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Abstract

Recent works have shown that in contrast to classical linear elastic fracture mechanics, en-
dowing crack fronts in a brittle Green-elastic solid with Steigmann-Ogden surface elasticity
yields a model that predicts bounded stresses and strains at the crack tips for plane-strain
problems. However, singularities persist for anti-plane shear (mode-III fracture) under far-
field loading, even when Steigmann-Ogden surface elasticity is incorporated. This work is
motivated by obtaining a model of brittle fracture capable of predicting bounded stresses and
strains for all modes of loading. We formulate an exact general theory of a three-dimensional
solid containing a boundary surface with strain-gradient surface elasticity. For planar refer-
ence surfaces parameterized by flat coordinates, the form of surface elasticity reduces to
that introduced by Hilgers and Pipkin, and when the surface energy is independent of the
surface covariant derivative of the stretching, the theory reduces to that of Steigmann and
Ogden. We discuss material symmetry using Murdoch and Cohen’s extension of Noll’s the-
ory. We present a model small-strain surface energy that incorporates resistance to geodesic
distortion, satisfies strong ellipticity, and requires the same material constants found in the
Steigmann-Ogden theory. Finally, we derive and apply the linearized theory to mode-III
fracture in an infinite plate under far-field loading. We prove that there always exists a
unique classical solution to the governing integro-differential equation, and in contrast to
using Steigmann-Ogden surface elasticity, our model is consistent with the linearization as-
sumption in predicting finite stresses and strains at the crack tips.

Keywords Elasticity - Surface-substrate Interactions - Surface Elasticity - Strain-gradient
Elasticity - Fracture

Mathematics Subject Classification 74B20 - 74K25 - 74R10

1 Introduction
1.1 Surface Stressed Solid Bodies

The study of surface tension for solids was initiated by Gibbs in 1857, and it is now widely
accepted that surface tension and more general surfaces stresses must be accounted for when
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Fig.1 The reference
configuration of a
three-dimensional solid B with
strain-gradient elastic surface
ScoB

modeling mechanical structures at small length scales. In particular, interfaces between a
three-dimensional solid and its environment can form due to various mechanisms including
coating or atomic rearrangement during fracture.! A way to mathematically model such an
interface is by endowing part of the three-dimensional body’s two-dimensional boundary
with it’s own thermodynamic properties that are distinct from the substrate (such as energy).

Motivated by modeling the observed compressive surface stresses in certain cleaved crys-
tals, Gurtin and Murdoch [17, 18] developed a rigorous general theory of material surface
stresses that accounts for the surface’s resistance to stretching (but not flexure). Their cele-
brated theory has been used to model a wide arrange of phenomena over the past 45 years,
especially recently due to advances in nanoscience and nanotechnology. In the special case
of a Green-elastic, three-dimensional solid with reference configuration 3 and material sur-
face S C 9B, the field equations for the current configuration x : B — x (B) are the Euler-
Lagrange equations associated to the total strain energy

Q[X]:/ W(C)dA+/ U(C)dA,
B s

where we omit the possible explicit dependence of the functions W and U on points in 5 and
S (see Fig. 1). Here C is the left Cauchy-Green stretch tensor and C is the left Cauchy-Green
surface stretch tensor, the pullbacks by x of the metric tensors on x (3) and x (S), respec-
tively. In particular, the material surface stress tensor is derived from the surface energy
density U(C) in analogy with the substrate’s Piola stress being derived from the substrate
energy density W(C).

However, Steigmann and Ogden showed in their seminal works [47, 48] that surface-
substrate equilibrium states under compressive surface stresses obtained from the Gurtin-
Murdoch theory do not satisfy an associated Legendre-Hadamard condition, and thus, these
equilibrium states cannot be local energy minimizers.? Steigmann and Ogden [47, 48] recti-
fied this inadequacy and incorporated the material surface’s resistance to flexure by includ-
ing normal curvature dependence in the surface energy:

<I>[x]:/ W(C)dA—}-/U(C,Ic)dA,
B s

lBy an interface, we mean a thin region separating either two distinct materials or two distinct phases of a
material.

2The fact that a stand-alone membrane (with no substrate), a special type of Gurtin-Murdoch material surface,
in equilbrium and under compressive surface stresses cannot by locally energy minimizing was proved in
two independent works: by Pipkin [38] for initially plane, isotropic membranes, and by Steigmann [41] for
general, possibly anistropic and initially curved membranes.
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Strain-Gradient Elastic Surfaces

where k is the pullback of the second fundamental form on x(S). Since « depends on
the second derivatives of x, the surface energy is of strain-gradient type. In recent years,
the Steigmann-Ogden theory has attracted considerable interest from various perspectives
including the study of contact problems [25-28, 58, 59, 64] and inclusion problems [6,
19, 29, 30, 53, 62]. The theory has also been used to model fracture in brittle materials
[57, 60, 61], the main phenomenon motivating this work.

One of the most successful and practical theories for modeling fracture in brittle mate-
rials is classical linear elastic fracture mechanics. The governing linear partial differential
equations are derived from finite elasticity under the assumption of infinitesimal strains (lin-
earized elasticity), but the theory predicts unbounded singular strains at the crack tips, a
striking inconsistency and physically impossible prediction. There have been a vast number
of suggestions for supplementing classical linear elastic fracture mechanics to correct this
defect in the theory (see, e.g., [5]).

One modification of linear elastic fracture mechanics that removes certain singularities
is including higher spatial gradients of the displacement in the stored energy. In the foun-
dational works of Muki and Sternberg [31, 32] and Bogy and Sternberg [3, 4], the authors
found that including couple-stresses removed the singularities in the rotation gradient pre-
dicted by classical linear elastostatics in a variety of problems. However, crack tip stress
and strain singularities of the same order but with different intensity persisted for mode-I
fracture [32]. Including strain-gradients rather than the rotation gradient in the body’s stored
energy removes crack tip strain singularities, but stress singularities still persist in general
(see, e.g., [1, 2]).

A more recent approach aimed at eliminating both stress and strain crack tip singular-
ities is to modify the boundary conditions of classical linear elastic fracture mechanics by
endowing the crack fronts with material surface stresses. This methodology does not in-
troduce higher gradients in the substrate’s stored energy, but it does include higher surface
gradients via surface elasticity. Beginning with [36] and developed further by Sendova and
Walton [40], one line of thought has been to prescribe the crack front’s surface stresses as
a normal curvature dependent surface tension. Although able to remove the singularities
completely in a diverse range of settings (see [9, 52, 55, 56, 63]), it is unclear if the surface
stresses from the Sendova-Walton theory can be derived from a surface energy density, a
reasonable definition of “elastic-like” behavior.?

Deriving material stresses for the crack fronts from a Gurtin-Murdoch surface energy
does not remove the crack tip singularities for far-field loading [23, 51]. The refined anal-
ysis given in [14] shows that different, nonuniform, mode-III loading along crack fronts
possessing Gurtin-Murdoch surface elasticity with inhomogeneous surface shear constants
may either lead to a logarithmic singularities, classical square root singularities, or bounded
stresses and strains at the crack tips. However, endowing the crack fronts with Steigmann-
Ogden surface energy does remove the singularities for certain plane-strain problems
[57, 60] and axisymmetric penny shaped cracks [61]. Unfortunately, for anti-plane shear
(mode-III loading), Steigmann-Ogden surface energy reduces to Gurtin-Murdoch surface
energy, and crack tip singularities persist for far-field loading. Our main motivation is to de-
velop a model of brittle fracture capable of predicting bounded crack tip stresses and strains
for all modes of loading. Inspired by [9], this work proposes a surface-substrate equilibrium

3Equivalently, it is unclear if the governing field equations from the Sendova-Walton model can be derived
from a Lagrangian energy functional.
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theory in which the surface energy depends on stretching, normal curvature, and the surface
covariant derivative of stretching.*

1.2 Main Results and Outline

This work proposes an augmentation of the Steigmann-Ogden surface-substrate theory that
is of strain-gradient type and includes the surface covariant derivative of stretching in the
surface energy:

<I>[X]=/ W(C)dA—i—/U(C,lc,VC)dA, (1.1)
B s

where V is the Levi-Cevita connection on S. For S contained in a plane and parameter-
ized by flat coordinates, the form of the surface energy U is equivalent to that introduced
by Hilgers and Pipkin [20] for strain-gradient elastic plates. For general, possibly curved
S, the form of U appearing in (1.1) is equivalent to that proposed by Steigmann [45] for
stand-alone strain-gradient elastic surfaces with no substrate. As we show in Sect. 2, the
dependence of the surface energy on VC endows the material surface S with resistance to
geodesic distortion, i.e., convected geodesics failing to be geodesics on x (S).

Incorporating the resistance of an elastic surface to geodesic distortion is not solely a
mathematical exercise. In addition to the modeling of fracture presented in Sect. 4 of this
work, resistance to geodesic distortion has also proven to be an essential tool in the modeling
of fibrous surfaces.

A model for a three-dimensional solid with a boundary surface formed by a system of
aligned thin elastic fibers (hyperbolic metasurfaces) was introduced by Eremeyev [7], and
the equilibrium theory serves as a special case of the general theory presented in this work.
There, a single unit vector field T on the reference surface S C B is interpreted as being
tangent to a continuous distribution of aligned fibers. Assuming that the reference fibers are
geodesics, the surface energy U depends on C, the stretch of the fibers, and the absolute
value of the geodesic curvature of the fibers.

The modeling of stand-alone, two-dimensional, fibrous networks that are not attached to
substrates has also been a source of intensive study. In this theory, two orthonormal vec-
tor fields L and M on S are interpreted as being tangent to continuous distributions of
fibers forming a reference network. The current network corresponds to the integral curves
of the convected vector fields. The surface energy U yielding the equilibrium theory via
Hamilton’s principle is a function of kinematic quantities associated to the curves forming
the current network (e.g., their stretches, normal curvatures, tangent curvatures, etc.). The
foundational continuum theories by Rivlin [39], Green and Adkins [16], Pipkin [37], and
Steigmann-Pipkin [49] focused on networks of perfectly flexible fibers with surface ener-
gies depending on the stretches and shear angle.

Later, researchers incorporated second gradient effects in the theory of fibrous networks,
resulting in surface energies of the form appearing in (1.1). Wang and Pipkin [54] pro-
posed a theory of networks of inextensible fibers with flexural resistance, and more recently,
Steigmann [44] generalized their theory to include resistance to fiber twist. The full second
surface covariant derivative of the deformation and resistance to geodesic bending of the
fibers were first included in surface energies by Steigmann and dell’Isola in [46]. There, the

4The fact that the Steigmann-Ogden theory reduces to the Gurtin-Murdoch theory for mode-III loading fol-
lows from the vanishing of the linearized normal curvature for anti-plane shear, i.e., for displacement fields
tangent to the material surface.
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authors decomposed the second covariant derivative of the deformation of S in the {L, M}
basis with respect to the two covariant slots. Assuming L and M generate geodesics, cer-
tain terms can be shown to be proportional to the geodesic curvatures of the convected fibers
(see, e.g., (52) in [46]). In [45], Steigmann developed the fully general equilibrium theory for
stand-alone elastic surfaces with surface energy depending on the surface deformation gra-
dient and second covariant derivative of the deformation (with no substrate), including mate-
rial symmetry and a virtual work principle. Numerical solutions of the Steigmann-dell’Isola
theory correctly predicted regions of uniform shear separated by thin regions of geodesic
bending observed in bias tests of uniform pantographic lattices [13]. Further numerics based
on the Steigmann-dell’Isola theory predicted novel “geodesic buckling” in plane shear de-
formations [10], bulging effects in strain-gradient elastic cylinders that are in sharp contrast
to the membrane theory [11], and strain energy localization at the edges of Hypar nets [12].

As the above works indicate and as we demonstrate in Sect. 4, including strain-gradients
and resistance to geodesic distortion in surface elasticity presents a powerful and geometric
continuum approach to accurately modeling materials with small-scale structures.

In Sect. 2, the relevant kinematics of the boundary surface S convected by a deformation
of the three-dimensional solid B are first summarized. In particular, we introduce a third
order tensor L that is obtained from certain transposes of VC and has components in terms
of the difference of Christoffel symbols on S and x(S). This tensor is used in a model
surface energy proposed in Sect. 3. Physically, the tensor L furnishes the rate of stretching
of convected geodesics and locally characterizes the notion of geodesic distortion previously
discussed (see Proposition 2.1). The general form of (1.1) that we consider is then introduced
(see (2.4)). We then discuss material symmetry for the surface energy density U (see (2.10))
using Murdoch and Cohen’s extension to surfaces of Noll’s classical theory of material
symmetry that was reformulated by Steigmann and Ogden [48] and Steigmann [45]. In
the final subsection of Sect. 2, we derive the field equations (2.14) governing equilibrium
states of the solid 53 with strain-gradient elastic surface S C 98 from a Lagrangian energy
functional (2.11) including the boundary relations between the boundary tractions and the
surface stresses.

In Sect. 3, we present a properly hemitropic, small-strain surface energy that requires
the same number of material constants (with the same physical interpretations) as found
in the Steigmann-Ogden theory (see (3.1)). In contradistinction, however, the surface en-
ergy we propose satisfies the strong ellipticity condition (see (3.6), (3.7)). We then derive
the linearized field equations governing infinitesimal displacements of 3 and S, includ-
ing the boundary relations connecting the linearized boundary tractions and the linearized
surface stresses. The resulting linear theory is equivalent to the N = 2 case of the linear
surface-substrate model with Nth order surface elasticity proposed by Eremeyev, Lebedev
and Cloud [8]. In particular, our work may be seen as giving the exact theory that yields the
N =2 model from [8] for infinitesimal displacements.

Finally, in Sect. 4, we apply the linearized theory (3.12) to the problem of a brittle infinite
solid with a straight, non-interfacial crack of finite length, under mode-III loading. Using
the explicit Dirichlet-to-Neumann map, the problem is reduced to solving a fourth order
integro-differential equation for the crack profile along the boundary crack front (see (4.7)).
Analytically, it is the surface energy satisfying the strong ellipticity condition that implies
that this integro-differential equation is fourth order in the surface derivative of the displace-
ment.’ The dimensionless form of the equation implies that the behavior of the displacement

5Physically, it is the model incorporating resistance to geodesic distortion that implies that this integro-
differential equation is fourth order in the surface derivative of the displacement.
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depends on the size of the crack, and for macro cracks, we expect the displacement to be
well-approximated by the solution given by classical linear elastic fracture mechanics ex-
cept in small regions near the crack tips (boundary layers). Finally, using the Lax-Milgram
theorem and regularity afforded by the presence of the fourth order derivative, we prove that
there always exist a unique classical solution to the governing integro-differential equation,
and in contrast to using the Steigmann-Ogden theory, our model predicts bounded stresses
and strains up to the crack tips (see Theorem 4.4).

2 Kinematics and Field Equations

In this section formulate a general mathematical model for a Green-elastic three-dimensional
solid containing a boundary surface with strain-gradient surface elasticity. For planar refer-
ence surfaces, the form of surface elasticity reduces to that introduced by Hilgers and Pipkin
[20], and when the surface energy is independent of the surface covariant derivative of the
stretching, the theory reduces to that of Steigmann and Ogden [47, 48].

2.1 Kinematics

Let E3 be three-dimensional Euclidean space. We identify the translation space of E* with
R? via a fixed orthonormal basis {ei}?zl. Upon choosing an origin o € E*, we identify sub-
sets of E3 with subsets of R? via their position vectors: E3 3 p > p — 0 € R®. We define
the following operations for elementary tensor products of vectors in R,

(a1 ®a)b=(az-b)a,, (a1 ®a;Qaz)b=(asz-b)a,as,
(a1 ®ar®az)(b) ®by) = (a3 -b1)a; @ ax ® by,
(b1 ®br)(a1 ®ar®az) = (by-a1)b) ® ax ®as,
(a1 ®ar ®a3)[b; @ br] = (az - bi)(as - br)ay,
(a1 ®ax)[b1 @ br] = (ay - b1)(az - by),
(a1 ®ar®a3)[b; @ by ® bs] = (a; - b)(az - by)(as - by),
@ ®a) =a,®a;, (@R@a;®a) =a;@a;®a,,
(@®a;®a3)” =a, ®a; ®as.
These operations are extended to general second and third order tensors on R? by linearity.
Let B C E> be a domain with smooth boundary 95, the reference configuration of a
three-dimensional body, and let S € 05 be a closed surface with smooth boundary. Let

X : B— x(B) C E? be asmooth, invertible deformation of 3. We denote the current position
of the reference particle X € 3 by

x=x(X) =0 X, X*X), 1 (X)).
The deformation gradient F : R® — R? is the second order tensor field

dx!

F =
X

(X)e; ® e
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where e? := €q,a= 1,2, 3. We denote the left Cauchy-Green stretch tensor by C = F TF.
LetY =Y (8!, 62) be alocal parameterization of the reference surface S € d5. Then

y=50"6%=x({¥ 6", 0%)

is a local parameterization of the current surface x (S) C x (d5). The (local) tangent vector
fields on the reference and current surfaces are then given by

Y,Dt < TY‘Sa y,a = FYD( € TyX(S)v

where -, == 557

denoted by Y# and y# respectively and satisfy

The dual tangent vector fields on the reference and current surfaces are

Y‘ﬁ'YA,a:Sﬂa, y’ﬂ'.)’,a=5ﬂa-
We remark that we may also write
Yo=FY,

where F= Ffge; @ Yy = yf‘ﬁek QY= Yp® Y# is the surface deformation gradient.
The first fundamental forms for the reference and current surfaces are then given by

G=GuY*®Y" Gup=Y, Yy,
9=0usY*®¥". Gup=Y, ¥y
and we note that
Yo = (G—l)a/jy’ﬁ, Yy = (g—l)aﬁy'ﬂ

The Christoffel symbols of the second kind for the reference and current surfaces are denoted
by

Faﬂ(;:Y’a'Y'ﬂa, yaﬂ(?:y,a'y#%‘-
The left Cauchy-Green surface stretch tensor on S is the second order tensor
C:=FF=guY*®@Y"’

and the surface Green-St. Venant tensor is the second order tensor E = % (C—G). We assume
that the reference and current surfaces are orientable with unit normals to the reference and
current surfaces (locally) given by

N=|Y xY, 'Y xY, n=|y,; xy, 'y, xy,

respectively. The second fundamental forms on the reference and current surfaces are given
by

B=By,Y*®Y" By:=Y, N,

b=baﬁ)”a®)”ﬁ, baﬂ = Yap B
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The relative normal curvature tensor on S is the second order tensor K = K3V “ ® y#
given by

K=F'bF —B=[b,s —BulY*“®@Y".
As discussed by Steigmann and Ogden [48], E and K furnish local differences in length and

scaled extrinsic normal curvature between a given curve on S and the convected curve on

x(S), where ":= % Indeed, if Z(s) is a curve on S with unit tangent vector field T and

z(s) = x(Z(s)) is the convected curve, then the tangent to the convected curve is given by

t=1z = FT =FT. The stretch v of the convected curve is
v=t?—1=FT-FT—1=CT-T—1=2ET-T.

The extrinsic normal curvature of the convected curve is

k=bt-t=[t|?bFT-FT= (v + 1) " (FTbF)T,

and thus, the difference in scaled extrinsic normal curvature of the convected curve and the
original curve is given by

[tk — |T)’BT-T=KT-T.
The Levi-Cevita connection on S is denoted by V, so

1 1 s
VE=ZVC=2Vigy?“® YPRY?,

where
Vs9ap :=9aps — 0598 — ' 5900
For later use, we define the following third order tensor on S,
L=VE+ (VE)T — (VEM)T,

with components

1
Lags = E(Végaﬁ + VgGas — VaGps) = (V" s — ' p5) Qe
Physically, the tensor L (and thus VE) furnishes the rate of stretching of convected
geodesics, and more generally, it quantifies geodesic distortion, i.e. how convected geodesics

fail to be geodesics on x (S).® More precisely, we have the following.

Proposition 2.1 Let Z(s) : I — S be a geodesic on S with unit tangent vector field T = Z.
Then L yields the rate of stretching of the convected curve z(s) = x (Z(s)),

d
2L[T®T®T]=%|z|2. 2.1)

6We comment that the tensor L in this work and the tensor S := SYegY v QY ¥ ® Y'# that plays a prominent
role in [10-13, 45, 46] are related via Ly g5 = S"aﬂg\,g.
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Moreover, the convected curve z(-) is a geodesic on x(S) if and only if along the geodesic
Z(-), we have

LIT®T]=0. 2.2)

Proof To prove (2.1), we simply note that since Z is a geodesic, V1T =0 so

er= et
ds'* T ds

=VC[TR®TRT]+2CV{T-T
=VC[ITRTRT|=2L[TRTRTI.

We now prove (2.2). The convected curve z on x(S) has tangent vector field t = FT =
t*y , and acceleration vector field

a= (i" + y“ﬁ,;tﬂt‘s)y_u.
The acceleration is zero and z is a geodesic if and only if for each s € I,
Yu e Ty, X (S), u-al—, =0. 2.3)
We now show that (2.3) is equivalent to (2.2). We assume without loss of generality that
so =0, and we choose normal coordinates (9!, #2) centered at Z(0). Then for all o, 8,8 =
1,2,

Gpls=0 =8ap, Tpsls=0=0,

and there exist T', T2 € R with 8,4 T*T# = 1 such that Z(s) = ¥ (sT", sT2). In particular, we
conclude that

a— yﬂﬁgTﬁTBy.ﬂ.
Since F|z() : Tz0)S = T x (S) is an isomorphism, (2.3) is equivalent to
VU= UMY,le(()) S TZ(())S, FU - a|s:0 =0

<~ YU = UMY,M|Z(0) S TZ(O)S» gﬂauayuﬁgTﬁTal =0

s=0

<— VU= UHY.M|Z(0) [S TZ(Q)S, LURTR® T]‘S:O =0.

As an illustrative example, consider
S={(X",X%0)| X" €[a,b]l,X*€[0,7]} € B=[a,b] x [0, 7] x [0, 00),
and the deformation

(X', X2, X% = (e cos X2, X' sin X2, X%).
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Then

1
E= E(eZXI —D(e1®e+e:®e), K=0,

L=e2xl(e1®e1®el+ez®e1®e2+e2®e2®e1—e1®ez®e2).

The image of the coordinate curve X2 = d is a straight, radially outward traveling curve in
the x'x2-plane parameterized by X' € [a, b] with

Lley ®e Qe] =, Lle; Qe Qe ]=0.

In particular, the stretch is not constant along the convected curve. The image of the coordi-
nate curve X' = ¢ is the upper-half of the circle in the x'x2-plane centered at (0, 0) of radius
e¢. The convected curve is parameterized by X 2 € [0, 7], has constant stretch but nonzero
curvature relative to the convected surface (i.e., the x'xz—plane), and it satisfies

Lle;®e;®e]1 =0, Lley ®e; ® er] = —€*.
2.2 Strain Energy and Material Symmetry

In our mathematical model, a Green-elastic body B with strain-gradient elastic surface S €
0B is prescribed a strain energy of the form

CD[)(]:/ W(C)dV+/U(E, K, VE)dA, 2.4)
B s

where we omit listing the possible dependence of W on X € Band of U on Y € S. We note
that the strain energy is frame indifferent, i.e., it is invariant with respect to super-imposed
rigid motions.”

Although our main motivation for considering a strain-gradient elastic surface is when
it forms part of the boundary of a substrate 3, we will treat material symmetry of S inde-
pendently of that of 5. The notion of material symmetry for the energy density W of the
three-dimensional solid B is well-known, see [35, 50], so, we will limit our discussion to
that of S.

Consider a material point with reference position Yy € S. Our discussion of material
symmetry for the surface energy per unit reference area U at Y follows the framework
introduced by Murdoch and Cohen [33, 34]. Their theory was later advocated for and re-
formulated by Steigmann and Ogden [48] and Steigmann [45] using local coordinate pa-
rameterizations. We will follow their style of exposition, and unless specified otherwise, all
quantities in what follows are evaluated at Y.

Let A : E> — E3 be a rigid motion with deformation gradient R € SO(3) satisfying
A(Yo) =Y. For simplicity, we will limit our discussion to those R that fix the normal
vector N, RN = N; see [33, 34, 45, 48] for the more general theory. We define a second
reference surface S* = {Y*=1"'(Y) | Y € S}. It follows that Ty,S* = Ty, S, at Y, € S*
the unit normal N* to S* satisfies N* = N = RN, and

R:= R|TY05 . TYOS — TyOS

TThe fact that U (E, K, VE) is the most general form of a surface energy density depending on the first and
second surface derivatives of the deformation that is frame indifferent was shown for planar S by Hilgers and
Pipkin in Sect. 7 of [20] and for general, possible curved S by Steigmann in Sect. 2 of [45].
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is a rotation. A local parameterization on S* is given by Y* = v 6',6%) := 17" ()7(91, 0?)),
so then

Y,=RY',, Y*=RY", a=1,2,

andat Yy, Y , =RY",,Y*=RY" fora =1,2.

Let x : E* — 3 be a smooth invertible deformation of Euclidean space. Since a super-
imposed rigid motion does not affect the value of the surface energy, we will assume without
loss of generality that

xXYo)=YpandatY,, F:Ty,S — Ty,S.
Following [34] we will impose the stronger requirement that
xYo)=YpandatY,, F=F4Y ,Y*  + NQN. (2.5)

In particular, it follows that at Yo, F=F*gY , ® Y? and n = N = FN. The deformation
x () := x(A(-)) when restricted to S* has the same image as x|s, and in particular, the
convected tangent vector fields are the same,

9
T 90

0
Y= g X (1)

xXY)=y,.
Then the surface deformation gradients of x and x* at Y are related by
F=y,®Y*=y:®RY"*=FR’" = C=RC*R’.
The components of the first and second fundamental forms associated to S and S* satisfy
Gup=Y o Ypy=RY', -RY;=Y"  .Y;=G); = G=RG'R’,
Bus =Y op-N=RY", -RN*=Y* .N*=B;, = B=RB*R’,

and thus, E = RE*R” . Since b = bapy* ® yﬁ is the same for both deformations, we conclude
that the relative normal curvature tensors K and K* associated to x and x* satisfy at Y,

K = RK*R’.

Finally, since the components of the first fundamental forms associated to x (S) and x*(S*)
satisfy

9up = Yo Y =Yo Y5 = Uup>

we conclude that VE and V*E* at Y, satisfy

1
VE = EvsgaﬂY*“ ® Y’ﬂ ® Y'a

1
=5 VigRY“ @ RY*# ® RY**
— R[(V*E*)TRT]TRT.
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We denote the surface energy per unit reference area relative to S* by U*. For the surface
energy per unit mass to be independent of the reference surface used, we must have

U*(E*,K*, V'E*) = U(E, H, VE)
- U(RE*RT, RK*R’, R[(V*E*)TRT]TRT). (2.6)
We now view y also as a deformation of S*, but we denote its values by x,
IX)=xX), XeF,

and the associated kinematic variables relative to S* are denoted with an over-bar. We will
now derive relationships between E, K, V*E and E, K, VE.
We first note that since C = C, we immediately conclude that

E=-[(C-DY, Y4Y°@Y"’

[(C—DY, - Y4]Y**@Y*! =E. 2.7)

N = N =

Let

Grad C = gi’ e®e ®e,
a third order tensor on R3. The identity gos = CY 4 - Y g, the Gauss equations Y o5 =
'Y, +BqsN on S, and the symmetry of C imply that
Oups =CradClY o @Y g Q@Y 514+ CY 5 Y g+ CY - Y g5
=GradC[Y , QY s QY 51+ T'*459,8 + BusCN - Y g
+ T 5040 +BpsCN - Y .
By (2.5), we have CN = N, and thus, at Y,

1
VE=3GradC[Y . ®Y ;@ ) G- D E=D G

In particular, since C = C we conclude that
V*E = VE. 28

Finally, as shown in Sect. 6 of [48], we have

K=K. 2.9)

Inspired by Murdoch and Cohen’s extension of Noll’s theory of material symmetry, we
say that Y € S is properly symmetry related to Yy € S* if the mechanical responses to the
arbitrary deformation y are identical, ie.b

U(E,K, VE) = U*(E, K, V*E).

80ur use of “proper” is not to indicate that any other theory is improper. It is simply to indicate that we
are considering rigid motions R that fix the normal vector and induce a rotation R of the tangent plane
Ty, S* = TYOS .
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By (2.6), (2.7), (2.8), (2.9), this requirement leads to the following definition: the rotation R
is in the proper symmetry set of Y relative to S if for every smooth, invertible deformation
x : E? — E? satisfying (2.5), we have

U(E, K, VE) = U(RERT, RKR’, R[VETRT]TRT>. (2.10)

As in the case of the standard theory of Noll [35], one can verify that the proper symmetry
set of ¥ relative to S is a subgroup of the group of rotations of Ty,S. In the case that the
proper symmetry set of Y relative to S equals the group of rotations of Ty,S, we say that
the surface energy density U is properly hemitropic at Y.

2.3 Field Equations

Following [48], the field equations for the body B with strain-gradient elastic surface S € 08
are defined to be the Euler-Lagrange equations for the Lagrangian energy functional

Alx]=®[x]+ Vixl 2.11)

where V[ ] is the potential energy associated to the applied forces.” In this work, we assume
that the Gateaux derivative of the load potential takes the form

V:—/f-udV—/t-udA,
B S

where f is a prescribed external body force on B and ¢ is a prescribed boundary traction on
S.

Let x(-; €) be a one-parameter family of deformations of B such that x(:; €)lsp\s =
Xo(+), and denote

. d
" de

u:=x(;e).

9
€=0

Then u|5 vanishes to first order on d5\S. Using the chain rule and integration by parts we
have the classical identity

/WdVZ/ PN-udA—/DiVP-udV (2.12)
B B B
where P = P%' ® e, is the Piola stress with P, = fF—"f/ and Div P = (3ya P;*)e’. Using
the chain rule we have that ‘
/ UdA =/<T"‘ U+ M .u,aﬁ)dA, 2.13)
s s
oU oU
= ek, MP .= v ek
ayk, IY'up

We define surface stress vectors P* by

P =T — G~ A(G'’MP) 4,

9See [45] for the case of a stand-alone elastic surface with no substrate.
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and use (2.12), (2.13) and integration by parts to obtain the Euler-Lagrange equations asso-
ciated to the Lagrangian energy functional (2.11),

DivP+ f=0, onB,
PN =G "*(G"*P*),+t, onS, (2.14)
X(X) = xo(X), ondB\S.

3 Small Strain Models

Our principle motivation for modeling an elastic solid with strain-gradient elastic boundary
surface is the study of brittle fracture. In this setting (to be discussed more in the follow-
ing section), the surface S possessing strain-gradient surface elasticity will be the crack
front and strains will be linearized, motivating the introduction of a small-strain surface en-
ergy density. In this section, we present a model uniform, properly hemitropic, small-strain
surface energy density that requires the same material constants (with the same physical
interpretations) as found in the narrower Steigmann-Ogden theory. In contradistinction, the
surface energy incorporates the surface’s resistance to geodesic distortion and satisfies the
strong ellipticity condition. Moreover, the surface energy density may be viewed as a geo-
metric generalization of that introduced and advocated for by Hilgers and Pipkin in [20, 22].

3.1 Hilgers-Pipkin Surface Energy

In what follows indices are raised and lowered using the reference metric G, but we note
that y** are the dual vector fields to y , and are not given by y. ﬁ(G*l)"‘ﬁ . For the surface S,
we propose the uniform, properly hemitropic surface energy density

As
U=Z(EW)"+ 1B + %[(K%)z + (g—l)””LW“Lvﬁﬁ]
+ n[KaﬁK"‘ﬁ + (g‘l)’”LﬂaﬁLv“ﬁ]. (3.1

Here X, us, ¢ and n are positive numbers that can be interpreted as the surface Lamé
constants and pure bending moduli.
In the case that S is contained in a plane with flat coordinates (6 '.6%), we have

1
Bop = 5(Gap = Sup):  Lyuap =¥ 0" Yap-

2
Vap = Luapy ™ + Kypn, Zva =L "y" +K%n,
a=1

2
= (K*)* + ()L Log?,

2
‘ 2 Y v
a=1
2

Z |y.a/3|2 = KOtﬂKaﬂ + (g_l)ﬂvl—uaﬁl—vaﬂs
o,f=1
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and (3.1) becomes

2
2
0 Y 1yl (32)

2
As
U= ?(Eaa)z + /'LsEaﬁEaﬁ + %‘Zy,omt
a=1 a,p=1

Up to a choice of constants, the surface energy density (3.2) is precisely that introduced
by Hilgers and Pipkin in [20], and therefore, we refer to (3.1) as a small-strain Hilgers-
Pipkin surface energy. In [20, 22], Hilgers and Pipkin advocated for the use of (3.2) over the
classical surface energy

As
U= 2 (6% + pEugE + %K“a KK

2
2
0 ) ey )’ (3.3)
a,f=1

2
As ¢
= 2(E%)* + 1 EqpE™? —‘ :
5 (Ela)” + 1sBopBY + 2 aE:](n Y aa)

on the basis of (3.2) being analytically simpler than (3.3). Indeed, with little effort one sees
that for (3.2),

T = (OE7, 8% + 2, EF)y 4, (3.4)

Mo — ¢ (Z yw)aaﬂ +20Y o5 (3.5)
Y

Moreover, it is simple to see that (3.2) satisfies the strong ellipticity condition,

V(ar, a) € RA\{(0,0)}, b e R\{0}, agazb - (C“ﬁsyagayb> >0, (3.6)
2
Ccohré .= iei ®el,
8y,la/38y,]8y

while (3.3) does not (see (3.7) and (3.8) below). Physically, this may be viewed as a conse-
quence of the surface energy (3.1) incorporating the surface’s resistance to geodesic distor-
tion via also including dependence on the tensor L.

In general, for (3.1) we have

AU U 9Bz, U 3Ky, | AU dlgy
8y,a 8Eﬂy By’a 8K5v 8y'a 8Lﬂy3 ay'a ’

3

Using

9Ez, 1

By, §<8aﬂY,y +5°‘yy,,s),

K o 0K, 1
=—y v, = (8" Sﬂv + 50(\)8/3 n,
ay,ot v " ay,aﬁ 2( " #)

al—ﬂyu
9y«
oLy o
ay,aﬁ

= aaﬁyyp, - (Savy,ﬁ + Saﬁy,v)r‘}y}u

1
= E(Sausﬁa + 5“05511).)’),,
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we readily compute that
T = [AsE“M(G’I)“V 2, EY
— (@) (@) €L’ Lo + 20Luso ) ],
—[eRen@ s+ 20Ky, .
+[e@ e @ + 206 L .
—e[@ L T + LTy
— 2@ LT+ @ LT |
and
M — [; K", (G~ + 2nK“ﬂ]n
+ o@D 7L @ + 20y L
To see that the strong ellipticity condition is satisfied for (3.1), we compute
C = (¢@ )@ + @G + @ )G ),
and thus, for all (a;, a;) € R*\{(0, 0)} and b € R3\{0},
agagh - (caﬁﬁyaaayb) = (¢ +2m)(G ) a,a5 (b2 > 0. 3.7
For the classical surface energy (3.3) of Steigmann-Ogden type, we have
C = (¢@ )@ + @)@ + @ )G )@,
and thus, for all (a;, a;) € R? and b € R?,
acagh - (€ as8,b) = (¢ +20)[(G ) Paa (n - b)*. (3.8)

In particular, (3.8) shows that the surface energy (3.3) satisfies the associated Legendre-
Hadamard condition (see [15, 21])

V(ar, a) € RA\((0,0)}, b € R\{0}, aqazh- (C“‘%Va,;ayb) >0,

but not the strong ellipticity condition since the right side of (3.8) is O for b # 0 and orthog-
onal to n.

3.2 Parameter Values

Viewing S as the midsurface of a flat, thin, uniform, isoptropic strip with thickness & and
Lamé parameters A;, u;, the works [22, 43] suggest the values

2)\41/~Ll 2)\.1#1 I’l3 ]’l3

s = h’ s = h, = -, = — M. 3.9
ot 2 s = 4 ¢ w2 24 n= S (3.9
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For (3.9), the Hilgers-Pipkin surface energy (3.1) agrees with Koiter’s classical shell energy
[24] for homogeneous plane strain and pure bending deformations of a plate.

We note that Koiter’s shell energy has been derived as the leading order model in small
thickness from classical nonlinear elasticity (see [22, 43]), while, to the author’s knowledge,
(3.1) has not. Moreover, most work deriving surface energies as a small thickness approxi-
mation to a three-dimensional strain energy concerns materials having reflection symmetry
with respect to a midsurface, and the resulting models do not contain strain-gradients. A
notable exception is the work [42] that derives surface energies from parent strain ener-
gies exhibiting aribrary symmetry, and materials without reflection symmetry yield models
that do include strain gradients. Deriving the specific Hilgers-Pipkin surface energy (3.1) or
related strain-gradient surface energies from three-dimensional nonlinear elasticity or strain-
gradient elasticity will be addressed in future work.

3.3 Linearized Equations

We now compute the linearization of (4.3) about the reference configuration. For the sub-
strate, we adopt a classical quadratic, isotropic energy density

Ao y
WZE(E,) +ME,‘jE'/.

Here indices are raised using the flat metric on R3, and A and p are the Lamé constants for
the three-dimensional solid. For the surface S, the surface energy density is given by (3.1).
Let u : B— RR? be a displacement field such that ulyss =0 and

2
sup[|u(X)| + |Gradu(X)|] + 37 suplugs (V)] <. (3.10)
XeB @, p=1 YeS
Assume that the body force f, boundary traction ¢, and Dirichlet condition x, satisfy
[f1=0(@0), [t/=0(0), I[xo—1dl=0().

If x(X) =X +u(X), then E;j = &;; + O(83), Eop = €ap + O(83), and Ko = ko + O (82)
where

_ 1 du ou — 06
5ij—§(ei'ﬁ+ej'ﬁ)— (80),
and on S,
1
€ap = E(Y,a ] + Y.ot . u,,B) = 0(80), ko(ﬁ =N- U = 0(80)7

see (3.12) in [48]. Now we observe that Lygs = logs + 0(8(2)), with

lops =Y o U gs +Y ps-u o —T"ps (Y,c( ‘u,+Y, - u,a)
= Y,a . u:ﬂé + Y;ﬁB Uy
=Y - upgs+ (N-uy)Bgs = 0(d).
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Then T* =t* + O(83) and M*# = m*# + O (8}) where
= [Axe“M(G’l)”‘V + 2Mxeay]y,y _ [;kﬂﬂrau“ + 2nk8”r“5U]N,
+ [wv“B% 2 B&,]N . [;Wr%a n 2n|ﬂ5“r%a]yﬁ,
m = ek (@) + 20k N + [, @) 2Py,

The linearization of (2.14) about the reference configuration is obtained by omitting the
0(83) terms from P, T and M*?, yielding

Dive + f =0, onB,
oN=G""*(G"*p") 4 +t, onS, (3.11)
u=0, ondB\S,

where ¢ = A(tre)I + 2ue and p* =t — G~/*(G"?m“F) 4. We observe that solutions to
the linearized equations (3.11) are critical points of the energy functional

AL[u]=/B[%<e",->2+ue,-,-e"’]dv—/Bf~udv+L[%(e“a)2+u.vease“ﬂ]d5
+[5[%<(kaa)2+|uaa|ﬂﬁﬁ>+U<kaﬂk“ﬁ+hwﬁ|“0‘ﬁ>]dA—/:St~udA

over the set of u satisfying u|;zs = 0.
In what follows, g,/ =8*g , and g*# = §**§Pg , . For the case of the classical
Hilgers-Pipkin surface energy (3.2), we see from (3.4) and (3.5) that

= (A€, 8% +2u, )Y 5, mP =¢8%u " + 2nuf
Writing u =u+ N =u"Y, + u’N, it follows that (3.11) becomes
Dive + f =0, onB,
ON = j,u* + (g + U o, Y — (C +20)3, 05w +¢, onS, (3.12)
u=0, ondB\S.

We remark that if B is bounded with a sufficiently smooth boundary, S # 95, S has suffi-
ciently smooth boundary, f € L%3(13), and ¢ € LP(S) with p > 1, then (3.12) has a unique
weak solution in an appropriately defined energy space (see Theorem 2 in [8]).

4 Mode-lll Fracture Problem

In this section, we apply the linearized theory (3.12) to the problem of a brittle infinite plate,
with a straight crack C of length 2¢, under far-field anti-plane shear loading o. As discussed
in Sect. 1 and in contrast to ascribing either a quadratic Gurtin-Murdoch or Steigmann-
Ogden surface energy (3.3) to the crack fronts, the use of (3.1) yields a model that predicts
bounded strains and stresses up to the crack tips (see Theorem 4.4).
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Fig.2 Schematic of the mode-III problem with the crack C appearing in blue

4.1 Formulation and Governing Equations

We consider a brittle, infinite plate under anti-plane shear loading, lim,>_,, ., 013 = 0 and
lim,>_, ., 023 = o, with a straight crack C = {(x!,0, x?) | x! € [—¢, €]} of length 2¢ (see
Fig. 2). For anti-plane shear, the displacement field takes the form

u(x',x% 2% =ux', x)es,
Then the only nonzero components of the stress are
O13= {1, 023 =UU). 4.1)

By the symmetry of the problem, u can be taken to be even in x' and odd in x?, so we will
focus only on the strain and stress fields for x*> > 0. The governing field equations are (3.12)
on B={(x',x?, x%) | x? >0} with S = {(x',0,x%) | x! e [—¢£,€]},t =0and f =0.

We define dimensionless variables

1 2 3 1
X=—, y=—, z=x—, w(x,y,z):—(u(xl,xz,x3)—sz). “4.2)
y4 £ nw

Then the field equations take the dimensionless form

Aw(x,y)=0, y=>0,

—wy(x,0) = adwy (x,0) = Bwirrr(x,0) +y, xe(=1,1),
w(x,00=0, [x[>1,

w,(£1,0) =0,

(4.3)

with the decay condition lim,_, ., |[Vw(x, y)| = 0. We note that the boundary conditions
w,(£1,0) = 0 imply that the crack opening is cusp shaped rather then blunted (see also
Fig. 3 and Fig. 4). The dimensionless parameters «, 8 and y are given by

_t+2p o

a=—>0, f="—73=>0, y=—, 4.4)
- iz

and in particular, we see from (4.4) that the behavior of the displacement w depends on the
length of the crack, ¢. For macro cracks satisfying f < o < 1, we expect w(x,0) to be
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0.05 T T T T
-B=1
..-.ﬁ = 5
oo4-  _gEE= —_g =10
0
0.03
e
0.02
0.01

Fig.3 Numerical solutions for the equivalent formulation of (4.7) as a Fredholm problem (4.12). The param-
eters (8, «, y) range over (1,1, 1), (5,1,5) and (10, 1, 10). For y = B and 8 >> 1 =~ «, the opening profile is
well approximated by the limiting opening profile foo (x) = ﬁ a=x»%on[-1,1]

well-approximated by the singular, rounded opening profile from the classical linear elastic
fracture mechanics except in small regions near the crack tips (boundary layers). See Fig. 4.

We remark that in using the Steigmann-Ogden surface energy (3.3) rather than (3.1), the
boundary conditions at y = 0 are replaced by

—wy,(x,0) =aw,(x,0) +y, xe(=11),
4.5)
w(x,0)=0, |x|>1.

One may view this loss of higher order derivatives in the boundary conditions as a con-
sequence of the fact that the Steigmann-Ogden surface energy does not satisfy the strong-
ellipticity condition (3.6): for anti-plane shear, b = u(x', 0, x*) is orthogonal to the surface’s
normal n = —e, (see (3.8)). As discussed in [23, 51], the boundary conditions (4.5) do not
lead to a model predicting bounded strains up to the crack tips x = %1, i.e., the displacement
field satisfies

sup |[Vw(x1, y)| = oo.

y>0
We see that (4.3) is the system of Euler-Lagrange equations for the energy functional

1 oo oo 9]
adwr=3 [ [ vwepaxay+ [ (S 0f + S o)ax
0 —00 -

o0

-y /OC w(x,0)dx

9]

defined for w with Vw € L*({y > 0}), w(-,0) € H*(R) and w(x,0) = 0 for all |x| > 1.
Motivated by this observation, we define the Hilbert space H to be the completion of
C2((—1, 1)) under the norm

1% = / (@' + B1f"()?)dx.

oo
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-B=01
3=0.01
—-3=0.00001
—3=0.000001

X
0.5 T T T T ——
= 3=0.1
=001
04 —-3=0.00001 F
03~
02~
0.1
0
0.1 I | | |
-1 -0.99 -0.98 -0.97 -0.96 -0.95 -0.94 -0.93 -0.92 -0.91 -0.9

X

Fig. 4 Numerical solutions for the macro-crack regime B < o < 1. The parameters (8, «, y) range over
0=t 1071, 1, (1072,1071, 1), (1075,1072,1) and (107%,1073,1). For B < a < 1, we expect the
crack opening f(x) to be well-approximated by the singular, rounded opening profile predicted by classi-
cal linear elastic fracture mechanics away from the crack tips where f’(Z1) = 0 (and the profile is cusped)

It is straightforward to verify the following facts using the fundamental theorem of calculus
and Cauchy-Schwarz inequality:

e (Sobolev embedding) If f € H then f € C''*"(R) and f(x) =0 for all |x| > 1, and for
all § € [0, 1/2), there exists a constant A > O depending on «, 8 and §, such that for all
feH,

Il fllcry @y < Al flla.

e f ¢ H if and only if f € H*(R) and f(x) =0 for all |x| > 1. Moreover, there exist
b, B > 0 depending on « and 8 such that for all f € H,

bllflle = f w2y < Bllf - (4.6)

The problem (4.3) can be reduced completely to a problem on the boundary by using the
Dirichlet-to-Neumann map —w, (x, 0) = Hw, (x, 0) where H is the Hilbert transform

f(s) ds.
)

X

feH.
T

1 o0
Hf(x)= —p.v./
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Then finding w with Vw € L2({y > 0}) and w(-,0) € H satisfying (4.3) is equivalent to
determining w(-, 0) =: f € H satisfying!?

ﬂf////(x)_O[f”(x)_i_’].Lf’(x):]/7 XG(—L 1) (47)

By using the Plancherel theorem, the Fourier representation of the Hilbert transform (see
(4.15)), and (4.6), we have for all f € H,

”Hf/”Hl(]R) = ”f/”Hl(]R) < fllzw < Bl f & (4.8)

Definition 4.1 A function f € H is a weak solution to the integro-differential equation (4.7)
ifforall g e H

/ [ﬂf”(X)g”(X)+Otf/(X)g/(X)+Hf’(X)g(X)]dx2/ yg)dx. (4.9)

oo oo

We remark that since f, g € H, the integrals appearing in (4.9) are in fact over the interval
(—1,1).

A function f € H is a classical solution to (4.7) if f € C*((—1,1)) N H and f satisfies
(4.7) pointwise.

We note that by (4.8) and Cauchy-Schwarz, (4.9) is well-defined for each f, g € H.
4.2 Solution of the Integro-Differential Equation

We now establish that there exists a unique classical solution to (4.7), and the solution’s
behavior is consistent with the linearization assumption (3.10). We denote the following
Green function

5 (= DX+ D2(1 +2x — 27 —x7) T e[—1,x],

G = [ﬁ(r D2+ D21 42t —2x—x1) TN 1],

satisfying G xr(x, T) =8(x — 1), G(£1,7) =0, G, (£1, 7) = 0. We note that G(x, 1) =
G(r,x)forall ,x e[—1,1], G € C?>([—1, 1] x [—1, 1]) and fjl G(x,1)dt = L (1 —x»)2
In particular, we have for all f € H,

1
/ G (x, 1) f"(v)dt = f(x). (4.10)
_1

Lemma 4.2 A function f € H is a weak solution to (4.7) if and only if f satisfies

1
,Bf(x)-i-/ G(x,r)(—af”(z)+Hf/(r))dz:;—4(1 —x?%, xe[-1,11. 4.1
-1

Proof Let h € L*(R) with h(x) = 0 for all |x| > 1, and set

) [ G, Dh(mydr  if x| <1,
8 =10 if x| > 1.

100nce f is found, w is determined on the upper half plane using the standard Poisson kernel for the upper
half plane.
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Since G € C*([—-1,1] x [—, 1,1]), G(£1,7) =0, and G,(£1, ) =0, g is twice continu-
ously differentiable on R\{%1} and continuously differentiable on R with

1
g (x) = xq<1y(x) f | G, (x, T)h(r)dr,

1
g'(x)= X{lefl}(x)/ G, (x, T)h()dT,
-1

where xg is the indicator function of a subset E C R. In particular, we conclude that g €
H*(R) and thus, g € H. Inserting g into (4.9), integrating by parts in the second term and
using that g(£1) =0 yield

1l
ﬂ/ / G, (x,7) f"(x)h(t)dtdx
1J1

1 1
4 / / G (. T)(—af” () + Hf Ch(T)drdx
—1J-1

1 pl
=y / / G(x,t)h(t)dtdx.
—1J-1

Interchanging the order of integration, using the symmetry of G and relabeling the integra-
tion variables lead to

1 p1
ﬂ/ / G (x, ) f(T)dT h(x)dx
1/
1l
+/ / Gx,)(—af"(t) + Hf (t))dt h(x)dx
—1J-1
1
_ Y o4 2
_[l 24(1 xX“)h(x)dx.
Finally, by (4.10) we conclude that
1 1
[ oo+ [ Ganear@+us @ | hwds
-1 -1
1
:/;1 2)/—4(1 —xH2h(x)dx,

for all 2(x) € L*>(R) with h(x) =0 for all |x| > 1, proving (4.11).
Conversely, if f € H and (4.11) holds, then for all g € H, we have

00 1 1
ﬂ/ f”(X)g”(X)dx:/I/IGxx(x,f)(af”(f)—Hf'(f))g”(X)dx

1
+f %(3x2 —1)g"(x)dx.
—1
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We again interchange the order of integration and use integration by parts and fjl G (x,
7)g" (x)dx = g(7) to conclude that

1 1 1
/ / Gxx(x,t)(olf”(t)—Hf/(t))g”(X)dX+/ %(3)62—1)5’”()6)61)6
—1J-1 -1
1 1
=/ (af”(r)—“rlf/(r))g(r)dﬂr/ yg(x)dx
—1 —1

1 1
= —/ (af'(x)g'(x) + Hf'(x)g(x))dx + / yg(x)dx
—1 -1
This proves f € H satisfies (4.9) and concludes the proof of the lemma. O

Via integration by parts and straightforward computations, we conclude from Lemma
4.2 that the crack opening profile f must satisfy the following Fredholm integral equation
of the second kind (4.12). We will show in Theorem 4.4 that this equation is uniquely solv-
able for arbitrary «, B > 0 and y. We remark that since the kernel extends to a continuous
function on [—1, 1] x [—1, 1] (the singularities are removable), the numerical computation
of solutions is relatively straightforward via the Nystrom method with the trapezoidal rule
to approximate the integral (see Fig. 3 and Fig. 4).

Corollary 4.3 A function f € H is a weak solution to (4.7) if and only if f satisfies the
Fredholm equation

1

ﬂf(x)—i—/ K(x,s)f(s)ds=2y—4(1—x2)2, xe[—1,1], 4.12)
-1
where K (x,s) = —aGg(x,s) + %p.v. _11 %dt,

— 3 —D*Q2s+xs+1) s€[—1,x],

Gss(xss):!_i(x+1)2(_zs+xs+1) SG[X, 1]1

and

1 ' G (x, 1 1
—p.v./ ﬁdr:—(sx—l)(xz—1)+—(s—x)210g|x—s|
T . S—T 4 2w

— é(x — 1)2(—x +2s +sx)(1 4 s)log(1 +s)
— L()c +D%(x =25 +sx)(1 — s)log(1l —s).
8

Theorem 4.4 There exists C > 0 depending on a and B such that the following hold. There
exists a unique classical solution f to (4.7), and f satisfies

1 fllcaqrapy S Clyl (4.13)

Moreover, the displacement field w(x, y) = ffooo Py(x — ) f(s)ds, where Py(-) is the Pois-
son kernel for the upper half plane, has bounded stresses and strains up to the crack tips:

w! llollcqyzon + lwlergy=op < Cly I 4.14)
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Proof In what follows, C will denote a positive constant depending only on « and 8 that may
change from line to line, and we denote the Fourier transform and inverse Fourier transform
by

fe = / Feoe e dx, - f) = / F&)e " de.
‘We recall that

F1& =2mi (&), HfE) = —isgn(®) f(&), (4.15)

the latter relation following from the Fourier representation of w on the upper half plane
(see (4.17)).
We define a bilinear form B(-,-): H x H — R by

B(f, g)=/ [ﬂf”(X)g”(X)+Oéf/(X)g/(X)+Hf/(X)g(X)]dx, f.geH.

By Cauchy-Schwarz, (4.8), and (4.6) we conclude that for all f, g € H,

IB(f. )l <A+ B)IIfllulgln.

so that B(-, -) is a bounded bilinear form on H. Moreover, by the Plancherel theorem and
(4.15), we have for all f € H,

/ HF (0 f ()dx = / 27 |€ |1 £ ) 1PdE = 0.

Thus, the bilinear form is coercive. Since for all g € H,

o]
[ x| < wilgheqra < vialghs
—0o0

the classical Lax-Milgram theorem implies that there exists a unique weak solution f € H
to (4.7), and moreover,

I flle < Alyl. (4.16)

To prove (4.14), we express w via the Fourier transform,

w(x,y) = / ” e VBl 2TixE £y 4.17)

o0

Since f € H C H?>(R), we have

f(l +1ED'F @) PdE < Coll 12, < CIFII.
Thus, by Cauchy-Schwarz

lw(x, )|+ Vw(x, y)l

5/ (14 2716 WD) f &) de
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<23 eravienar) ([ avienifera) "

<Clflla =Clyl. (4.18)

The bound on 12~ ' then follows immediately from (4.18), (4.2) and (4.1).
We now show that the weak solution f is a classical solution, and (4.13) holds. By a
density argument in H, we have that f_ll G, t)(af"(r) — Hf'())dt € H3([—1, 1]) with

k

1
I k/ G(x, ) (af"(r) = Hf'(0)dr

=/ PG (x, D (af"(r) —HSf (t)dt, k=12,
-1
3

1
I 3/ G(x, ) (af"(r) = Hf'(1)dT

=/ 1(2—1)(t+1)2(06f”(t)—Hf/(T))dT
-1

1
- f D@~ D2af ()~ 1 (). @.19)

By Lemma 4.2, we conclude that f € H3*([-1,1]), and by (4.11) (4.19), Cauchy-Schwarz,
and (4.16) we have

I N2qoray < CUF 2w + IHf 2@ + 1D
<CUfllu+1yD) =Clyl. (4.20)

Moreover, by (4.16), (4.20) and the fundamental theorem of calculus, f € C?([—1, 1]) with
1 fllczqr1py = Clyl. 4.21)
By (4.9) and integration by parts, it follows that for all g € C°((—1, 1)) C H,
1 1 1
/ S ()¢ (x)dx = E/ [—af”"(x) +Hf'(x) — y1gx)dx,
-1 -1

and, thus, f € H*(—1,1]) and
Bf"(x)—af'(x)+H[f (x) =y, forae xec(-1,1). (4.22)

Then by (4.22), (4.21), and the fact that # f' € H'(R) — C(R), we conclude that " ¢
C([—1,1]) and

I Neq=11m) < C<||f||c2([—1,1]) +IH Neq-11p + |V|)
= (IS Ny + 171)

<C(Ifllu +1v1) = Clyl. (4.23)
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By (4.20), (4.21) and (4.23), it follows that f € C*([—1, 1]) is a classical solution to (4.7)
and (4.13) holds. O
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