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Abstract: Standard axion electrodynamics has two closely related features. First, the
coupling of a massless axion field to photons is quantized, in units proportional to the electric
gauge coupling squared. Second, the equations of motion tell us that a time-dependent
axion field in a background magnetic field sources an effective electric current, but a time-
dependent axion field in a background electric field has no effect. These properties, which
manifestly violate electric-magnetic duality, play a crucial role in experimental searches for
axions. Recently, electric-magnetic duality has been used to motivate the possible existence
of non-standard axion couplings, which can both violate the usual quantization rule and
exchange the roles of electric and magnetic fields in axion electrodynamics. We show that
these non-standard couplings can be derived from SL(2,Z) duality, but that they come at
a substantial cost: in non-standard axion electrodynamics, all electrically charged particles
become dyons when the axion traverses its field range, in a dual form of the standard Witten
effect monodromy. This implies that there are dyons near the weak scale, leads to a large
axion mass induced by Standard Model fermion loops, and dramatically alters Higgs physics.
We conclude that non-standard axion electrodynamics, although interesting to consider in
abstract quantum field theory, is not phenomenologically viable.
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1 Introduction and central argument

In this paper, we study axion electrodynamics: the interaction of a periodic scalar field
θ ∼= θ + 2π (the axion) with a U(1) gauge field A (the photon) with field strength F through
a topological, Chern-Simons-type interaction:∫

d4x
√
|g|
(
−1

2f2∂µθ∂µθ − 1
4e2 FµνF µν

)
+ n

8π2

∫
θF ∧ F, (1.1)

where in the last term we use the differential form notation F = 1
2Fµν dxµ ∧dxν to emphasize

the topological nature of the interaction. It is a well-known fact that a consistent quantum
field theory with this action obeys a quantization condition,

n ∈ Z, (1.2)

where A is normalized such that the minimally charged particle has charge 1, and we assume
the spacetime background is restricted to spin 4-manifolds. This quantization condition
has important applications for the couplings of axion fields of interest in real-world particle
physics, including the QCD axion [1–4] or more general axion-like particles. Such particles
are the subject of intense experimental scrutiny. Models where n is an order-one integer

– 1 –



J
H
E
P
0
1
(
2
0
2
4
)
1
2
0

provide natural targets of such experimental searches (though very large integer values of
n are also possible, in principle [5, 6]).

Given the action (1.1), one can derive an axionic modification of Maxwell’s equations [7],
which takes the form:

∇·E = ρ−gaγγB ·∇a, ∇×E =−∂B

∂t
−JM ,

∇·B = ρM , ∇×B = ∂E

∂t
+J−gaγγ

(
−B

∂a

∂t
+E×∇a

)
.

(1.3)

Here ρ, J are the usual electric charge density and current, ρM, JM are the (hypothetical)
magnetic charge density and current, a(x) = fθ(x) is the canonically normalized axion field,
E, B are the canonically normalized electric and magnetic fields, and

gaγγ = ne2

4π2f
(1.4)

is the axion photon coupling, proportional to the integer n.1
The equations (1.3) manifestly break electric-magnetic duality. For example, a time-

dependent axion field in a background magnetic field leads to an effective electric current,
sourcing ∇×B. Many searches for axion dark matter rely on this coupling. Furthermore, we
see that an axion gradient aligned with a magnetic field behaves as an effective electric charge
density. The axion does not source effective magnetic charge densities or currents. This
breaking of electric-magnetic duality is also reflected in the fact that it is the electric coupling
e that appears in the numerator of (1.4), rather than the magnetic coupling (which is inversely
proportional to e). The fact that axion electrodynamics breaks electric-magnetic duality has
spurred some authors to propose non-standard formulations of axion electrodynamics, which
aim to either restore electric-magnetic duality [13] or break it in alternative ways [14–16].
These non-standard formulations of axion electrodynamics not only allow for gaγγ ∝ 1/e2,
implying much stronger couplings, they also introduce new terms in (1.3); for example,
allowing E ∂a

∂t to source ∇ × E. Some of the proposed modifications have begun to receive
attention in the context of the design or interpretation of experiments [17–28] or astrophysical
observations [29]. Thus, it is important to understand to what extent such a non-standard
axion electrodynamics is theoretically and phenomenologically viable. We will focus our
attention on the formulation in [15], which constitutes the bulk of this literature. (The
alternative introduced in [13] is on a less sound footing since it does follow from any known
action, but it shares the same new terms in the equations of motion that we will argue
are phenomenologically excluded.)

In this paper, we consider an in-principle well-motivated theoretical alternative to
standard axion electrodynamics, namely, to implement a coupling of the form θF ′ ∧F ′ where
F ′ is an SL(2,Z) dual of the standard field strength F .2 We show that such a coupling

1In a realistic model with additional interactions beyond those in (1.1), there may be additional contributions
of the form n 7→ n + δn where δn ∝ m2

a is not quantized but vanishes in the limit of zero axion mass. Such
contributions can be interpreted as □θ F ∧ F interactions. For the QCD axion, the contribution from the
axion-pion mixing is an important example [6, 8–12]. This is well-understood physics, distinct from our
concerns in this paper.

2To be precise, the coupling takes this form in the F ′ duality frame. See section 3.3 for the form of the
coupling in the F duality frame.
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Figure 1. A classic argument for the Witten effect [30]. A magnetic monopole in a region of zero θ

appears to be a dyon far away in a region with θ ̸= 0.

leads to equations of motion that can be written in the form studied in [15]. However, these
equations have an important implication. In non-standard axion electrodynamics, every
electrically charged particle undergoes a monodromy, becoming a dyon in the presence of
an axion field that evolves around the circle from θ = 0 to θ = 2π. We will argue that
this is inconsistent with the physics of our universe, and in particular with the existence
of light, weakly coupled, chiral fermion fields that obtain a mass only from electroweak
symmetry breaking. Thus, although non-standard axion electrodynamics is interesting from
the viewpoint of quantum field theory, it is already excluded as a theory of real-world particle
phenomenology. Throughout the paper, we use standard quantum field theory formalism,
rather than the less standard Zwanziger approach that appears in recent work like [15].
Nothing is lost by doing so, but to reassure devotees of that formalism, we emphasize that
our key results rely only on the equations of motion away from singular sources, not on the
precise fashion in which these (massive) sources are quantized.

Let us now sketch out our argument, to be explained more precisely in subsequent
sections. Our reasoning relies crucially on the Witten effect [31]: in an environment with
nonzero θ, a magnetic monopole with unit magnetic charge acquires a fractional electric
charge nθ

2π . A simple argument for this (originating in [30]; also see [32]), is to consider a
monopole carrying purely magnetic charge in a local environment with zero θ, surrounded
by a region in which a nonzero value of θ turns on at larger radius. The equation for ∇ · E

implies that the radial B field sourced by the monopole, together with the radial axion
gradient ∇θ, will source an electric field at larger radii. (See figure 1.) Thus, an observer at
larger distances will see an electric field that appears to have been sourced by a particle with
nonzero electric charge. If we shrink the size of the region around the monopole with θ = 0,
the effective charge observed from afar doesn’t change. Thus, in the limit that we embed the
monopole in an environment with constant θ everywhere we conclude that it is a dyon, of
electric charge nθ

2π . If we continuously vary θ from 0 to 2πq (with q ∈ Z), a magnetic monopole
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Figure 2. The Witten monodromy. As θ increases the monopole (red point) gradually acquires
electric charge, ending up with a full charge quantum at θ = 2π. The complete dyon spectrum (gray
points) has now returned to its original configuration, reflecting the periodicity of θ, even though
individual dyons have different charges than they started out with.

becomes a dyon with nq full units of electric charge, even though (due to its periodicity)
the θ value in its environment has returned to its starting point. In general, the dyon’s
mass will increase in this process. This phenomenon, in which the theory is periodic as a
function of θ but a given particle will transmute into other particles when θ continuously
varies around its circle, is known as “monodromy,” and it arises in contexts as simple as the
familiar problem of a quantum-mechanical particle on a circle (reviewed in, e.g., [33, 34]).
Other straightforward arguments for the Witten effect, independent of the UV completion of
the theory, appear in [35, 36]. Because it plays a central role in our argument, below we will
use the phrase “Witten monodromy” to mean the monodromy in the dyon spectrum under
θ → θ + 2π induced by the Witten effect. (See figure 2). To dispel any lingering doubts,
in section 2.3 we will review an argument that does not refer to magnetic monopoles at all
but solely focuses on the construction of a dual magnetic gauge field in regions away from
point charges, which directly demonstrates the Witten monodromy.

Now, suppose that rather than the standard equations (1.3), we had a modified equation
in which ∇ · B is sourced by a term of the form E · ∇a. Such a term appears explicitly in
the proposed modified equations in [13, 15]. It leads to a magnetic dual of the Witten effect:
in a θ background, such a term would imply that a particle that has purely electric charge
in a region of zero θ acquires an effective magnetic charge nθ

2π when in a region of nonzero
θ. One might reasonably ask if this is a well-defined claim. It is perfectly reasonable, and
even standard, to define electric charge to be the charge carried by an electron, so that it
carries zero magnetic charge by definition. Indeed, it is well-known that there are several
different useful ways to define charge in the presence of Chern-Simons terms [37]. However,
independent of one’s preferred definitions, an invariant physical fact remains: there is a
dual Witten monodromy. That is to say, if we continuously vary θ from 0 to 2πq (with
q ∈ Z), the ordinary electron would become a dyon state with magnetic charge nq. Because
these are two different states in the same theory, this is an invariant physical fact, not an
artifact of a particular definition of charge.

Unlike the standard Witten effect, this dual monodromy is a phenomenological disaster.
We claim that it is completely impossible. In the world around us, we do not observe a
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collection of light dyon states with the mass of the electron and arbitrary amounts of magnetic
charge. Thus, in the process of varying θ from 0 to 2π and turning the electron into a dyon,
the electron mass should increase (dramatically!) as θ turns on. As a result, electron loops
would generate a large perturbative mass for the axion.3 However, this is only the start of
the problem, as the electron is a chiral fermion in the Standard Model. The electron obtains
a mass only via electroweak symmetry breaking, and θ is a neutral scalar, so turning it on
cannot violate electroweak symmetry. At best, we can couple θ to a Higgs-dependent electron
mass term. This implies an infinite tower of dyon states all obtaining a mass from the Higgs,
which would drive the Higgs field to strong coupling and significantly alter Standard Model
predictions for Higgs properties.4 All said, there is no way to modify axion electrodynamics
and obtain anything resembling the Standard Model coupled to a light axion.

This is our central argument: modifying axion electrodynamics would require that the
electron (and every other elementary charged particle) obtains a magnetic charge in an
axion background, which is impossible due to the chiral structure of the Standard Model
and the desire for a light axion. Before returning to this point, we will first review the
physics of axion electrodynamics and electric-magnetic duality in more detail below, in the
interest of providing a clear pedagogical reference and a more complete argument. We will
highlight some other interesting and under-appreciated physics along the way. The outline of
the paper is as follows: in section 2, we review standard axion electrodynamics and prove
the quantization condition (1.2). We also give a straightforward derivation of the Witten
monodromy. In section 3, we discuss electric-magnetic duality and explain how it allows
non-standard axion electrodynamics evading the quantization condition in the context of
U(1) gauge theory with no charged matter coupled to an axion. In section 4, we argue
that non-standard axion electrodynamics is incompatible with the Standard Model (for the
reason we have just explained above). Finally, in section 5 we offer some concluding remarks.
In appendix A we systematically compare our approach with [15] and derive quantization
rules for the generalized axion couplings.

2 Standard axion electrodynamics

In this section we review standard axion electrodynamics and derive its various features, such
as the Witten monodromy. Readers interested in a more in-depth treatment of many of these
ideas may also wish to consult the TASI lectures [38] by one of the authors.

2.1 Derivation of coupling quantization

We begin by giving the simple derivation that the action (1.1) only defines a consistent
quantum field theory when n ∈ Z. A consistent quantum field theory can be studied on a
variety of spacetime backgrounds. This is a necessity for theories that can be consistently
coupled to gravity. In particular, we will consider the Euclidean continuation of the theory

3If the axion in question were the QCD axion, this effect would dominate over the contribution from QCD
instantons and spoil the solution to the Strong CP problem.

4We expect that such a theory, with an infinite tower of states obtaining mass from the Higgsing of a
nonabelian gauge theory, is actually inconsistent even at the formal level. However, even if such a theory
exists formally, it is certainly not compatible with observed physics.
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on a 4-manifold (without boundary) M , in which the Chern-Simons term
∫

θF ∧ F acquires
an extra factor of i. Our quantum field theory is defined by a path integral summing over
field configurations for θ and A. We will begin with four key assumptions:

1. The axion field is periodic (we often say it is a “compact scalar”): θ ∼= θ + 2π. In
particular, this allows for field configurations in which the value of θ winds around
a circle in spacetime. This means that θ itself is not a well-defined (gauge invariant)
variable, whereas eiθ is. We can think of θ 7→ θ + 2π as a gauge transformation.

2. The photon’s gauge group is U(1), which is compact. Gauge transformations take
the form A 7→ A + ig−1 dg, where g(x) = eiα(x) takes values in U(1). The distinction
between this and the related non-compact gauge group R, both of which have the Lie
algebra u(1) ∼= R, is that the gauge transformations for U(1) can wind around circles in
spacetime, allowing for non-trivial disorder operators such as ’t Hooft lines.

3. The axion field θ is invariant under U(1) gauge transformations of A.

4. The gauge field A (along with its field strength F ) is invariant under the 2π shift of θ.

The path integral sums over all field configurations for θ and A, which, because of their
respective periodicity properties, include topologically nontrivial field configurations. For
example, field configurations can have a winding number of the axion around a 1-cycle C:

1
2π

∫
C

dθ = w(C) ∈ Z (2.1)

and a magnetic flux of the gauge field through a 2-cycle S:

1
2π

∫
S

F = m(S) ∈ Z. (2.2)

In more mathematical jargon, we can think of w(C) and m(S) as information about classes
in integer cohomology, [ 1

2π dθ] ∈ H1(M,Z) and [ 1
2π F ] ∈ H2(M,Z).5 As in the familiar case

of the Dirac monopole, a nontrivial topology means that we can’t define the fields θ and
A globally, but we can patch them together on different coordinate charts such that, on
overlaps, they agree up to gauge transformations. The field strengths dθ and F are defined
globally. Once we specify any field configuration (θ, A) lying in a particular cohomology
class, then the differences (θ − θ′, A − A′) between this and any other field configuration
(θ′, A′) specified by the same classes are globally well-defined. This allows us to separate
the path integral into a discrete sum over topological classes, together with a continuous
integral over field configurations without regard to topology.

Now we rely on a mathematical fact that we will not prove (see, e.g., [39, 40]): if a
2-form ω is a representative of a class in integer cohomology, then the 4-form ω ∧ ω is also

5More precisely, the quantized flux m(S) ∈ Z determine the free part of the integral cohomology class
[ 1

2π
F ] ∈ H2(M,Z), while the torsion part is encoded in the holonomies of A. There is no analogous subtlety

for w(C), since H1(M,Z) is torsion-free for any topological space M . This subtlety has no effect on our
subsequent discussion.
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a representative of a class in integer cohomology. In other words, once we have chosen an
F such that (2.2) holds, we are also guaranteed that

1
4π2

∫
M

F ∧ F ∈ Z (any M). (2.3)

This is sufficient to derive a quantization condition on axion-photon couplings, but we can do
slightly better. For describing real-world physics, we can restrict to spacetime manifolds on
which it is possible to define fermion fields. These are known as spin manifolds, and it turns
out that on a spin manifold the integer (2.3) is always even. That is, we have:

1
8π2

∫
M

F ∧ F ∈ Z (any spin M). (2.4)

Now, the action (1.1) is manifestly invariant under U(1) gauge transformations but is not
invariant under the shift θ 7→ θ + 2π. However, physical quantities depend only on the
exponentiated Euclidean action, exp(−SE [A, θ]), because this appears in the path integral
measure. We have:

θ 7→ θ + 2π : e−SE [A,θ] 7→ e−SE [A,θ] exp
[
− in

4π

∫
F ∧ F

]
. (2.5)

Now, for every field configuration that we sum over in the path integral, the integral appearing
in the last factor of (2.5) is of the form 8π2k for some k ∈ Z, and hence the factor takes the
form exp[−2πink]. This is always 1 if n ∈ Z, but in general is not 1 if n /∈ Z. This proves (1.2).

2.2 Revisiting the assumptions

Our proof was straightforward, but relied on four assumptions. Let’s revisit them one by one:

1. The axion was assumed to be periodic. If θ is a non-compact field, there is no θ 7→ θ+2π

gauge redundancy, and the whole argument falls apart. On the other hand, we have
good reasons for studying periodic axion fields, beyond the fact that compactness is
often taken to be part of the definition of an axion. UV completions give rise to compact
axions: a pseudo-Nambu-Goldstone boson of an approximate U(1) global symmetry,
or a zero mode of a higher-dimensional U(1) gauge field, is intrinsically compact. A
compact scalar can only admit periodic terms in its potential,6 which opens up the
possibility that the potential is dominated by exponentially small instanton effects.7
For a generic non-compact scalar, it would be difficult to explain why the field is light

6An exception is when the potential has different branches interchanged by monodromy, so that θ is
effectively non-compact [41, 42]. This is still highly constrained, because it arises from a θF4 coupling with
a quantized coefficient. For a QCD axion, this coefficient is expected to be zero. Otherwise, the resulting
potential will dominate over the QCD contribution to the axion potential, but will generically have a minimum
in a different location (spoiling the solution to the Strong CP problem).

7This is only a possibility, not a guarantee. The axion quality problem is essentially the question of
why additional periodic terms in V (θ) with large coefficients do not exist. This problem has at least one
highly effective solution, which is to posit that the axion is a zero mode of a higher-dimensional gauge
field [43, 44]. The situation is much worse for non-compact scalars. For example, in a supersymmetric theory,
the non-compact saxion will generically obtain a mass from Kähler potential terms in the presence of SUSY
breaking, while the axion can remain exponentially lighter (see, e.g., [45]).
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and why its dominant source of shift-symmetry breaking originates from coupling to
gluons, so it is unlikely to solve the Strong CP problem. In short, if we want to drop
the compactness assumption on the axion, we are not considering a traditional axion at
all, and we have to modify the entire structure of the model.

2. The gauge group was taken to be U(1) rather than R. If this assumption is dropped,
there can be no magnetic flux,

∫
F = 0 for any 2-cycle, and

∫
F ∧ F = 0 for any

4-manifold. Then the axion-photon coupling can take on any real value. However, there
are compelling arguments that consistency of black hole physics forbids R gauge groups
from arising in quantum gravity [46], so we do not expect this case to be relevant in
the real world.8

3. The axion field θ was assumed to be invariant under U(1) gauge transformations. If
it were not, it would get eaten via the Stueckelberg mechanism, and give the photon
a mass. To make exp(iS) gauge invariant, we would have to add anomalous charged
matter as in the 4d Green-Schwarz mechanism. A massive photon scenario is not the
case of interest for us, but because our argument made use of invariance under θ gauge
transformations but not A gauge transformations, dropping this assumption would also
not change the conclusion.

4. The gauge field strength F was assumed not to change under the gauge transformation
θ 7→ θ + 2π. This may seem innocuous, but in fact it is the weakest point in the
argument. We will explain the possible alternative, a dual Witten monodromy, in
section 3.

The first two assumptions can’t be evaded by flowing from a UV theory in which they
hold to an IR theory in which they do not. If one begins with multiple U(1) gauge fields and
higgses, the surviving massless gauge field has a compact U(1) gauge group. Similarly, if one
begins with multiple axion fields and then gives a mass to some of them, either via a periodic
potential or through a Stueckelberg mechanism in which they are eaten by a gauge field, a
surviving light axion is always compact [47, 48]. This fact has proven useful in diagnosing
some mistaken analyses of multi-axion models in the literature.

2.3 The Witten monodromy and anomaly inflow

Next, we show that the monodromy associated with the Witten effect for a dynamical
axion can be derived in a very straightforward way, without referring to pointlike monopoles
at all. This makes it clear that it is an effect within the low-energy effective field theory
associated with the action (1.1), independent of details of the UV completion (in contrast
to some claims [15]). This argument is simply a special case of the much more general
phenomenon of anomaly inflow in the presence of Chern-Simons terms [49]; this was also
recently pointed out in [50].

8It should also be noted that the non-standard axion couplings considered in section 3 are impossible if the
electromagnetic gauge group is R, because only U(1) has the necessary SL(2,Z) self-duality required to make
the non-standard axion periodic.
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To derive the Witten monodromy, let’s first recall what it means to introduce a magnetic
dual gauge field AM. The field strength of the magnetic dual gauge field should be the Hodge
dual of the usual gauge field strength, up to normalization. Specifically, in free Maxwell
theory without a θ term and without an axion coupling, we would define

1
2π

dAM = − 1
e2 ⋆ F. (no axion) (2.6)

The integral of the left hand side gives the magnetic flux of the gauge field AM, which is
minus the electric flux of the original gauge field A, which we know to be measured by the
right-hand side. Now, the reason that the equation (2.6) makes sense is that Maxwell’s
equations, in the absence of any electric charges or currents, tell us that d⋆F = 0, i.e., that
the electric flux density ⋆F is closed. Any closed form is locally exact, which means that in
any given region, we can find a solution AM to the equation (2.6). There is no guarantee
that ⋆F is exact, which means that we may not be able to globally define AM, but this is fine:
we can define it locally in different coordinate patches, with agreement on the overlaps to
construct a gauge bundle. Also, solutions to (2.6) are not unique: if AM solves the equation,
so does AM − dαM for any αM. This is the expected magnetic gauge redundancy. Gauge
transformations of A do not act on AM, and vice versa.

For axion electrodynamics with the action (1.1) (and n = 1, for simplicity), introducing
AM is not so straightforward. The reason is that we now have an equation of motion

1
e2 d⋆F = 1

4π2 dθ ∧ F. (2.7)

The electric flux density ⋆F is no longer closed, even away from charged particles, in the
presence of a varying axion field. This means that we can no longer find a solution to (2.6);
it is simply not the right way to locally define a magnetic gauge field AM. However, we
can rewrite (2.7) in the form

d
( 1

e2 ⋆ F − 1
4π2 θF

)
= 0, (2.8)

which is equivalent away from magnetic monopoles where dF ̸= 0. We have only been
discussing equations that hold locally away from charged objects, so this restriction is fine.
It motivates introducing the magnetic gauge field AM with the new definition

1
2π

dAM = − 1
e2 ⋆ F + 1

4π2 θF. (with axion) (2.9)

Just as before, we can always locally solve this equation, thanks to (2.8). Again, solutions
are not unique, which corresponds to the gauge redundancy of AM. Furthermore, gauge
transformations of A do not affect AM. However, we now have a new subtlety: the equation
that we are solving for AM depends on θ, which is itself not gauge invariant. In particular, if
we construct a solution AM

(0) to (2.9) and then perform a gauge transformation θ 7→ θ + 2π,
our original AM

(0) will no longer be a solution. Instead, we have a new solution AM
(1) =

AM
(0) + A. Said differently, the magnetic gauge field AM is not gauge invariant under the

gauge transformation θ 7→ θ + 2π. It transforms as:

θ 7→ θ + 2π : AM 7→ AM + A. (2.10)
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This result is the key equation specifying the Witten monodromy: an object with pure
magnetic charge acquires one unit of electric charge under a complete shift of the axion
around its field space.

This derivation of the Witten monodromy (2.10) is very clean, since we only asked about
how to define a magnetic gauge field away from any sources like monopoles or electrons.
Thus, it is clear that the result has nothing to do with any divergences one might find in
the cores of such objects, or any limiting procedure as in the argument we reviewed in the
introduction. Nonetheless, it also implies the standard claims about dyonic modes on a
magnetic monopole, through an anomaly inflow argument. A heavy magnetically charged
object can be described by an effective theory living on its worldline C. Ordinarily, the
dependence of the action of this object on AM would look like SM =

∫
C AM. This is not a

gauge-invariant action, but it is invariant when exponentiated, just as a standard Wilson
loop is. However, in axion electrodynamics this is no longer true, because exp(iSM) is not
invariant under (2.10). To fix this, we must add additional ingredients to our theory that
cancel out the change in SM. A minimal approach is to add a compact boson σ ∼= σ + 2π

that shifts under an A gauge transformation, i.e.,

A 7→ A − dα : σ 7→ σ − α. (2.11)

This allows us to define a consistent worldline action

SM =
∫

C

[
AM − θ

2π
(dσ + A)

]
. (2.12)

(The full action SM will also include a monopole mass term that depends on the proper length
of C as well as a kinetic term for σ, but these are not relevant for our current discussion,
which focuses only on charges.) By construction, (2.12) is invariant under both A gauge
transformations and θ gauge transformations. The degree of freedom σ behaves as a quantum-
mechanical particle on a ring, which is the familiar dyonic degree of freedom on the monopole
(originally discovered in the context of the ’t Hooft-Polyakov monopole [51]). Here we see
that the existence of this degree of freedom, or some other one with a similar ability to cancel
the change in SM under θ 7→ θ + 2π, is a fundamental consistency requirement on the theory.9

This argument is a particular case of a very general phenomenon: dualizing gauge fields
in the presence of Chern-Simons terms produces magnetic gauge fields that are not invariant
under electric gauge transformations. Consistency then requires that magnetically charged
objects admit zero modes that can be excited to give them electric charge. These modes
are said to arise by anomaly inflow [49]. An exactly analogous argument tells us that axion
strings admit chiral charge-carrying excitations.10 An even more well-known example, with

9One might wonder if this argument can be evaded by imposing a θ = 0 boundary condition on the
monopole worldline. However, for dynamical monopoles (as opposed to ’t Hooft lines), this implies a strong
coupling of the monopole to the axion. In fact, it is not really an alternative theory at all, it is just the
limiting case where dyonic excitations become infinitely heavy (equivalently, the σ kinetic term goes to zero).
This is not an innocuous limit to take. For instance, monopole loop effects on the axion (as in [52]) are not
exponentially suppressed in this limit.

10Anomaly inflow arguments are often phrased in terms of a cancellation between a bulk anomaly and a
localized anomaly, whereas we have phrased our argument in terms of a cancellation on the worldline. These
pictures are equivalent, since the shift of AM arises from the bulk Chern-Simons term. Similarly, the bulk
anomaly in the classic Callan-Harvey example of anomaly inflow on axion strings can be rephrased in terms of
additional gauge transformations of the B field on the string worldsheet; see, e.g., appendix B of [53] for a
recent discussion.
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ample experimental verification, is the existence of edge modes in quantum Hall systems,
which are described by Chern-Simons terms in (2 + 1)d with chiral electrically charged
modes on the (1 + 1)d boundary.

The monodromy (2.10) — rather than the details of the localized worldline mode required
by anomaly inflow — will play the key role in our arguments below. Before moving on, let
us make two other brief comments about the Witten effect. First, one might wonder what
would have happened if we had traded the θF term in (2.8) for an A ∧ dθ term. In this case,
AM would have been defined differently, and would directly shift under an ordinary electric
gauge transformation. One can work through the details, and find that (despite different
intermediate steps) the physical conclusions are the same. Second, our argument above was
about axion electrodynamics, and in particular dθ played a key role in the discussion starting
from (2.7). The Witten effect in a theory with a constant θ term, rather than a dynamical
axion, is slightly more subtle. Nonetheless, it can again be derived from general principles.
Perhaps the most straightforward way to convince oneself of its validity is to dimensionally
reduce to 2d QED with a θ term by compactifying on a closed 2-manifold with flux, then
study the 2d theory on a spatial circle. This theory is equivalent to the quantum mechanics
of a particle on a ring with a θ term, which is a familiar (and straightforward) problem to
solve. The Witten effect here appears in the fact that the canonical momentum shifts in
the presence of a nonzero θ. As a result, the entire spectrum of the quantum mechanical
theory is θ dependent, and exhibits monodromy. In fact, this textbook problem in ordinary
quantum mechanics is exactly the same as the theory on the monopole worldline.

3 Duality and non-standard axion electrodynamics

In this section, we review electric-magnetic duality in order to motivate non-standard axion-
photon couplings which evade the formal arguments presented in section 2.1. In particular,
we find the possibility of greatly enhanced axion-photon couplings proportional to 1/e2, in
agreement with the results of [15]. However, we also find that precisely when these enhanced
axion-photon couplings appear, a dual version of the Witten monodromy leads to electric
charges acquiring a magnetic charge when we take θ 7→ θ + 2π.

3.1 Electric-magnetic duality for a free photon

It is well-known that the theory of a free U(1) gauge field has an SL(2,Z) duality group,
generated by the matrices

S =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)
. (3.1)

A general element of SL(2,Z) has the form

Λ =
(

a b

c d

)
, a, b, c, d ∈ Z, ad − bc = 1. (3.2)
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The electric and magnetic potentials transform in a 2-dimensional representation:11(
AM

′

A′

)
=
(

a b

c d

)(
AM
A

)
, (3.3)

whereas the electric and magnetic currents JE and JM transform in the dual representation:
(
JM

′ JE
′
)

=
(
JM JE

)
Λ−1 =

(
JM JE

)( d −b

−c a

)
, (3.4)

ensuring that the coupling A ∧ JE + AM ∧ JM is SL(2,Z) invariant. Another equivalent
way to write (3.4) is (

JE
′

−JM
′

)
=
(

a b

c d

)(
JE
−JM

)
. (3.5)

The coupling constant and θ angle are packaged into a complex background field

τ = θ

2π
+ i2π

e2 . (3.6)

This transforms as

S : τ 7→ −1
τ

, T : τ 7→ τ + 1, (3.7)

or more generally

τ 7→ aτ + b

cτ + d
(3.8)

under the matrix (3.2). The T operation corresponds to a 2π shift of θ.
In the duality frame where our fundamental gauge field is A, we have electric and

magnetic field strengths

F = dA, FM = −2π

e2 ⋆ F + θ

2π
F, (3.9)

where FM = dAM (where the gauge field AM, like A itself, need only be locally well-defined,
i.e., it is a connection on a U(1) bundle rather than a 1-form globally). Here we see explicitly
that under the T operation θ 7→ θ + 2π, we have FM 7→ FM + F and hence AM 7→ AM + A.
This is exactly the Witten monodromy (2.10) that we derived in section 2.3, which we see is
intrinsically part of the standard SL(2,Z) formulation of electromagnetic duality. The magnetic
flux quantization condition (2.2) holds as a topological constraint on the A field configurations
we sum over in the path integral, whereas the analogous electric flux quantization condition

− 1
2π

∫
S

FM =
∫

S

( 1
e2 ⋆ F − θ

4π2 F

)
= e(S) ∈ Z (3.10)

holds by the equations of motion. The appearance of θ in this condition, which is a direct
consequence of the equations of motion, is one manifestation of the Witten effect.

11To be clear, we are not considering a formulation of the theory where A and AM are both integrated over
in the path integral. One should really think of this equation as a shorthand for the transformation of physical
quantities like Wilson and ’t Hooft lines, and electric and magnetic fluxes.
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It is possible to derive the SL(2,Z) invariance directly from the path integral. The T

operation is the 2π shift of θ, which leaves the theory invariant for the reason we derived in
the previous section. The S operation can be derived by integrating in additional fields in
the path integral and then integrating out all but one of the new fields [54, 55]. The partition
function is not SL(2,Z) invariant, but rather transforms as a modular form [54]. After this
operation one finds that the electric flux quantization condition (3.10) is now a topological
constraint on the dual gauge field configurations that we now sum over in the path integral,
whereas the magnetic flux quantization condition (2.2) now holds via equations of motion.
Thus, the question of whether flux quantization is topological or dynamical is not an invariant
fact in U(1) gauge theory, but an artifact of a chosen duality frame.

The theory of a free U(1) gauge field has no particles with electric or magnetic charge,
but it does have line operators which one can think of as infinitely heavy, static electrically
and magnetically charged objects with which one can probe the theory. In particular, there
is a Wilson line operator defined for integer q (corresponding to a representation of U(1))
and curves C:

Wq(C) = exp
[
iq
∫

C
A

]
(3.11)

and an ’t Hooft line operator Tp(C) defined for a magnetic charge p ∈ Z and curve C. In terms
of the magnetic dual gauge field, the ’t Hooft line operator is similar to a Wilson operator:

Tp(C) = exp
[
ip
∫

C
AM

]
. (3.12)

In terms of the electric gauge field A over which we perform the path integral in the standard
duality frame, we can define the ’t Hooft operator by excising a small tube around C and
imposing a boundary condition on the field that the magnetic flux m(S) through a surface
S linking C with linking number ℓ(S, C) is ℓ(S, C)p. One further has an infinite collection
of dyonic line operators Lp,q(C) with magnetic charge p and electric charge q, which can be
thought of as the fusion of q minimal-charge Wilson lines and p minimal-charge ’t Hooft lines.
The duality group acts on this collection of line operators via the map (3.3).

3.2 The standard axion-photon coupling

Consider the theory with a dynamical axion θ(x) coupling to F ∧ F for an otherwise free
photon, as in (1.1) (with n = 1, for convenience). This promotes the real part of the
background field τ in (3.6) to a dynamical field that we sum over in the path integral, but
not the imaginary part. Clearly, treating different components of τ differently in this way
explicitly breaks the SL(2,Z) duality symmetry. This is reflected in the equations of motion,
in the factor of e2 in the coupling of the axion to photons when the fields are canonically
normalized, and in the spectrum of line and surface operators in the theory.

One way to think of the theory with an axion is that we have now gauged the Z subgroup
of SL(2,Z) generated by T , because the T operation corresponds to the gauge redundancy
θ 7→ θ + 2π. The T operation acts trivially on the field strength F (consistent with our fourth
assumption in section 2), but it acts nontrivially on the magnetic field strength FM, which
shifts to FM + F (the Witten monodromy). In the theory with an axion, this means that
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FM is not a gauge invariant operator, even though F is! This breaking of electric-magnetic
duality has an important implication for the physics of magnetic charges. In particular, the
’t Hooft operator (3.12) is no longer a genuine (gauge invariant) operator, as it transforms
under θ 7→ θ + 2π. This is precisely the same issue that we discussed for physical monopoles
in section 2.3, which can be resolved by introducing a localized mode σ ∼= σ + 2π on the
curve C transforming under A gauge transformations as (2.11). As explained in [56], we can
then define an ’t Hooft operator to include a path integral over this mode:

T̂p(C) =
∫

Dσ exp
[
ip
∫

C

(
AM − θ

2π
(dσ + A)

)]
. (3.13)

Even in the absence of dynamical monopoles, then, the anomaly inflow phenomenon manifests
itself in the spectrum of line operators in the theory. Rather than the entire family of Lp,q(C)
operators, we now have Wilson operators Wq(C) and ’t Hooft operators T̂p(C), but the
dyonic lines have been subsumed into the ’t Hooft operator thanks to its localized degree of
freedom.12 This reflects the breaking of SL(2,Z) by the axion coupling.

3.3 Alternative axion-photon couplings

We have seen that the standard axion-photon coupling breaks SL(2,Z) in a specific way. It
gauges a specific Z subgroup of SL(2,Z) corresponding to powers of T , which leaves Wilson line
operators and magnetic 1-form surface operators untouched, while modifying ’t Hooft lines and
electric 1-form surface operators. This is reflected in the effective electric, but not magnetic,
charges and currents that appear in the axionic modification of Maxwell’s equations (1.3).

Given the structure of SL(2,Z), it is clear that this choice of axion coupling, and its
privileging of electric over magnetic currents, was not a unique choice. We can define a
different type of axion-photon coupling for every SL(2,Z) element Λ (3.2), which defines a
new duality frame. To do so, we follow a simple procedure. First, transform to the new frame;
then, add a properly quantized axion coupling θF ∧F in the new frame; then, transform back.

Let’s begin in the frame where A is the gauge field that couples to the usual electric
charge carried by the electron. In this frame, we will take the complexified gauge coupling
in the case where the axion field θ(x) = 0 to be given by

τ0 = θ0
2π

+ i2π

e2
0

. (3.14)

The subscripts 0 signal that these are constants, independent of field θ(x). Now, we perform
an SL(2,Z) transformation as given by (3.4), (3.3) and (3.8) to the A′ frame. In this frame,
the constant complexified gauge coupling is τ ′

0 = (aτ0 + b)/(cτ0 + d). Then we add, in this
frame, a new term to the action:

δS = k

8π2

∫
θ(x)F ′(x) ∧ F ′(x). (3.15)

12One might also attempt to define Lp,q(C) line operators for all p and q by imposing a θ = 0 boundary
condition along the line. A detailed assessment of the full range of allowed boundary conditions and line
operators is beyond the scope of this work.
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Im τ
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Figure 3. The complexified coupling τ as a function of the axion θ, as in (3.17) with τ0 = 1.7i and
k = 1. The blue line is the standard θF ∧ F axion coupling, corresponding to the choice c = 0, d = 1.
In this case, the axion only affects the usual theta angle captured by Re τ . The orange curve is the
case where the axion couples in an S-dual frame, with d = 0 and c = −1. In this case, τ asymptotically
approaches zero for large values of the axion. In both cases, the dots on the curve correspond to shifts
of the axion by multiples of 2π, which map τ0 to values related by an SL(2,Z) matrix. The faint gray
lines in the background trace the boundaries of different SL(2,Z) fundamental domains.

We assume that F ′ is invariant under θ 7→ θ + 2π, and hence k ∈ Z as derived in section 2.1.
The addition (3.15) changes the effective complexified gauge coupling in the A′ frame to

τ ′(x) = τ ′
0 + k

2π
θ(x). (3.16)

Now, we transform back to the original frame with Λ−1 to find the field-dependent complexified
gauge coupling

τ(x) = dτ ′(x) − b

−cτ ′(x) + a
=

τ0 + d(cτ0 + d) k
2π θ(x)

1 − c(cτ0 + d) k
2π θ(x)

. (3.17)

This expression fully captures how the axion field θ(x) couples to the standard photon field:
Re τ(x) determines the coupling to F ∧ F , and Im τ(x) determines the coupling to F ∧ ⋆F .
The full expressions for the real and imaginary parts of (3.17) are complicated, but we can
take a look at their expansion to linear order in θ(x) to see how 1/e2

0 and θ0 are corrected:

1
e2(x) ≡ 1

2π
Im τ(x) = 1

e2
0

[
1 + 2c

(
d + c

θ0
2π

)
kθ(x)

2π
+ · · ·

]
,

ϑ(x) ≡ 2πRe τ(x) = θ0 +
[(

d + c
θ0
2π

)2
− c2

(2π

e2
0

)2
]

kθ(x) + · · · , (3.18)

where · · · refers to terms of order θ(x)2 or higher, and we have used the notation ϑ(x) for
effective coefficient of 1

8π2 F ∧ F , to distinguish it from the axion field θ(x).
Let us highlight some key features of these results:
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• By continuity, if e2
0 is small then the effective coupling e2(x) remains small for small

axion field values. However, larger axion field values θ(x) ∼ O(1) can drive the coupling
to be strong.

• When c = 0, the axion coupling has the expected quantized form: in this case we
necessarily have d = ±1, so the coefficient is k ∈ Z.

• When c ̸= 0, the axion coupling in ϑ is strongly enhanced. In particular, canonical
normalization multiplies the coupling by e2

0, so the canonical coupling for c ̸= 0 is
proportional to 1/e2

0 instead of e2
0 itself. This is as one would expect, from the exchange

of electric and magnetic couplings under Dirac quantization.

• When c ̸= 0, we also observe a coupling of the axion to the standard kinetic term of
the photon. Generically (unless θ0 = −2πd

c ), the coupling is linear.

• When c ̸= 0, the curve τ(θ) in the upper half-plane traced out by varying θ is a circle
tangent to the real axis at τ = −d/c (a point approached asymptotically as θ → ±∞)
and passing through the point τ0.

We illustrate the curve τ(θ) in two examples in figure 3, starting with a purely imaginary
τ0. The first is a standard axion coupling, where θ 7→ θ + 2πn shifts τ 7→ τ + n. The second
is a coupling in an S-dual frame, where shifting θ 7→ θ + 2πn acts on τ with the SL(2,Z)
transformation S−1T nS. In this case, τ(θ) is a circle passing through the origin.

In general, one might expect that when a scalar field couples to F ∧ ⋆F , photon loops
generate a scalar mass. This is because F ∧⋆F , unlike F ∧F , is not a total derivative. However,
the couplings (3.17) are consistent with a massless axion precisely because there exists a frame
in which the coupling is to a total derivative, (3.15). A generic UV regulator may not respect
SL(2,Z) duality and may obscure this fact when computing loop corrections in other frames.

The results (3.17) and (3.18) evade the argument for the axion coupling quantization given
in section 2.1 for the reason anticipated in section 2.2: the coupling (3.15) is defined in a frame
where F ′ is invariant under θ 7→ θ + 2π, which means that the original field strength F is not
invariant under this operation. This violates the fourth assumption in the argument. Indeed,
the composition of Λ followed by T followed by Λ−1 corresponds to the SL(2,Z) element

T ′ =
(

1 + cd d2

−c2 1 − cd

)
, (3.19)

under which

A 7→ (1 − cd)A − c2AM. (3.20)

Thus, an immediate consequence of having an axion coupling that is not quantized in the
standard way is that electrically charged particles acquire a magnetic charge when θ 7→ θ +2π,
in a dual form of the Witten monodromy (2.10). We will return to this point in section 4,
but first let us discuss how our results relate to non-standard axion electrodynamics in
the literature.
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3.4 Comparison to prior literature

The expression for τ(x) in (3.17) is clunky, so let’s see how we can rearrange our results
to more closely resemble those that have previously appeared in the literature. In the A′

frame, the equations of motion are simple:

dF ′ = 0,

1
e′2

d⋆F ′ = k

4π2 dθ ∧ F ′,

f2 d⋆ dθ = k

8π2 F ′ ∧ F ′. (3.21)

The primed gauge coupling is independent of θ(x) and given by

e′2 = e2
0

[
c2
(2π

e2
0

)2
+
(

d + c
θ0
2π

)2]
. (3.22)

Because these quantities will recur throughout the discussion below, it is useful to define

γ ≡ c

(2π

e2
0

)
, δ ≡ d + c

θ0
2π

, (3.23)

so that e′2 = e2
0
(
γ2 + δ2).

In terms of the usual field strength F and its magnetic dual FM, the primed field strength
is F ′ = cFM + dF . In the special case where θ(x) = 0, we further have FM = −2π

e2
0
⋆F + θ0

2π F .
Let us define, in the general case, a quantity F that is related to F ′ in the same way that
F is when θ(x) = 0. That is, F is defined by

F ′ =
(

d + c
θ0
2π

)
F − c

2π

e2
0

⋆F = δF − γ⋆F . (3.24)

Then we necessarily have F → F when θ(x) → 0.
Now, we simply substitute the expression (3.24) into the equations for dF ′ and d⋆F ′

in (3.21) and then solve for dF and d⋆F . We obtain:

d⋆F + ke2
0

4π2

(
−γδ dθ ∧ ⋆F + δ2 dθ ∧ F

)
= 0,

dF + ke2
0

4π2

(
−γ2 dθ ∧ ⋆F + γδ dθ ∧ F

)
= 0. (3.25)

Notice that F can’t be interpreted as a field strength, because dF ̸= 0 (even away from
singular points like the core of a monopole). However, it does agree with F in the limit θ → 0.

The equations (3.25) closely resemble the equations of motion that were obtained in [15].
In particular, we can identify the interaction terms in our equations with the three axion-
photon couplings there via

gAB = ke2
0

4π2 γδ, gAA = ke2
0

4π2 δ2, gBB = ke2
0

4π2 γ2, (3.26)

(up to normalization and sign conventions). The field strength in the original duality frame
is related to F via

F = F + kθ(x)
2π

c (δF − γ⋆F) . (3.27)
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The axion equation of motion takes the form

f2 d⋆ dθ = 1
2e2

0
[(gAA − gBB)F ∧ F − 2gABF ∧ ⋆F ] (3.28)

(where we have used that, in Minkowski signature, ⋆F ∧ ⋆F = −F ∧ F ; compare (3.18)).
What we have found is that the axion couplings defined in a different SL(2,Z) frame

are essentially the new couplings of [15], with the following caveats:

• The three couplings are not independent: in our normalization, g2
AB = gAAgBB . (How-

ever, this constraint can be relaxed for a more general coupling; see section 4.2 and
appendix A.)

• The couplings obey a nontrivial quantization condition, in the sense that three integers
(c, d, and k) fully determine their dependence on the fundamental parameters e0 and θ0.

• The field strength F for which the equations take the simple form (3.25) is not a field
strength in the usual sense, as is clear from the fact that it is not a closed form.

• When c ̸= 0, the axion-photon coupling gBB, after canonically normalizing, can be
∝ 1/e2

0 rather than ∝ e2
0. (We already noted this in the linearized analysis around (3.18).)

However, precisely when this large coupling appears, the electron acquires magnetic
charge when θ 7→ θ + 2π.

This last point, the “dual Witten monodromy,” is crucial for understanding whether non-
standard axion-photon couplings are phenomenologically viable.

In appendix A, we give a somewhat different and more complete perspective, starting
with a set of equations of the form (3.25) (but with completely undetermined coefficients) and
systematically working out how they can map onto equations involving a closed field strength
and its magnetic dual. This leads us to a very general family of functions τ(x) encoding how
an axion can couple to gauge fields. Some of these couplings are simply periodic functions,
where the coupling explicitly depends on sin(nθ(x)) and cos(nθ(x)). In complete theories, we
expect that such couplings are suppressed by the axion mass squared, because effects that
can generate such couplings can also, in general, generate an axion potential with the same
spurions for violation of the continuous axion shift symmetry. We also find a set of couplings
that precisely correspond to the SL(2,Z) family of Chern-Simons couplings that we have just
discussed, as well as more general couplings of the type discussed in section 4.2.

4 Phenomenological assessment

In this section, we present our main arguments regarding the phenomenological viability of non-
standard axion electrodynamics. We find that the dual Witten monodromy, which is implied
by the presence of non-standard axion-photon couplings, is incompatible with the Standard
Model, and so non-standard axion-photon couplings are phenomenologically excluded.
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2πme

mD

Figure 4. The mass spectrum of the electron (or any other charged particle) and associated dyonic
excitations, in theories with a dual Witten effect. At θ = 0, the lightest state is the electron with
mass me, and the first dyon appears at mass mD. The blue curve tracks the mass of the electron as θ

varies and it becomes a heavy dyon. The orange curves are dyonic states at θ = 0; a different dyonic
state plays the role of the electron at different nonzero integer values of θ/(2π).

4.1 The dual Witten monodromy

When we couple the axion to the photon in an SL(2,Z) dual frame, the ordinary photon field
A is no longer invariant under θ 7→ θ + 2π: it shifts as in (3.20), and in particular, acquires
a term proportional to AM. As a result, every electrically charged particle in the theory
must acquire magnetic charge and become a dyon when θ 7→ θ + 2π. This is just the dual
of the usual Witten monodromy, as explained in section 2.3. Let’s begin by commenting
on some general features of this dual Witten effect, before discussing it in the context of
the Standard Model in particular.

Consider an electrically charged particle, say the electron, at θ = 0. If we continuously
vary θ from 0 to 2π, this particle will become a dyon. In order to have a reasonable QFT,
it must be the case that its mass changes during this process. Otherwise, we would find an
infinite degeneracy of dyons by tracking this state to θ = 2πn for all integer n. Thus, the
spectrum of dyonic excitations of the electron (or any other charged particle) should exhibit
a monodromy, as depicted in figure 4. The electron mass should increase as θ increases, while
the mass of some other dyon state will decrease, and that state will become the new electron
at θ = 2π. This is the same sort of behavior that we see in the context of the usual Witten
effect, where the magnetic monopole mass increases as θ varies (see, e.g., [57]).

Because the mass of the dyons depends on θ, we can integrate them out to obtain an
effective potential V (θ) for the axion [52]. In the usual duality frame, where the Witten
effect applies to magnetic monopoles, we integrate out very heavy monopole states with
small dyonic splittings. Because the monopole is a heavy semiclassical object, we should
not treat it with a weakly-coupled monopole field. Instead, we include magnetic monopoles
in the path integral by summing over the different paths that heavy monopole worldlines
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Ψ

Ψ
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θ

Figure 5. If the electrically charged fermion Ψ becomes a dyon by coupling to the axion θ, then a
loop of fermions can generate an axion potential. The corresponding contribution to the axion mass
term can be estimated from this one-loop diagram.

can take (see, e.g., [58]). The sum over dyons can be recast as a sum over a winding of
the dyon collective coordinate around the monopole loop, in which case the calculation
admits a saddle point approximation where such monopole loops with dyonic winding can
be thought of as a type of instanton [52, 59].

When the axion couples in a non-standard duality frame, the character of our calculation
changes. Now the Witten effect implies that a light, weakly-coupled particle like the electron
becomes a dyon as θ varies. We treat such particles as fields in the path integral, rather
than heavy semiclassical worldlines. In particular, the saddle point from the monopole
calculation would now lie at small proper time and would have small action. Thus, there
is no exponential suppression in the axion mass arising from electrically charged fermion
loops, and the calculation lies in a regime in which we do not trust semiclassical methods.
Instead, standard perturbative methods should give a reasonable estimate.13 We assume
that the mass of a charged Dirac fermion Ψ is approximately[

mΨ + mD

(
n − θ

2π

)2
+ · · ·

]
ΨΨ, (4.1)

to quadratic order in the axion, where n labels which dyon state we are considering and the
· · · represent terms of higher order in θ. Given such a term, and focusing on the lightest state
n = 0 near θ = 0, we estimate an axion mass from the one-loop Feynman diagram in figure 5:

m2
θ ∼ 1

16π2 mΨmD
Λ2

f2 log Λ
mΨ

. (4.2)

It seems reasonable to expect that Λ could be of order the dyon mass mD, since that is a
scale where new physics enters. From this expression, we see that this contribution to the
axion mass is potentially much larger than standard instanton contributions.

So far, we have kept the discussion rather general: our only assumption is that the
“standard” duality frame is the one in which A couples to light, weakly-interacting charged
particles. In this case, the standard θF ∧ F coupling ensures that only monopole loops
contribute to the axion potential, allowing for an exponentially small (semiclassical) axion

13The semiclassical calculation applies when the classical radius of the charged object is much larger than its
Compton radius, and standard perturbative methods apply in the opposite limit. Electrically and magnetically
charged particles can never both belong to the perturbative regime.
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mass. In any other frame, where the coupling takes the form θF ′ ∧ F ′, we expect the axion
to obtain a large mass.

Now, let’s turn to a more realistic axion phenomenology, with the axion coupled to
the Standard Model photon. Every charged particle contributes in loops like figure 5. In
particular, the top quark does. Taking mΨ = mt and taking mD ∼ Λ ∼ 1 TeV, we immediately
see that a top quark loop contributes an axion mass

mθ ∼ 30 eV 1012 GeV
f

. (4.3)

This completely overwhelms the standard axion mass. There is no possibility of suppressing
mD or Λ, since we have already probed physics up to the TeV scale. There is no a priori
reason for these contributions to the axion potential to have the same phase as the QCD
contribution, so this would spoil the solution to the Strong CP problem.

In fact, the situation is even worse than this. The Standard Model fermions are chiral
and weakly interacting, and we assume that their interactions with the axion are also
weak (a reasonable assumption, if we are discussing anything resembling standard axion
phenomenology). Thus, not only the usual fermion mass mΨ but also the dyon mass term
mD in (4.1) should be proportional to the Higgs vev. It does not make sense to imagine
that the electron acquires a mass in a θ background in the limit that the Higgs field has
no expectation value. This immediately tells us that mD should not be far above the TeV
scale, because there is a unitarity bound on the strength of the interaction of the Higgs with
the fermion [60]. In fact, the entire tower of dyons should have this property! In the limit
that the Higgs vev is turned off, the electron should not acquire a mass as θ varies, and we
can vary it over many cycles to find that every dyon becomes massless. This is a complete
disaster for field theory, with an infinite tower of massless states.

Although the nonzero Higgs vev means that our universe does not strictly reside in this
limit, the theory nonetheless predicts a tower of particles, all with mass tied to the electroweak
scale and interacting with the Higgs. These particles run in loops in processes involving the
Higgs boson, and it is difficult to see how the theory could remain weakly coupled in any sense.
Concretely, all of these dyons appear in triangle diagrams contributing to the Higgs couplings
to photons and (for dyonic excitations of quarks) to gluons, which are empirically known
to be approximately the values predicted by the Standard Model. These measurements,
independent of any speculation about how a viable model of strongly-coupled QFT could
accommodate all of the dyon states, are sufficient to phenomenologically exclude such a model.

We expect that a stronger statement is true, that such a theory (with an infinite tower of
dyons obtaining mass via the Higgs mechanism) is simply inconsistent. In recent years there
has been intensive study of theories in which infinite towers of particles become massless at a
point in scalar field space (e.g., [61–68]). When the particles can be treated as approximately
elementary, the loop effects of these particles modify the scalar kinetic term and make the
scalar → 0 limit an infinite distance limit [62, 63]. In the case we are discussing, this scalar
would be the Higgs. Such infinite distance limits are believed to happen only in weak-coupling
limits of quantum gravity, in which the scalar field controlling the tower’s mass in all known
limits parametrizes either the volume of decompactifying extra dimensions or the tension of
an emergent light string [64]. None of these examples resemble the Higgs boson; for example,
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none of the scalar fields carry nonabelian gauge charge. There is another alternative: when
the states in the tower are strongly interacting (as the dyons are expected to be), the origin
of field space may not lie at infinite distance, but instead may be a strongly interacting
CFT.14 In examples, the gauge theory under which the particles in the tower are charged is
emergent, and does not exist at the origin of field space. It is unclear if a Standard Model-like
theory could ever arise by perturbing such a theory onto a Higgs branch. Perhaps the most
general argument we can give is that integrating out a tower of particles of increasingly large
charge under a gauge symmetry is generically expected to drive that gauge theory to weak
coupling (e.g., [70]). For the dyon tower, it is the magnetic charge that grows as we ascend
the tower, and so we would expect the magnetic coupling to be driven small. Accordingly, the
electric coupling would become large — the opposite of what we see in the Standard Model.
However, we emphasize that even if our doubts are ill-founded and a theory with chiral
fermions accompanied by dyonic towers actually exists, it is not phenomenologically viable
for the reasons discussed above; none of the conclusions of this paper rest on this paragraph.

Our arguments have focused on chiral fermions obtaining a mass from a Higgs, as in the
Standard Model, but one might ask (and a referee has): could a problem with non-standard
axion electrodynamics exist already in the more general case of a charged Dirac fermion
whose mass m goes to zero? For example, could one conjecture that an axion coupling θF ∧F

is compatible only with massless fermions electrically charged under A, not dyons charged
under a combination of A and AM? (Then, correspondingly, a non-standard axion coupling
would be incompatible with purely electrically charged massless fermions, and we would not
need to appeal to Higgs physics.) In the precise form we have asked the question, this is
false. A counterexample is provided by Seiberg-Witten theory [71], which can be weakly
coupled to a holomorphic modulus τ (including, in particular, an axion coupling to F ∧ F for
the low energy U(1) gauge theory), and which has a point in its moduli space at which a
magnetic monopole becomes massless. In fact, at this point in moduli space, the magnetic
coupling becomes arbitrarily weak in the IR in the m → 0 limit, due to the usual logarithmic
running in QED. Thus, any more general no-go theorem that does not rely on chiral fermions
would need to rely on some additional assumptions.

4.2 More general couplings

In our discussion so far, we have focused on axion couplings that take the standard form θF ∧F

in some duality frame. This corresponds to the requirement that the gauge transformation
θ 7→ θ + 2π acts on the complex coupling parameter τ via an SL(2,Z) element of the form
Λ−1T nΛ. (These are known as the parabolic elements of SL(2,Z), those with the absolute
value of the trace equal to 2.) One could also consider an even more general axion coupling:

given any SL(2,Z) element Λ =
(

a b

c d

)
, we could consider any function τ(θ) with a Λ-twisted

periodicity property, i.e.,

τ(θ + 2π) = aτ(θ) + b

cτ(θ) + d
. (4.4)

14See, e.g., [69] for examples of this phenomenon in 5d, which should lead to similar 4d examples upon
dimensional reduction.
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Then θ 7→ θ + 2π returns the theory to itself up to a duality transformation. Here we will
offer some brief remarks about these more general possibilities.

The simplest examples of such more general functions are those that correspond to the
duality frames we have already discussed, but with additional periodic contributions to τ(θ).
For instance, we might have a coupling of the form sin(θ)F ∧ F . Because this is manifestly
gauge invariant, it can come with an arbitrary coupling constant. Such couplings arise in
ordinary quantum field theories, and are generally expected to be suppressed by the mass
of the axion squared, because physics that generates such a coupling could also generate
a periodic potential V (θ). An interesting, well-known, example is the contribution to the
axion-photon coupling arising from the axion mixing with the pion. This contribution is
larger than one might naively expect, because the axion and pion masses both arise from
QCD dynamics [6, 8–12]. It gives an O(1) contribution δn modifying the prefactor in the
coupling (1.4). In the KSVZ model [72, 73], where n = 0 in (1.1), the pion mixing generates
the only axion-photon coupling and we are in the Λ = 1 case. In other models, like the
DFSZ model [74, 75], where n ̸= 0, we have Λ = T n but now the function τ(θ) is the sum
of a term linear in θ and a term periodic in θ.

Now, consider the most general case. The only SL(2,Z) elements under which electrically
charged particles do not acquire magnetic charge are those of the form T n, corresponding to
standard axion couplings, or −T n, in which case the θ 7→ θ + 2π operation is accompanied by
charge conjugation. Any other choice, then, will imply that the electrically charged particles
of the Standard Model have a family of dyonic excitations, with associated phenomenological
difficulties. If Λ is an element of infinite order (either the parabolic type already discussed, or
a hyperbolic element with absolute value of the trace > 2), then we have an infinite tower of
dyon modes, and the theory is pathological for the reasons discussed in section 4.1. One more
interesting possibility remains: Λ could be a nontrivial SL(2,Z) element of finite order (an
elliptic element, with absolute value of the trace < 2). Apart from the Z2 subgroup generated
by charge conjugation, which is not of interest to us, SL(2,Z) has finite subgroups isomorphic
to Z3, Z4, and Z6. For example, S itself is an element of order 4, while ST has order 6. In
such cases, one would have only a finite number of dyonic excitations of charged particles.

Could the Standard Model be coupled to an axion with such a finite monodromy orbit?
We believe that this is again problematic, though less pathological than the case with an
infinite tower of dyons. Some of the arguments of section 4.1 continue to apply: dyon loops
would again generate large corrections to the axion potential. In fact, because there is no
frame in which these generalized couplings take the form θF ∧ F in which the axion couples
to a total derivative, we would expect that photon loops modify the axion potential as well.
We would again expect that the dyonic partners of Standard Model fermions can only obtain
a mass from electroweak symmetry breaking, so they would have mass near the TeV scale,
and would also alter the Higgs couplings to photons and gluons away from their Standard
Model predictions. (If such a theory exists and could be reconciled with precision Higgs
physics, it would provide a novel motivation for searches for monopoles and dyons at the
TeV scale, like [76, 77].) From a more theoretical viewpoint, one should take care that the
SL(2,Z) elements that act on the theory are not anomalous [54, 78]. Another problem, when
Λ is of even order, is that a power of Λ corresponds to charge conjugation, which is not a
symmetry of the Standard Model. One would need more elaborate model-building to make
sense of this. Finally, it is not at all clear what form a UV completion of such a coupling
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could take. Because the coupling τ(θ) is a periodic function in this case, we would tend
to expect the coefficients of such couplings to be highly suppressed, for similar reasons to
the standard periodic couplings mentioned above. A case in which θ 7→ θ + 2π generates a
finite monodromy could be thought of as a coupling generated by a novel sort of “fractional
instanton,” and would be expected to have an exponentially small coefficient. All of these
considerations make it highly unlikely that a consistent theory of an axion coupled to the
Standard Model with a finite monodromy orbit could exist.

5 Conclusions

It is a familiar fact about a wide variety of axion theories that the axion coupling to photons
is quantized in units of e2/(8π2f), when the fields are canonically normalized. Recently this
conventional wisdom has been called into question, especially by [15]. In agreement with
that work, we find that a wider variety of axion couplings to U(1) gauge theory are possible.
These correspond to the possibility that θ 7→ θ + 2π is accompanied by a nontrivial SL(2,
Z) electromagnetic duality transformation. However, we conclude that these non-standard
theories of axion electrodynamics are incompatible with the real world, due to the existence
of electrically charged chiral fermions in the Standard Model, which would acquire dyonic
excitations if such non-standard axion couplings exist. This is inconsistent with the Standard
Model as a weakly coupled effective field theory in which electroweak symmetry is broken
only by the Higgs boson, as indicated by experimental results.

The Witten effect, and in particular the monodromy of the spectrum of charged objects
that arises under θ 7→ θ + 2π, played a key role in our discussion. We reviewed a simple
argument for the inevitability of the Witten monodromy in section 2.3. Standard axion
electrodynamics can be thought of as gauging the Z subgroup of SL(2,Z) generated by T .
One class of non-standard couplings can be thought of as instead gauging the Z subgroup
whose elements are powers of the element Λ−1T Λ ∈ SL(2,Z). The spectrum still undergoes a
monodromy under this Z subgroup, but for nontrivial Λ, electrically charged particles are
part of a tower of dyons carrying magnetic charge. Another class of non-standard couplings
has only a finite monodromy orbit, but still implies that electrically charged particles become
dyons as the axion field value varies. All of these possibilities are excluded by Higgs physics.

As mentioned in section 4.2, the quantization of the axion-photon coupling applies
only to the Chern-Simons coupling, not to additional couplings like sin(θ)F ∧ F that are
manifestly gauge invariant. An important such contribution arises from the QCD axion’s
mixing with the pion. There are some subtleties in the Chern-Simons couplings themselves.
First, the quantization rule depends on the basic quantum of U(1) charge; if we discovered
a particle of hypercharge 1/12, for instance, our conclusion about the allowed base unit of
the axion-photon coupling would change. In the Standard Model, an additional subtlety
arises from the global structure of the gauge group, which is ambiguous since there are
elements of the center of SU(2)L and SU(3)C that act on all known fields in the same way
as elements of U(1)Y [79]. This allows the existence of field configurations with correlated
fractional topological charges [80–82], which lead to quantization rules that correlate the
axion couplings to gluons and photons [83–85]. In general non-abelian gauge theories, one
can also modify the path integral to include only field configurations with topological charge
a multiple of some base unit p ̸= 1 [86–90].
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Finally, even more exotic generalized axion couplings are known to arise in various
examples, such as Kaluza-Klein reduction of 5d gauge theory. In this case, we find a coupling
of the form θ3H ∧ H of an axion θ to the KK field strength H, which is not invariant under
θ 7→ θ + 2π. However, it appears as part of a monodromy with a different gauge field that
has field strength F , in a structure of the schematic form θF ∧F + θ2H ∧F + θ3H ∧H (with
appropriate coefficients). Under θ 7→ θ + 2π, we have F 7→ F − H , which ensures consistency
of the whole structure. Such generalized theta terms have recently been examined in [53, 91].
These examples are qualitatively similar to the SL(2,Z) alternatives we have discussed in this
paper, in the sense that they rely on gauge field strengths that transform nontrivially under
2π shifts of the axion. From the phenomenological standpoint, they lead to weaker axion
interactions than the standard couplings, so they do not seem to pose an interesting loophole.

The physics of axion-photon couplings is very rich, with a number of subtleties and
interesting applications of topology in quantum field theory. Nonetheless, the equations
of axion electrodynamics (1.3), presented by Sikivie already forty years ago [7], are the
correct equations that should guide experimental searches for an axion or axion-like particle
coupling to photons.
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A Working backwards: equations of motion to a standard action

In the main text, we started with a manifestly well-defined axion coupling in some choice of
SL(2,Z) duality frame, and then showed that an appropriate definition of a non-standard
field strength F could recast the equations of motion in the form (3.25) that was studied
in [15]. In this appendix, we work in the other direction. Beginning with a hypothesized
set of equations of motion for F coupled to a shift-symmetric scalar ϕ, we re-express them
in terms of a standard field strength F with complexified gauge coupling determined by ϕ.
The latter admits a standard quantization via a generalized Maxwell action, allowing us to
determine the quantization conditions on the axion-photon couplings.

A.1 Relating the Sokolov-Ringwald equations to standard electrodynamics

Motivated by [15], we consider classical electrodynamic equations of the form:15

d⋆F + dϕ ∧ (g11 ⋆ F − g12F) = 0,

dF + dϕ ∧ (−g21 ⋆ F + g22F) = 0.
(A.1)

15These are related to the equations in [15] via
(

g11 g12
g21 g22

)(here) =
(

gaAB −gaAA
gaBB −gaAB

)(there).
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Note that we can set g22 = −g11 after a field redefinition F → exp
[
−g11+g22

2 ϕ
]
F , so we

assume this to be the case henceforward.
These equations have the virtue that they are invariant under constant axion shifts,

ϕ → ϕ + δϕ. However, since the field-strength tensor F is not closed, we cannot introduce
a gauge potential A such that F = dA in the standard way, making quantization difficult.
Instead of using the Zwanziger formalism as in [15], we aim to rewrite these equations in
standard form via a field redefinition, i.e., we seek functions F (F , ϕ), e(ϕ) and θ(ϕ) such
that (A.1) becomes:

dF = 0, dFM = 0, where FM ≡ − 2π

e2(ϕ) ⋆ F + θ(ϕ)
2π

F. (A.2)

Here F = dA is a standard U(1) gauge field with gauge coupling e(ϕ) and theta angle θ(ϕ),
whose quantization is well known (see section 2, section 3).

To do so, let us assume that F |ϕ=0 = F .16 With foresight, we first define

FM ≡ −2π

e2
0

⋆ F + θ0
2π

F , where e0 = e(0), ϕ0 = ϕ(0). (A.3)

In terms of F ,FM, (A.1) becomes:

dFM + dϕ ∧ (k11FM + k12F) = 0,

dF + dϕ ∧ (k21FM + k22F) = 0,
where

(
k11 k12
k21 k22

)
=
(2π

e2
0

θ0
2π

0 1

)(
g11 g12
g21 g22

)(2π
e2

0

θ0
2π

0 1

)−1

,

(A.4)
and k22 = −k11. Thus, by construction F |ϕ=0 = F and FM|ϕ=0 = FM. More generally,
for ϕ ̸= 0: (

FM
F

)
=
(

a(ϕ) b(ϕ)
c(ϕ) d(ϕ)

)(
FM
F

)
, where

(
a b

c d

)∣∣∣∣∣
ϕ=0

=
(

1 0
0 1

)
. (A.5)

To determine the functions a(ϕ), b(ϕ), c(ϕ), d(ϕ), we impose Maxwell’s equations dF = dFM =
0 and apply (A.4). This yields the differential equation

d
dϕ

(
a b

c d

)
=
(

a b

c d

)(
k11 k12
k21 k22

)
, so that

(
a b

c d

)
= exp

[
ϕ

(
k11 k12
k21 k22

)]
, (A.6)

upon imposing the ϕ = 0 boundary condition (A.5). Using (A.3), (A.5), we obtain

FM = −a
2π

e2
0

⋆ F +
(

a
θ0
2π

+ b

)
F , F = −c

2π

e2
0

⋆ F +
(

c
θ0
2π

+ d

)
F . (A.7)

Solving the second equation for F and substituting into the first, one finds after some
algebra that

FM = − Im
(

aτ0 + b

cτ0 + d

)
⋆ F + Re

(
aτ0 + b

cτ0 + d

)
F, where τ0 ≡ θ0

2π
+ i2π

e2
0

. (A.8)

16More generally, if F |ϕ=0 = αF + β ⋆ F for constants α, β then we first rewrite (A.1) in terms of
F ′ = αF + β ⋆ F :

d⋆F ′ + dϕ ∧ (g′
11 ⋆ F ′ − g′

12F ′) = 0,

dF ′ + dϕ ∧ (−g′
21 ⋆ F ′ + g′

22F ′) = 0,
where

(
g′

11 g′
12

g′
21 g′

22

)
=
(

α β

−β α

)(
g11 g12

g21 g22

)(
α β

−β α

)−1

.
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Thus, the axion-dependent coupling constants are given by

τ(ϕ) ≡ θ(ϕ)
2π

+ 2πi
e(ϕ)2 = a(ϕ)τ0 + b(ϕ)

c(ϕ)τ0 + d(ϕ) . (A.9)

This is simply a PSL(2,R) transformation of the ϕ = 0 coupling τ0 by
(

a b
c d

)
= exp

[
ϕ
( k11 k12

k21 k22

)]
.

We can now write an action leading to (A.1):

S = −(2πf)2

2

∫
dϕ ∧ ⋆ dϕ + 1

4π

∫
F ∧ [Re τ(ϕ)F − Im τ(ϕ) ⋆ F ],

where F = dA, τ(ϕ) = aτ0 + b

cτ0 + d
,

(
a b

c d

)
= exp

[
ϕ

(
k11 k12
k21 −k11

)]
. (A.10)

Here f is the axion decay constant, τ0 = θ0
2π + i2π

e2
0

is the complexified gauge coupling at ϕ = 0,
and k11, k12, k21 are additional real constants. Defining F ≡ Re

[
F +i⋆F
cτ0+d

]
and following the

same steps as above in reverse, one recovers (A.1) with(
g11 g12
g21 g22

)
=
(2π

e2
0

θ0
2π

0 1

)−1(
k11 k12
k21 −k11

)(2π
e2

0

θ0
2π

0 1

)
. (A.11)

To complete the comparison with [15], we consider the axion equation of motion:

(2πf)2 d⋆ dϕ = 1
4π

F ∧ [−Re τ ′(ϕ)F + Im τ ′(ϕ) ⋆ F ]. (A.12)

Re-expressing this in terms of F using the relation F + i ⋆ F = F +i⋆F
cτ0+d and applying

(cτ0 + d)2τ ′(ϕ) = 2k11τ0 + k12 − τ2
0 k21 = (g21 + g12 + 2ig11) Im τ0, (A.13)

we find that

(2πfe0)2 d⋆ dϕ = −g21 + g12
2 F ∧ F + g11F ∧ ⋆F . (A.14)

This matches with [15] up to signs.
Note that in the special case g11 = 0, g21 = −g12, F decouples from the axion equation

of motion (A.14). To understand why, note that in this case(
a b

c d

)
=
(

cos(g12ϕ) − Re τ0
Im τ0

sin(g12ϕ) |τ0|2
Im τ0

sin(g12ϕ)
− 1

Im τ0
sin(g12ϕ) cos(g12ϕ) + Re τ0

Im τ0
sin(g12ϕ)

)
, (A.15)

using (A.4), (A.6), so that

τ(ϕ) =

[
cos(g12ϕ) − Re τ0

Im τ0
sin(g12ϕ)

]
τ0 + |τ0|2

Im τ0
sin(g12ϕ)

− 1
Im τ0

sin(g12ϕ)τ0 + cos(g12ϕ) + Re τ0
Im τ0

sin(g12ϕ)
= cos(g12ϕ) − i sin(g12ϕ)

cos(g12ϕ) − i sin(g12ϕ)τ0 = τ0.

(A.16)
As a result ϕ and A decouple from each other in (A.10).17, .18

17Although ϕ still appears in (A.1), it can be removed by the field redefinition F → cos(g12ϕ)F−sin(g12ϕ)⋆F .
This explains why (A.14) only depends on the combination g12 + g21. In [15], the combination g12 − g21

appears instead, likely as the result of a typo or sign error somewhere.
18If τ0 is invariant under a non-trivial element Λ1 ∈ SL(2,Z) then the interesting possibility remains that

ϕ → ϕ + 1 acts non-trivially on
(

FM
F

)
while leaving τ unchanged. However, this can only occur at strong

coupling e0 ⩾
√

2π, so it is not phenomenologically relevant.
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A.2 Quantization of the generalized axion couplings

So far, we have shown that the generalized axion electrodynamics equations derived in [15]
follow from a standard action (A.10) at the classical level (up to a likely sign error in the
axion equation of motion given in [15]). The quantization of (A.10) is straightforward, along
the lines discussed in section 2, section 3. In particular, given the assumptions discussed in
section 2.2, we are interested in the case where F is a (holomorphically normalized) U(1)
gauge field and ϕ ∼= ϕ + 1 is a compact scalar. Then we are forced to impose the consistency
condition that the monodromy matrix lies within SL(2,Z):

Λ1 ≡
(

a b

c d

)∣∣∣∣∣
ϕ=1

= exp
[(

k11 k12
k21 −k11

)]
∈ SL(2,Z), (A.17)

so that the shift symmetry ϕ ∼= ϕ + 1 is exact.
Written out explicitly, the precise form of the constraint (A.17) depends on the sign of

ϑ2 ≡ k2
11 + k12k21. We first consider the case where ϑ2 > 0, for which we obtain:

Λ1 =
(

cosh ϑ + k11
sinh ϑ

ϑ k12
sinh ϑ

ϑ

k21
sinh ϑ

ϑ cosh ϑ − k11
sinh ϑ

ϑ

)
∈ SL(2,Z). (A.18)

Taking the trace, we conclude that cosh ϑ = n
2 for n ∈ Z, n > 2. A general solution then takes

the form kij = ϑ
2 sinh ϑnij for integers nij satisfying n2

11 +n12n21 = n2−4 with n12 and n21 even.
In other words, given a monodromy matrix

( a1 b1
c1 d1

)
∈ SL(2,Z) with trace a1 + d1 > 2,

the couplings kij are fixed to be(
k11 k12
k21 −k11

)
=

cosh−1(a1+d1
2
)√(a1+d1

2
)2 − 1

(
a1−d1

2 b1
c1

d1−a1
2

)
, (A.19)

so the choice of a monodromy matrix Λ1 ∈ SL(2,Z) with trace Tr Λ1 > 2 fully fixes the
couplings.

Next, consider the case ϑ2 = 0, for which

Λ1 =
(

1 + k11 k12
k21 1 − k11

)
∈ SL(2,Z), (A.20)

so that kij ∈ Z with k2
11 + k12k21 = 0. As before, this implies that the couplings kij are

fully fixed by the monodromy matrix Λ1 when Tr Λ1 = 2:(
k11 k12
k21 −k11

)
=
(

a1−d1
2 b1
c1

d1−a1
2

)
, (A.21)

except that the special case Λ1 =
( 1 0

0 1
)

need not imply trivial couplings, as we will see.
Finally, consider the case ϑ2 < 0. Defining θ2 ≡ −ϑ2 = −k2

11 − k12k21, one finds

Λ1 =
(

cos θ + k11
sin θ

θ k12
sin θ

θ

k21
sin θ

θ cos θ − k11
sin θ

θ

)
∈ SL(2,Z). (A.22)
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Taking the trace, we conclude that cos θ ∈ {0,±1
2 ,±1}, so that θ is a multiple of π/2 or π/3.

For cos θ ∈ {0,±1
2}, a general solution takes the form kij = θ

2 sin θ nij for integers nij satisfying
n2

11 + n12n21 = 4 cos2 θ − 4 with n12 and n21 even. In other words,(
k11 k12
k21 −k11

)
= θ

sin θ

(
a1−d1

2 b1
c1

d1−a1
2

)
, (A.23)

where θ is any solution to cos θ = a1+d1
2 . Thus, a choice of monodromy matrix Λ1 satisfying

Tr Λ1 ∈ {0,±1} plus a choice of branch cut for θ = cos−1(Tr Λ1
2
)
, θ > 0 uniquely fixes the kij .

Finally, in the case cos θ = ±1 there is no further constraint on the kij beyond k2
11 +

k12k21 = −θ2.
To summarize, the necessary and sufficient conditions for the kij quantization rules to

be satisfied are as follows. First, we pick a monodromy matrix Λ1 ∈ SL(2,Z) satisfying
either Tr Λ1 ⩾ −1 or Λ1 = −12×2. If Tr Λ1 ⩾ 2 and Λ1 ̸= 12×2 then this uniquely fixes
the kij via (A.19) or (A.21). If −1 ⩽ Tr Λ1 ⩽ 1 then this fixes the kij via (A.23) after a
choice of branch cut for θ = cos−1(Tr Λ1

2
)
, θ > 0. Finally, when Λ1 = ±12×2 we require

k2
11 + k12k21 = −(nπ)2 for n ∈ Z where n is even (odd) when Λ1 = 12×2 (Λ1 = −12×2). Note

that only in the last case can the kij be varied continuously consistent with the quantization
rules. Otherwise they are discretely quantized.
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