Trends in Biochemical Sciences

Forum

Fine-tuning phosphatidic acid production for optimal plant stress responses

Qiuwen Gong¹, Shuaibing Yao^{2,3}, Xuemin Wang^{2,3}, and Guotian Li^{1,*}

Phosphatidic acid (PA) is involved in biotic and abiotic stress responses in plants. Here, we summarize quantitative lipidomics and real-time imaging used in PA studies and highlight recent studies of diacylglycerol (DAG) kinase (DGK) 5, an enzyme involved in PA biosynthesis, facilitating fine-tuning PA production for optimal stress responses in plants.

PA metabolism

PA, the simplest phospholipid, is a component of biological membranes and acts as a second messenger in multiple signaling pathways [1]. PA production is mediated by multiple biochemical routes: it can be biosynthesized de novo through lysophosphatidic acid acyltransferases (LPAATs) in the glycerol 3-phosphate pathway and can be produced through the phosphorylation of DAG catalyzed by DGKs and the hydrolysis of phospholipids, such as phosphatidylcholine (PC), catalyzed by phospholipase Ds (PLDs). By contrast, PA can be converted back into DAG bv specific phosphohydrolases (PAHs) and nonspecific lipid phosphate phosphatases (LPPs), and cytidine diphosphate DAG (CDP-DAG) by CDP-DAG synthases (CDSs), respectively. CDP-DAG is the precursor of multiple phospholipids, including phosphatidylinositol and its derivatives, phosphoinositides. In arabidopsis (Arabidopsis thaliana) leaf, PA accounts

for approximately 2% of all phospholipids, phosphatidylserine (PS) about 1%, and all phosphoinositides less than 1% [2]. Despite the low abundance, PA plays an important role in plant stress signaling and responses, and its content fluctuates under various stress conditions [1].

Enabling technologies for PA studies

The cellular PA level is guite low, about 50–100 µM in arabidopsis plants [3], but it can be quickly produced or removed by its metabolic enzymes in various stress responses. Therefore, cellular PA functions dynamically. In other words, quantifying PA at cellular and subcellular levels is critical to elucidate PA's action in the plant cell. Single-cell lipidomics can be used to analyze diverse phospholipid species and their relative abundance in individual cells [4]. Single-cell lipidomics coupled with single-cell transcriptomics will be powerful in precisely dissecting genes involved in PA metabolism (Figure 1). Additionally, PA content varies in the different cellular organelles. Using subcellular lipidomics, PA content in subcellular compartments, like nuclei [1,5], can be analyzed.

Real-time detection and quantification of PA changes in situ are key to our mechanistic understanding and subsequent engineering of PA metabolism-related genes. Lipid biosensors containing specific lipid-binding domains are often used to measure the spatiotemporal dynamics of phospholipids in vivo [1,2]. The PA biosensors based on a PA-binding motif from the yeast SNARE protein Spo20p are the first and most widely used [6], and the newly ratiometric PA biosensor PAleon, containing a PA-binding domain sandwiched between the donor and acceptor of the fluorescence resonance energy transfer (FRET) system, can monitor PA concentration changes in living plant cells [3,7,8] (Figure 1).

PA and DGK5 in cellular stress responses

With advanced technologies, recent work demonstrates that PA dynamics mediated by DGKs and PLDs is important for responses to biotic and abiotic stresses. Reactive oxygen species (ROS) play a vital role in plant immunity against pathogen invasion, and PA production mediated by DGKs is associated with ROS signaling [9,10], but how PA levels are fined-tuned in plant immune responses remains elusive. Kong et al. recently uncovered one mechanism for regulation: PA binds to and stabilizes respiratory burst oxidase homolog D (RBOHD), a NADPH oxidase, decreasing its ubiquitination to promote ROS production in arabidopsis [8]. The study further showed that PA production from DAG on immune elicitation is requlated by the differential, dual phosphorylation of DGK5 by Botrytis-induced kinase 1 (BIK1) and mitogen-activated protein kinase 4 (MPK4) (Figure 2). BIK1 phosphorylates DGK5 at Ser506 and increases DGK5's activity, whereas MPK4 phosphorylates DGK5 at Thr446 and suppresses its activity. Additionally, they found that DGK5-mediated PA production is involved in both basal and effectortriggered immunity. In another study, Qi et al. observed that one of the transcripts of *DGK5*, *DGK5* β , instead of *DGK5* α that encodes proteins lacking the calmodulinbinding domain, mediates PA production under treatment with chitin, a fungusassociated molecular pattern [7]. DGK5βgenerated PA also enhances RBOHD stability by suppressing its vacuolar degradation (Figure 2). Taking these findings together, DGK5-mediated PA production contributes to resistance to biotic stresses such as bacterial and fungal pathogens.

PA is also involved in plant responses to abiotic stress, including drought, salinity and freezing. The plant hormone abscisic acid (ABA) is crucial to plant abiotic stress responses, and ABA DEFICIENT2 (ABA2) is a key enzyme in the major ABA

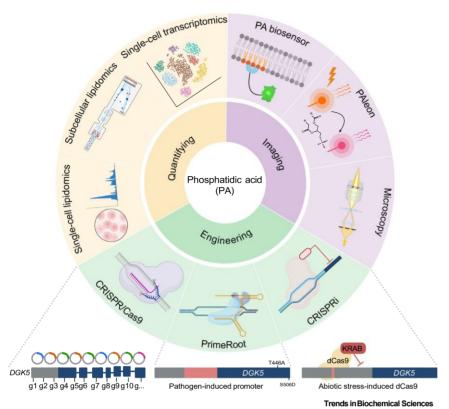


Figure 1. Technologies and tools that facilitate studies and fine-tuning of cellular phosphatidic acid (PA) production for optimal stress responses. Detection and quantification of PA *in situ* enables mechanistic studies of PA dynamics. Single-cell and subcellular lipidomics quantify PA content at the single-cell and organellar levels. Advances in lipid imaging enable us to observe cellular PA changes *in situ*. PA biosensors, based on the yeast SNARE protein Spo20p, are the first and most widely used PA sensors. The ratiometric biosensor PAleon, coupled with advanced microscopy techniques, facilitates the study of PA dynamics. Various genome-editing technologies are capable of genetic engineering of *DGK5* for fine-tuning PA production, facilitated by stress-inducible *cis*-elements identified by single-cell transcriptomics. CRISPR/Cas9 can be used to optimize the coding region and the promoter of *DGK5*. PrimeRoot enables precise insertions of large DNA fragments into plant genomes, and with PrimeRoot an optimized allele of *DGK5* can be engineered into plants. The CRISPR interference (CRISPRi) system, containing a catalytically dead Cas9 (dCas9) fused with the Krüppel-associated box (KRAB) repression domain, can be used to target key *cis*-elements in the promoter of *DGK5* to downregulate its expression. To achieve optimal plant stress responses, coordinated genetic engineering of *DGK5* is needed.

biosynthesis pathway. A new study shows that DGK5 binds to ABA2 and generates PA to suppress ABA2's activity as well as promote ABA2's nuclear sequestration [5] (Figure 2). The results indicate that DGK5-mediated lipid phosphorylation suppresses ABA biosynthesis and negatively regulates arabidopsis's response to abiotic stress, including drought and high salinity. It is also reported that the arabidopsis *dgk5* knockout mutant showed

improved tolerance and decreased PA production in response to freezing stress [11].

Spatiotemporally fine-tuning PA production by engineering *DGK5* may yield optimal plant stress responses

Cellular PA dynamics is regulated by multiple enzymes encoded by many different genes [1]. Here, we focus on *DGK5* engineering for PA production to achieve optimal stress responses in plants. With detailed biochemical studies of the role of DGK5 in PA production and cellular stress responses [5,7,8], we learn that DGK5 is involved in a tradeoff in the response to abiotic and biotic stress conditions. A tradeoff between two traits is not uncommon in plants. Another example is the immunity—growth tradeoff, in which the energy balance tilting towards one causes loss in the other.

One of the strategies to break the tradeoff is to use genome editing to fine-tune gene function. For example, from a rice mutant collection, Sha *et al.* identified a mutant named *rbl1*, which shows robust immunity but a severe yield penalty, a typical immunity–growth tradeoff [12]. The causal gene *RBL1* encodes a PA-metabolizing enzyme converting PA into CDP-DAG. Through multiplexed genome editing of *RBL1*, an optimal allele named *RBL1* $^{\Delta 12}$, harboring a 12-bp deletion in the coding region, was obtained. *rbl1* $^{\Delta 12}$ shows

broad-spectrum disease resistance without affecting the yield, breaking the immunity-growth tradeoff [12]. Similarly, we believe that targeted multiplexed mutagenesis mediated by genome editing can be applied to DGK5 to fine-tune its function to achieve both abiotic and biotic stress resilience, or at least to achieve resilience to one stress without negatively affecting the other (Figure 1). More efficiently, we can use promoter editing in fine-tuning the expression of *DGK5*, the consequence of which can be more predictable, as cis-elements in the promoter and their effects on gene expression are readily predictable with advanced bioinformatic tools [13].

Plant stress responses need to be spatiotemporally regulated to achieve optimal outcomes. Stress-induced or -suppressed expression of *DGK5* is one such strategy. For example, we can use a pathogeninduced promoter to drive an engineered *DGK5* allele that mimics the BIK1-

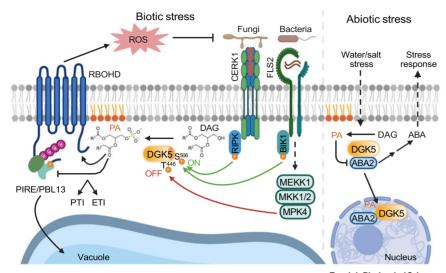


Figure 2. Diacylglycerol (DAG) kinase 5 (DGK5) and phosphatidic acid (PA) for abiotic and biotic stress responses. Under biotic stress, bacterial flq22 and fungal chitin are recognized by receptors FLAGELLIN SENSING 2 (FLS2) and chitin elicitor receptor kinase 1 (CERK1), respectively, which activate BOTRYTIS-INDUCED KINASE 1 (BIK1) and RPM1-induced protein kinase (RIPK). Phosphorylated BIK1 and RIPK activate DGK5 by phosphorylating Ser⁵⁰⁶ to produce PA, but phosphorylated mitogen-activated protein kinase 4 (MPK4) induced by bacterial infection suppresses DGK5 activity by phosphorylating Thr⁴⁴⁶. The dual phosphorylation of DGK5 regulates PA homeostasis. PA binds to respiratory burst oxidase homolog D (RBOHD) (an NADPH oxidase), stabilizes RBOHD by suppressing AvrPphB susceptible 1-like 13 (PBL13)/ PBL13 interacting RING domain E3 ubiquitin ligase (PIRE)-mediated vacuolar degradation of RBOHD, and increases its plasma membrane localization, promoting reactive oxygen species (ROS) production. The calmodulin-binding domain is key to DGK5's functions. Under abiotic stress, DGK5-mediated PA production inhibits the activity of abscisic acid (ABA) insensitive 2 (ABA2), a dehydrogenase in ABA biosynthesis, and decreases ABA production. Additionally, PA promotes the nuclear localization of ABA2, reducing ABA production. Abbreviations: ETI, effector-triggered immunity; MKK, MPK kinase; MEKK, MKK kinase; PTI, pattern-triggered immunity.

phosphorylated variant (DGK5S506D) and alters the MPK4-phosphorylated residue (DGK5^{T446A}) to enhance plant immunity [8] (Figure 1). The above-optimized allele can be integrated into a genomic safe harbor site, enabled by the genome-editing technology named PrimeRoot that can precisely insert large DNA fragments (~11 kb) into genomes [14]. For abiotic stress responses, CRISPR interference (CRISPRi), containing a catalytically inactive dCas9 fused to a transcriptional repression domain, and CRISPR/ Cas13a-mediated RNAi [15], are feasible approaches to downregulate DGK5 expression via guide RNAs specifically binding to key *cis*-elements in the promoter or mRNAs of DGK5, and abiotic stressinduced expression of the systems is preferred (Figure 1). In summary, to optimally

modulate the opposite roles of DGK5 in biotic and abiotic stress responses, orchestrated precise genetic engineering is needed.

Concluding remarks

The function of phospholipids is multifaceted and mutation of phospholipid metabolismrelated genes often causes significant consequences, but the biochemical mechanisms of these resultant changes are difficult to dissect, as phospholipids are highly interconnected and multiple phospholipid metabolism pathways are entangled, as well as there being constant phospholipid replenishment from membrane trafficking [2]. However, with technical advances, three recent studies, together with others [1], showcase the

exact role of the PA-producing gene DGK5 in cellular abiotic and biotic stress responses. These advances facilitate the design of precise metabolic engineering to achieve optimal stress responses and stress-resilient crops.

Acknowledgments

We thank Professor Yanpeng Wang at the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Professor Yan Liang at Zhejiang University for the critical reading of the manuscript. Figures were created using BioRender.com. This work was supported by STI2030-Major Projects (2023ZD04070), Key R&D Program of Hubei Province (2023BBB171), National Natural Science Foundation of China (32172373), and Fundamental Research Funds for the Central Universities (2662023PY006 and AML2023A05) to G.L. This work was also supported by Hubei Hongshan Laboratory. The work of X.W. and S.Y. was supported by grants from the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM141374 and the National Science Foundation under Grant Nos 2222157 and 2302424.

Declaration of interests

There are no interests to declare.

¹National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China ²Department of Biology, University of Missouri-St, Louis, St. Louis, MO 63121, USA 3Donald Danforth Plant Science Center, St. Louis, MO 63132,

*Correspondence:

li4@mail.hzau.edu.cn (G. Li).

https://doi.org/10.1016/j.tibs.2024.05.008

© 2024 Flsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

References

- 1. Yao, S. et al. (2024) Phosphatidic acid signaling and function in nuclei. Prog. Lipid Res. 93, 101267
- 2. Noack, L.C. and Jaillais, Y. (2020) Functions of anionic lipids in plants. Annu. Rev. Plant Biol. 71, 71–102
- 3. Li, W. et al. (2019) Tissue-specific accumulation of pHsensing phosphatidic acid determines plant stress tolerance. Nat. Plants 5, 1012-1021
- 4. Saunders, K.D.G. et al. (2023) Single-cell lipidomics using analytical flow LC-MS characterizes the response to chemotherapy in cultured pancreatic cancer cells. Anal. Chem. 95, 14727-14735
- 5. Li, J. et al. (2024) Lipid phosphorylation by a diacylglycerol kinase suppresses ABA biosynthesis to regulate plant stress responses. Mol. Plant 17, 342-358
- 6. Potocký, M. et al. (2014) Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20pderived biosensor. New Phytol. 203, 483-494

Trends in Biochemical Sciences

- 7. Qi, F. et al. (2024) DGK5β-derived phosphatidic acid regulates ROS production in plant immunity by stabilizing NADPH oxidase. *Cell Host Microbe* 32, 425– 11. Tan, W.J.
- 8. Kong, L. et al. (2024) Dual phosphorylation of DGK5mediated PA burst regulates ROS in plant immunity. Cell 187, 609-623.e21
- 9. Kalachova, T. et al. (2022) DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in *Arabidopsis*. Plant Physiol. 190, 1978-1996
- 10. Cacas, J.L. et al. (2017) Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative
- burst in response to cryptogein. Plant Cell Environ. 40, 585–598
- et al. (2018) DIACYLGLYCEROL ACYLTRANSFERASE and DIACYLGLYCEROL KINASE modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress. *Plant Physiol*. 177, 1303–1318
- 12. Sha, G. et al. (2023) Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. *Nature* 618, 1017–1023
- 13. Shi, L. *et al.* (2023) Promoter editing for the genetic improvement of crops. J. Exp. Bot. 74, 4349–4366
- 14. Li, B. et al. (2024) Targeted genome-modification tools and their advanced applications in crop breeding. Nat. Rev. Genet., Published online April 24, 2024. https://doi.org/ 10.1038/s41576-024-00720-2
- 15. Manghwar, H. et al. (2019) CRISPR/Cas system: recent advances and future prospects for genome editing. *Trends* Plant Sci. 24, 1102–1125