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Abstract — Controlling the gene expression is the most important 
development in a living organism, which makes it easier to find 
different kinds of diseases and their causes. It’s very difficult to 
know what factors control the gene expression. Transcription 
Factor (TF) is a protein that plays an important role in gene 
expression. Discovering the transcription factor has immense 
biological significance, however, it is challenging to develop 
novel techniques and evaluation for regulatory developments in 
biological structures. In this research, we mainly focus on 
‘sequence specificities’ that can be ascertained from 
experimental data with ‘deep learning’ techniques, which offer a 
scalable, flexible and unified computational approach for 
predicting transcription factor binding. Specifically, Multiple 
Expression motifs for Motif Elicitation (MEME) technique with 
Convolution Neural Network (CNN) named as CnNet, has been 
used for discovering the ‘sequence specificities’ of DNA gene 
sequences dataset. This process involves two steps: a) discovering 
the motifs that are capable of identifying useful TF binding site 
by using MEME technique, and b) computing a score indicating 
the likelihood of a given sequence being a useful binding site by 
using CNN technique. The proposed CnNet approach predicts 
the TF binding score with much better accuracy compared to 
existing approaches. The source code and datasets used in this 
work are available at https://github.com/masoodbai/CnNet-
Approach-for-TFBS.git 
 
Index Terms— Motif Discovery, Transcription Factor Binding 
Site, Convolution Neural Network, MEME, Sequence Specificity. 
 

1. INTRODUCTION 
The Next Generation Sequences (NGS) analysis has 

been one of the most challenging processes in computational 
biology. NGS technology has been used in several genetic 
processes and also to predict various genetic diseases with 
the help of the DNA (Deoxyribonucleic acid) double helix 
structure. Genetic sequencing comprises wide-ranging and 
appropriate tasks that include: a) identifying the similarity 
between two kinds of (homologous) sequences, b) 
developing proper gene feature selection method, based on 
computational methodology, c) identifying sequence 
dissimilarity and modifications such as mutations and 
particular nucleotide polymorphisms in the sequencing 
markers, and d) identification of molecular arrangement and 
assorted gene expression. 

Presently, knowing the gene expression by using 
computational approaches is fairly difficult. Computational 
methods use a combination of statistical and functional 
analyses to understand gene expressions (Pearson 2013). 
This field is a subset of computational biology, which 
focuses more on understanding how DNA works at the 
molecular level to control a range of functions in living 

organisms. Moreover, excessive small size of factor helps to 
identify and control the rate of gene expression.  

Transcription Factor (TF) is a protein that binds DNA 
and transcript of genetic information from DNA to 
Messenger-Ribonucleic Acid (mRNA). It controls the rate 
of gene expression, and binding to the specific gene 
sequences is named Transcription Factor Binding Sites 
(TFBSs). At present, identification of precise TF binding 
site is a challenging problem for any researcher in molecular 
biology (Quang, D, & Xie, X 2019). Also, uniqueness of 
genetic sequences can be found with TF and genetic 
diseases can be cured by the specificities of the gene 
sequences. Apart from this, TFs bind to regions such as the 
RNA polymerase and protein binding sites (Bulyk 2003).  

TF binding site has mainly been used for identifying the 
disease variations, drug identification for specific protein, 
gene regulation as well as many applications in molecular 
biology (Morishita et al. 1998 & Mann et al. 2000). Many 
different methods are available for finding the TFBS. 
Generally, they are based on the principles of information 
theory or machine learning techniques, which are 
implemented on web servers (Banki et al. 2017). However, 
finding the sequences characteristics is a difficult process, 
hence, we need new approaches for finding the sequences 
specificity with good accuracy (Reddy et al. 2007). In this 
paper, we propose a novel approach called CnNet, which 
automatically learns motif scanners, along with rules for 
combining them to make good predictions, for sequence 
analysis tasks.  

A motif refers to a common pattern in a given sequence, 
and a single motif is repeated in the same sequence. There 
are two regions, intron and exon, in gene sequences. The 
motif is only obtained from the exon region and proteins are 
subsequently formed. The different lengths of the motif are 
identifiable from the gene sequence dataset, with motif 
lengths varying from 8 to 24 (Fan et al. 2015). Identifying 
short sequences, where gene mutations happen, is a big 
challenge. The motif is a binding site, though common short 
sequences may be found, at the same time, in the middle of 
a motif (Bailey 2011).  

The MEME method identifies the most accurate motif 
position because it's an example of the deterministic 
optimization method (Bailey et al. 2006). The Position 
Weight Matrices (PWM) is used to identify the potential TF 
binding site in the gene sequences. It can identify the 
characteristics of the sequence’s specificity (Felicioli et al. 
2012). The PWM is mainly used to discover the motif 
pattern and determines the differences in the sequences.  

Currently, Deep Learning (DL) Technology is the most 
popular method for analyzing biological datasets. This 
technology attempts to model the relationships in data based 
on different approaches. There are several layers in a deep 
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learning network and hence, at every layer the incoming 
signal is modified and passed on to the subsequent layers. 
The multiple layers can perform both linear and nonlinear 
transformations. It differs from regular neural networks in 
terms of the direction of flow of neurons. Regular neural 
networks only allow neurons to flow in single direction and 
thus enabling only forward feed. Though feed forward 
networks are well suited for text and image recognition, 
sometimes the network demands full connectivity resulting 
in complex structures. Large datasets demand complex 
structure for efficient training and this has resulted in poor 
performance of traditional neural networks (Yaman et al 
2023, Zhanget al 2023, Zhang et al. 2021, & Chen et al. 
2021). 

TF binding site is computed with different kinds of 
datasets that focus on Protein-Protein Interaction (PPI) (Luo 
et al. 2014), Microarrays (Annala et al. 2011) and DNA 
Sequences (Yu et al. 2023 & Alipanahi et al. 2015). The PPI 
network calculates the score using Dijkstra’s algorithm and 
the TFBS is identified using the PWM. The proposed CnNet 
technique addresses some challenges: i) DNA Sequence 
datasets have been applied, ii) It has analyzed millions of 
DNA sequences by using Graphics Processing Unit (GPU) 
with parallel processing, iii) MEME technique has been 
used for motif scanning process, iv) our model has given an 
accurate value without keeping the bias constant, and v) 
Most importantly the training method has given very fast 
and accurate results without any data loss.  

The remainder of this paper is organized as follows. 
Section 2 provides a brief review of the related literature. 
Section 3 discusses the design of the TFBS prediction 
System which implements our CnNet methodology. Section 
4 describes the experimental results and evaluation, Finally, 
Section 5 provides the conclusion & future work. 

2. LITERATURE SURVEY 
In computational biology, gene sequences analysis plays 

a key role and has major applications such as diagnosis of 
genetic diseases (Barany 1991), drug identification (Payne 
et al. 2007), structural variations (Li et 2022 & Feuk et al. 
2006), and gene expression (Robinson et al. 2010), among 
others. Historically, Sanger & Tuppy (1951) first analyzed 
the DNA gene sequence. Then, Needleman & Wunsch 
(1970) discovered the difference between the two sequences 
through a computer algorithm. NGS, widely used in medical 
research, can easily identify disease and vital for diagnosis. 
In earlier time, pattern matching finds the exact occurrence 
of patterns in given sequences, when a specified pattern is 
present. Most techniques are based on a pattern matching 
algorithm, as in, for example, Brute-Force (Faheem 2010), 
Knuth-Morris-Pratt (KMP) (Rajesh et al. 2010), Boyer-
Moore (Antonino & Villa 2010) and the Rabin-Karp (RK) 
Algorithm (Ondov et al. 2010). 

The TF binding sites are located among motifs and can 
be identified from various datasets. However, new methods 
are needed to analyze these datasets and predict the TF 
binding sites. In computational biology, binding sites have 
used PWM to scan DNA sequences. Historically, 
computational methods have affected DNA binding site 
prediction, which has been elucidated in (Stormo 2000). 
Further, the representation of the TF binding site can be 
accomplished so that new sequences can be generated 
efficiently. Based on this representation, TF binding sites in 

each sequence can be located and a representation for 
sequence specificity can be provided. 

Bailey (2011) introduced a MEME Technique and most 
of the papers reported in the literature have used the MEME 
algorithm for motif discovery. This algorithm extends the 
EM algorithm for scanning motifs. A big advantage of this 
algorithm is that it works without any prior knowledge of 
what motifs are present in the given sequence. A multi 
objective Genetic Algorithm (GA) was proposed by Boone 
et al. (2021), which is effective over a single objective.  

Initially, the binding site was computed by sequence 
signals. The MAMOT technique obtains the signal rank and 
background rank of each probe by using Hidden Markov 
models (HMMs). Thereafter, the corrected signal rank of 
each probe is defined as the signal rank minus the 
background rank, and the average background rank as the 
mean of the background rank of the given probe among all 
the biological sequences (Schütz & Delorenzi 2008). Linhart 
et al. 2008 suggested a new method named Amadeus to 
analyze sequence signals. This system identified binding 
sites based on two methods: k-mer set memory algorithm 
with PWM. This technique obtains the signal rank and 
background rank of each probe by sorting their raw probe 
signal and background signal, respectively. Thereafter, the 
corrected signal rank of each probe is defined as the signal 
rank minus the background rank, and the average 
background rank as the mean of the background rank of the 
given probe among all the datasets.  

The MEME, combined with the Hidden Markov Model 
(HMM) method, has given good results in the motif stage 
and the probability value is calculated using the HMM 
(Sharon et al. 2008). This method identifies short sequences 
using probability values. Their prediction method further 
takes a reproducible probe-specific but factor-independent 
bias into account. Their model is not completely automatic, 
as certain parameters were set intuitively. Machine Learning 
(ML) techniques predict TF binding sites with good 
accuracy. SVM play an important role in identifying binding 
sites, and give good classification accuracy (Sohn et al. 
2009).  

The Protein Binding Microarrays (PBM) dataset used in 
the RankMotif++ technique works by combining two 
algorithms, Random Forest (RF) and PWM (Chen et al. 
2007). The PWM is used for aligning sequences and the RF 
for classifying common patterns of different lengths. It 
begins modeling by selecting a sample of sequences with 
evenly distributed binding intensities that is subsequently 
divided randomly into two equal sets – the training set and 
the validation set. Each sequence is then constructed, with 
several sets of descriptive variables that will be used by the 
ML technique. Next, the RF classifier is trained on the 
training set data using these variables. The motif-finding 
algorithm is also applied for a subset of sequences with high 
binding intensities. 

Artificial Neural Network (ANN) is also used to find 
binding sites (Manioudaki & Poirazi 2013) and play a key 
role in aligning gene sequences. This model has the most 
neurons and thus progressively improves in terms of 
performance. Quan et al. (2020) have developed a technique 
using CNN (convolutional neural network) to predict a 
TFBS, named as SemanticsCS (Semantic ChIP-seq). 
SemanticCS technique is used in pinpointing substitutions 
leading to regulatory abnormalities and in assessing the 
impact of substitutions on the binding affinity for the RXR 
transcription factor. 
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Alipanahi et al. (2015) introduced a DeepBind method 
for analyzing DNA sequences using CNN, and identified the 
TFBS score based on the motif. This method is applicable to 
DNA microarray and sequencing data. However, it tolerates 
a moderate degree of noise and mislabeled training data and 
trains predictive models fully automatically, alleviating the 
need for careful and time-consuming hand-tuning. More 
importantly, a trained model can be applied and visualized 
in ways that are familiar to users of PWMs. 

DeepSEA application on the other hand uses CNN to 
predict the effects of non-coding variants (Zhou & 
Troyanskaya 2015). It had found chromatin features from 
holdout genomic sequences with high accuracy. This 
surpassed the performance of the till then best method for 
TF prediction of sequences, which is gapped k-mer support 
vector machine. In discovering TFBS, Deep CNN (Zhang et 
al. 2021) provides a sample architecture which provides 
greater than 96 percent accuracy on a simulated dataset. 
However, overfitting is one of the major challenging 
problems in sequencing analysis. DNN suffers from the 
overfitting issue and dropout is a methodology for 
addressing the overfitting issue.  

The utilization of deep learning techniques in the 
MachineTFBS model advances the identification of high-
affinity TF binding sites from in vitro experiments. Yaman 
et al. (2023) have conducted experiments using Random 
Forest, eXtreme Gradient Boosting, and Deep Learning 
models with up to a 5-depth structure, as the choice of 
machine learning methods varies for different TF. However, 
the analysis yields less precise results due to the distinctive 
challenges associated with binding site identification 
(Yaman et al 2023). Neikes et al. (2023) introduce a method 
named Binding Affinities to Native Chromatin by 
Sequencing (BANC-seq), designed to ascertain the absolute 
apparent binding affinities of transcription factors to native 
DNA across the entire genome. BANC-Seq involves 
introducing a concentration range of a labelled TF into 
isolated nuclei. Binding dependence on concentration is 
subsequently assessed for each sample, allowing the 
quantification of apparent binding affinities throughout the 
genome. However, accurately measuring the impact of the 
chromatin environment on interactions between 
transcription factors and binding remains an open challenge 
(Neikes et al 2023). 

3. PROPOSED APPROACH AND SYSTEM DESIGN 

3.1 Datasets 
The Dialogue for Reverse Engineering Assessments and 

Methods (DREAM5) datasets used in our methodology has 
data tabulated column wise. The first column is the id and 
provides the name of the TF and the second column 
indicates the array type. Then, the third column is the probe 
sequences and subsequent columns provide background data 
and signal. The training.txt contains Protein Binding 
Microarray (PBM) data for 66 TF’s. The TF site sequences 
are indicated by model, training and scoring. Moreover, 
testing.txt contains PBM data for 20 TFs. An important 
observation is that the data is not normalized with respect to 
DNA on each spot per slide. 

3.2 System Architecture 
Figure 1 shows the overall system design for TF binding 

score prediction from DNA gene sequences datasets using 
the proposed CnNet approach. The sequence specificity of 
DNA binding site is predicted using high throughput assay. 
CnNet method is used in two phases; 1) motif selection 
phase based on different lengths (4 to 24) using MEME 
algorithm, and 2) the discovered motif is passed on to the 
neural network for finding the sequence specificity. 

In the first phase, the motifs are scored based on the 
model parameters, which has been elucidated in the 
appendices of the MEME algorithm. The highest motifs are 
based on selected scoring for prediction of binding sites. 
The final step in motif detection is to obtain the highest 
scoring motifs among all the overlapping subsequences. 
During this process, the user can specify the length of motif 
detection (4 to 24) and also specify the maximum Hamming 
Distance (D) that is permitted to also evaluate space dyed 
motifs. A negative factoring step is also incorporated to 
avoid detection of the same motif over several iterations of 
the algorithm. The output is in the form of PWM and is 
passed on to the neural network layers. 

In the second phase, a CNN is used, which is a neural 
network that can process different length motifs. Initially, 
the convolutional layer is very useful for extracting specific 
subsequences. output is then pooled using Max-pooling 
function and finally the values are fed into a network layer. 
In convolutional layer, ReLU activation function has been 
used for intensification of the non-linearity results. Then, 
Max pooling function has been used for extracting the 
maximum values from the layer. The weights and biases of 
the neural network are fine-tuned using the backpropagation 
algorithm based on the predicted values. Stochastic Gradient 
Descent has been used for minimizing the loss function in 
the neural network. As executed in several deep learning 
tasks, hyper-parameter tuning is undertaken to avoid 
overfitting of the data specific to the training set as well as 
the testing set. Moreover, Random Sampling Algorithm has 
been used for hyper-parameter optimization (Antikainen et 
al 2022 & LeCun et al. 2015). Thus, the CnNet method 
provides TF binding sites using several processes. 

3.3 Motif Scanning and Detection 
 Our proposed method starts with the detection of motifs 
using a modification of the MEME algorithm. Initially, the 
input DNA sequences for this CnNet method are given in a 
batch basis ‘b’ (No of sequences (Sn)/ batch size). This 
allows to control how many predictions to make at one time 
for given sequences, i.e., given ‘n’ strings (S1, S2, S3, S4 
…., Sn) of fixed length, with each string varying over the 
alphabets {A, C, G, and T}. Given two integers ‘l’ and ‘d’, 
such that ‘l’ is the length of our motif and ‘d’ is the HM, 
find all strings ‘x’ such that |x| = l and every other input 
string has a variant of ‘x’ at a HM of at most ‘d’.  

The PWM is the first stage for identification of motif in 
DNA sequences. Once, the PWM is calculated, we make use 
of the MEME algorithm to find the motifs with a batchwise 
input scheme.  
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Fig. 1 System Architecture for TF Binding Score prediction using the CnNet Approach 

 

 

 

 

 

 

 

 

 

 

 

 
 

Initially, the maximum and minimum motif lengths must 
be determined because the PWM is calculated, based on the 
length (λmin =4 to λmax = 24) (Fan et al. 2015). Wmin to Wmax 
are set to values depending on the LRT heuristic function. If 
Mi (i= 1…...n) is a discrete random variable with a 
parameter vector Pi (i=1……n) respectively, then Mi = (M1, 
M2… Mn) and the width is W. M can be considered to be a 
random variable whose instance sequences of length are l. 
An occurrence of M is a sample taken according to the 
distribution of M. In other words, an occurrence of Qi is a 
sequence (q1, q2……qi) where qn is a sample from the 
discrete random variable M_i~ discrete (P_i). Thus, each 
discrete random variable defines the probability of seeing 
each possible letter of the sequence nucleotides at that 
position in an actual occurrence of the matrix.  

Since the nucleotide bi, at its position in the occurrence 
is an independent sample from the discrete random variable 
Mi, the fact that Qi = a has no effect on the nucleotide at 
another position, j, in the motif. More precisely, for (1 ≤ i ≤ 
W) and for all (a, bϵ δ) 
 

 ,    
 
                             (1) 

 As stated earlier, positions in a sequence that are not 
occurrences of a motif are termed background positions. 

Each position in a sequence which is not a motif occurrence 
is thus an independent sample from M0~ discrete (P0). The 
spacing factor √2 for the width is to be tried by MEME as 
well as large spacing between widths such as a factor of 2. 

3.4 Finding DNA sequence specificities 
 In the second experiment, the MEME techniques have 
been used along with the CNN technique. Compared with 
earlier methods, the CNN technique has given good results. 
Moreover, the CNN technique comprises input and hidden 
and output layers. Convolutional, pooling, fully connected 
and normalization layers are the most important processes in 
the CNN. Each layer is comprising a number of neurons, 
and each neuron has a set of weights and biases to be learnt. 
Each neuron receives a number of inputs, sets a different 
weight for each and finally gives an output in single values. 
The neurons in each layer reflect the higher-level abstraction 
features of the neurons in the previous layers. The overall 
network gives different binding scores that are given to each 
sequence based on the output. Finally, the CNN model gives 
a predicted score. 

3.4.1 Convolutional Layer 
 Convolutional layer function is based on mathematical 
processes which process the two variables  , input 
and produce the output of numerical values. Subsequently, 
the output values will pass to another set of neurons. This 
process is calculated based on weight and bias. Formally, 
the convolution operator * is defined as in the Equation 
given below, 

                                    (2) 

 The convolutional layer is based on non-linear functions 
which means this process adopts the ReLU activation 
function. This CnNet approach has selected only one feature 
using multiple filters or kernel in the convolutional layer 
and find out the highest values. More concretely, let I be the 
input array of N dimensions and K the kernel, then the 
output at  is calculated by using the given 
equation, 

                            (3)                         
Where  is a coordinate of the input. It is to 
be noted that the convolutions at the borders present an edge 

MEME Procedure: Input DNA sequence b (Sn/batch size)  
for b = to passmax do 

for W = Wmin to Wmax by x  do 
for λ(0) = λmin to λmax by x 2 do 

Choose given W &λ(0) 
 Run EM to convergence from the chosen 

Value of  

Remove the outer columns of the consensus  

Apply palindrome constraints to max G( ) 
Update the prior probability Ui,j  to the approximate 
consensus  
End        
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case, since they may need coordinates which are not part of 
the input. 

3.4.2 Neural Network 
The neural network system analyzes particular input 

features and gives the predicted output. This system 
provides approximate and possible values for consideration 
in terms of the previous value. An input, GX, may denote 
features for specific data and Y is the predicted output for a 
particular X. Through this system, multiple prediction 
values can be obtained from the same input sample based on 
different features. This system comprises different layers, 
which means that successive layers will be followed by 
input layers, with each layer containing a large number of 
neurons. These multiple layers represent the problems of 
input data (LeCun et al. 2015). 

The weight matrix, is calculated for each 
layer with the total number of output (m) and input (n) 
nodes. For a particular input (X) sample, , the connection 
weight input nodes are i to j. The neural network system is 
vital for calculating the bias (b) between the nodes and the 
central property, and it is differentiable. The neural network 
system has bias values for each parameter, and the values 
vary, depending on how the output values are related to the 
previous values. Using this gradient information, the 
trainable parameters can be updated by taking small steps to 
minimize the distance function. The inputs for each node are 
multiplied by the weights in the incoming edge and these 
values are accompanied by the bias values. Here, the 
representation of the layer, L and the affine transform, , is 
calculated using the given equation, 
 

                                                    (4) 
Calibration is done using “hyper-parameter search”. 

Calibration is very important in the neural network because 
it solves the under-fit and over-fit problems in aneural 
network. Accordingly, each calibration trial is tested and 
compared with its trained models to give accurate results. 
Moreover, millions of DNA sequences are used; hence the 
dataset will be large and take huge amount of time in the 
computation process to find calibration parameters. 
Subsequently, well-known Random Search techniques have 
been used for hyperparameter optimization. A randomized 
search just samples the parameters that fix the number of 
times in the search space rather than performing an 
exhaustive search.  
Let f: Gn -> G be the cost function, which must be 
minimized. Let i € Gn, designate a position or candidate in 
the search-space then the algorithm is as follows, 
 
 
 
 
 
 
 
 
 
 
 

To train the CNN that uses sequences to make predictions 
from huge datasets, our neural network has four 
computational stages. Moreover, each stage has weights and 
biases which are continually updated based on the target 
score. Our neural network takes the output from the pooling 
stage and then tunes the weights and biases to match the 
target file and set the weights and biases for a given model. 
 A network has fixed threshold ‘a’ and weight ‘w’ 
respectively. The CnNet approach calculates the prediction 
score f(s) from the initial convolutional layer to the final 
output layer, as given by equation (5), 

 

     f(s) = netw [z[ recta [conv (s)]]]                 (5) 

 The prediction score f(s) is based on the dot-product 
scoring algorithm. In the batch gradient descent, this uses all 
the set of ‘m’examples in each iteration. In Stochastic 
gradient descent only one example is used in the iteration. 
The mini-batch SGD algorithm uses both these ideas and 
takes in ‘b’ examples in one iteration, where ‘b’ is the mini-
batch size. 
 The mini-batch gradient decent performs better than the 
batch gradient decent algorithm and allows us to make 
progress much faster. When compared with stochastic 
gradient decent method, the concept of vectorization helps 
the mini-batch SGD method. In particular, mini-batch 
gradient decent is likely to outperform stochastic gradient 
decent, only when a good vectorized implementation is 
available for that model. 
 

 

 

 

 

 

 

 

 

 

 

Rectification and pooling stages are used for intermediate 
processing and reducing the parameter dimensionality 
respectively. The ReLU activation function is defined by the 
following equation, 

                  f(x) = max (0, x)                           (6) 

where, x is the input to the neuron. The rectification stage 
takes the output of motif detection phase (M). Similarly, it 
calculates a value for similar size R = r(M), where a = (a1, 
…, ad) are tunable thresholds. 

 After convolution and rectification, pooling function will 
perform its operation on every layer independently and will 
reduce the dimensionality of the model. For this purpose, 
the max pooling method has been applied. The most 
common form of pooling layer is a filtered version or sub-
array with size 3x3. The max pooling values have been 
identified by using given equations,  

                     z =max_pool(Y)          (7) 

Random Search Algorithm: - 
Begin  
For initialize i with random position  
Sample position j from hypersphere 
current position i, using log of uniform sampler 
If f(j) < (i),  
Then move to new position i = j 
End 

Mini-Batch SGD Algorithm: -  
Li (w) = [Σ (Δ (f (i), (i)) + Δ (w 1, w 2)] /N,  
# Here w 1 and w 2 are the changes observed in the 

weights of the neural network layer. 
Δ (𝑓, 𝑡) = [(𝑓− 𝑡) 2]/N. 
MSGD Algorithm 
Say b = 100, m = 1000 
Begin 
For i = 1, 101, 201….901 

Θ: = Θ - η▽ (L i (w)) 
L i (w) = [Σ (Δ (f (i), (i)) + Δ (w 1, w 2)]/N 
End 
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where, zk = max (Y1,k,….Yn,k ), for each 1 ≤ k ≤ d. The 
backpropagation has been found to work faster than earlier 
approaches during the learning process. In CnNet, the 
gradients are efficiently computed during backpropagation. 
The neural network is ‘N’ (t+1) vector of weights ‘n’ and 
these two vectors are processed to generate the final score 
by using the following equation,  

     Score (s) = (wd+1) + Σwkzk,    1 < k < d                  (8) 

where weight wk is the weight of zk contribution towards the 
score, and an additional bias term is also added. Finally, the 
highest score indicates a strong binding and the scores 
themselves are on an arbitrary scale. 

4. EXPERIMENTAL RESULTS AND EVALUATION 
This section discusses the two different results offered by 

the MEME technique and Convolutional Neural Network. 
Keras, has been used to enable fast experimentation with the 
neural networks. A GPU is used in training the model as it 
has a number of cores which work in parallel processing. It 
reduces the time of training the data, compared to the CPU 
(Central Processing Unit). In our model, GPU (Nvidia 
GeForce GTX 1650) has been used with CUDA version 
10.0. 

4.1 MEME Technique  
In the first category, the objective is to measure the 

biological relevance of the motifs discovered using the 
MEME algorithm. Subsequently, the agreement between the 
discovered motif and the known motif is measured by the 
predicted value in the training set. The parameters, ∅, of the 
sequence model discovered on a particular pass are 
converted by MEME into a log-odds scoring matrix, LO, and 
threshold, ‘t’, where  for 

& . The scoring matrix 
and threshold are used to score the sequences in a test set of 
sequences for which the positions of motif occurrences are 
known. The starting point is taken for each sequence based 
on the LO score matrix and the positions of the hits are 
compared to the position of the known occurrence.  

The MEME compares favorably in terms of finding 
multiple motif widths, while the Gibbs sampler algorithm 
(Shida 2006) requires little prior knowledge. The Gibbs 
sampler algorithm can find multiple motifs in DNA or 
protein sequence sets but requires that the number of 
occurrences of each motif be specified individually for each 
sequence in the dataset. Initially, the motif Length L (4 to 24) 
was set for the MEME technique. Only one motif was 
searched from the MEME and the Gibbs sampler method. 
The ROC curve is plotted on the basis of the TPR & FPR. 
Both methods have been compared, based on ROC curves, 
and shown in Figure 2. 

TABLE 1 
A comparison of the ROC, recall and precision values for 

the MEME & Gibbs sampler technique 
Model ROC Recall Precision 

MEME 0.93 0.95 0.92 

Gibbs Sampler 0.81 0.91 0.89 

 

Fig. 2. Performance graph for MEME & Gibbs sampler technique 
based on ROC. 

Table 1 shows the ROC, recall and precision values for 
single motif discovery. The MEME algorithm considered a 
similar motif from gene sequences dataset. The results of the 
Gibbs sampling algorithm are quite similar to those of the 
MEME, based on the ROC, recall and precision values. The 
CnNet model has used the MEME technique for motif 
selection phase because the MEME technique has given 
good results and also finds a motif in the best time possible, 
compared to the Gibbs sampler algorithm. Subsequently, the 
MEME algorithm has identified motifs of different lengths. 
Finally, the motif of the different length obtained through 
MEME algorithm, is given to the neural network system. 

4.2 Convolutional Neural Network 

In the second category, different length of motif has 
been given to the convolutional neural network to find the 
TFBS score. The model has used separate paths for different 
features and merged them at a higher level, where the 
combined features are processed using a fully connected 
layer. Similar to the sequence processing path, the shape can 
also be processed using convolutional/pooling layers. 
Instead of building a model for each TF, the process of 
predicting binding sites for the TF can be combined. In 
particular, for each (TF) task, there are three nodes present. 
The first node represents the fact that the region is an 
unknown binding site. The second node represents non-
binding, and, lastly, the third node represents binding. The 
error is then calculated using a weighted cross entropy loss 
function, where the weight of unknown sites is set at 0, non-
binding at 1 and binding at the ratio of non-binding to 
binding. 

4.2.1 Calibration Parameter 
The calibration phase evaluates the quality of each 

parameter set by a 3fold cross-validation on the training set. 
Each model is trained on a different 2/3 of the data and its 
performance evaluated on the other 1/3 data held-out. The 
calibration parameters are scored by averaging the three 
values (Alipanahi et al. 2015). Once the best calibration 
parameters have been identified and the top six models 
picked, the model with the best training performance is 
chosen as the final model returned by the entire pipeline. 
The six models are trained to ensure that the final training  
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Fig 3 Visualization of the models learned on the ChIP-seq Sequences Dataset a) CnNet and DeepBind model best 

Transcription Factor Binding Sequences with Position b) AUC curve for CnNet approach c) Model Accuracy and Loss d) 
Some of the binding site acquired through CnNet Approache with actual known TFBS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. Predicted all the TF binding score using CnNet 
model from gene sequences dataset, a) Area Under Curve 
Score, b) Pearson Correlation Coefficients Score. 

4.2.2 Learning Momentum 

The simple method to speed up learning by increasing 
the rate of learning for every parameter in training is called 
the momentum method or accelerated gradient. If a 
particular parameter keeps increasing at every step, it is 
more likely to increase in future steps and hence the step 

size of that particular parameter should be scaled up. In 
practice, a traditional momentum rate (0.9) will speed up 
training, and the prediction performance of the final 
network. Several momentum methods have been proposed 
in mathematical optimization. This model has used the 
Nesterov Momentum with the rate coefficient sampled from 
the range [.95, .99]. 

4.2.3 Number of learning steps 

A total of 20000 parameter update steps have taken 
place. The current performance of the trained model is noted 
at intervals of every 4000. The problem of overfitting can be 
identified if the result in the 5000th interval is better than 
the one achieved at the 20000th interval. This is termed as 
early stopping. 

4.2.4 Dropout expected value. 
The dropout expected value takes one of three values: 

0.5 (strong), 0.75 (weak), or 1.0 (no dropout). 
The starting point for activation maximization is chosen 

to be the matrix with 0.025 for all the entries. An L2-
regularized gradient ascent with a learning rate of 0.01, 
using 1000 iterations, is applied to find an input which 
maximizes a particular class, i.e., a sharp or broad peak. It is 
to be noted that the activation before applying softmax is 
maximized, since the softmax output can be maximized by 
minimizing the probability for the other classes. For the 
DeepBind method, the reference is chosen to be the 
background frequencies of the nucleotides in the region of 
2000 bp upstream and 200 bp downstream of the 
transcription start position (Swindell et al. 2012). 

The representation learned for a particular TF can thus 
be leveraged to improve the representation for other TFs. To 
optimize the network parameters, the ADAM algorithm with 
a learning rate of 0.001 and a batch size of 256 has been 
used. Single-task models (models for an individual TF) were 
trained for a maximum of 500 epochs with a patience of 10. 
The multi-task model was trained for 50 epochs. Network 

a 

b 
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TABLE 2  
Combined models with PCC and AUC values 

 

 

Models Methods used PCC AUC References 
DeepSTF CNN + Bi-

LSTM 
0.861 0.890 Ding et al. 

2023 
Semantic

CS 
Word 

embedding + 
CNN 

0.817 0.98 Quan et al. 
2020 

DeepBind Rankmotif + 
Neural 

Network 

0.693 0.949 Alipanahi et 
al. 2015 

FeatureRe
duce 

PWM + 
dinucleotides 

and/or k-
mers 

0.693 0.693 Weirauch et 
al. 2013 

MAMOT PWM + 
HMMs 

0.637 0.906 Schütz & 
Delorenzi 

2008 
RankMoti

f++ 
PWM + k-

mers + 
Random 
Forest 

0.518 0.975 Chen et al. 
2007 

 

This study utilizes two different algorithms, namely, 
CNN and the MEME technique. Initially, MEME 
algorithms were used to scan the motif in different length 
and thereafter give it to the neural network system. Figure 
4 shows the CnNet method with existing model based on 
PCC and AUC score. 

The MEME with neural network method helps to 
identify the TFBS from gene sequences dataset. The 
CnNet model is trained to create the best model with the 
least error. Moreover, the proposed model is created with 
little loss and saved in an HDF5 (Hierarchical Data Format 
5) format so that it can be used to make predictions by 
loading weights onto the model. The proposed model has 
provided good results when compared to two well-known 
models, namely, DeepBind and DeepSEA. 

The sequence logo is a graphical representation of the 
TFBS and it has been represented using WebLogo tools. 
The CnNet approach has given precise TF binding sites by 
using shallow models with large filters. The focus of this 
technique is to automatically set the features in the 
sequences, resulting in an improved performance. 
Identifying its sequence specificity in DNA sequences is a 
very challenging process and takes considerable time to 
find a single TF. Moreover, it’s also better to find multiple 
TF than to simultaneously identify a single TF using 
computational methods. 

5. CONCLUSION AND FUTURE WORKS 
 The proposed CnNet approach has predicted accurate 
TF binding score for any given sequence using the MEME 
with CNN technique. MEME has been used in the motif 
selection phase and CNN techniques for predicting the 
sequences specificity from gene sequences dataset. The 
discovery of TFBSs in gene sequences plays a key role in 
protein formation. The properties of a protein can be 
defined by the TFBS. From a biomedical point of view, 
generally speaking, finding drugs that target a specific 
protein pose a huge challenge. Our intention, going 

forward, is to identify drugs for particular diseases in line 
with computational methods using the TFBS. Furthermore, 
the receptors and TF are essential components in the 
response to different viruses and diseases. Recently, 
SARS-CoV-2 is a new virus which affected the human 
respiratory system. The corona virus disease can be 
controlled by targeting the immune system and by 
improving the dysfunctional immune system. The infection 
can be easily targeted by identifying the TF binding site of 
cells in the respiratory system. Similarly, the same 
approach can be used to easily find new drugs for all 
different types of diseases. 
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