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Abstract — Controlling the gene expression is the most important
development in a living organism, which makes it easier to find
different kinds of diseases and their causes. It’s very difficult to
know what factors control the gene expression. Transcription
Factor (TF) is a protein that plays an important role in gene
expression. Discovering the transcription factor has immense
biological significance, however, it is challenging to develop
novel techniques and evaluation for regulatory developments in
biological structures. In this research, we mainly focus on
‘sequence specificities’ that can be ascertained from
experimental data with ‘deep learning’ techniques, which offer a
scalable, flexible and unified computational approach for
predicting transcription factor binding. Specifically, Multiple
Expression motifs for Motif Elicitation (MEME) technique with
Convolution Neural Network (CNN) named as CnNet, has been
used for discovering the ‘sequence specificities’ of DNA gene
sequences dataset. This process involves two steps: a) discovering
the motifs that are capable of identifying useful TF binding site
by using MEME technique, and b) computing a score indicating
the likelihood of a given sequence being a useful binding site by
using CNN technique. The proposed CnNet approach predicts
the TF binding score with much better accuracy compared to
existing approaches. The source code and datasets used in this
work are available at https:/github.com/masoodbai/CnNet-
Approach-for-TFBS.git

Index Terms— Motif Discovery, Transcription Factor Binding
Site, Convolution Neural Network, MEME, Sequence Specificity.

1. INTRODUCTION

The Next Generation Sequences (NGS) analysis has
been one of the most challenging processes in computational
biology. NGS technology has been used in several genetic
processes and also to predict various genetic diseases with
the help of the DNA (Deoxyribonucleic acid) double helix
structure. Genetic sequencing comprises wide-ranging and
appropriate tasks that include: a) identifying the similarity
between two kinds of (homologous) sequences, b)
developing proper gene feature selection method, based on
computational methodology, c¢) identifying sequence
dissimilarity and modifications such as mutations and
particular nucleotide polymorphisms in the sequencing
markers, and d) identification of molecular arrangement and
assorted gene expression.

Presently, knowing the gene expression by using
computational approaches is fairly difficult. Computational
methods use a combination of statistical and functional
analyses to understand gene expressions (Pearson 2013).
This field is a subset of computational biology, which
focuses more on understanding how DNA works at the
molecular level to control a range of functions in living

organisms. Moreover, excessive small size of factor helps to
identify and control the rate of gene expression.

Transcription Factor (TF) is a protein that binds DNA
and transcript of genetic information from DNA to
Messenger-Ribonucleic Acid (mRNA). It controls the rate
of gene expression, and binding to the specific gene
sequences is named Transcription Factor Binding Sites
(TFBSs). At present, identification of precise TF binding
site is a challenging problem for any researcher in molecular
biology (Quang, D, & Xie, X 2019). Also, uniqueness of
genetic sequences can be found with TF and genetic
diseases can be cured by the specificities of the gene
sequences. Apart from this, TFs bind to regions such as the
RNA polymerase and protein binding sites (Bulyk 2003).

TF binding site has mainly been used for identifying the
disease variations, drug identification for specific protein,
gene regulation as well as many applications in molecular
biology (Morishita et al. 1998 & Mann et al. 2000). Many
different methods are available for finding the TFBS.
Generally, they are based on the principles of information
theory or machine learning techniques, which are
implemented on web servers (Banki et al. 2017). However,
finding the sequences characteristics is a difficult process,
hence, we need new approaches for finding the sequences
specificity with good accuracy (Reddy et al. 2007). In this
paper, we propose a novel approach called CnNet, which
automatically learns motif scanners, along with rules for
combining them to make good predictions, for sequence
analysis tasks.

A motif refers to a common pattern in a given sequence,
and a single motif is repeated in the same sequence. There
are two regions, intron and exon, in gene sequences. The
motif is only obtained from the exon region and proteins are
subsequently formed. The different lengths of the motif are
identifiable from the gene sequence dataset, with motif
lengths varying from 8 to 24 (Fan et al. 2015). Identifying
short sequences, where gene mutations happen, is a big
challenge. The motif is a binding site, though common short
sequences may be found, at the same time, in the middle of
a motif (Bailey 2011).

The MEME method identifies the most accurate motif
position because it's an example of the deterministic
optimization method (Bailey et al. 2006). The Position
Weight Matrices (PWM) is used to identify the potential TF
binding site in the gene sequences. It can identify the
characteristics of the sequence’s specificity (Felicioli et al.
2012). The PWM is mainly used to discover the motif
pattern and determines the differences in the sequences.

Currently, Deep Learning (DL) Technology is the most
popular method for analyzing biological datasets. This
technology attempts to model the relationships in data based
on different approaches. There are several layers in a deep
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learning network and hence, at every layer the incoming
signal is modified and passed on to the subsequent layers.
The multiple layers can perform both linear and nonlinear
transformations. It differs from regular neural networks in
terms of the direction of flow of neurons. Regular neural
networks only allow neurons to flow in single direction and
thus enabling only forward feed. Though feed forward
networks are well suited for text and image recognition,
sometimes the network demands full connectivity resulting
in complex structures. Large datasets demand complex
structure for efficient training and this has resulted in poor
performance of traditional neural networks (Yaman et al
2023, Zhanget al 2023, Zhang et al. 2021, & Chen et al.
2021).

TF binding site is computed with different kinds of
datasets that focus on Protein-Protein Interaction (PPI) (Luo
et al. 2014), Microarrays (Annala et al. 2011) and DNA
Sequences (Yu et al. 2023 & Alipanahi et al. 2015). The PPI
network calculates the score using Dijkstra’s algorithm and
the TFBS is identified using the PWM. The proposed CnNet
technique addresses some challenges: i) DNA Sequence
datasets have been applied, ii) It has analyzed millions of
DNA sequences by using Graphics Processing Unit (GPU)
with parallel processing, iii) MEME technique has been
used for motif scanning process, iv) our model has given an
accurate value without keeping the bias constant, and v)
Most importantly the training method has given very fast
and accurate results without any data loss.

The remainder of this paper is organized as follows.
Section 2 provides a brief review of the related literature.
Section 3 discusses the design of the TFBS prediction
System which implements our CnNet methodology. Section
4 describes the experimental results and evaluation, Finally,
Section 5 provides the conclusion & future work.

2. LITERATURE SURVEY

In computational biology, gene sequences analysis plays
a key role and has major applications such as diagnosis of
genetic diseases (Barany 1991), drug identification (Payne
et al. 2007), structural variations (Li et 2022 & Feuk et al.
2006), and gene expression (Robinson et al. 2010), among
others. Historically, Sanger & Tuppy (1951) first analyzed
the DNA gene sequence. Then, Needleman & Wunsch
(1970) discovered the difference between the two sequences
through a computer algorithm. NGS, widely used in medical
research, can easily identify disease and vital for diagnosis.
In earlier time, pattern matching finds the exact occurrence
of patterns in given sequences, when a specified pattern is
present. Most techniques are based on a pattern matching
algorithm, as in, for example, Brute-Force (Faheem 2010),
Knuth-Morris-Pratt (KMP) (Rajesh et al. 2010), Boyer-
Moore (Antonino & Villa 2010) and the Rabin-Karp (RK)
Algorithm (Ondov et al. 2010).

The TF binding sites are located among motifs and can
be identified from various datasets. However, new methods
are needed to analyze these datasets and predict the TF
binding sites. In computational biology, binding sites have
used PWM to scan DNA sequences. Historically,
computational methods have affected DNA binding site
prediction, which has been elucidated in (Stormo 2000).
Further, the representation of the TF binding site can be
accomplished so that new sequences can be generated
efficiently. Based on this representation, TF binding sites in

each sequence can be located and a representation for
sequence specificity can be provided.

Bailey (2011) introduced a MEME Technique and most
of the papers reported in the literature have used the MEME
algorithm for motif discovery. This algorithm extends the
EM algorithm for scanning motifs. A big advantage of this
algorithm is that it works without any prior knowledge of
what motifs are present in the given sequence. A multi
objective Genetic Algorithm (GA) was proposed by Boone
et al. (2021), which is effective over a single objective.

Initially, the binding site was computed by sequence
signals. The MAMOT technique obtains the signal rank and
background rank of each probe by using Hidden Markov
models (HMMs). Thereafter, the corrected signal rank of
each probe is defined as the signal rank minus the
background rank, and the average background rank as the
mean of the background rank of the given probe among all
the biological sequences (Schiitz & Delorenzi 2008). Linhart
et al. 2008 suggested a new method named Amadeus to
analyze sequence signals. This system identified binding
sites based on two methods: k-mer set memory algorithm
with PWM. This technique obtains the signal rank and
background rank of each probe by sorting their raw probe
signal and background signal, respectively. Thereafter, the
corrected signal rank of each probe is defined as the signal
rank minus the background rank, and the average
background rank as the mean of the background rank of the
given probe among all the datasets.

The MEME, combined with the Hidden Markov Model
(HMM) method, has given good results in the motif stage
and the probability value is calculated using the HMM
(Sharon et al. 2008). This method identifies short sequences
using probability values. Their prediction method further
takes a reproducible probe-specific but factor-independent
bias into account. Their model is not completely automatic,
as certain parameters were set intuitively. Machine Learning
(ML) techniques predict TF binding sites with good
accuracy. SVM play an important role in identifying binding
sites, and give good classification accuracy (Sohn et al.
2009).

The Protein Binding Microarrays (PBM) dataset used in
the RankMotif++ technique works by combining two
algorithms, Random Forest (RF) and PWM (Chen et al.
2007). The PWM is used for aligning sequences and the RF
for classifying common patterns of different lengths. It
begins modeling by selecting a sample of sequences with
evenly distributed binding intensities that is subsequently
divided randomly into two equal sets — the training set and
the validation set. Each sequence is then constructed, with
several sets of descriptive variables that will be used by the
ML technique. Next, the RF classifier is trained on the
training set data using these variables. The motif-finding
algorithm is also applied for a subset of sequences with high
binding intensities.

Artificial Neural Network (ANN) is also used to find
binding sites (Manioudaki & Poirazi 2013) and play a key
role in aligning gene sequences. This model has the most
neurons and thus progressively improves in terms of
performance. Quan et al. (2020) have developed a technique
using CNN (convolutional neural network) to predict a
TFBS, named as SemanticsCS (Semantic ChIP-seq).
SemanticCS technique is used in pinpointing substitutions
leading to regulatory abnormalities and in assessing the
impact of substitutions on the binding affinity for the RXR
transcription factor.
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Alipanahi et al. (2015) introduced a DeepBind method
for analyzing DNA sequences using CNN, and identified the
TFBS score based on the motif. This method is applicable to
DNA microarray and sequencing data. However, it tolerates
a moderate degree of noise and mislabeled training data and
trains predictive models fully automatically, alleviating the
need for careful and time-consuming hand-tuning. More
importantly, a trained model can be applied and visualized
in ways that are familiar to users of PWMs.

DeepSEA application on the other hand uses CNN to
predict the effects of non-coding variants (Zhou &
Troyanskaya 2015). It had found chromatin features from
holdout genomic sequences with high accuracy. This
surpassed the performance of the till then best method for
TF prediction of sequences, which is gapped k-mer support
vector machine. In discovering TFBS, Deep CNN (Zhang et
al. 2021) provides a sample architecture which provides
greater than 96 percent accuracy on a simulated dataset.
However, overfitting is one of the major challenging
problems in sequencing analysis. DNN suffers from the
overfitting issue and dropout is a methodology for
addressing the overfitting issue.

The utilization of deep learning techniques in the
MachineTFBS model advances the identification of high-
affinity TF binding sites from in vitro experiments. Yaman
et al. (2023) have conducted experiments using Random
Forest, eXtreme Gradient Boosting, and Deep Learning
models with up to a 5-depth structure, as the choice of
machine learning methods varies for different TF. However,
the analysis yields less precise results due to the distinctive
challenges associated with binding site identification
(Yaman et al 2023). Neikes et al. (2023) introduce a method
named Binding Affinities to Native Chromatin by
Sequencing (BANC-seq), designed to ascertain the absolute
apparent binding affinities of transcription factors to native
DNA across the entire genome. BANC-Seq involves
introducing a concentration range of a labelled TF into
isolated nuclei. Binding dependence on concentration is
subsequently assessed for each sample, allowing the
quantification of apparent binding affinities throughout the
genome. However, accurately measuring the impact of the
chromatin  environment on interactions  between
transcription factors and binding remains an open challenge
(Neikes et al 2023).

3. PROPOSED APPROACH AND SYSTEM DESIGN

3.1 Datasets

The Dialogue for Reverse Engineering Assessments and
Methods (DREAMS) datasets used in our methodology has
data tabulated column wise. The first column is the id and
provides the name of the TF and the second column
indicates the array type. Then, the third column is the probe
sequences and subsequent columns provide background data
and signal. The training.txt contains Protein Binding
Microarray (PBM) data for 66 TF’s. The TF site sequences
are indicated by model, training and scoring. Moreover,
testing.txt contains PBM data for 20 TFs. An important
observation is that the data is not normalized with respect to
DNA on each spot per slide.

3.2 System Architecture

Figure 1 shows the overall system design for TF binding
score prediction from DNA gene sequences datasets using
the proposed CnNet approach. The sequence specificity of
DNA binding site is predicted using high throughput assay.
CnNet method is used in two phases; 1) motif selection
phase based on different lengths (4 to 24) using MEME
algorithm, and 2) the discovered motif is passed on to the
neural network for finding the sequence specificity.

In the first phase, the motifs are scored based on the
model parameters, which has been elucidated in the
appendices of the MEME algorithm. The highest motifs are
based on selected scoring for prediction of binding sites.
The final step in motif detection is to obtain the highest
scoring motifs among all the overlapping subsequences.
During this process, the user can specify the length of motif
detection (4 to 24) and also specify the maximum Hamming
Distance (D) that is permitted to also evaluate space dyed
motifs. A negative factoring step is also incorporated to
avoid detection of the same motif over several iterations of
the algorithm. The output is in the form of PWM and is
passed on to the neural network layers.

In the second phase, a CNN is used, which is a neural
network that can process different length motifs. Initially,
the convolutional layer is very useful for extracting specific
subsequences. output is then pooled using Max-pooling
function and finally the values are fed into a network layer.
In convolutional layer, ReLU activation function has been
used for intensification of the non-linearity results. Then,
Max pooling function has been used for extracting the
maximum values from the layer. The weights and biases of
the neural network are fine-tuned using the backpropagation
algorithm based on the predicted values. Stochastic Gradient
Descent has been used for minimizing the loss function in
the neural network. As executed in several deep learning
tasks, hyper-parameter tuning is undertaken to avoid
overfitting of the data specific to the training set as well as
the testing set. Moreover, Random Sampling Algorithm has
been used for hyper-parameter optimization (Antikainen et
al 2022 & LeCun et al. 2015). Thus, the CnNet method
provides TF binding sites using several processes.

3.3 Motif Scanning and Detection

Our proposed method starts with the detection of motifs
using a modification of the MEME algorithm. Initially, the
input DNA sequences for this CnNet method are given in a
batch basis ‘b’ (No of sequences (Sn)/ batch size). This
allows to control how many predictions to make at one time
for given sequences, i.e., given ‘n’ strings (S1, S2, S3, S4
...., Sn) of fixed length, with each string varying over the
alphabets {A, C, G, and T}. Given two integers ‘1’ and ‘d’,
such that ‘I’ is the length of our motif and ‘d’ is the HM,
find all strings ‘x’ such that [x| = | and every other input
string has a variant of ‘x” at a HM of at most ‘d’.

The PWM is the first stage for identification of motif in
DNA sequences. Once, the PWM is calculated, we make use
of the MEME algorithm to find the motifs with a batchwise
input scheme.
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Fig. 1 System Architecture for TF Binding Score prediction using the CnNet Approach

MEME Procedure: Input DNA sequence b (S,/batch size)
for b = to passmax do

for W = Win to Wiax by X V2 do
for A9 = Amin t0 Amax by X 2 do
0

Choose 6 given W &\
Run EM to convergence from the chosen

0y — 0 0
Value of PO = (@'{ ), A0, w
Remove the outer columns of the consensus
Apply palindrome constraints to max G(@')
Update the prior probability U;; to the approximate

consensus
End

Initially, the maximum and minimum motif lengths must
be determined because the PWM is calculated, based on the
length (Amin =4 t0 Amax = 24) (Fan et al. 2015). Win t0 Wmax
are set to values depending on the LRT heuristic function. If
Mi (i= ..n) is a discrete random variable with a
parameter vector P; (i=1...... n) respectively, then M; = (M},
M,... M, and the width is W. M can be considered to be a
random variable whose instance sequences of length are 1.
An occurrence of M is a sample taken according to the
distribution of M. In other words, an occurrence of Q;is a
sequence (qi, q2...... qi) where g, is a sample from the
discrete random variable M_i~ discrete (P_i). Thus, each
discrete random variable defines the probability of seeing
each possible letter of the sequence nucleotides at that
position in an actual occurrence of the matrix.

Since the nucleotide b;, at its position in the occurrence
is an independent sample from the discrete random variable
M;, the fact that Q; = a has no effect on the nucleotide at
another position, j, in the motif. More precisely, for (1 <i<
W) and for all (a, be d)

P.(b; = b|b, = a) (1<i <=W)

=P.(b=0), j#i,

(M

As stated earlier, positions in a sequence that are not
occurrences of a motif are termed background positions.

Each position in a sequence which is not a motif occurrence
is thus an independent sample from Mo~ discrete (Po). The
spacing factor \2 for the width is to be tried by MEME as
well as large spacing between widths such as a factor of 2.

3.4 Finding DNA sequence specificities

In the second experiment, the MEME techniques have
been used along with the CNN technique. Compared with
earlier methods, the CNN technique has given good results.
Moreover, the CNN technique comprises input and hidden
and output layers. Convolutional, pooling, fully connected
and normalization layers are the most important processes in
the CNN. Each layer is comprising a number of neurons,
and each neuron has a set of weights and biases to be learnt.
Each neuron receives a number of inputs, sets a different
weight for each and finally gives an output in single values.
The neurons in each layer reflect the higher-level abstraction
features of the neurons in the previous layers. The overall
network gives different binding scores that are given to each
sequence based on the output. Finally, the CNN model gives
a predicted score.

3.4.1 Convolutional Layer

Convolutional layer function is based on mathematical
processes which process the two variables /' @4 g input
and produce the output of numerical values. Subsequently,
the output values will pass to another set of neurons. This
process is calculated based on weight and bias. Formally,
the convolution operator * is defined as in the Equation
given below,

(f+ @) = [ F()g(t —x)dx @)

The convolutional layer is based on non-linear functions
which means this process adopts the ReLU activation
function. This CnNet approach has selected only one feature
using multiple filters or kernel in the convolutional layer
and find out the highest values. More concretely, let I be the
input array of N dimensions and K the kernel, then the
output at i = (fg,... Jin) is calculated by using the given
equation,

1+ @D = D IHKGE—)
i (3)
Where L = U, - .Jn)is a coordinate of the input. It is to
be noted that the convolutions at the borders present an edge
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case, since they may need coordinates which are not part of
the input.

3.4.2 Neural Network

The neural network system analyzes particular input
features and gives the predicted output. This system
provides approximate and possible values for consideration
in terms of the previous value. An input, G>X, may denote
features for specific data and Y is the predicted output for a
particular X. Through this system, multiple prediction
values can be obtained from the same input sample based on
different features. This system comprises different layers,
which means that successive layers will be followed by
input layers, with each layer containing a large number of
neurons. These multiple layers represent the problems of
input data (LeCun et al. 2015).

The weight matrix, W € L™ ™S calculated for each
layer with the total number of output (m) and input (n)

nodes. For a particular input (X) sample, Wii, the connection
weight input nodes are i to j. The neural network system is
vital for calculating the bias (b) between the nodes and the
central property, and it is differentiable. The neural network
system has bias values for each parameter, and the values
vary, depending on how the output values are related to the
previous values. Using this gradient information, the
trainable parameters can be updated by taking small steps to
minimize the distance function. The inputs for each node are
multiplied by the weights in the incoming edge and these
values are accompanied by the bias values. Here, the

representation of the layer, L and the affine transform, hﬁ, is
calculated using the given equation,

h_{:: ZWLhL—l+b£ (4)

Calibration is done using ‘“hyper-parameter search”.
Calibration is very important in the neural network because
it solves the under-fit and over-fit problems in aneural
network. Accordingly, each calibration trial is tested and
compared with its trained models to give accurate results.
Moreover, millions of DNA sequences are used; hence the
dataset will be large and take huge amount of time in the
computation process to find calibration parameters.
Subsequently, well-known Random Search techniques have
been used for hyperparameter optimization. A randomized
search just samples the parameters that fix the number of
times in the search space rather than performing an
exhaustive search.

Let f: Gn -> G be the cost function, which must be
minimized. Let i € Gn, designate a position or candidate in
the search-space then the algorithm is as follows,

Random Search Algorithm: -
Begin
For initialize i with random position
Sample position j from hypersphere
current position i, using log of uniform sampler
If ) < (i),
Then move to new positioni =]
End

To train the CNN that uses sequences to make predictions
from huge datasets, our neural network has four
computational stages. Moreover, each stage has weights and
biases which are continually updated based on the target
score. Our neural network takes the output from the pooling
stage and then tunes the weights and biases to match the
target file and set the weights and biases for a given model.

A network has fixed threshold ‘a’ and weight ‘w
respectively. The CnNet approach calculates the prediction
score f(s) from the initial convolutional layer to the final
output layer, as given by equation (5),

>

f(s) = netw [z[ recta [conv (s)]]] &)

The prediction score f(s) is based on the dot-product
scoring algorithm. In the batch gradient descent, this uses all
the set of ‘m’examples in each iteration. In Stochastic
gradient descent only one example is used in the iteration.
The mini-batch SGD algorithm uses both these ideas and
takes in ‘b’ examples in one iteration, where ‘b’ is the mini-
batch size.

The mini-batch gradient decent performs better than the
batch gradient decent algorithm and allows us to make
progress much faster. When compared with stochastic
gradient decent method, the concept of vectorization helps
the mini-batch SGD method. In particular, mini-batch
gradient decent is likely to outperform stochastic gradient
decent, only when a good vectorized implementation is
available for that model.

Mini-Batch SGD Algorithm: -
Li(w) =[2(A (). 1) +4 (w1 w2)]/N,
# Here w I and w 2 are the changes observed in the
weights of the neural network layer.

A9 =[(/=92]/N.

MSGD Algorithm
Say b =100, m = 1000
Begin

Fori=1,101, 201....901
O:=0-n\V(Liw)

Litw)=[ZMA{G),0)+A4mwl, w2)]/N
End

Rectification and pooling stages are used for intermediate
processing and reducing the parameter dimensionality
respectively. The ReLU activation function is defined by the
following equation,

f(x) = max (0, x) 6)

where, x is the input to the neuron. The rectification stage
takes the output of motif detection phase (M). Similarly, it
calculates a value for similar size R = r(M), where a = (a;,
..., a4) are tunable thresholds.

After convolution and rectification, pooling function will
perform its operation on every layer independently and will
reduce the dimensionality of the model. For this purpose,
the max pooling method has been applied. The most
common form of pooling layer is a filtered version or sub-
array with size 3x3. The max pooling values have been
identified by using given equations,

z =max_pool(Y) (7
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where, zx = max (Yix, .Yk ), for each 1 < k < d. The
backpropagation has been found to work faster than earlier
approaches during the learning process. In CnNet, the
gradients are efficiently computed during backpropagation.
The neural network is ‘N’ (t+1) vector of weights ‘n’ and
these two vectors are processed to generate the final score
by using the following equation,

Score (s) = (wat1) + Zwizi,, 1<k<d ®)

where weight wy is the weight of zx contribution towards the
score, and an additional bias term is also added. Finally, the
highest score indicates a strong binding and the scores
themselves are on an arbitrary scale.

4. EXPERIMENTAL RESULTS AND EVALUATION

This section discusses the two different results offered by
the MEME technique and Convolutional Neural Network.
Keras, has been used to enable fast experimentation with the
neural networks. A GPU is used in training the model as it
has a number of cores which work in parallel processing. It
reduces the time of training the data, compared to the CPU
(Central Processing Unit). In our model, GPU (Nvidia
GeForce GTX 1650) has been used with CUDA version
10.0.

4.1 MEME Technique

In the first category, the objective is to measure the
biological relevance of the motifs discovered using the
MEME algorithm. Subsequently, the agreement between the
discovered motif and the known motif is measured by the
predicted value in the training set. The parameters, @, of the
sequence model discovered on a particular pass are
converted by MEME into a log-odds scoring matrix, LO, and

threshold,  ‘t,  where LO,; =log(p,; p.;) for

. 1-1y3 . .

j=1,.... W& x €6,t =log (T) . The scoring matrix
and threshold are used to score the sequences in a test set of
sequences for which the positions of motif occurrences are
known. The starting point is taken for each sequence based
on the LO score matrix and the positions of the hits are

compared to the position of the known occurrence.

The MEME compares favorably in terms of finding
multiple motif widths, while the Gibbs sampler algorithm
(Shida 2006) requires little prior knowledge. The Gibbs
sampler algorithm can find multiple motifs in DNA or
protein sequence sets but requires that the number of
occurrences of each motif be specified individually for each
sequence in the dataset. Initially, the motif Length L (4 to 24)
was set for the MEME technique. Only one motif was
searched from the MEME and the Gibbs sampler method.
The ROC curve is plotted on the basis of the TPR & FPR.
Both methods have been compared, based on ROC curves,
and shown in Figure 2.

TABLE 1

A comparison of the ROC, recall and precision values for
the MEME & Gibbs sampler technique

Model ROC Recall Precision
MEME 0.93 0.95 0.92
Gibbs Sampler 0.81 0.91 0.89
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Fig. 2. Performance graph for MEME & Gibbs sampler technique
based on ROC.

Table 1 shows the ROC, recall and precision values for
single motif discovery. The MEME algorithm considered a
similar motif from gene sequences dataset. The results of the
Gibbs sampling algorithm are quite similar to those of the
MEME, based on the ROC, recall and precision values. The
CnNet model has used the MEME technique for motif
selection phase because the MEME technique has given
good results and also finds a motif in the best time possible,
compared to the Gibbs sampler algorithm. Subsequently, the
MEME algorithm has identified motifs of different lengths.
Finally, the motif of the different length obtained through
MEME algorithm, is given to the neural network system.

4.2 Convolutional Neural Network

In the second category, different length of motif has
been given to the convolutional neural network to find the
TFBS score. The model has used separate paths for different
features and merged them at a higher level, where the
combined features are processed using a fully connected
layer. Similar to the sequence processing path, the shape can
also be processed using convolutional/pooling layers.
Instead of building a model for each TF, the process of
predicting binding sites for the TF can be combined. In
particular, for each (TF) task, there are three nodes present.
The first node represents the fact that the region is an
unknown binding site. The second node represents non-
binding, and, lastly, the third node represents binding. The
error is then calculated using a weighted cross entropy loss
function, where the weight of unknown sites is set at 0, non-
binding at 1 and binding at the ratio of non-binding to
binding.

4.2.1  Calibration Parameter

The calibration phase evaluates the quality of each
parameter set by a 3fold cross-validation on the training set.
Each model is trained on a different 2/3 of the data and its
performance evaluated on the other 1/3 data held-out. The
calibration parameters are scored by averaging the three
values (Alipanahi et al. 2015). Once the best calibration
parameters have been identified and the top six models
picked, the model with the best training performance is
chosen as the final model returned by the entire pipeline.
The six models are trained to ensure that the final training
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4.2.2  Learning Momentum

The simple method to speed up learning by increasing
the rate of learning for every parameter in training is called
the momentum method or accelerated gradient. If a
particular parameter keeps increasing at every step, it is
more likely to increase in future steps and hence the step

size of that particular parameter should be scaled up. In
practice, a traditional momentum rate (0.9) will speed up
training, and the prediction performance of the final
network. Several momentum methods have been proposed
in mathematical optimization. This model has used the
Nesterov Momentum with the rate coefficient sampled from
the range [.95, .99].

4.2.3  Number of learning steps

A total of 20000 parameter update steps have taken
place. The current performance of the trained model is noted
at intervals of every 4000. The problem of overfitting can be
identified if the result in the 5000th interval is better than
the one achieved at the 20000th interval. This is termed as
early stopping.

4.2.4  Dropout expected value.

The dropout expected value takes one of three values:
0.5 (strong), 0.75 (weak), or 1.0 (no dropout).

The starting point for activation maximization is chosen
to be the matrix with 0.025 for all the entries. An L2-
regularized gradient ascent with a learning rate of 0.01,
using 1000 iterations, is applied to find an input which
maximizes a particular class, i.e., a sharp or broad peak. It is
to be noted that the activation before applying softmax is
maximized, since the softmax output can be maximized by
minimizing the probability for the other classes. For the
DeepBind method, the reference is chosen to be the
background frequencies of the nucleotides in the region of
2000 bp upstream and 200 bp downstream of the
transcription start position (Swindell et al. 2012).

The representation learned for a particular TF can thus
be leveraged to improve the representation for other TFs. To
optimize the network parameters, the ADAM algorithm with
a learning rate of 0.001 and a batch size of 256 has been
used. Single-task models (models for an individual TF) were
trained for a maximum of 500 epochs with a patience of 10.
The multi-task model was trained for 50 epochs. Network
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parameters were initialized using the Xavier initialization
(Glorot & Bengio 2010). Before training, the training set
was first partitioned into a training set (80%) and a
validation set (20%). The network was trained for a
maximum of 500 epochs with an early stopping patience of

probe intensities. Figure 4. (b) shows the Pearson correlation
values for finding the TF binding site as the testing target by
using the CnNet method.

10, using the validation loss as the benchmark data. !
0.8
a) 0.6
1
0.87
0861 g1z — CnNet (0.87)
0.8
0693 04 ——— DeepSTF(0.861)
0.6 === SemanticCS(0.817)
0.2 .
0a DeepBind(0.693)
0.2 0
0 0.2 04 0.6 0.8 1
o
CnNet DeepSTF SemanticCS DeepBind MAMOT 1
b)
. 0.986 0.98 0.949
0.89 0.906
— CnNet (0.986)
08 DeepSTF(0.89)
o= SemanticCS(0.98)
0.6 DeepBind(0.949)
04
0 0.2 0.4 0.6 0.8 1
02 i ) Fig. 6. Comparison between CnNet model with
CnNet DeepSTF SemanticCS DeepBind MAMOT

Fig. 5. Comparative performance analysis of CnNet Model
with existing combined model a) Pearson Correlation
Coefficient (PCC) Score, b) Area Under Curve (AUC)
Score

4.3 Performance Evaluation

The model estimates the probability of the TFBS event
occurring for a particular motif. The results of models have
been evaluated by PCC and AUC.

4.3.1  Pearson Correlation Coefficient

The PCC measures the linear dependence among two
variables, X & Y. A Pearson value ‘r’ is a score inclusive
between +1 & -1, where +1 indicates a positive correlation,
0 indicates a no linear correlation and -1 indicates a negative
correlation. The correlation is measured between the
predicted probe intensity p and the actual intensity a using
the (centered) Pearson correlation r, as given by the equation
below,

S - ) (@ - @)
VIL,(pi - p)* TL(al - a)? )

r(p.a) =

where N is the total number of probe sequences in the array.
‘p’” indicates the mean probe intensity across all predicted
probe intensities. ‘@’ indicates the mean across all actual

SemanticCS, DeepSTF and DeepBind based on PCC and
AUC value.

4.3.2  Area Under the Curve

The AUC is used in classification analysis in order to
determine which of the used models best predicts the classes
when True Positive Rates (TPR) are plotted against False
Positive Rates (FPR). In the present model, assuming there
are ‘n’ probes under consideration, each probe is labeled 1,
and the TPR and FPR are calculated as shown in the
equation below,

TPR = TP / (TP+FN) (10)
FPR = FP / (FP+TN) (11)

where, TP = True Positive; TN = True Negative; FP = False
Positive; FN = False Negative. Figure 4. (b) shows the AUC
values for finding the TF binding site as the testing target by
using CnNet method.

4.3.3  Experimental Comparison

The CnNet approach integrates the MEME technique
with the CNN technique. Earlier approaches identified the
TFBS using different combined algorithms. Table 2 shows
some of the combined methods with AUC and PCC values.
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TABLE 2
Combined models with PCC and AUC values

Models Methods used | PCC AUC References
DeepSTF | CNN +Bi- | 0.861 | 0.890 | Dingetal.
LSTM 2023
Semantic Word 0.817 | 0.98 Quan et al.
CS embedding + 2020
CNN
DeepBind | Rankmotif+ | 0.693 | 0.949 | Alipanahi et
Neural al. 2015
Network
FeatureRe PWM + 0.693 | 0.693 | Weirauch et
duce dinucleotides al. 2013
and/or k-
mers
MAMOT PWM + 0.637 | 0.906 Schiitz &
HMMs Delorenzi
2008
RankMoti | PWM + k- 0.518 | 0.975 | Chenetal.
f++ mers + 2007
Random
Forest

This study utilizes two different algorithms, namely,
CNN and the MEME technique. Initially, MEME
algorithms were used to scan the motif in different length
and thereafter give it to the neural network system. Figure
4 shows the CnNet method with existing model based on
PCC and AUC score.

The MEME with neural network method helps to
identify the TFBS from gene sequences dataset. The
CnNet model is trained to create the best model with the
least error. Moreover, the proposed model is created with
little loss and saved in an HDF5 (Hierarchical Data Format
5) format so that it can be used to make predictions by
loading weights onto the model. The proposed model has
provided good results when compared to two well-known
models, namely, DeepBind and DeepSEA.

The sequence logo is a graphical representation of the
TFBS and it has been represented using WebLogo tools.
The CnNet approach has given precise TF binding sites by
using shallow models with large filters. The focus of this
technique is to automatically set the features in the
sequences, resulting in an improved performance.
Identifying its sequence specificity in DNA sequences is a
very challenging process and takes considerable time to
find a single TF. Moreover, it’s also better to find multiple
TF than to simultaneously identify a single TF using
computational methods.

5. CONCLUSION AND FUTURE WORKS

The proposed CnNet approach has predicted accurate
TF binding score for any given sequence using the MEME
with CNN technique. MEME has been used in the motif
selection phase and CNN techniques for predicting the
sequences specificity from gene sequences dataset. The
discovery of TFBSs in gene sequences plays a key role in
protein formation. The properties of a protein can be
defined by the TFBS. From a biomedical point of view,
generally speaking, finding drugs that target a specific
protein pose a huge challenge. Our intention, going

forward, is to identify drugs for particular diseases in line
with computational methods using the TFBS. Furthermore,
the receptors and TF are essential components in the
response to different viruses and diseases. Recently,
SARS-CoV-2 is a new virus which affected the human
respiratory system. The corona virus disease can be
controlled by targeting the immune system and by
improving the dysfunctional immune system. The infection
can be easily targeted by identifying the TF binding site of
cells in the respiratory system. Similarly, the same
approach can be used to easily find new drugs for all
different types of diseases.
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