
)]

+
(
ℎ3

24
+ ℎ𝓁2

𝑠

)(
𝜆𝜇

𝜆 + 2𝜇
(tr𝗞)2 + 𝜇|𝗞|2

)
+ 𝑂(ℎ4), (1.6)

and

∫
ℎ∕2

−ℎ∕2

𝜅𝑅 𝑑𝑍 =
1

2
ℎ𝜌𝑅

(
|𝜕𝑡𝒚|2 +

ℎ2 + 12𝓁2
𝑘

12

𝜆2

(𝜆 + 2𝜇)2
|tr 𝜕𝑡𝗘|2 +

ℎ2 + 12𝓁2
𝑘

12
|𝜕𝑡𝒏|2

+ 𝓁2
𝑘
|∇𝜕𝑡𝒚|2

)
+𝑂(ℎ7∕2). (1.7)

Here, 𝒚 = 𝝌|𝑍=0 and the gradient operator is with respect to the midsurface variables: see Theorem 3.1 for the precise statement.
We denote by 𝑈 and 𝐾 the leading order expressions appearing in (1.6) and (1.7) respectively, and we observe that they are
characterized by five physical properties of the plate by using our identifications for the length scales: its reference density 𝜌𝑅,
Young’s modulus 𝐸 =

𝜇(2𝜇+3𝜆)

𝜇+𝜆
, Poisson’s ratio 𝜈 =

𝜆

2(𝜇+𝜆)
, thickness ℎ, and natural configuration’s inter-particle spacing 𝑑 (see

(3.20) and (3.21)). In the singular limiting case 𝓁𝑠 = 0, we recover Koiter’s classical shell energy (1.1), and in the case 𝓁𝑘 = 0 we
recover Hilgers and Pipkin’s kinetic energy (1.3). We conclude Section 3 by showing that 𝑈 satisfies the strong ellipticity condition
(rather than the weaker Legendre-Hadamard condition) precisely when 𝓁𝑠 > 0 (see Proposition 3.2). In Section 4, we adopt 𝑈
and 𝐾 as the stored surface energy and kinetic energy densities of an elastic material surface, respectively. By applying Hamilton’s
variational principle, we establish the field equations governing the motion of the surface. Our analysis then focuses on infinitesimal
harmonic plane waves, providing a detailed comparison between the setting when 𝓁𝑠 and 𝓁𝑘 are non-zero versus the case where
𝓁𝑠 = 𝓁𝑘 = 0. Specifically, waves moving in all directions (longitudinal, tangentially transverse, and normally transverse) exhibit
dispersion. Unlike the scenario with 𝓁𝑠 = 𝓁𝑘 = 0, the phase velocity of longitudinal waves is now consistently bounded below by a
fixed positive constant for all large wave numbers.

In the final section, we show how utilizing the stored energy density 𝑈 in the framework proposed by the author in Rodriguez
(2023) eliminates the singularities in stresses and strains observed in linear elastic fracture mechanics, particularly in the context of
mode-III fracture. The overall model can be physically understood as representing a body primarily made of a Green elastic material
with an additional thin, gradient elastic region of thickness ℎ, extending from a section of its boundary. More precisely, we model
such a body by a Green elastic solid ̃ possessing a gradient elastic boundary surface, ̃, with stored surface energy density 𝑈 ; see
Fig. 1 for a schematic. In particular, the fracture model is parameterized by the three-dimensional solid’s Young’s modulus, Poisson’s
ratio, and natural inter-particle spacing, and the sole parameter left undetermined is the thickness of the region emanating from the
crack front where gradient elastic, small-scale processes become significant.



International Journal of Engineering Science 197 (2024) 104026

5

C. Rodriguez

2. Preliminaries

2.1. Kinematics

Let  =  × [−ℎ∕2, ℎ∕2] ⊆ E
3 where  is a smooth domain in R

2. The domain  is the reference configuration of a three-
dimensional plate, and  is its two-dimensional midsurface. For a reference element with position vector 𝑿 = 𝑋𝑎𝒆𝑎 ∈ , we write
𝑿 = 𝒀 +𝑍𝒆3 = 𝑌 𝛼𝒆𝛼 +𝑍𝒆3 where Greek indices range over {1, 2}.

For a smooth motion 𝒙 = 𝝌̂ = 𝜒̂ 𝑖𝒆𝑖 ∶  × [𝑡0, 𝑡1] → E
3, we denote the deformation gradient and second deformation gradient by

𝑭̂ = 𝜕𝑎𝜒̂
𝑖𝒆𝑖 ⊗ 𝒆𝑎, 𝑨̂ = 𝜕2

𝑎𝑏
𝜒̂ 𝑖𝒆𝑖 ⊗ 𝒆𝑎 ⊗ 𝒆𝑏,

where 𝒆𝑎 = 𝒆𝑎 for 𝑎 = 1, 2, and 𝜕𝑎 =
𝜕

𝜕𝑋𝑎 . The velocity field in Eulerian coordinates 𝒙 is denoted by 𝒗̂(𝒙, 𝑡) = 𝜕𝑡𝝌̂(𝝌̂
−1(𝒙), 𝑡). The

Green-Saint-Venant strain tensor is given by 𝑬̂ =
1

2
(𝑭̂

𝑇
𝑭̂ − 𝑰). We denote the normal to the convected midsurface 𝝌̂() by

𝒏 = |𝜕1𝝌̂ × 𝜕2𝝌̂|−1𝜕1𝝌̂ × 𝜕2𝝌̂
|||𝑍=0

,

and the surface Green-Saint-Venant strain tensor 𝗘 and relative curvature tensor 𝗞 for the midsurface are defined by

𝗘 = 𝜕𝛼𝝌̂ ⋅ 𝜕𝛽 𝝌̂
|||𝑍=0

𝒆𝛼 ⊗ 𝒆𝛽 = 𝐸̂𝛼𝛽
|||𝑍=0

𝒆𝛼 ⊗ 𝒆𝛽 ,

𝗞 = 𝒏 ⋅ 𝜕2
𝛼𝛽
𝝌̂
|||𝑍=0

𝒆𝛼 ⊗ 𝒆𝛽 .

In what follows, the absence of a caret indicates that the quantity is evaluated at 𝑍 = 0, e.g., 𝐸𝛼𝛽 = 𝐸̂𝛼𝛽 |𝑍=0, and indices are raised
and lowered using the flat metric on R

3.

2.2. Stored energy and kinetic energy assumptions

We assume that the plate  is homogeneous, isotropic, the reference configuration is its natural configuration, and the stored
energy per unit reference volume is of the simple strain-gradient form,

𝑊 =
𝜆

2
(tr 𝑬̂)2 + 𝜇|𝑬̂|2 + 𝓁2

𝑠

3∑

𝑐=1

(
𝜆

2
(𝜕𝑐tr 𝑬̂)

2 + 𝜇|𝜕𝑐𝑬̂|2
)
, (2.1)

where 𝜆 and 𝜇 are the usual Lamé parameters of the material and 𝓁𝑠 is an internal length parameter. We denote

𝑊𝑠 =
𝜆

2
(tr 𝑬̂)2 + 𝜇|𝑬̂|2, 𝑊𝑠𝑔 =

3∑

𝑐=1

(
𝜆

2
(tr 𝜕𝑐𝑬̂)

2 + 𝜇|𝜕𝑐𝑬̂|2
)
.

We will also assume that the kinetic energy per unit reference volume 𝜅𝑅 of the plate includes a simple velocity gradient contribution,

𝜅𝑅 =
1

2
𝜌𝑅

(
|𝜕𝑡𝝌̂|2 + 𝓁2

𝑘
|𝜕𝑡𝑭̂ (𝑭̂ )−1|2

)
, (2.2)

where 𝜌𝑅 is the constant, reference mass density and 𝓁𝑘 is a second internal length parameter. We note that in terms of the velocity
field 𝒗̂, the kinetic energy per unit current volume, 𝜅, takes a more conventional looking form

𝜅 =
1

2
𝜌

(
|𝒗̂|2 + 𝓁2

𝑘
|grad 𝒗̂|2

)
, (2.3)

𝜌 = 𝜌𝑅(det 𝑭̂ )
−1, grad 𝒗̂ =

𝜕𝑣̂𝑖

𝜕𝑥𝑗
𝒆𝑖 ⊗ 𝒆𝑗 .

As discussed in the introduction, the stored energy (2.1), kinetic energy (2.2) (equivalently (2.3)), and the identification of the
additional length parameters 𝓁𝑠 𝓁𝑘 have been intensely studied for several decades.

We define the following second-order Piola–Kirchhoff tensors 𝑷̂ and 𝑷̂ 𝑠 corresponding to the stored energies 𝑊 and 𝑊𝑠 by

𝑷̂ =
(
𝜕𝑊

𝜕𝐹 𝑖
𝑎

−
𝜕

𝜕𝑋𝑏

𝜕𝑊

𝜕𝐴̂𝑖
𝑎𝑏

+
𝜕

𝜕𝑡

𝜕𝜅𝑅

𝜕
̇̂
𝐹 𝑖
𝑎

)
𝒆𝑖 ⊗ 𝒆𝑎, 𝑷̂ 𝑠 =

𝜕𝑊𝑠

𝜕𝐹 𝑖
𝑎

𝒆𝑖 ⊗ 𝒆𝑎, (2.4)

where ̇̂
𝐹 𝑖
𝑎
= 𝜕𝑡𝐹

𝑖
𝑎
. As is well-known (see e.g., Toupin, 1964; Truesdell & Noll, 1992), for a body with stored energy 𝑊 (or 𝑊𝑠), the

resultant contact force exerted on a subdomain  ⊆  by ∖ is given by 𝑭 () = ∫ 𝑷̂𝑵 𝑑𝐴, where 𝑵 is the unit normal vector
field on 𝜕 pointing into ∖.5 From our expressions for 𝑊 and 𝜅𝑅, we have

𝑷̂ = 𝑷̂ 𝑠 + 𝑂(𝓁2
𝑠
+ 𝓁2

𝑘
), (2.5)

where the big-oh term depends on the size of ‖𝝌̂‖𝐶3(×[𝑡0 ,𝑡1]).

5 The expression for 𝑷̂ 𝑠 is classical while the static expression for 𝑷̂ can be found in Section 10 of Toupin (1964). The dynamic expression for 𝑷̂ can be
deduced via similar integration by parts calculations as in Toupin (1964).
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2.3. Identification of the length parameters via averaging lattice dynamics

We now give a formal argument for averaging lattice dynamics that suggests the identifications

𝓁𝑠 =
1

√
12

𝑑, 𝓁𝑘 =
1
√
6
𝑑, (2.6)

where 𝑑 > 0 is the inter-particle spacing for the plate’s natural, unstressed configuration.
We model the plate of thickness ℎ by a three-dimensional lattice 𝑑 of identical particles with spacing 𝑑 > 0, each with mass

𝑀 , and with reference positions

𝑿𝑑,𝒎 = (𝑚1𝑑, 𝑚2𝑑, 𝑚3𝑑), 𝒎 = (𝑚1, 𝑚2, 𝑚3) ∈ Z
3.

Let 𝒖𝑑,𝒎(𝑡) be the displacement of the particle with reference position 𝑿𝑑,𝒎 at time 𝑡, and we assume that the resultant force 𝑭 𝑑,𝒎

exerted on the particle with reference position 𝑿𝑑,𝒎 is a superposition of forces exerted by its nearest neighbors of linear Hookean
type,

𝑭 𝑑,𝒎 = 𝑘𝑑

3∑

𝑗=1

∑

±

(𝒖𝑑,𝒎±𝑑𝒆𝑗 − 𝒖𝑑,𝒎),

where 𝑘𝑑 > 0. The dynamics of the lattice are then determined by Newton’s laws of motion

𝑀 𝒖̈𝑑,𝒎(𝑡) = 𝑘𝑑

3∑

𝑗=1

∑

±

(𝒖𝑑,𝒎±𝑑𝒆𝑗 (𝑡) − 𝒖𝑑,𝒎(𝑡)), 𝒎 ∈ Z
3. (2.7)

We now assume that there exists a vector field 𝒖(⋅, 𝑡) ∶  → R
3 such that for each time 𝑡, and 𝒎 ∈ Z

3,

𝒖𝑑,𝒎(𝑡) = 𝒖(𝑿𝑑,𝒎, 𝑡) + 𝑜(𝑑4),

We interpret 𝒖(𝑿, 𝑡) as the displacement at time 𝑡 of the particle with reference position 𝑿 in the homogenized plate modeled by
. For 𝑑 > 0, the average displacement of the 𝑑-cell centered at 𝑿 is defined by

𝘂(𝑿, 𝑡; 𝑑) =
1

8𝑑3 ∫
𝑋3+𝑑

𝑋3−𝑑
∫

𝑋2+𝑑

𝑋2−𝑑
∫

𝑋1+𝑑

𝑋1−𝑑

𝒖(𝑿̃, 𝑡) 𝑑𝑣.

For a shearing motion with 𝒖𝑑,𝒎 = 𝑢𝑑,𝑚1
𝒆2 and 𝒖(𝑿, 𝑡) = 𝑢(𝑋1, 𝑡)𝒆2, we have that for all 𝒎 ∈ Z

3,

𝑭 𝑑,𝒎 = 𝑘𝑑 [𝑢(𝑚1𝑑 + 𝑑, 𝑡) + 𝑢(𝑚1𝑑 − 𝑑, 𝑡) − 2𝑢(𝑚1𝑑, 𝑡) + 𝑜(𝑑4)]𝒆2. (2.8)

In what follows, we denote 𝑋1 by 𝑋, 𝑚1 by 𝑚 and 𝑋𝑑,𝑚 = 𝑚𝑑. By Newton’s laws, (2.7), and (2.8), the motion satisfies for all
𝑚 ∈ Z, 𝑡 ∈ R,

𝑀[𝜕2
𝑡
𝑢(𝑋𝑑,𝑚, 𝑡) + 𝑜(𝑑4)]

= 𝑘[𝑢(𝑋𝑑,𝑚+1, 𝑡) + 𝑢(𝑋𝑑,𝑚−1, 𝑡) − 2𝑢(𝑋𝑑,𝑚, 𝑡) + 𝑜(𝑑4)]. (2.9)

The average displacement 𝘂 = 𝗎(𝑋, 𝑡; 𝑑)𝒆2 with 𝗎(𝑋, 𝑡; 𝑑) =
1

2𝑑
∫ 𝑋+𝑑

𝑋−𝑑
𝑢(𝑋̃, 𝑡)𝑑𝑋̃, and by Taylor’s theorem, for all 𝑚 ∈ Z,

𝜕2
𝑡
𝗎(𝑋𝑑,𝑚, 𝑡; 𝑑) = 𝜕2

𝑡
𝑢(𝑋𝑑,𝑚, 𝑡) +

𝑑2

6
𝜕2
𝑡
𝜕2
𝑋
𝑢(𝑋𝑑,𝑚, 𝑡) + 𝑂(𝑑4),

𝜕2
𝑋
𝗎(𝑋𝑑,𝑚, 𝑡; 𝑑) = 𝜕2

𝑋
𝑢(𝑋𝑑,𝑚, 𝑡) +

𝑑2

6
𝜕4
𝑋
𝑢(𝑋𝑑,𝑚, 𝑡) + 𝑂(𝑑4),

𝜕4
𝑋
𝗎(𝑋𝑑,𝑚, 𝑡; 𝑑) = 𝜕4

𝑋
𝑢(𝑋𝑑,𝑚, 𝑡) + 𝑂(𝑑2),

𝑢(𝑋𝑑,𝑚+1, 𝑡) + 𝑢(𝑋𝑑,𝑚−1, 𝑡) − 2𝑢(𝑋𝑑,𝑚, 𝑡) = 𝑑2
(
𝜕2
𝑋
𝑢(𝑋𝑑,𝑚, 𝑡)

+
1

12
𝑑2𝜕4

𝑋
𝑢(𝑋𝑑,𝑚, 𝑡) + 𝑂(𝑑4)

)
.

Thus, by (2.9) and for all 𝑋 ∈ {𝑚𝑑 ∣ 𝑚 ∈ Z},

𝜌𝑑

(
𝜕2
𝑡
𝗎(𝑋, 𝑡; 𝑑) −

𝑑2

6
𝜕2
𝑋
𝜕2
𝑡
𝗎(𝑋, 𝑡; 𝑑) + 𝑜(𝑑2)

)

= 𝐺𝑑

(
𝜕2
𝑋
𝗎(𝑋, 𝑡; 𝑑) −

𝑑2

12
𝜕4
𝑋
𝗎(𝑋, 𝑡; 𝑑) + 𝑜(𝑑2)

)
. (2.10)

where 𝜌𝑑 = 𝑀∕𝑑ℎ2 is the mass density per unit reference volume and 𝐺𝑑 = 𝑘𝑑𝑑∕ℎ
2 is the shear modulus.

We now assume that the plate modeled via  has stored energy and kinetic energy densities 𝑊 and 𝜅𝑅. The nonlinear field
equations governing motion of the body are then derived via Hamilton’s variational principle applied to the action ([𝑡0, 𝑡1]) =

∫ 𝑡1
𝑡0

∫[𝜅𝑅 −𝑊 ]𝑑𝑉 𝑑𝑡. One may then verify that the linearized equations governing infinitesimal shearing of , 𝝌̂ = 𝑿 + 𝑤(𝑋1, 𝑡)𝒆2,

are given by

𝜕2
𝑡
𝑤(𝑋, 𝑡) − 𝓁2

𝑘
𝜕2
𝑋
𝜕2
𝑡
𝑤(𝑋, 𝑡) = 𝑐2

𝑇

(
𝜕2
𝑋
𝑤(𝑋, 𝑡) − 𝓁2

𝑠
𝜕4
𝑋
𝑤(𝑋, 𝑡)

)
(2.11)
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where 𝑐2
𝑇
= 𝜇∕𝜌𝑅 is the shear speed. Assuming that the continuum model consistently approximates the average lattice dynamics in

the sense that 𝐺𝑑∕𝜌𝑑 → 𝑐2
𝑇
and for 𝑑 > 0, 𝑤 = 𝗎 solves (2.11) up to an 𝑜(𝑑2) error, then (2.10) and (2.11) imply the identifications

𝓁2
𝑠
=

𝑑2

12
, 𝓁2

𝑘
=

𝑑2

6
.

3. Surface energies obtained as the leading order expressions from the plate energies

In this section, we obtain leading cubic order-in-ℎ expressions for the stored surface and kinetic energy densities

∫
ℎ∕2

−ℎ∕2

𝑊 𝑑𝑍 and ∫
ℎ∕2

−ℎ∕2

𝜅𝑅 𝑑𝑍, (3.1)

corresponding to motions with Taylor series

𝝌̂(𝑿, 𝑡) = 𝒚(𝒀 , 𝑡) + 𝒅(𝒀 , 𝑡)𝑍 + 𝒈(𝒀 , 𝑡)
𝑍2

2
+ 𝒉(𝒀 , 𝑡)

𝑍3

6
+ 𝑂(𝑍4). (3.2)

Here, 𝒚 = 𝝌̂|𝑍=0 is the motion of the plate’s midsurface , and the leading order expressions obtained involve kinematic quantities
associated to 𝒚 (see Theorem 3.1).

The deformation gradient and second deformation gradient satisfy

𝑭̂ = ∇𝒚 + 𝒅 ⊗ 𝒆3 + (∇𝒅 + 𝒈⊗ 𝒆3)𝑍 + (∇𝒈 + 𝒉⊗ 𝒆3)
𝑍2

2
+ 𝑂(𝑍3),

𝑨̂ = ∇∇𝒚 + (∇𝒅 ⊗ 𝒆3)
𝑇 + ∇𝒅 ⊗ 𝒆3 + 𝒈⊗ 𝒆3 ⊗ 𝒆3 + 𝑂(𝑍),

where ∇ is the gradient operator with respect to 𝒀 ,

∀𝒂 = 𝑎𝑖𝒆𝑖, ∇𝒂 = 𝜕𝛼𝑎
𝑖𝒆𝑖 ⊗ 𝒆𝛼 , ∇∇𝒂 = 𝜕𝛽𝜕𝛼𝑎

𝑖𝒆𝑖 ⊗ 𝒆𝛼 ⊗ 𝒆𝛽 ,

and (𝒂⊗ 𝒃⊗ 𝒄)𝑇 = 𝒂⊗ 𝒄⊗ 𝒃. Throughout this paper, we will also often use the notation 𝒂,𝛼 = 𝜕𝛼𝒂 where 𝛼 = 1, 2. For the following
discussion, we define the following quantities,

𝑭 (𝑛) = 𝜕𝑛
𝑍
𝑭̂ |𝑍=0, 𝑷 (𝑛)

𝑠
= 𝜕𝑛

𝑍
𝑷̂ 𝑠(𝑭̂ )|𝑍=0,

so that

𝑭 = ∇𝒚 + 𝒅 ⊗ 𝒆3, 𝑭 ′ = ∇𝒅 + 𝒈⊗ 𝒆3, 𝑭 ′′ = ∇𝒈 + 𝒉⊗ 𝒆3,

𝑨 = ∇∇𝒚 + (∇𝒅 ⊗ 𝒆3)
𝑇 + ∇𝒅 ⊗ 𝒆3 + 𝒈⊗ 𝒆3 ⊗ 𝒆3.

3.1. Size assumption between the length parameters and plate thickness

For the remainder of this work, we fix characteristic length and time scales 𝐿 and 𝑇 , and we will assume that ℎ∕𝐿 is much
smaller than unity. In addition, we will also assume that the midsurface’s velocity satisfies |𝜕𝑡𝝌| = 𝑂(ℎ∕𝑇 ) (to be made more precise
below, see Theorem 3.1). We adopt 𝑇 as our unit of time and 𝐿 as our measure of length. After proper nondimensionlization and
relabeling of the variables, we may assume that 𝑿 and 𝑡 are dimensionless, ℎ is a dimensionless small parameter, and |𝜕𝑡𝝌| = 𝑂(ℎ).
Finally, we will assume that there exists a dimensionless constant 𝐶0 > 0 such that

𝓁2
𝑠
+ 𝓁2

𝑘
≤ 𝐶0ℎ

2. (3.3)

The identifications made in the previous section (2.6) suggest that (3.3) reflects the reasonable physical assumption that the plate’s
thickness is not significantly less than the natural inter-particle spacing.

3.2. Parameterizing the motions

Following the approaches of Hilgers and Pipkin (1992a, 1996, 1997) and Steigmann (2013), we require that the generalized
tractions

𝑷̂ 𝒆3|𝑍=±ℎ∕2

vanish to first order in ℎ. The resulting conditions imposed on 𝒅 and 𝒈 are as follows. By (2.5) and (3.3),

𝑷̂ 𝒆3|𝑍=±ℎ∕2 = 𝑷 𝑠𝒆3 ± 𝑷
′
𝑠
𝒆3

ℎ

2
+ 𝑂(𝓁2

𝑠
+ 𝓁2

𝑘
) + 𝑂(ℎ2)

= 𝑷 𝑠𝒆3 ± 𝑷
′
𝑠
𝒆3

ℎ

2
+ 𝑂(ℎ2),

where the final big-oh term depends on ‖𝝌̂‖𝐶3(×[𝑡0 ,𝑡1]). Therefore, 𝑷̂ 𝒆3|𝑍=±ℎ∕2 = 𝟎 to first order in ℎ if and only if 𝑷 𝑠𝒆3 = 𝟎 and
𝑷 ′

𝑠
𝒆3 = 𝟎. We compute

𝑷 𝑠𝒆3 =
𝜕𝑊𝑠

𝜕𝐸𝑐3

𝜕𝑐𝝌 , 𝑷 ′
𝑠
𝒆3 =

𝜕2𝑊𝑠

𝜕𝐸𝑎𝑏𝜕𝐸𝑐3

𝜕3𝐸𝑎𝑏𝜕𝑐𝝌 +
𝜕𝑊𝑠

𝜕𝐸𝑐3

𝜕2
𝑐3
𝝌 ,
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and thus, 𝑷 𝑠𝒆3 = 𝟎 and 𝑷 ′
𝑠
𝒆3 = 𝟎 if and only if for 𝑐 = 1, 2, 3 we have

𝜕𝑊𝑠

𝜕𝐸𝑐3

= 0,
𝜕2𝑊𝑠

𝜕𝐸𝑎𝑏𝜕𝐸𝑐3

𝜕3𝐸𝑎𝑏 = 0. (3.4)

The relations (3.4) are equivalent to

𝐸𝛼3 = 0, 𝛼 = 1, 2, 𝐸33 = −
𝜆

𝜆 + 2𝜇
tr𝗘, (3.5)

𝜕3𝐸𝛼3 = 0, 𝛼 = 1, 2, 𝜕3𝐸33 = −
𝜆

𝜆 + 2𝜇
𝜕3tr𝗘, (3.6)

and thus,

𝒅 = 𝜙𝒏, 𝜙2 = 1 + 2𝐸33 = 1 −
2𝜆

𝜆 + 2𝜇
tr𝗘, (3.7)

The precise form of 𝒈 will be unnecessary, but it will be useful to have its structure on hand. Let 𝑀 𝑖
𝑘
𝑗
𝑙 =

𝜕2𝑊𝑠

𝜕𝐹 𝑖
𝑘
𝜕𝐹

𝑗

𝑙

and 𝐴𝑖𝑗 = 𝑀 𝑖
3
𝑗
3.

We note that 𝑨 = 𝐴𝑖𝑗𝒆
𝑖 ⊗ 𝒆𝑗 is invertible for small ℎ since 𝑊𝑠 is convex in a neighborhood of 𝑬 = 𝟎. Then 𝑷 ′

𝑠
𝒆3 = 𝟎 is equivalent to

𝑔𝑖 = −(𝐴−1)𝑖𝑗𝑀 𝑗
3
𝑘
𝛼𝜕𝛼𝑑

𝑘. (3.8)

3.3. Leading cubic order-in-ℎ expressions for the surface energies

Our main result of this section is the following cubic order-in-ℎ expansion of the stored surface and kinetic energies from (3.1).

Theorem 3.1. Let 𝐶0, 𝐶1, and 𝐶2 be fixed positive numbers, and assume that

𝓁2
𝑠
+ 𝓁2

𝑘
≤ 𝐶0ℎ

2. (3.9)

Let 𝝌̂ ∈ 𝐶3( × [𝑡0, 𝑡1]) be a motion such that for each 𝑡 ∈ [𝑡0, 𝑡1], 𝝌̂(⋅, 𝑡) is an immersion satisfying (3.2), (3.5), (3.6). Assume that 𝝌̂
satisfies the a priori bounds

‖𝝌̂‖𝐶3(×[𝑡0 ,𝑡1]) ≤ 𝐶1, (3.10)

∀𝒀 ∈ R
2, 𝑡 ∈ [𝑡0, 𝑡1], |𝜕𝑡𝒚(𝒀 , 𝑡)| + |𝗘(𝒀 , 𝑡)| ≤ 𝐶2ℎ. (3.11)

Then

∫
ℎ∕2

−ℎ∕2

𝑊 𝑑𝑍 = ℎ

[
𝜆𝜇

𝜆 + 2𝜇
(tr𝗘)2 + 𝜇|𝗘|2 + 𝓁2

𝑠

2∑

𝛾=1

(
𝜆𝜇

𝜆 + 2𝜇
(tr 𝜕𝛾𝗘)

2 + 𝜇|𝜕𝛾𝗘|2
)]

+
(
ℎ3

24
+ ℎ𝓁2

𝑠

)(
𝜆𝜇

𝜆 + 2𝜇
(tr𝗞)2 + 𝜇|𝗞|2

)
+ 𝑂(ℎ4), (3.12)

and

∫
ℎ∕2

−ℎ∕2

1

2
𝜌𝑅

(
|𝜕𝑡𝝌̂|2 + 𝓁2

𝑘
|𝜕𝑡𝑭̂ (𝑭̂ )−1|2

)
𝑑𝑍

=
1

2
𝜌𝑠

(
|𝜕𝑡𝒚|2 +

ℎ2 + 12𝓁2
𝑘

12

𝜆2

(𝜆 + 2𝜇)2
|tr 𝜕𝑡𝗘|2 +

ℎ2 + 12𝓁2
𝑘

12
|𝜕𝑡𝒏|2

+𝓁2
𝑘
|∇𝜕𝑡𝒚|2

)
+𝑂(ℎ7∕2), (3.13)

where 𝜌𝑠 = ℎ𝜌𝑅 and the 𝑂(⋅) terms depend only on 𝐶0, 𝐶1, 𝐶2, 𝜆, 𝜇 and 𝜌𝑅.

Proof. We first note that (3.5) and (3.11) imply that

∀𝒀 ∈ R
2, 𝑡 ∈ [𝑡0, 𝑡1], |𝜕𝑡𝒚(𝒀 , 𝑡)| + |𝑬(𝒀 , 𝑡)| ≤ 𝐶̃2ℎ, (3.14)

where 𝐶̃2 = max(1,
√
2𝜆∕(𝜆 + 2𝜇))𝐶2. In what follows, big 𝑂(⋅) terms will depend only on 𝐶0, 𝐶1, 𝐶2, 𝜆, 𝜇 and 𝜌.

Via Taylor’s theorem and (3.3) we have

∫
ℎ∕2

−ℎ∕2

𝑊 (𝑭̂ , 𝑨̂)𝑑𝑍 = ∫
ℎ∕2

−ℎ∕2

[ 2∑

𝑛=0

[𝜕𝑛
𝑍
𝑊𝑠(𝑭̂ , 𝑨̂)|𝑍=0]

𝑍𝑛

𝑛!
+ 𝑂(𝑍3)

]
𝑑𝑍

+∫
ℎ∕2

−ℎ∕2

[
𝓁2
𝑠
𝑊𝑠𝑔(𝑭̂ , 𝑨̂)|𝑍=0 + 𝑂(𝓁2

𝑠
𝑍)

]
𝑑𝑍

= ℎ𝑊𝑠(𝑭 ) + ℎ𝓁2
𝑠
𝑊𝑠𝑔(𝑭 ,𝑨) +

ℎ3

24
𝜕2
𝑍
𝑊𝑠(𝑭̂ )|𝑍=0 + 𝑂(ℎ4).
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Direct computation then yields

𝜕2
𝑍
𝑊𝑠(𝑭̂ )|𝑍=0 = 𝑊𝑠,𝑭𝑭 (𝑭 )[𝑭

′] ⋅ 𝑭 ′ + 𝑷 𝑠(𝑭 ) ⋅ 𝑭
′′

= 𝑊𝑠,𝑭𝑭 (∇𝒚 + 𝒅 ⊗ 𝒆3)[∇𝒅 + 𝒈⊗ 𝒆3] ⋅ (∇𝒅 + 𝒈⊗ 𝒆3)

+ 𝑷 𝑠(∇𝒚 + 𝒅 ⊗ 𝒆3) ⋅ ∇𝒈 + 𝒉 ⋅ 𝑷 𝑠(∇𝒚 + 𝒅 ⊗ 𝒆3)𝒆3

= 𝑊𝑠,𝑭𝑭 (∇𝒚 + 𝒅 ⊗ 𝒆3)[∇𝒅 + 𝒈⊗ 𝒆3] ⋅ (∇𝒅 + 𝒈⊗ 𝒆3)

+ 𝑷 𝑠(∇𝒚 + 𝒅 ⊗ 𝒆3) ⋅ ∇𝒈.

(3.15)

By (3.7) and (3.8), we have for all 𝛼 = 1, 2,

𝒈 = 𝑳[∇∇𝒚] + 𝑂(ℎ), 𝜕𝛼𝒈 = 𝑳[∇∇𝜕𝛼𝒚] + 𝑂(ℎ),

𝜕𝑡𝒈 = 𝑳[∇∇𝜕𝑡𝒚] + 𝑂(ℎ), (3.16)

where 𝑳 is a constant third-order tensor. By (3.10) and (3.14) we conclude that 𝑷 𝑠(∇𝒚 + 𝒅 ⊗ 𝒆3) ⋅∇𝒈 = 𝑂(ℎ). This fact, (3.15), and
(3.9) show that

∫
ℎ∕2

−ℎ∕2

𝑊 𝑑𝑍 = ℎ𝐸𝑚 + ℎ𝓁2
𝑠
𝐸𝑠𝑔 +

ℎ3

24
𝐸𝑏 + 𝑂(ℎ4),

where

𝐸𝑚 = 𝑊𝑠(∇𝒚 + 𝒅 ⊗ 𝒆3),

𝐸𝑠𝑔 = 𝑊𝑠𝑔(∇𝒚 + 𝒅 ⊗ 𝒆3,∇∇𝒚 + (∇𝒅 ⊗ 𝒆3)
𝑇

+ ∇𝒅 ⊗ 𝒆3 + 𝒈⊗ 𝒆3 ⊗ 𝒆3),

𝐸𝑏 = 𝑊𝑠,𝑭𝑭 (∇𝒚 + 𝒅 ⊗ 𝒆3)[∇𝒅 + 𝒈⊗ 𝒆3] ⋅ (∇𝒅 + 𝒈⊗ 𝒆3).

Writing

(tr𝑬)2 = (tr𝗘)2 + 2tr𝗘𝐸33 + 𝐸2
33
, |𝑬|2 = |𝗘|2 + 2𝐸𝛼3𝐸

𝛼3 + 𝐸2
33

and inserting (3.5), we obtain

𝐸𝑚 =
𝜆𝜇

𝜆 + 2𝜇
(tr𝗘)2 + 𝜇|𝗘|2.

To compute 𝐸𝑏 we first note that

𝜕𝛼𝒅 = 𝜕𝛼𝜙𝒏 − 𝜙𝖪𝛼𝛽𝒚
,𝛽 = 𝜕𝛼𝜙𝒏 − 𝖪𝛼𝛽𝒚

,𝛽 + 𝑂(ℎ), (3.17)

where {𝒚,𝛽} is the dual basis, relative to {𝒚,𝛽}, that is tangent to 𝒚(). Using (3.8), it follows that
𝐸𝑏 =

𝜕2𝐸𝑚

𝜕𝑦
𝑗

,𝛽
𝜕𝑦𝑘

,𝛼

𝜕𝛼𝑑
𝑘𝜕𝛽𝑑

𝑗 .

(see Section 3 of Hilgers & Pipkin, 1996). By the chain rule and (3.14),

𝜕2𝐸𝑚

𝜕𝑦
𝑗

,𝛽
𝜕𝑦𝑘

,𝛼

𝒆𝑘 ⊗ 𝒆𝑗 =
[

𝜆𝜇

𝜆 + 2𝜇
𝛿𝛼𝜌𝛿𝛽𝛾 +

𝜇

2
(𝛿𝛼𝛽𝛿𝛾𝜌 + 𝛿𝛼𝛾𝛿𝛽𝜌)

]
𝒚,𝜌 ⊗ 𝒚𝛾 + 𝑂(ℎ).

Then by (3.17), we conclude

𝐸𝑏 =
𝜆𝜇

𝜆 + 2𝜇
(tr𝗞)2 + 𝜇|𝗞|2 + 𝑂(ℎ).

In particular, we have that

ℎ𝐸𝑚 +
ℎ3

24
𝐸𝑏 = ℎ

(
𝜆𝜇

𝜆 + 2𝜇
(tr𝗘)2 + 𝜇|𝗘|2

)
+

ℎ3

24

(
𝜆𝜇

𝜆 + 2𝜇
(tr𝗞)2 + 𝜇|𝗞|2

)

+𝑂(ℎ4),

with the first two terms on the right-hand side being Koiter’s classical shell energy (see Ciarlet, 2005; Koiter, 1966; Steigmann,
2013).

We now split
∑

𝑐 (tr 𝜕𝑐𝑬)
2 and

∑
𝑐 |𝜕𝑐𝑬|2 into parts with and without the index 3. Using (3.5) and (3.6) we compute

3∑

𝑐=1

|𝜕𝑐𝑬|2 =
2∑

𝛾=1

|𝜕𝛾𝗘|2 + 2

2∑

𝛾=1

𝜕𝛾𝐸𝛼3𝜕𝛾𝐸
𝛼3 +

2∑

𝛾=1

(𝜕𝛾𝐸33)
2

+ 2𝜕3𝐸𝛼3𝜕3𝐸
𝛼3 + 𝜕3𝐸𝛼𝛽𝜕3𝐸

𝛼𝛽 + (𝜕3𝐸33)
2

=

2∑

𝛾=1

|𝜕𝛾𝗘|2 +
𝜆2

(𝜆 + 2𝜇)2

2∑

𝛾=1

(tr 𝜕𝛾𝗘)
2 + 𝜕3𝐸𝛼𝛽𝜕3𝐸

𝛼𝛽 + (𝜕3𝐸33)
2,
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3∑

𝑐=1

|tr 𝜕𝑐𝑬|2 =
2∑

𝛾=1

|tr 𝜕𝛾𝗘|2 + 2𝜕𝛾 tr𝗘𝜕𝛾𝐸33 +

2∑

𝛾=1

(𝜕𝛾𝐸33)
2

+ (𝜕3tr𝗘)
2 + 2𝜕3tr𝗘𝜕3𝐸33 + (𝜕3𝐸33)

2

=
4𝜇2

(𝜆 + 2𝜇)2

2∑

𝛾=1

(tr 𝜕𝛾𝗘)
2 +

4𝜇2

𝜆2
(𝜕3𝐸33)

2.

Using (3.6) and the fact that for 𝛼, 𝛽 = 1, 2,

𝜕3𝐸𝛼𝛽 =
1

2
𝜕3(𝝌̂ ,𝛼 ⋅ 𝝌̂ ,𝛽 )

|||𝑍=0
=

1

2
(𝜕𝛼𝒅 ⋅ 𝜕𝛽𝒚 + 𝜕𝛼𝒚 ⋅ 𝜕𝛽𝒅) = −𝜙𝖪𝛼𝛽 ,

we conclude that,

𝐸𝑠𝑔 =
𝜆𝜇

𝜆 + 2𝜇

2∑

𝛾=1

(tr 𝜕𝛾𝗘)
2 + 𝜇

2∑

𝛾=1

|𝜕𝛾𝗘|2 +
𝜆𝜇

𝜆 + 2𝜇
𝜙2(tr𝗞)2 + 𝜇𝜙2|𝗞|2,

and thus,

∫
ℎ∕2

−ℎ∕2

𝑊 𝑑𝑍 = ℎ

[
𝜆𝜇

𝜆 + 2𝜇
(tr𝗘)2 + 𝜇|𝗘|2 + 𝓁2

𝑠

2∑

𝛾=1

(
𝜆𝜇

𝜆 + 2𝜇
(tr 𝜕𝛾𝗘)

2 + 𝜇|𝜕𝛾𝗘|2
)]

+
(
ℎ3

24
+ ℎ𝓁2

𝑠

)(
𝜆𝜇

𝜆 + 2𝜇
(tr𝗞)2 + 𝜇|𝗞|2

)
+ 𝑂(ℎ4).

This proves (3.12).
We now consider the kinetic energy. We have by (3.2), (3.9), (3.10), (3.16) and (3.14) that the kinetic energy satisfies

∫
ℎ∕2

−ℎ∕2

1

2
𝜌𝑅

(
|𝜕𝑡𝝌̂|2 + 𝓁2

𝑘
|𝜕𝑡𝑭̂ (𝑭̂ )−1|2

)
𝑑𝑍

=
1

2
𝜌𝑠

(
|𝜕𝑡𝒚|2 +

ℎ2

12
|𝜕𝑡𝒅|2 + 𝓁2

𝑘
|𝜕𝑡𝑭 (𝑭 )−1|2 +

ℎ2

12
𝜕𝑡𝒚 ⋅ 𝜕𝑡𝒈

)
+ 𝑂(𝓁2

𝑘
ℎ3) + 𝑂(ℎ5),

=
1

2
𝜌𝑠

(
|𝜕𝑡𝒚|2 +

ℎ2

12
|𝜕𝑡𝒅|2 + 𝓁2

𝑘
|𝜕𝑡𝑭 (𝑭 )−1|2

)
+ 𝑂(ℎ4), (3.18)

where 𝜌𝑠 = ℎ𝜌𝑅 is the mass per unit reference area of the midsurface. By (3.14) and the polar decomposition theorem, we have
𝑭 = 𝑹(𝑰 + 𝑂(ℎ1∕2)) where 𝑹 takes values in the group of rotations, and thus, by (3.2) we have

|𝜕𝑡𝑭 (𝑭 )−1|2 = |𝜕𝑡𝑭𝑹(𝑰 + 𝑂(ℎ1∕2))|2 = |𝜕𝑡𝑭𝑹|2 + 𝑂(ℎ1∕2) = |𝜕𝑡𝑭 |2 + 𝑂(ℎ1∕2)

= |∇𝜕𝑡𝒚|2 + |𝜕𝑡𝒅|2 + 𝑂(ℎ1∕2).

By (3.9) and (3.18), we conclude that

∫
ℎ∕2

−ℎ∕2

1

2
𝜌𝑅

(
|𝜕𝑡𝝌̂|2 + 𝓁2

𝑘
|𝜕𝑡𝑭̂ (𝑭̂ )−1|2

)
𝑑𝑍 =

1

2
𝜌𝑠

(
|𝜕𝑡𝒚|2 +

ℎ2 + 12𝓁2
𝑘

12
|𝜕𝑡𝒅|2 + 𝓁2

𝑘
|∇𝜕𝑡𝒚|2

)
+ 𝑂(ℎ7∕2), (3.19)

To simplify (3.19), we observe that since 𝒏 is a unit normal vector, we have 𝒏 ⋅ 𝜕𝑡𝒏 =
1

2
𝜕𝑡|𝒏|2 = 0. Thus, by (3.7)

∫
ℎ∕2

−ℎ∕2

1

2
𝜌𝑅

(
|𝜕𝑡𝝌̂|2 + 𝓁2

𝑘
|𝜕𝑡𝑭̂ (𝑭̂ )−1|2

)
𝑑𝑍

=
1

2
𝜌𝑠

(
|𝜕𝑡𝒚|2 +

ℎ2 + 12𝓁2
𝑘

12

𝜆2

(𝜆 + 2𝜇)2
|tr 𝜕𝑡𝗘|2 +

ℎ2 + 12𝓁2
𝑘

12
|𝜕𝑡𝒏|2 + 𝓁2

𝑘
|∇𝜕𝑡𝒚|2

)
,

concluding the proof. □

We can express the leading order energies appearing in (3.12) and (3.13), denoted 𝑈 and 𝐾 respectively, in terms of Young’s
modulus 𝐸 =

𝜇(2𝜇+3𝜆)

𝜇+𝜆
and Poisson’s ratio 𝜈 =

𝜆

2(𝜇+𝜆)
∈ (0, 1∕2). Indeed, we have

𝑈 =
𝑎

2

[
𝜈(tr𝗘)2 + (1 − 𝜈)|𝗘|2 + 𝓁2

𝑠

2∑

𝛾=1

(
𝜈(tr 𝜕𝛾𝗘)

2 + (1 − 𝜈)|𝜕𝛾𝗘|2
)]

+
𝑏

2

(
𝜈(tr𝗞)2 + (1 − 𝜈)|𝗞|2

)
, (3.20)

and

𝐾 =
1

2
𝜌𝑠

(
|𝜕𝑡𝒚|2 +

𝜈2

(1 − 𝜈)2
𝑐|tr 𝜕𝑡𝗘|2 + 𝑐|𝜕𝑡𝒏|2 + 𝓁2

𝑘
|∇𝜕𝑡𝒚|2

)
(3.21)
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where 𝜌𝑠 = ℎ𝜌𝑅 and

𝑎 =
ℎ𝐸

1 − 𝜈2
, 𝑏 =

ℎ𝐸

1 − 𝜈2

(
ℎ2

24
+ 𝓁2

𝑠

)
, 𝑐 =

ℎ2 + 12𝓁2
𝑘

12
, (3.22)

are all positive. Going forward we will utilize the expressions (3.20) and (3.21) due to their more compact form. If we identify the
length scales 𝓁𝑠 and 𝓁𝑘 via (2.6), then the surface energies (3.20) and (3.21) are parameterized by five physical properties for a
given material: its reference density 𝜌𝑅, Young’s modulus 𝐸, Poisson’s ratio 𝜈, thickness ℎ, and natural configuration’s inter-particle
spacing 𝑑.

3.4. Strong ellipticity of the stored surface energy

We now show that the surface energy 𝑈 defined as in (3.20) satisfies the following strong ellipticity condition as long as 𝓁𝑠 > 0.

Proposition 3.2. Let 𝑈 be as in (3.20) with 𝐸 > 0 and 𝜈 ∈ (0, 1∕2), and let 𝒚 ∶  → E
3 be an immersion. Let

𝑪𝛼𝛽𝛾𝛿(𝒀 ) ∶=
𝜕2𝑈

𝜕𝑦𝑖
,𝛼𝛽

𝜕𝑦
𝑗

,𝛿𝛾

|||𝒚(𝒀 )𝒆
𝑖 ⊗ 𝒆𝑗 .

If 𝓁𝑠 > 0, then 𝑈 satisfies the strong ellipticity condition: for all 𝒀 ∈ , (𝖺1, 𝖺2) ∈ R
2∖{(0, 0)}, and 𝒃 ∈ R

3∖{𝟎},

𝖺𝛼𝖺𝛽𝒃 ⋅
(
𝑪𝛼𝛽𝛿𝛾 (𝒀 )𝖺𝛿𝖺𝛾𝒃

)
> 0.

If 𝓁𝑠 = 0, then 𝑈 satisfies the weaker Legendre-Hadamard condition: for all 𝒀 ∈ , (𝖺1, 𝖺2) ∈ R
2∖{(0, 0)}, and 𝒃 ∈ R

3∖{𝟎},

𝖺𝛼𝖺𝛽𝒃 ⋅
(
𝑪𝛼𝛽𝛿𝛾𝖺𝛿𝖺𝛾 (𝒀 )𝒃

) ≥ 0, (3.23)

and the left-hand size of (3.23) is zero precisely when 𝒃 ⋅ 𝒏(𝒀 ) = 0.

Proof. Via straightforward calculations, we have the relations

𝜕𝖤𝛽𝜈

𝜕𝒚,𝛼
=

1

2

(
𝛿𝛼
𝛽
𝒚,𝜈 + 𝛿𝛼

𝜈
𝒚,𝛽

)
,

𝜕(𝜕𝜈𝖤𝛼𝛽 )

𝜕𝒚,𝜌
=

1

2

(
𝛿
𝜌

𝛽
𝒚,𝛼𝜈 + 𝛿𝜌

𝛼
𝒚,𝛽𝜈

)
,

𝜕(𝜕𝜈𝖤𝛼𝛽 )

𝜕𝒚,𝜌𝜎
=

1

4

(
𝛿𝜌
𝛼
𝛿𝜎
𝜈
+ 𝛿𝜌

𝜈
𝛿𝜎
𝛼

)
𝒚,𝛽 +

1

4

(
𝛿
𝜌

𝛽
𝛿𝜎
𝜈
+ 𝛿𝜌

𝜈
𝛿𝜎
𝛽

)
𝒚,𝛼 ,

𝜕𝖪𝛼𝛽

𝜕𝒚,𝜈
= −𝛾𝜈𝛼𝛽𝒏,

𝜕𝖪𝛼𝛽

𝜕𝒚,𝜌𝜎
=

1

2

(
𝛿𝜌
𝛼
𝛿𝜎
𝛽
+ 𝛿𝜎

𝛽
𝛿𝜌
𝛼

)
𝒏,

(3.24)

where 𝗀𝛼𝛽 = 𝒚,𝛼 ⋅𝒚,𝛽 are the components of the metric tensor on the convected surface and 𝛾𝜈𝛼𝛽 are the Christoffel symbols associated
to the metric 𝗴. These relations lead to the identities

𝜕2

𝜕𝒚,𝛼𝛽𝜕𝒚,𝛾𝜌
(tr𝗞)2 = 2𝛿𝛼𝛽𝛿𝛾𝜌𝒏⊗ 𝒏,

𝜕2

𝜕𝒚,𝛼𝛽𝜕𝒚,𝛾𝜌
|𝗞|2 = (𝛿𝛼𝛾𝛿𝛽𝜌 + 𝛿𝛼𝜌𝛿𝛽𝛾 )𝒏⊗ 𝒏,

𝜕2

𝜕𝒚,𝛼𝛽𝜕𝒚,𝛾𝜌

∑

𝜁

(𝜕𝜁 tr𝗘)
2 =

1

2
(𝛿𝛼𝜂𝛿𝛽𝜁 + 𝛿𝛼𝜁𝛿𝛽𝜂)(𝛿𝛾𝜃𝛿

𝜌

𝜁
+ 𝛿

𝛾

𝜁
𝛿𝜌𝜃)𝒚,𝜂 ⊗ 𝒚,𝜃 ,

and

𝜕2

𝜕𝒚,𝛼𝛽𝜕𝒚,𝛾𝜌

∑

𝜁

|𝜕𝜁 tr𝗘|2 =
1

2
(𝛿𝛾𝛽𝛿𝜌𝛼 + 𝛿𝛾𝛼𝛿𝜌𝛽 )𝛿𝜂𝜃𝒚,𝜂 ⊗ 𝒚,𝜃

+
1

4

[
(𝛿𝛾𝛽𝛿𝜌𝜂 + 𝛿𝛾𝜂𝛿𝜌𝛽 )𝛿𝛼𝜃 + (𝛿𝛾𝛼𝛿𝜌𝜂 + 𝛿𝛾𝜂𝛿𝜌𝛼)𝛿𝛽𝜃

]
𝒚,𝜂 ⊗ 𝒚,𝜃 .

For 𝒃 ∈ R
3, let 𝖻𝛼 = 𝒃 ⋅ 𝒚,𝛼 . Then the previous imply that for all (𝖺1, 𝖺2) ∈ R

2∖{(0, 0)}, and 𝒃 ∈ R
3∖{𝟎},

𝖺𝛼𝖺𝛽𝒃 ⋅
(
𝑪𝛼𝛽𝛿𝛾𝖺𝛿𝖺𝛾𝒃

)
=

𝑎

2
𝓁2
𝑠

[
(1 − 𝜈)|𝗮|2

∑

𝛼

𝖻2
𝛼
+ (1 + 𝜈)|𝗮|2

(∑

𝛼

𝖺𝛼𝖻𝛼

)2]

+𝑏|𝗮|2(𝒃 ⋅ 𝒏)2. (3.25)

The conclusions of the proposition then follow immediately from (3.25) and the facts that 𝑎, 𝑏 > 0, 𝜈 ∈ (0, 1∕2). □

4. Surface dynamics associated to the energies 𝑼 and 𝑲

In this section we study the dynamics of an elastic material planar surface with stored surface energy density 𝑈 and kinetic
energy density 𝐾, defined in (3.20) and (3.21) respectively.
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4.1. Field equations

The field equations governing the motion of a material planar surface  ⊆ R
2 with surface energy density 𝑈 and kinetic energy

density 𝐾 are derived via Hamilton’s variational principle, summarized as follows (see also Hilgers, 1997). Suppose that  ⊆  is
the closure of a domain with  = 𝜕 given by a smooth closed curve parameterized by arclength 𝑆, with unit tangent 𝜻 , and with
outward normal 𝜼. For [𝑡0, 𝑡1] ⊆ [0,∞) and a motion 𝒚(⋅, 𝑡), the kinetic energy of the part  is 𝑇 ( ; 𝑡) = ∫ 𝐾 𝑑𝐴 where 𝐾 is given by
(3.21) stored energy of the part  is 𝑉 ( ; 𝑡) = ∫ 𝑈 𝑑𝐴 where 𝑈 is given by (3.20). In what follows, we denote

𝗧𝛼 =
𝜕𝑈

𝜕𝑦𝑖,𝛼
𝒆𝑖, 𝗠𝛼𝛽 =

𝜕𝑈

𝜕𝑦𝑖
,𝛼𝛽

𝒆𝑖, 𝜫𝛼 =
𝜕𝐾

𝜕𝑦̇𝑖,𝛼
𝒆𝑖,

𝗣𝛼 = 𝗧𝛼 − 𝜕𝛽𝗠
𝛼𝛽 +

𝜕

𝜕𝑡
𝜫𝛼 .

Throughout the remainder of this work, we denote

𝜕𝛽 = 𝛿𝛽𝜌𝜕𝜌.

Using the relations (3.24) and |𝜕𝑡𝒏|2 = (𝗀−1)𝛽𝜈 (𝒏 ⋅ 𝜕𝑡𝒚,𝛽 )(𝒏 ⋅ 𝜕𝑡𝒚,𝜈 ), we obtain

𝗧𝛼 = 𝑎

(
𝜈(tr𝗘)𝛿𝛼𝛽 + (1 − 𝜈)𝖤𝛼𝛽

)
𝒚,𝛽 + 𝑎𝓁2

𝑠

(
𝜈(tr 𝜕𝜌𝗘)𝛿𝛼𝛽 + (1 − 𝜈)𝜕𝜌𝖤𝛼𝛽

)
𝒚,𝛽𝜌

−𝑏
(
𝜈(tr𝗞)𝛿𝛽𝜌𝛾𝛼𝛽𝜌 + (1 − 𝜈)𝖪𝛽𝜌𝛾𝛼𝛽𝜌

)
𝒏,

𝗠𝛼𝛽 =
𝑎

2
𝓁2
𝑠

[
𝜈

(
(tr 𝜕𝛽𝗘)𝛿𝛼𝜌 + (tr 𝜕𝛼𝗘)𝛿𝛽𝜌

)
+ (1 − 𝜈)

(
𝜕𝛼𝖤𝛽𝜌 + 𝜕𝛽𝖤𝛼𝜌

)]
𝒚,𝜌

+𝑏
(
𝜈(tr𝗞)𝛿𝛼𝛽 + (1 − 𝜈)𝖪𝛼𝛽

)
𝒏,

𝜫𝛼 = 𝜌𝑠

[
𝜈2

(1 − 𝜈)2
𝑐(tr 𝜕𝑡𝗘)𝛿

𝛼𝛽𝒚,𝛽 + 𝑐(𝗀−1)𝛼𝛽 (𝒏 ⋅ 𝜕𝑡𝒚,𝛽 )𝒏
]

+𝜌𝑠𝓁
2
𝑘
𝛿𝛼𝛽𝜕𝑡𝒚,𝛽 .

The action of the motion in  × [𝑡0, 𝑡1] is ( × [𝑡0, 𝑡1];𝝌) = ∫ 𝑡1
𝑡0
[𝑇 ( ; 𝑡) − 𝑉 ( ; 𝑡)]𝑑𝑡. Let 𝒚𝜖 be a smooth one parameter family of

deformations of  such that 𝒚0 = 𝒚 and 𝝍 ∶=
𝑑

𝑑𝜖
𝒚𝜖|𝜖=0 ∶  × [𝑡0, 𝑡1] → R

3 is a smooth variation. The field equations governing the
motion of  are the Euler–Lagrange equations associated to the variational equation: for all 𝝍 ,

𝑑

𝑑𝜖
( × [𝑡0, 𝑡1]; 𝒚𝜖)

|||𝜖=0 + ∫
𝑡1

𝑡0
∫ 𝒇 ⋅ 𝝍 𝑑𝐴𝑑𝑡

+∫
𝑡1

𝑡0
∫

(
𝝉 ⋅ 𝝍 + 𝝁 ⋅ (𝜂𝛽𝝍 ,𝛽 )

)
𝑑𝑆𝑑𝑡 − ∫

(
𝜌𝑠𝜕𝑡𝒚 ⋅ 𝝍 +𝜫𝛼 ⋅ 𝝍 ,𝛼

)
𝑑𝐴

|||
𝑡1

𝑡0
= 0, (4.1)

where 𝒇 is a prescribed external body force on , and 𝝉 and 𝝁 are generalized tractions. We refer the reader to (4.4) and (4.5) and
their follow-up comments below for the interpretation of 𝝉 and 𝝁 in terms of resultant contact forces and couples, respectively.

Using the chain rule we compute

𝑑

𝑑𝜖
( × [𝑡0, 𝑡1]; 𝒚𝜖)

|||𝜖=0 = ∫
𝑡1

𝑡0
∫

(
𝜌𝜕𝑡𝒚 ⋅ 𝜕𝑡𝝍 +𝜫𝛼 ⋅ 𝜕𝑡𝝍 ,𝛼

)
𝑑𝐴𝑑𝑡

−∫
𝑡1

𝑡0
∫

(
𝗧𝛼 ⋅ 𝝍 ,𝛼 +𝗠𝛼𝛽𝝍 ,𝛼𝛽

)
𝑑𝐴𝑑𝑡

Via straightforward calculations repeatedly using the divergence theorem, we then conclude that (4.1) is satisfied for all variations
if and only if:

𝜌𝑠𝜕
2
𝑡
𝒚 = 𝜕𝛼𝗣

𝛼 + 𝒇 , on  × [𝑡0, 𝑡1],

𝝉 = 𝗣𝛼𝜂𝛼 −
𝜕

𝜕𝑆

(
𝗠𝛼𝛽𝜁𝛼𝜂𝛽

)
, on 𝜕 × [𝑡0, 𝑡1],

𝝁 = 𝗠𝛼𝛽𝜂𝛼𝜂𝛽 , on 𝜕 × [𝑡0, 𝑡1].

(4.2)

4.2. Balance laws

By choosing the variation to be appropriate infinitesimal generators of spatial translations, spatial rotations, and temporal
translations, we obtain standard balance laws for the part  , expressed in the reference configuration.

Indeed, let 𝒂 ∈ R
3 and 𝒚𝜖(𝒀 , 𝑡) = 𝒚(𝒀 , 𝑡) + 𝜖𝒂 so 𝝍 = 𝒂. Since the action’s Lagrangian is clearly invariant with respect to

superimposed (constant) spatial translations of 𝒚, we conclude that 𝑑

𝑑𝜖
( × [𝑡0, 𝑡1]; 𝒚𝜖) = 0. Then (4.1) implies that

∫
𝑡1

𝑡0
∫ 𝒇 ⋅ 𝒂 𝑑𝐴𝑑𝑡 + ∫

𝑡1

𝑡0
∫ 𝝉 ⋅ 𝒂 𝑑𝑆𝑑𝑡 − ∫ 𝜌𝑠𝜕𝑡𝒚 ⋅ 𝒂 𝑑𝐴

|||
𝑡1

𝑡0
= 0.

Dividing the previous by 𝑡1 − 𝑡0 and taking the limit 𝑡1 → 𝑡0 yields

𝑑

𝑑𝑡 ∫ 𝜌𝑠𝜕𝑡𝒚 ⋅ 𝒂 𝑑𝐴 = ∫ 𝒇 ⋅ 𝒂 𝑑𝐴 + ∫ 𝝉 ⋅ 𝒂 𝑑𝑆. (4.3)
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The Eq. (4.3) holding for all 𝒂 ∈ R
3 implies the following relation interpreted as the balance of linear momentum for the part  :

𝑑

𝑑𝑡 ∫ 𝜌𝑠𝜕𝑡𝒚 𝑑𝐴 = ∫ 𝒇 𝑑𝐴 + ∫ 𝝉 𝑑𝑆. (4.4)

From (4.4) we see that the generalized traction 𝝉 contributes a resultant contact force exerted on  by ∖ through the term ∫ 𝝉 𝑑𝑆.
Now, let 𝜴 = 𝒂× be an arbitrary skew symmetric tensor with axial vector 𝒂 and let 𝒚𝜖(𝒀 , 𝑡) = 𝑒𝜖𝜴𝒚(𝒀 , 𝑡). Then 𝝍 = 𝒂×𝒚. We note

that the strain tensors 𝗘, 𝗞 and ∇𝗘 are invariant with respect to super-imposed rotations of 𝒚, and thus, 𝑑

𝑑𝜖
( × [𝑡0, 𝑡1]; 𝒚𝜖) = 0.

Then (4.1) and the circularity of the scalar triple product imply that

∫
𝑡1

𝑡0
∫ (𝒚 × 𝒇 ) ⋅ 𝒂 𝑑𝐴𝑑𝑡 + ∫

𝑡1

𝑡0
∫

(
𝒚 × 𝝉 + 𝜂𝜈𝒚,𝜈 × 𝝁

)
⋅ 𝒂 𝑑𝑆𝑑𝑡

−∫ 𝜌𝑠
(
𝒚 × 𝜕𝑡𝒚 + 𝒚,𝛼 ×𝜫

𝛼
)
⋅ 𝒂 𝑑𝐴

|||
𝑡1

𝑡0
= 0.

As before, the previous implies balance of angular momentum for the part  :
𝑑

𝑑𝑡 ∫ 𝜌𝑠
(
𝒚 × 𝜕𝑡𝒚 + 𝒚,𝛼 ×𝜫

𝛼
)
𝑑𝐴

= ∫ 𝒚 × 𝒇 𝑑𝐴 + ∫
(
𝒚 × 𝝉 + 𝜂𝜈𝒚,𝜈 × 𝝁

)
𝑑𝑆. (4.5)

Referring to (4.5), we can observe that 𝜫𝛼 introduces a non-classical component, represented by the integral ∫ 𝒚,𝛼 ×𝜫𝛼 𝑑𝐴, into
the angular momentum. Additionally, the generalized traction 𝝁 contributes a resultant contact couple applied to  by ∖ through
the term ∫ 𝜂𝜈𝒚,𝜈 × 𝝁 𝑑𝑆.

Finally, choosing 𝒚𝜖(𝒀 , 𝑡) = 𝒚(𝒀 , 𝑡 + 𝜖) and arguing similarly as above lead to balance of energy for the part  :
𝑑

𝑑𝑡

(
𝑇 ( ; 𝑡) + 𝑉 ( ; 𝑡)

)
= ∫ 𝒇 ⋅ 𝜕𝑡𝒚 𝑑𝐴 + ∫

(
𝝉 ⋅ 𝜕𝑡𝒚 + 𝝁 ⋅ (𝜂𝜈𝜕𝑡𝒚,𝜈 )

)
𝑑𝑆.

4.3. Plane harmonic waves for infinitesimal displacements

Let 𝒖(𝒀 , 𝑡) = 𝒚(𝒀 , 𝑡) − 𝒀 be the displacement field for the material surface. We write

𝒖 = 𝘂 +𝑤𝒆3, 𝘂 = 𝗎𝛼𝒆𝛼 , 𝜖𝛼𝛽 =
1

2
(𝜕𝛼𝗎𝛽 + 𝜕𝛽𝗎𝛼).

Assuming that |𝒖|, |𝜕𝑡𝒖| + |∇𝒖|, and |∇𝜕𝑡𝒖| + |∇∇𝒖|, are bounded by 𝛿 ≪ 1, we have

𝖤𝛼𝛽 = 𝜖𝛼𝛽 + 𝑂(𝛿2), 𝖪𝛼𝛽 = 𝜕𝛼𝜕𝛽𝑤 + 𝑂(𝛿2),

𝗧𝛼 = 𝑎

(
𝜈(tr 𝝐)𝛿𝛼𝛽 + (1 − 𝜈)𝜖𝛼𝛽

)
𝒆𝛽 + 𝑂(𝛿2),

𝗠𝛼𝛽 =
1

2
𝓁2
𝑠
𝑎

[
𝜈

(
(tr 𝜕𝛽𝝐)𝛿𝛼𝜌 + (tr 𝜕𝛼𝝐)𝛿𝛽𝜌

)
+ (1 − 𝜈)

(
𝜕𝛼𝜖𝛽𝜌 + 𝜕𝛽𝜖𝛼𝜌

)]
𝒆𝜌

+𝑏
(
𝜈(𝜕𝜈𝜕

𝜈𝑤)𝛿𝛼𝛽 + (1 − 𝜈)𝜕𝛼𝜕𝛽𝑤
)
𝒆3 + 𝑂(𝛿2),

𝜫𝛼 = 𝜌𝑠

[
𝜈2

(1 − 𝜈)2
𝑐(tr 𝜕𝑡𝝐)𝛿

𝛼𝛽𝒆𝛽 + 𝑐𝛿𝛼𝛽 (𝜕𝛽𝜕𝑡𝑤)𝒆3

]

+𝜌𝑠𝓁
2
𝑘
𝛿𝛼𝛽𝜕𝛽𝜕𝑡𝒖 + 𝑂(𝛿2).

The equations governing infinitesimal displacements correspond to the linearization of (4.2), i.e., we drop all terms that are 𝑂(𝛿2),
leading to:

𝜌𝑠𝜕
2
𝑡
𝒖 = (1 − 𝓁2

𝑠
𝜕𝜌𝜕

𝜌)𝑎
(
𝜈𝜕𝛽 tr 𝝐 + (1 − 𝜈)𝜕𝛼𝜖

𝛼𝛽
)
𝒆𝛽 − 𝑏(𝜕𝛼𝜕

𝛼)2𝑤𝒆3

+𝜌𝑠

(
𝜈2

(1 − 𝜈)2
𝑐𝜕𝛽𝜕2

𝑡
tr 𝝐 + 𝓁2

𝑘
𝜕𝛼𝜕

𝛼𝜕2
𝑡
𝗎𝛽
)
𝒆𝛽 + 𝜌𝑠(𝑐 + 𝓁2

𝑘
)𝜕𝛼𝜕

𝛼𝜕2
𝑡
𝑤𝒆3 + 𝒇 .

(4.6)

In terms of 𝘂, 𝑤, and standard notation wherein differential operators are with respect to the variables 𝒙 = (𝑥1, 𝑥2) = (𝑌 1, 𝑌 2), we
may express (4.6) as

𝜌𝑠

(
(1 − 𝓁2

𝑘
𝛥)𝜕2

𝑡
𝘂 −

𝜈2

(1 − 𝜈)2
𝑐∇div 𝜕2

𝑡
𝘂
)
= div 𝑎(1 − 𝓁2

𝑠
𝛥)(𝜈(tr 𝝐)𝗣 + (1 − 𝜈)𝝐)

+ 𝗳 ,

𝜌𝑠

(
𝜕2
𝑡
𝑤 − (𝑐 + 𝓁2

𝑘
)𝛥𝜕2

𝑡
𝑤

)
= −𝑏𝛥2𝑤 + 𝑙,

(4.7)

where we have written 𝒇 = 𝗳 + 𝑙𝒆3, 𝗳 = 𝑓 𝛼𝒆𝛼 , and 𝗣 = 𝒆1 ⊗ 𝒆1 + 𝒆2 ⊗ 𝒆2. Now viewing  as the midsurface of a gradient elastic plate
with Young’s modulus 𝐸, Poisson’s ratio 𝜈, thickness ℎ, and inter-particle spacing 𝑑, we have the identifications

𝑎 =
ℎ𝐸

1 − 𝜈2
, 𝑏 =

ℎ𝐸

1 − 𝜈2

(
ℎ2

24
+ 𝓁2

𝑠

)
, 𝑐 =

ℎ2

12
+ 𝓁2

𝑘
.
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We now consider a plane harmonic wave

𝒖 = 𝐴 exp[𝑖(𝗸 ⋅ 𝒙 − 𝜔𝑡)]𝒅, (4.8)

where 𝒙 = 𝑥𝜇𝒆𝜇 , 𝗸 = 𝑘𝜇𝒆𝜇 ≠ 𝟎 is the wave vector, 𝒅 = 𝑑𝑖𝒆𝑖 is the unit length direction of motion, 𝜔 is the angular frequency, and
𝑐𝑠 = 𝜔∕|𝗸| is the phase velocity. We denote

𝗸̂ =
𝗸

|𝗸|
, 𝗸⟂ = −𝑘2𝒆1 + 𝑘1𝒆2, 𝗱 = 𝑑𝛼𝒆𝛼 .

By inserting (4.8) into (4.7) we conclude that

𝜔2𝜌𝑠

[
(1 + 𝓁2

𝑘
|𝗸|2)𝗱 + 𝑐

𝜈2

(1 − 𝜈)2
(𝗸 ⋅ 𝒅)𝗸

]

= 𝑎(1 + 𝓁2
𝑘
|𝗸|2)

[
1 + 𝜈

2
(𝗸 ⋅ 𝒅)𝗸 +

1 − 𝜈

2
|𝗸|2𝗱

]
,

𝜔2𝜌𝑠(1 + (𝑐 + 𝓁2
𝑘
)|𝗸|2)(𝒅 ⋅ 𝒆3) = 𝑏|𝗸|4(𝒅 ⋅ 𝒆3).

The previous are equivalent to

𝑨(𝗸)𝒅 = 𝑐2
𝑠
𝒅, (4.9)

where 𝑨(𝗸) is the acoustical tensor defined by

𝑨(𝗸) =
𝑎

𝜌𝑠

1 + 𝓁2
𝑠
|𝗸|2

1 + (𝑐𝜈2(1 − 𝜈)−2 + 𝓁2
𝑘
)|𝗸|2

𝗸̂⊗ 𝗸̂ +
𝑎(1 − 𝜈)

2𝜌𝑠

1 + 𝓁2
𝑠
|𝗸|2

1 + 𝓁2
𝑘
|𝗸|2

𝗸̂⟂ ⊗ 𝗸̂⟂

+
𝑏

𝜌𝑠

|𝗸|2

1 + (𝑐 + 𝓁2
𝑘
)|𝗸|2

𝒆3 ⊗ 𝒆3.

(4.10)

From (4.9) and (4.10) we conclude that for a given nonzero wave vector 𝗸, there are three types of plane harmonic waves
corresponding to the three linearly independent directions of motion:

• There is one longitudinal wave with direction of motion 𝒅 = 𝒌̂ and phase velocity satisfying

𝑐2
𝑠,𝐿

(|𝗸|) = 𝑎

𝜌𝑠

1 + 𝓁2
𝑠
|𝗸|2

1 + (𝑐𝜈2(1 − 𝜈)−2 + 𝓁2
𝑘
)|𝗸|2

.

• There is one tangentially transverse wave with direction of motion 𝒅 = 𝒌̂
⟂

and phase velocity satisfying

𝑐2
𝑠,𝑇

(|𝗸|) = 𝑎(𝜈 − 1)

2𝜌𝑠

1 + 𝓁2
𝑠
|𝗸|2

1 + 𝓁2
𝑘
|𝗸|2

.

• There is one normally transverse wave with direction of motion 𝒅 = 𝒆3 and phase velocity satisfying

𝑐2
𝑠,𝑁

(|𝗸|) = 𝑏

𝜌𝑠

|𝗸|2

1 + (𝑐 + 𝓁2
𝑘
)|𝗸|2

.

In our remaining discussion of the effects that the length parameters have on plane harmonic waves, we adopt the identifications
from (2.6), i.e.,

𝓁2
𝑠
=

𝑑2

12
, 𝓁2

𝑘
=

𝑑2

6
.

We denote the classical phase velocities where 𝓵𝑠 = 𝓵𝑘 = 0 by

𝑐2
𝑠,𝐿,𝑐𝑙

(|𝗸|) = 𝑎

𝜌𝑠

1

1 +
ℎ2

12
𝜈2(1 − 𝜈)−2|𝗸|2

,

𝑐2
𝑠,𝑇 ,𝑐𝑙

(|𝗸|) = 𝑎(𝜈 − 1)

2𝜌𝑠
, 𝑐2

𝑠,𝑁,𝑐𝑙
(|𝗸|) = 𝑎

𝜌𝑠

ℎ2

24
|𝗸|2

1 +
ℎ2

12
|𝗸|2

and we point out the degenerate property of classical longitudinal waves that the phase velocity vanishes in the short wavelength
limit,

lim
𝑘→∞

𝑐2
𝑠,𝐿,𝑐𝑙

(𝑘) = 0.

Now, when it comes to tangentially transverse waves, things change from the classical setting. The phase velocities of these
waves show dispersion and are consistently slower than their classical counterparts: for all |𝗸| ≠ 0,

𝑐2
𝑠,𝑇

(|𝗸|) < 𝑐2
𝑠,𝑇 ,𝑐𝑙

(|𝗸|).

However, normally transverse waves behave differently. When |𝗸|2 < 12

ℎ2
, their phase velocities are faster than the classical ones,

𝑐2
𝑠,𝑁

(|𝗸|) > 𝑐2
𝑠,𝑁,𝑐𝑙

(|𝗸|), and when |𝗸|2 < 12

ℎ2
their phase velocities are slower than the classical ones, 𝑐2

𝑠,𝑁
(|𝗸|) < 𝑐2

𝑠,𝑁,𝑐𝑙
(|𝗸|).
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Longitudinal waves also display a form of threshold behavior. When the wave number magnitude satisfies |𝗸|2 < 12

ℎ2
(2+ (

1

𝜈
−1)2),

then the phase velocity is slower than the classical ones, 𝑐2
𝑠,𝑁

(|𝗸|) < 𝑐2
𝑠,𝑁,𝑐𝑙

(|𝗸|). When the wave number magnitude is above this
threshold, |𝗸|2 >

12

ℎ2
(2 + (

1

𝜈
− 1)2), then the phase velocity is faster than the classical ones, 𝑐2

𝑠,𝑁
(|𝗸|) > 𝑐2

𝑠,𝑁,𝑐𝑙
(|𝗸|). Moreover, in stark

contrast to the classical setting, the phase velocity is positive in the short wavelength limit:

lim
𝑘→∞

𝑐2
𝑠,𝐿

(𝑘) =
𝑎

𝜌𝑠

𝓁2
𝑠

𝑐𝜈2(1 − 𝜈)−2 + 𝓁2
𝑘

> 0.

5. Using the stored surface energy to model crack fronts

In this final section, we briefly demonstrate how utilizing the stored energy density 𝑈 in the framework proposed by the author
in Rodriguez (2023) eliminates the singularities in stresses and strains observed in linear elastic fracture mechanics, particularly
in the context of mode-III fracture. The overall model can be physically understood as representing a body primarily made of a
Green elastic material with an additional thin, gradient elastic region of thickness ℎ, extending from a section of its boundary. More
precisely, we model such a body by a Green elastic solid ̃ possessing a gradient elastic boundary surface, ̃, with stored surface
energy density 𝑈 ; see Fig. 1 from Section 1 for a schematic. The fracture model is parameterized by the three-dimensional solid’s
Young’s modulus, Poisson’s ratio, and natural inter-particle spacing. The only remaining factor to determine is the width of the
region near the crack front where small-scale gradient elastic effects become significant.

5.1. Linearized equations for infinitesimal displacements

We recall from Rodriguez (2023) the following set-up. Consider a Green elastic body ̃ ⊂ E
3, possessing a stored energy density

𝑊̃ . This body also contains a gradient elastic boundary surface ̃ ⊆ 𝜕̃. For our purposes we will also assume that ̃ ⊆ R
2. The

surface ̃ has an associated stored surface energy density, denoted as 𝑈̃ . Let 𝒇 be an external body force, 𝒕 a prescribed traction on
̃, and 𝝌0 a prescribed placement of 𝜕̃∖̃. The field equations governing equilibrium configurations 𝝌 ∶ ̃ → E

3 are given by

Div 𝑷̃ + 𝒇 = 𝟎, on ̃,
𝑷̃𝑵 = 𝜕𝛼 𝗣̃

𝛼 + 𝒕, on ̃ ,
𝝌 = 𝝌0, on 𝜕̃∖̃ ,

(5.1)

where 𝑵 is the outward-pointing normal vector field on ̃, 𝑷̃ = 𝑃 𝑖
𝑎𝒆𝑖 ⊗ 𝒆𝑎 is the Piola stress with 𝑃 𝑖

𝑎 =
𝜕𝑊̃

𝜕𝐹 𝑖
𝑎
, Div 𝑷̃ =

(
𝜕𝑋𝑎𝑃 𝑖

𝑎
)
𝒆𝑖,

and

𝗧̃𝛼 =
𝜕𝑈̃

𝜕𝑦𝑖
,𝛼

𝒆𝑖, 𝗠̃𝛼𝛽 =
𝜕𝑈̃

𝜕𝑦𝑖
,𝛼𝛽

𝒆𝑖, 𝗣̃𝛼 = 𝗧̃𝛼 − 𝜕𝛽𝗠̃
𝛼𝛽 .

See Section 2 of Rodriguez (2023).
Now we assume that ̃ is both homogeneous and isotropic, characterized by a Young’s modulus 𝐸̃ and Poisson’s ratio 𝜈̃.

Additionally, we make the assumption that 𝑈̃ = 𝑈 , where 𝑈 is defined in Eq. (3.20). The equilibrium equations for infinitesimal
displacements 𝒖 ∶ ̃ → R

3 correspond to the linearization of (5.1). By results of Sections 4.1 and 4.3, these equations are given by

Div𝝈 + 𝒇 = 𝟎, on ̃,
𝝈𝑵 = (1 − 𝓁2

𝑠
𝜕𝜌𝜕

𝜌)𝑎
(
𝜈𝜕𝛽 tr 𝝐 + (1 − 𝜈)𝜕𝛼𝜖

𝛼𝛽
)
𝒆𝛽

− 𝑏(𝜕𝛼𝜕
𝛼)2𝑤𝒆3 + 𝒕, on ̃ ,

𝒖 = 𝟎, on 𝜕̃∖̃
(5.2)

where 𝝈 =
𝐸̃

1+𝜈̃
(

𝜈̃

1−2𝜈̃
(tr 𝜺)𝑰 + 𝜺) and 𝜀𝑖𝑗 =

1

2
(𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖).

Based on Theorem 3.1, the theory outlined can be physically interpreted as modeling a body primarily made of a Green elastic
material with an additional thin, gradient elastic region of thickness ℎ, extending from a section of its boundary. More precisely,
such a body is modeled by a Green elastic solid ̃ possessing a gradient elastic boundary surface, ̃, with stored surface energy
density 𝑈 . The complex interactions of the two distinct three-dimensional regions of the body are encapsulated by the boundary
conditions on ̃ appearing in (5.2).

5.2. Modeling crack fronts under anti-plane shear

Consider a brittle, infinite plate ̃ under anti-plane shear loading, lim𝑥3→±∞ 𝜎12 = 0 and lim𝑥3→±∞ 𝜎23 = 𝜎, with a straight crack
 = {(𝑥1, 𝑥2, 0) ∣ 𝑥1 ∈ [−𝓁,𝓁]} of length 2𝓁, illustrated by Fig. 2. For anti-plane shear of the form

𝒖(𝑥1, 𝑥2, 𝑥3) = 𝗎(𝑥1, 𝑥3)𝒆2,

the only nonzero components of the stress are

𝜎12 =
𝐸̃

2(1 + 𝜈̃)
𝗎,1, 𝜎23 =

𝐸̃

2(1 + 𝜈̃)
𝗎,3
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Fig. 2. The set-up for the mode-III problem with the crack  appearing in blue.

By the symmetry of the problem, 𝗎 can be taken to be even in 𝑥1 and odd in 𝑥3, so we will focus only on the strain and stress fields
for 𝑥3 ≥ 0.

The equations determining the displacement are posited to be (5.2) on ̃ = {(𝑥1, 𝑥2, 𝑥3) ∣ 𝑥3 ≥ 0} with ̃ = , 𝒕 = 𝟎, and 𝒇 = 𝟎. It
is physically reasonable to assume that 𝐸̃ = 𝐸 and 𝜈̃ = 𝜈, where 𝐸 and 𝜈 are used in defining (3.20) through (3.22). This assumption
is rooted in the fact that any region near the crack front, ̃, is made of the same material as the bulk solid, unlike a coating of a
different material. If we identify 𝓁2

𝑠
= 𝑑2∕12, with 𝑑 representing the material’s natural inter-particle spacing, the only unspecified

parameter is ℎ: the thickness of the region near ̃ where small-scale gradient elastic effects become significant.
We define dimensionless variables

𝑥 =
𝑥1

𝓁
, 𝑦 =

𝑥2

𝓁
, 𝑧 =

𝑥3

𝓁
, 𝗏(𝑥, 𝑧) =

1

𝓁

(
𝗎(𝑥1, 𝑥3) −

2(1 + 𝜈)

𝐸
𝜎𝑥3

)
.

Then the field equations take the dimensionless form

𝜕2
𝑥
𝗏(𝑥, 𝑧) + 𝜕2

𝑧
𝗏(𝑥, 𝑧) = 0, 𝑧 > 0,

− 𝗏𝑧(𝑥, 0) = 𝛼𝗏𝑥𝑥(𝑥, 0) − 𝛽𝗏𝑥𝑥𝑥𝑥(𝑥, 0) + 𝛾, 𝑥 ∈ (−1, 1),

𝗏(𝑥, 0) = 0, |𝑥| ≥ 1,

𝗏𝑥(±1, 0) = 0, lim
𝑧→∞

[|𝜕𝑥𝗏(𝑥, 𝑧)| + |𝜕𝑧𝗏(𝑥, 𝑧)|] = 0.

(5.3)

The dimensionless parameters 𝛼, 𝛽 and 𝛾 are given by

𝛼 =
ℎ

𝓁
> 0, 𝛽 =

ℎ𝓁2
𝑠

𝓁3
> 0, 𝛾 =

𝜎

𝜇
,

with 𝛽 =
ℎ𝑑2

12𝓁3
if we adopt (2.6). As discussed in Kim, Ru, and Schiavone (2013) and Walton (2012), the case 𝓁𝑠 = 0 does not lead

to a model producing bounded stresses and strains up to the crack tips 𝑥 = ±1, i.e., we have

sup
𝑧>0

|∇𝑥,𝑧𝗏(±1, 𝑧)| = ∞.

By using the Hilbert transform (see Section 4 of Rodriguez, 2023), the problem (5.3) can be completely reduced to an
integro-differential equation on the boundary for 𝑓 ∶= 𝗏|𝑧=0,

𝛽𝑓 ′′′′(𝑥) − 𝛼𝑓 ′′(𝑥) +𝑓 ′(𝑥) = 𝛾, 𝑥 ∈ (−1, 1),

𝑓 (±1) = 𝑓 ′(±1) = 0.
(5.4)

Since 𝛽 > 0, the main result of Section 4 in Rodriguez (2023) directly applies to (5.4), showing that our model for fracture rooted
in Rodriguez (2023) and utilizing 𝑈 from this work generates stresses and strains that remain bounded up to the crack tips.

Theorem 5.1 (Theorem 4.4, Rodriguez (2023)). There exists 𝐶 > 0 depending on 𝛼 and 𝛽 such that the following hold. There exists a
unique classical solution 𝑓 ∈ 𝐶4([−1, 1]) to (5.4), and 𝑓 satisfies

‖𝑓‖𝐶4([−1,1]) ≤ 𝐶|𝛾|.

Moreover, the dimensionless displacement field 𝗏(𝑥, 𝑧) = ∫ ∞

−∞
𝑃𝑧(𝑥 − 𝑠)𝑓 (𝑠)𝑑𝑠, where 𝑃𝑧(⋅) is the Poisson kernel for the upper half plane,

produces bounded stresses and strains up to the crack tips:

‖𝗏‖𝐶1({𝑧≥0}) ≤ 𝐶|𝛾|.
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