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Abstract

We continue the study of multiple cluster structures in the rings of regu-
lar functions on GL,, SL, and Mat, that are compatible with Poisson—Lie and
Poisson-homogeneous structures. According to our initial conjecture, each class
in the Belavin—Drinfeld classification of Poisson—Lie structures on a semisimple
complex group G corresponds to a cluster structure in O(G). Here we prove this
conjecture for a large subset of Belavin—Drinfeld (BD) data of A, type, which in-
cludes all the previously known examples. Namely, we subdivide all possible A,
type BD data into oriented and non-oriented kinds. We further single out BD data
satisfying a certain combinatorial condition that we call aperiodicity and prove
that for any oriented BD data of this kind there exists a regular cluster structure
compatible with the corresponding Poisson—Lie bracket. In fact, we extend the
aperiodicity condition to pairs of oriented BD data and prove a more general re-
sult that establishes an existence of a regular cluster structure on SL,, compatible
with a Poisson bracket homogeneous with respect to the right and left action of two
copies of SL,, equipped with two different Poisson-Lie brackets. Similar results hold
for aperiodic non-oriented BD data, but the analysis of the corresponding regular
cluster structure is more involved and not given here. If the aperiodicity condition
is not satisfied, a compatible cluster structure has to be replaced with a generalized
cluster structure. We will address these situations in future publications.
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CHAPTER 1

Introduction

In this paper we continue the systematic study of multiple cluster structures
in the rings of regular functions on GL,, SL, and Mat, started in [I3H15]. It
follows an approach developed and implemented in [I0H12] for constructing cluster
structures on algebraic varieties.

Recall that given a smooth complex algebraic Poisson variety (M, {:,-}), a
compatible cluster structure Cpq on M is a collection of coordinate charts (called
clusters) comprised of regular functions with simple birational transition maps be-
tween charts (called cluster transformations, see [8]) such that the logarithms of
any two functions in the same chart have a constant Poisson bracket. Once found,
any such chart can be used as a starting point, and our construction allows us to
restore the whole Cr, provided the arising birational maps preserve regularity. Al-
gebraic structures corresponding to Caq (the cluster algebra and the upper cluster
algebra) are closely related to the ring O(M) of regular functions on M. In fact,
under certain rather mild conditions, O(M) can be obtained by tensoring the upper
cluster algebra with C, see [12].

This construction was applied in [12] Chapter 4.3] to double Bruhat cells in
semisimple Lie groups equipped with (the restriction of) the standard Poisson—Lie
structure. It was shown that the resulting cluster structure coincides with the one
built in [2]. The standard Poisson—Lie structure is a particular case of Poisson—Lie
structures corresponding to quasi-triangular Lie bialgebras. Such structures are as-
sociated with solutions to the classical Yang—Baxter equation. Their complete clas-
sification was obtained by Belavin and Drinfeld in [I]. Solutions are parametrized
by the data that consists of a continuous and a discrete component. The former
is governed by the latter, called the Belavin—Drinfeld triple. It is defined as an
isometry between two subsets of positive roots in the root system of the Lie algebra
of the corresponding semisimple Lie group. In [I13] we conjectured that any such
solution gives rise to a compatible cluster structure on this Lie group. This con-
jecture was verified in [4] for SLs and proved in [5L[6] for all simplest non-trivial
Belavin-Drinfeld triples in SL,, and in [15] for the Cremmer—Gervais case.

In this paper we extend these results to a wide class of Belavin—Drinfeld triples
in SL,,. We define a subclass of oriented triples for which the corresponding isom-
etry preserves orientation of intervals in the Dynkin diagram, see Section [3.I] and
encode the corresponding information in a combinatorial object called a Belavin—
Drinfeld graph. Our main result claims that the conjecture of [13] holds true
whenever the corresponding Belavin—Drinfeld graph is acyclic. In this case the
structure of the Belavin—Drinfeld graph is mirrored in the explicit construction of
the initial cluster, see Section In fact, we have proved a stronger result: given
two oriented Belavin—Drinfeld triples in S'L,, we define the graph of the pair, and if
this graph possesses a certain acyclicity property then the Poisson bracket defined

1
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2 1. INTRODUCTION

by the pair (note that it is not Poisson—Lie anymore) gives rise to a compatible
cluster structure on SL,. The construction we present in this paper can be ad-
justed to treat non-oriented triples, but the analysis is more involved and will be
described elsewhere.

If the Belavin—Drinfeld graph has cycles then the conjecture of [13] needs to
be modified: one has to consider generalized cluster structures instead of the or-
dinary ones. Unlike in the acyclic case, our construction of the basis presented
in Section then necessitates consideration of infinite periodic staircase matri-
ces; consequently, defining the initial seed and generalized cluster transformations
require additional tools. These tools were developed in [I7], where appropriate
identities for minors of such matrices were described, along with the application to
a construction of a generalized cluster structure in the smallest case when cycles
are present.

In [18], Goodearl and Yakimov developed a uniform approach for constructing
cluster algebra structures in symmetric Poisson nilpotent algebras using sequences
of Poisson-prime elements in chains of Poisson unique factorization domains. These
results apply to a large class of Poisson varieties, e.g., Schubert cells in Kac—Moody
groups viewed as Poisson subvarieties with respect to the standard Poisson-Lie
bracket. It is worth pointing out, however, that the approach of [18], in its current
form, does not seem to be applicable to the situation we consider here. This is
evident from the fact that for cluster structures constructed in [I8], the cluster
algebra and the corresponding upper cluster algebra always coincide. In contrast,
as we have shown in [14], the simplest non-trivial Belavin-Drinfreld data in SLs
results in a strict inclusion of the cluster algebra into the upper cluster algebra.

The paper is organized as follows. Chapter 2] contains a concise description
of necessary definitions and results on cluster algebras and Poisson—Lie groups.
Chapter Bl presents main constructions and results. The Belavin-Drinfeld graph and
related combinatorial data are defined in Section Bl The same section contains
the formulations of the main Theorems and 3.3 An explicit construction of
the initial cluster is contained in Section and summarized in Theorem B4
Chapter M is dedicated to the proof of this theorem. The quiver that together
with the initial cluster defines the compatible cluster structure is built in Section
B3] see Theorem whose proof is contained in Chapter Bl Section B4 outlines
the proof of the main Theorems and B3l It contains, inter alia, Theorem
that enables us to implement the induction step in the proof of an isomorphism
between the constructed upper cluster algebra and the ring of regular functions on
Mat,,. A detailed constructive proof of this isomorphism is the subject of Chapter[7l
Chapter [6] is devoted to showing that cluster structures we constructed are regular
and admit a global toric action.

Acknowledgments. Our research was supported in part by the NSF research
grants DMS #1362801 and DMS #1702054 (M. G.), NSF research grants DMS
#1362352 and DMS-1702115, and International Laboratory of Cluster Geometry
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CHAPTER 2

Preliminaries

2.1. Skew-symmetric cluster structures of geometric type and
compatible Poisson brackets

Let F be the field of rational functions in N + M independent variables with
rational coefficients. There are M distinguished variables; they are denoted z 41,
..y x4y and called frozen, or stable. The (N + M)-tuple x = (z1,...,ZN+0)
is called a cluster, and its elements x1, ..., zy are called cluster variables. The
quiver @ is a directed multigraph with no cycles of lengths 1 and 2 on the vertices
1, ..., N + M corresponding to all variables; the vertices corresponding to frozen
variables are called frozen. An arrow going from a vertex i to a vertex j is denoted
i — j. The pair ¥ = (x,Q) is called a seed.
Given a seed as above, the adjacent cluster in direction k, 1 < k < N, is defined
by x’ = (x\{zx})U{z}}, where the new cluster variable z, is given by the exzchange

relation
TpT) = H i + H ;.
k—1 i—k

The quiver mutation of () in direction k is given by the following three steps:
(i) for every two-arrow path ¢ — k — j in @, an arrow ¢ — j is added; (ii) pairs
of opposite arrows i — j and j — ¢ (if they exist) annihilate consequtively; (iii) all
arrows ¢ — k and all arrows & — ¢ are reversed. The resulting quiver is denoted
Q' = ux(Q). It is sometimes convenient to represent the quiver by an N x (N + M)
integer matrix B = B(Q) called the exchange matriz, where b;; is the number of
arrows ¢ — j in ). Note that the principal part of B is skew-symmetric (recall that
the principal part of a rectangular matrix is its maximal leading square submatrix).

Given a seed ¥ = (x,Q), we say that a seed ¥’ = (x/,Q’) is adjacent to ¥ (in
direction k) if x" is adjacent to x in direction k and Q" = pi(Q). Two seeds are
mutation equivalent if they can be connected by a sequence of pairwise adjacent
seeds. The set of all seeds mutation equivalent to X is called the cluster structure
(of geometric type) in F associated with ¥ and denoted by C(X); in what follows,
we usually write just C instead.

Let A be a ground ring satisfying the condition

Zlxns1,- - xnem] CAC Z[zﬁi_l, . ,xﬁiM]

(we write %! instead of z,z71). Following [2}[8], we associate with C two algebras
of rank N over A: the cluster algebra A = A(C), which is the A-subalgebra of F
generated by all cluster variables in all seeds in C, and the upper cluster algebra
A = A(C), which is the intersection of the rings of Laurent polynomials over A
in cluster variables taken over all seeds in C. The famous Laurent phenomenon
[9] claims the inclusion A(C) C A(C). Note that originally upper cluster algebras
were defined over the ring of Laurent polynomials in frozen variables. In [16] we

5

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6 2. PRELIMINARIES

proved that upper cluster algebras over subrings of this ring retain all properties
of usual upper cluster algebras. In what follows we assume that the ground ring is
the polynomial ring in frozen variables, unless explicitly stated otherwise.

Let V be a quasi-affine variety over C, C(V) be the field of rational functions on
V, and O(V) be the ring of regular functions on V. Let C be a cluster structure in
F as above. Assume that {fi,..., fv+am} is a transcendence basis of C(V'). Then
the map ¢ : z; — fi, 1 < i < N 4 M], can be extended to a field isomorphism
¢ : Fg = C(V), where Fr = F®C is obtained from F by extension of scalars. The
pair (C, ) is called a cluster structure in C(V') (or just a cluster structure on V),
{f1, ., fn+m} is called a cluster in (C, ). Occasionally, we omit direct indication
of ¢ and say that C is a cluster structure on V. A cluster structure (C, ¢) is called
regular if o(z) is a regular function for any cluster variable . The two algebras
defined above have their counterparts in F¢ obtained by extension of scalars; they
are denoted Ac and Ac. If, moreover, the field isomorphism ¢ can be restricted
to an isomorphism of Ac (or Ag) and O(V), we say that Ac (or Ac) is naturally
isomorphic to O(V).

Let {-,-} be a Poisson bracket on the ambient field F, and C be a cluster
structure in F. We say that the bracket and the cluster structure are compatible if,
for any cluster x = (1,...,Zy40), one has {z;, ;Cj} = w;;T;T;, where w;; € Q are
constants for all 1 <4,j < N 4+ M. The matrix Q* = (w;;) is called the coefficient
matriz of {-,-} (in the basis x); clearly, * is skew-symmetric. The notion of
compatibility extends to Poisson brackets on F¢ without any changes.

Fix an arbitrary cluster x = (z1,...,zn+nm) and define a local toric action of
rank s at x as a map

s N+M
(2.1) x <x H@:m) L d= (g0 € (),
a=1 i=1

where W = (w;q) is an integer (N + M) x s weight matriz of full rank. Let x’ be
another cluster in C, then the corresponding local toric action defined by the weight
matrix W' is compatible with the local toric action ([ZI) if it commutes with the
sequence of cluster transformations that takes x to x’. If local toric actions for all
clusters are compatible, they define a global toric action on C called the C-extension
of the local toric action (ZT).

2.2. Poisson—Lie groups

A reductive complex Lie group G equipped with a Poisson bracket {-,-} is called
a Poisson—Lie group if the multiplication map GxG 3 (X,Y) — XY € G is Poisson.
Perhaps, the most important class of Poisson—Lie groups is the one associated with
quasitriangular Lie bialgebras defined in terms of classical R-matrices (see, e. g.,
[3l Chapter 1], [19] and [20] for a detailed exposition of these structures).

Let g be the Lie algebra corresponding to G, (-, -) be an invariant nondegenerate
form on g, and let t € g® g be the corresponding Casimir element. For an arbitrary
element r =) . a; ® b; € g® g denote

[l = e ] @b @by + Y a; @ [bia] @by + Y a; @ a; @ by, by]
i,j i, &J
and r?' = Y. bi ®a;. A classical R-matriz is an element r € g ® g that satisfies
the classical Yang-Baater equation (CYBE) [[r,r]] = 0 together with the condition

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2.2. POISSON-LIE GROUPS 7

r 4+ r2! = t. The Poisson—Lie bracket on G that corresponds to r can be written as
(Y 24 = (R (T2 1Y), VEF2) — (R (TR 1), VR )

= <R*(va1), va2> - <R*(va1)a va2>7
where R, R_ € Endg are given by (R1n,() = (r,n® (), —(R-(,n) = (r,n® ()

for any 7, € g and VY, V are the right and the left gradients of functions on G
with respect to (-, ) defined by

_4d
Cdt

(2.2)

FXES), (VRX). = L et

(VEF().€) 7|

forany £ € g, X €G.
Following [19], let us recall the construction of the Drinfeld double. First, note
that CYBE implies that

(2.3) g+ =Im(Ry), g-=Im(R_)

t=0

are subalgebras in g. The double of g is D(g) = g ® g equipped with an invariant
nondegenerate bilinear form

<<(€7 77)7 (gla 77/>>> = <§7 §/> - <777 77/>~
Define subalgebras 2+ of D(g) by

(2.4) 0y ={(8):¢egl, v ={(R(§),R(§): € € g},

then 04 are isotropic subalgebras of D(g) and D(g) = d9,.+0_. In other words,
(D(g),04,0_) is a Manin triple. Then the operator Rp = mp, — my_ can be used
to define a Poisson—Lie structure on D(G) = G x G, the double of the group G, via

(25) {770 = 5 ((Rp(FF), V1) — ((Ro(T), 7772))

where V# and VX are right and left gradients with respect to ((-,-)). Restriction of
this bracket to G identified with the diagonal subgroup of D(G) (whose Lie algebra
is 04) coincides with the Poisson-Lie bracket {-, -}, on G. Let D_ be the subgroup
of D(G) that corresponds to 9_ Double cosets of D_ in D(G) play an important
role in the description of symplectic leaves in Poisson—Lie groups G and D(G), see
[20].

The classification of classical R-matrices for simple complex Lie groups was
given by Belavin and Drinfeld in [I]. Let G be a simple complex Lie group, ®
be the root system associated with its Lie algebra g, ®* be the set of positive
roots, and II C ®* be the set of positive simple roots. A Belavin—Drinfeld triple
T = (I'1,Ty,7) (in what follows, a BD triple) consists of two subsets I'1,T'y of I
and an isometry v: I'y — I'y nilpotent in the following sense: for every o € I'; there
exists m € N such that 77 (a) € 'y for j € [0,m — 1], but y™(a) ¢ T';.

The isometry v yields an isomorphism, also denoted by =, between the Lie
subalgebras gr, and gr, that correspond to I'y and I's. It is uniquely defined by the
property veq = €4(q) for a € T'1, where e,, is the Chevalley generator corresponding
to the root . The isomorphism v*: gr, — gr, is defined as the adjoint to v with
respect to the form (-,-). It is given by y*e () = €q for v(a) € I'z. Both v and ~*
can be extended to maps of g to itself by applying first the orthogonal projection on
gr, (respectively, on gr,) with respect to (-,-); clearly, the extended maps remain
adjoint to each other. Note that the restrictions of v and v* to the positive and

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



8 2. PRELIMINARIES

the negative nilpotent subalgebras ny and n_ of g are Lie algebra homomorphisms
of ny and n_ to themselves, and y(et,) =0 for all @ € IT'\ T';.

By the classification theorem, each classical R-matrix is equivalent to an R-
matrix from the Belavin—Drinfeld class defined by a BD triple I'. Following [7], we
write down an expression for the members of this class:

1 Y
(2.6) r:59h+s+;e_a®ea+§26_a/\1_760(;

here the summation is over the set of all positive roots, Qy € h ® b is given by

Qy = 3" ho ®hg where {h,} is the standard basis of the Cartan subalgebra b, {h,}
is the dual basis with respect to the restriction of (-,-) to b, and s € h A b satisfies

(2.7) (1=vy)a®1)(2s) = ((1+7)a®1)Qy,

for any o € T'y. Solutions to (271) form a linear space of dimension %1-71) with
kr = [IT\ T'1]. More precisely, define

(2.8) br ={he€h : alh)=pB(h)if4/(a) =B for some j},

then dim hr = kr, and if s’ is a fixed solution of (27), then every other solution
has a form s = s’ + sg, where sg is an arbitrary element of hr A hr. The subalgebra
br defines a torus Hr = exp br in G.

Let -, m« be projections of g onto ny and n_, 7y be the projection onto bh.
It follows from (Z6) that R, in [22) is given by

1 * 1
(29) R+—1_7W>_117*7<+<§+S>Wba

where S € End b is skew-symmetric with respect to the restriction of (-, -) to h and
satisfies (Sh,h') = (s,h ® h’) for any h, h’ € h and conditions

(2.10) S(1 = ha = 51+ e

for any a € T'y, translated from (27).

For an R-matrix given by (2.6]), subalgebras g. from (23) are contained in
parabolic subalgebras p+ of g determined by the BD triple: p; contains by and
all the negative root spaces in gr,, while p_ contains b_ and all the positive root
spaces in gr,. Then one has

(2.11) p+=09+®by,  p-=g-®b-

with b+ C bh. An explicit description of subalgebras hi can be found, e.g., in
[20] Section 3.1]. Let [ denote the Levi component of py.. Then I, = gr,, [ = gr,,
and the Lie algebra isomorphism ~ described above restricts to [ Ngy — [ Ng_.
This allows to describe the subalgebra 0_ as

(212) o ={(&4+,€-)): €+ € 9+, V(Mg &) = Timg &}
CH{(€,62)): Ex €px, V(M &) =T &},

where 7. are the projections to the corresponding subalgebras.

In what follows we will use a Poisson bracket on G that is a generalization
of the bracket (Z2). Let r,7’ be two classical R-matrices, and Ry, R/, be the
corresponding operators, then we write

(2.13) {1 e = (R (VEFY), VEF?) = (R (VEST), V).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2.2. POISSON-LIE GROUPS 9

By [19], Proposition 12.11], the above expression defines a Poisson bracket, which
is not Poisson—Lie unless r = r/, in which case {f!, f2},., evidently coincides with
{f*, f*},. The bracket (ZI3) defines a Poisson homogeneous structure on G with
respect to the left and right multiplication by Poisson-Lie groups (G, {-,-},) and
(G,{-,-},/), respectively. The bracket on the Drinfeld double that corresponds to
{fY, f?},r . is defined similarly to (ZH) via

1

(2.14) (£ 1230, = 5 ((Bp(VE ), VE£2) = (R (VR ), V7)) -

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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CHAPTER 3

Main results and the outline of the proof

3.1. Combinatorial data and main results

In this paper, we only deal with g = sl,,, and hence I'; and I'; can be identified
with subsets of [1,n — 1]. Note that the isometry condition on ~ implies that if
i,i+1 €T then v(i + 1) = v(i) £ 1. We say that T is oriented if i,i+1 € Ty
yields y(i4+1) = (i) + 1. In other words, the orientation of every subset of I'; that
consists of consecutive roots is preserved by 7.

For any i € [1,n] put

iy =min{j € [1,n]\T1: j > i}, i— =max{j € [0,n]\T1: j<i}.

The interval A(i) = [i— 41,44 ] is called the X -run of i. Clearly, all distinct X-runs
form a partition of [1,n]. The X-runs are numbered consecutively from left to right.
For example, let n = 7 and I'; = {1,2,4}, then there are four X-runs: A; =[1, 3],
AQ = [4,5}7 Ag = [6,6} and A4 = [7, 7] Clearly, A(2) = Al, A(4) = AQ, etc.

In a similar way, I'y defines another partition of [1,n] into Y-runs A(i). For
example, let in the above example 'y = {1,3,4}, then A; = [1,2], Ay = [3,5],
Az =[6,6] and Ay = [7,7].

Runs of length one are called trivial. The map - induces a bijection on the
sets of nontrivial X-runs and Y-runs: we say that A; = v(A;) if there exists
k € A; such that A(y(k)) = A;. The inverse of the bijection v is denoted ~*
(the reasons for this notation will become clear later). Let in the previous example
v(1) =3,7(2) =4,7(4) =1, then Ay = y(Az) and Ay = y(Ay).

The BD graph Gr is defined as follows. The vertices of Gr are two copies of
the set of positive simple roots identified with [1,n—1]. One of the sets is called the
upper part of the graph, and the other is called the lower part. A vertex i € I'y is
connected with an inclined edge to the vertex (i) € I's. Finally, vertices i and n—i
in the same part are connected with a horizontal edge. If n =2k and i =n—1i =k,
the corresponding horizontal edge is a loop. The BD graph for the above example
is shown in Figure 3.1l on the left. In the same figure on the right one finds the BD
graph for the case of SLg with I'y = {1,3,4}, 'y = {2,4,5} and v: i — i + 1.

Clearly, there are four possible types of connected components in Gr: a path,
a path with a loop, a path with two loops, and a cycle. We say that a BD triple
T is aperiodic if each component in Gr is either a path or a path with a loop, and
periodic otherwise. In what follows we assume that T’ is aperiodic. The case of
periodic BD triples will be addressed in a separate paper.

REMARK 3.1. Let wg be the longest permutation in S,,. Observe that horizontal
edges in both rows of the BD graph can be seen as a depiction of the action of
(—wp) on the set of positive simple roots of SL,,. Thus the BD graph can be used
to analyze the properties of the map woywoy~'. A map of this kind, with the

11
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FiGURE 3.1. BD graphs for aperiodic BD triples

pair (wo,wp) replaced by a pair of elements of the Weyl group satisfying certain
properties dictated by the BD triple in an arbitrary reductive Lie group, was defined
in [20, Section 5.1.1] and utilized in the description of symplectic leaves of the
corresponding Poisson—Lie structure.

The main result of this paper states that the conjecture formulated in [13]
holds for oriented aperiodic BD triples in SL,,. Namely,

THEOREM 3.2. For any oriented aperiodic Belavin—Drinfeld triple T' =
(T'1,Ta,7) there exists a cluster structure Cr on SL, such that

(i) the number of frozen wvariables is 2kr, and the corresponding exchange
matriz has a full rank;

(ii) Cr is regular, and the corresponding upper cluster algebra Ac(Cr) is nat-
urally isomorphic to O(SL,);

(iii) the global toric action of (C*)?** on Cr is generated by the action of
Hr X Hr on SL, given by (Hy, Hy)(X) = Hi X Ho;

(iv) for any solution of CYBE that belongs to the Belavin—Drinfeld class spec-
ified by I, the corresponding Sklyanin bracket is compatible with Cr;

(v) a Poisson—Lie bracket on SL,, is compatible with Cr only if it is a scalar
multiple of the Sklyanin bracket associated with a solution of CYBE that
belongs to the Belavin—Drinfeld class specified by T'.

This result was established previously for the Cremmer—Gervais case (given by
viir i+ 1for 1 <i<n-—2)in [15] and for all cases when kr = n — 2 in [5.[6].

In fact, the construction above is a particular case of a more general construc-
tion. Let r" and r° be two classical R-matrices that correspond to BD triples
' = (I},T%,4") and IT'° = (T, TS, ~¢), which we call the row and the column BD
triples, respectively.

Assume that both I'" and I' are oriented. Similarly to the BD graph Gr for
T, one can define a graph Gpr re for the pair (I'", I'°) as follows. Take G- with all
inclined edges directed downwards and Gre in which all inclined edges are directed
upwards. Superimpose these graphs by identifying the corresponding vertices. In
the resulting graph, for every pair of vertices i,n — i in either top or bottom row
there are two edges joining them. We give these edges opposite orientations. If n is
even, then we retain only one loop at each of the two vertices labeled 5. The result
is a directed graph Gpr e on 2(n — 1) vertices. For example, consider the case of
GL5 with I'" = ({1,2},{2,3},1 = 2,2+ 3) and ' = ({1,2},{3,4},1+— 3,2 — 4).
The corresponding graph G- re is shown on the left in Figure For horizontal
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3.1. COMBINATORIAL DATA AND MAIN RESULTS 13

edges, no direction is indicated, which means that they can be traversed in both
directions. The graph shown on in Figure[3.2 on the right corresponds to the case of
GLg with T = ({2,6},{3,7},2+— 3,6 — 7) and I'"° = ({2,6},{1,5},6 — 1,2 — 5).

A directed path in G- e is called alternating if horizontal and inclined edges
in the path alternate. In particular, an edge is a (trivial) alternating path. An
alternating path with coinciding endpoints and an even number of edges is called an
alternating cycle. Similarly to the decomposition of Gt into connected components,
we can decompose the edge set of G+ re into a disjoint union of maximal alternating
paths and alternating cycles. If the resulting collection contains no alternating
cycles, we call the pair (T'",I'°) aperiodic; clearly, (T',T') is aperiodic if and only if
T is aperiodic. For the graph on the left in Figure B2 the corresponding maximal
paths are 412314, 3232, 1423, and 41 (here vertices in the lower part are marked
with a dash for better visualization). None of them is an alternating cycle, so the
corresponding pair is aperiodic. For the graph on the right in Figure 3.2] the path
623526716 is an alternating cycle; the edges 17 and 53 are trivial alternating paths.

1 2 3 4 1 2 3 4 5 6 7

=)
]

1 2 3 4 1 2 3 4 5

FIGURE 3.2. Alternating paths and cycles in Gpr pe

The following result generalizes the first four claims of Theorem

THEOREM 3.3. For any aperiodic pair of oriented Belavin—Drinfeld triples
Yy ap p D
(T'",T°) there exists a cluster structure Cpx pe on SL, such that

(i) the number of frozen variables is kr:+kre, and the corresponding exchange
matriz has a full rank;

(ii) Cr«re< is regular, and the corresponding upper cluster algebra Ac(Cr+ 1<)
is naturally isomorphic to O(SLy,).

(iii) the global toric action of (C*)*r*Fr on Cp:« pe is generated by the action
of Hr+ X Hpe on SL,, given by (Hy, H2)(X) = H1 X Hs.

(iv) for any pair of solutions of CYBE that belong to the Belavin—Drinfeld
classes specified by T* and T'°, the corresponding bracket [2I3)) is com-
patible with Crr re.

Following the approach suggested in [15], we will construct a cluster structure
on the space Mat,, of n x n matrices and derive the required properties of Crr re
from similar features of the latter cluster structure. Note that in the case of GL,,
we also obtain a regular cluster structure with the same properties, however, in
this case the ring of regular functions on GL,, is isomorphic to the localization of
the upper cluster algebra with respect to det X, which is equivalent to replacing
the ground ring by the corresponding localization of the polynomial ring in frozen
variables. In what follows we use the same notation Crr e for all three cluster
structures and indicate explicitly which one is meant when needed.
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14 3. MAIN RESULTS AND THE OUTLINE OF THE PROOF

3.2. The basis

Consider connected components of Gr for an aperiodic I'. The choice of the
endpoint of a component induces directions of its edges: the first edge is directed
from the endpoint, the second one from the head of the first one, and so on. Note
that for a path with a loop, each edge except for the loop gets two opposite di-
rections. Consequently, the choice of an endpoint of a component defines a matrix
built of blocks curved out from two n x n matrices of indeterminates X = (x;;)
and Y = (y;;). Each block is defined by a horizontal directed edge, that is, an edge
whose head and tail belong to the same part of the graph. The block corresponding
to a horizontal edge i — (n — 1) in the upper part, called an X -block, is the subma-
trix X{ with I = [a,n] and J = [1, 8], where a = (n —i + 1)_ + 1 is the leftmost
point of the X-run containing n — ¢ + 1, and 8 = i is the rightmost point of the
X-run containing i. The entry (n —i+ 1, 1) is called the ezit point of the X-block.
Similarly, the block corresponding to a horizontal edge ¢ — (n—1) in the lower part,
called a Y-block, is the submatrix Y7 with I = [1,a] and J = [3,n], where & = i,
is the rightmost point of the Y-run containing i and 8 = (n —i + 1)_ + 1 is the
leftmost point of the Y-run containing n—i+1. The entry (1,n—i+1) is called the
exit point of the Y-block. In the example shown in Figure 3.1l on the left, the edge

5 — 2 in the upper part defines the X-block X[[ll%] with the exit point (3,1), the

edge 4 — 3 in the lower part defines the Y-block 1/[[1357]} with the exit point (1,4),

and the edge 1 — 6 in the upper part defines the X-block X [[71 ’3]] with the exit point
(7,1), see the left part of Figure B3] where the exit points of the blocks are circled.

1112 15 1344 17 7 x 73|
21 23 13 {4 17
31 Y 23
X Y 1112 15
53 57 21
\ 53 57131
71 75 gL X 73
0
71 75

FI1GURE 3.3. Blocks and their gluing

The number of directed edges is odd and the blocks of different types alternate;
therefore, if this number equals 4b— 1, then there are b blocks of each type. If there
are 4b— 3 directed edges, there are b blocks of one type and b— 1 blocks of the other
type. By adding at most two dummy blocks with empty sets of rows or columns at
the beginning and at the end of the sequence, we may assume that the number of
blocks of each type is equal, and that the first block is of X-type.

The blocks are glued together with the help of inclined edges whose head and
tail belong to different parts of the graph. An inclined edge ¢ — j directed down-
wards stipulates placing the entry (j,n) of the Y-block defined by j — (n — j)
immediately to the left of the entry (¢,1) of the X-block defined by (n —i) — . In

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3.2. THE BASIS 15

other words, the two blocks are glued in such a way that A(a) and A(a) = v(A(a))
coincide. Similarly, an inclined edge i — j directed upwards stipulates placing the
entry (n,j) of the X-block defined by j — (n — j) immediately above the entry
(1,4) of the Y-block defined by (n — i) — 4. In other words, the two blocks are
glued in such a way that A(B) and A(B) = v*(A(B)) coincide. Clearly, the exit
points of all blocks lie on the main diagonal of the resulting matrix. For example,
the directed path 5 — 2 —+4 — 3 — 1 — 6 in the BD graph shown in Figure B.Ilon
the left defines the gluing shown in Figure 3.3 on the right. The runs along which
the blocks are glued are shown in bold. The same path traversed in the opposite
direction defines a matrix glued from the blocks X [[117’%], }/[[1357]] and X [[é%]

Given an aperiodic pair (I'",I'°) and the decomposition of Gpr e into maximal
alternating paths, the blocks are defined in a similar way. To each edge i — (n —1)
in the upper part of Gr: e, assign the block X7 with I = [a,n] and J = [1, 3],
where o = (n — i+ 1)_(T") + 1 and 8 = i4(T'°) are defined by X-runs exactly as
before except with respect to different BD triples I'" and I'¢. Similarly, the block
corresponding to a horizontal edge ¢ — (n — ¢) in the lower part is the submatrix
Y/ with I = [1,a] and J = [3,n], where & = i (T") and 3 = (n —i+1)_(I'°) + 1
are defined by Y-runs. These blocks are glued together in the same fashion as
before, except that gluing of a Y-block to an X-block on the left (respectively, at
the bottom) is governed by the row triple I'" (respectively, the column triple I'¢).
In what follows, we will call X— and Y —runs corresponding to I'" (respectively, to
T'°) row (respectively, column) runs.

Let £ = L(X,Y) denote the matrix glued from X- and Y-blocks as explained
above. It follows immediately from the construction that if £ is defined by an
alternating path iy — i2 — -+ — ig; then it is a square N(£) x N(£) matrix with

k
N(L) = i1
j=1

The matrices £ defined by all maximal alternating paths in G'rr pe form a collection
denoted L = Lpr pe (or Ly if I =T° =T'). Thus,

(i) each £ € L is a square N(£) x N(L£) matrix,
(if) for any 1 < i < j < n, there is a unique pair (£ € L, s € [1, N(£)]) such
that ['ss = Yij, and
(iii) forany 1 < j < i < m, there exists and a unique pair (£ € L, s € [1, N(L)])
such that L = x4;.

We thus have a bijection J = Jprr e between [1,n] x [1,n] \ Uj—,(4,¢) and
the set of pairs {(L£,s): L € L,s € [1,N(L£)]} that takes a pair (i,5), i # 7, to
(L(i,5),s(%,7)). We then define

. [5(4,9),N(L (5,5 .,
(3.1) £5(X,Y) = det L(i, )20 N e i # b

The block of L(4, j) that contains the entry (s(i, 5), s(4, j)) is called the leading block
of fij .
Additionally, we define

(3.2) £5(X, V) =det X' £2(X)Y) = det VI

[i,n]” [in] -
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16 3. MAIN RESULTS AND THE OUTLINE OF THE PROOF

The leading block of £5; is X, and the leading block of £, is Y. Note that (B.2))
means that s is extended to the diagonal via s(¢,4) = ¢, while £(4,7) is not defined
uniquely: it might denote either X or Y.

Finally, we put fi;(X) = £;;(X,X) for i # j and fu;(X) = £5(X,X) =
£2(X, X), and define

F = Fpepe = {fi(X) 14,7 € [1,n]}.

THEOREM 3.4. Let (I'",T'°) be an oriented aperiodic pair of BD triples, then the
family Fr- pe forms a log-canonical coordinate system with respect to the Poisson
bracket 2I3) on Mat,, with r = r" and v’ = r° given by ([26]).

REMARK 3.5. A log-canonical coordinate system on SL, with respect to the
same bracket is formed by Fpr pe \ {det X }.

Although the construction of the family of functions Fp- e is admittedly ad
hoc, the intuition behind it is given by the collection L = L+ re that does have an
intrinsic meaning. Recall the observation we previously utilized in [15]: a function
serving as a frozen variable in a cluster structure on a Poisson variety has a property
that it is log-canonical with every cluster variable in every cluster. The vanishing
locus of such a function foliates into a union of non-generic symplectic leaves. On the
other hand, in many examples of Poisson varieties supporting a cluster structure,
the union of generic symplectic leaves forms an open orbit of a certain natural
group action. Thus, it makes sense to select semi-invariants of this group action as
frozen variables. Furthermore, a global toric action on the cluster structure arising
this way can be described in two equivalent ways: it is generated by an action of
a commutative subgroup of the group acting on the underlying Poisson variety or,
alternatively, by Hamiltonian flows generated by the frozen variables.

In our current situation, the group action is determined by the BD data I'",
I'c. Let ?° and 9 be subalgebras defined in (24) that correspond to I'" and
T'°, respectively, and let D = exp(?~) and D = exp(9°) be the corresponding
subgroups of the double. Consider the action of D x D¢ on the double D(GL,)
with D~ acting on the left and D¢ acting on the right.

PROPOSITION 3.6. Let L(X,Y) € Lyr re. Then

(i) det L(X,Y) is a semi-invariant of the action of D* x D described above;
(i) det L(X,X) is log-canonical with all matriz entries x;; with respect to the
Poisson bracket ([Z13]).

Consequently, we select the subcollection
{det £L(X,X): L € Lpr pe } U {det X} C Frr pe
as the set of frozen variables.

REMARK 3.7. The construction of the initial basis of functions outlined above
can be extended to accommodate both non-oriented BD data and a presence of
cycles in the BD graph. To deal with the former, block matrices that constitute
the collection £ have to include, in addition to blocks from X and Y, appropriate
blocks from X, YT where t denotes the involution Xt = wqJ (XT)f1 Jwy with
J = diag((—=1)")2_;. On the other hand, cycles in the BD graph result in some of
the matrices in £ becoming infinite periodic, which makes impossible the use of
trailing principal minors as described above. Necessary adjustments in this case
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3.3. THE QUIVER 17

are outlined in [I7] as an application of a more general construction of generalized
cluster transformations associated with periodic staircase matrices. With this ad-
justments, an appropriately updated version of Theorem B.3] remains valid for any
BD data. However, the proofs presented below become considerably more involved.
We will present them in separate publications.

3.3. The quiver

Let us choose the family Fp- re as the initial cluster for our cluster structure.
We now define the quiver Qrr re that corresponds to this cluster.

The quiver has n? vertices labeled (i,5). The function attached to a vertex
(i,7) is fij. Any vertex except for (n,n) is frozen if and only if its degree is at
most three. The vertex (n,n) is never frozen. We will show below that frozen
vertices correspond bijectively to the determinants of the matrices £ € LU{X}, as
suggested by Proposition

FIGURE 3.4. The neighborhood of a vertex (i,5), 1 <i,j <n

A vertex (i,7) for 1 < i < n, 1 < j < n has degree six, and its neighborhood
looks as shown in Figure B4l Here and in what follows, mutable vertices are
depicted by circles, frozen vertices by squares, and vertices of unspecified nature by
ellipsa.

A vertex (1,7) for 1 < j < n can have degree two, three, five, or six. If I'
stipulates both inclined edges (j — 1) — (k — 1) and 5 — k in the graph Gp= e
for some k, that is, if v°(k — 1) = 7 — 1 and 7°(k) = j, then the degree of (1,j) in
Qr+ re equals six, and its neighborhood looks as shown in Figure B.5(a).
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18 3. MAIN RESULTS AND THE OUTLINE OF THE PROOF

If I'° stipulates only the edge (j —1) — (k— 1) as above but not the other one,
that is, if v(k — 1) = j — 1 and j ¢ I'§, the degree of (1,7) in Qrr e equals five,
and its neighborhood looks as shown in Figure B3|(b).

If T'° stipulates only the edge 7 — k as above but not the other one, that is,
if j —1 ¢ I'S and 7°(k) = j, the degree of (1,7) in Qrr - equals three, and its
neighborhood looks as shown in Figure B.5|c).

Finally, if T' does not stipulate any one of the above two inclined edges in
Grr e, that is, if j — 1,5 ¢ T'S, the degree of (1,7) in Qr+ re equals two, and its
neighborhood looks as shown in Figure B5(d).

K b

FIGURE 3.5. Possible neighborhoods of a vertex (1,5), 1 <j<mn

Similarly, a vertex (i,1) for 1 < i < n can have degree two, three, five, or six.
If T'* stipulates both inclined edges (i —1) — (k—1) and ¢ — k in the graph Gpr e
for some k, that is, if v*(i — 1) = k — 1 and 7" (i) = k, then the degree of (i,1) in
Qrr re equals six, and its neighborhood looks as shown in Figure B.6{(a).

If T'" stipulates only the edge (¢ — 1) — (k — 1) as above but not the other one,
that is, if 4" (i —1) = k—1 and ¢ I'}, the degree of (i,1) in Qr+ re equals five, and
its neighborhood looks as shown in Figure B.6l(b).

If T'" stipulates only the edge i — k as above but not the other one, that is,
if i =1 ¢ I and 7"(i) = k, the degree of (i,1) in Qr:pe equals three, and its
neighborhood looks as shown in Figure B.6{c).

Finally, if I'" does not stipulate any one of the above two inclined edges in
Grr e, that is, if i — 1,4 ¢ T'}, the degree of (4,1) in Qpr e equals two, and its
neighborhood looks as shown in Figure B:6l(d).

A vertex (n, j) for 1 < j < n can have degree four, five, or six. If I' stipulates
both inclined edges (k — 1) — (j — 1) and k& — j in the graph Gpr e for some k,
that is, if v°(j — 1) = k—1 and v°(j) = k, then the degree of (n, j) in Qr+ re equals
six, and its neighborhood looks as shown in Figure [37(a).
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(2) (b)

© ()

FIGURE 3.6. Possible neighborhoods of a vertex (i,1), 1 <i<n

If I'® stipulates only the edge (k—1) — (j — 1) as above but not the other one,
that is, if v°(j — 1) = k — 1 and j ¢ T'S, the degree of (n,j) in Qr: e equals five,
and its neighborhood looks as shown in Figure B.7(b).

If T'° stipulates only the edge k& — j as above but not the other one, that is, if
j—1¢T% and v°(j) = k, the degree of (n,7) in Qr- re equals five as well, and its
neighborhood looks as shown in Figure B7|(c).

Finally, if I'° does not stipulate any one of the above two inclined edges in
Grr e, that is, if j — 1,5 ¢ I'§, the degree of (n,j) in Qrr pe equals four, and its
neighborhood looks as shown in Figure B7(d).

Similarly, a vertex (i,n) for 1 < i < n can have degree four, five, or six. If I
stipulates both inclined edges (k — 1) — (i — 1) and k — ¢ in the graph Gpr pe for
some k, that is, if v"(k—1) = i—1 and " (k) = ¢, then the degree of (¢,n) in Qrr re
equals six, and its neighborhood looks as shown in Figure [3.8(a).

If T'" stipulates only the edge (k—1) — (i — 1) as above but not the other one,
that is, if v"(k — 1) = ¢ — 1 and ¢ ¢ '}, the degree of (i,n) in Qr: re equals five,
and its neighborhood looks as shown in Figure B.8(b).

If T'" stipulates only the edge k — i as above but not the other one, that is, if
i—1 ¢ T% and 7" (k) = 4, the degree of (i,n) in Qr: e equals five as well, and its
neighborhood looks as shown in Figure B.8|c).

Finally, if I'" does not stipulate any one of the above two inclined edges in
Grr e, that is, if i — 1,7 ¢ T', the degree of (i,n) in Qr+ e equals four, and its
neighborhood looks as shown in Figure B:8|(d).

The vertex (1,n) can have degree one, two, four, or five. If T'® stipulates an
inclined edge (n — 1) — j for some j, and I'" stipulates an inclined edge i — 1 for
some ¢, that is, if v°(j) = n — 1 and ~"(¢) = 1, then the degree of (1,n) in Qr: re
equals five, and its neighborhood looks as shown in Figure B.0(a).
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FIGURE 3.7. Possible neighborhoods of a vertex
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FIGURE 3.8. Possible neighborhoods of a vertex (i,n), 1 <i<n
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If only the first of the above two edges is stipulated, that is, if 7v°(j) = n —1
and 1 ¢ I'S, the degree of (1,n) in Qr+ re equals four, and its neighborhood looks
as shown in Figure B9(b).

If only the second of the above two edges is stipulated, that is, if 4*(7) = 1 and
n—1¢TI'§, the degree of (1,n) in Qrr re equals two, and its neighborhood looks as
shown in Figure B.9(c).

Finally, if none of the above two edges is stipulated, that is, if 1 ¢ I'; and
n—1¢TI'§, the degree of (1,n) in Qr: p- equals one, and its neighborhood looks as
shown in Figure B.9(d).

(a) (b)

(Ln) Ln)

(c) (d)

FIGURE 3.9. Possible neighborhoods of the vertex (1,n)

Similarly, the vertex (n,1) can have degree one, two, four, or five. If I'" stip-
ulates an inclined edge (n — 1) — j for some j, and I'® stipulates an inclined edge
i — 1 for some ¢, that is, if v"(n — 1) = j and 7°(1) = 4, then the degree of (n,1)
in Qr: re equals five, and its neighborhood looks as shown in Figure BI0(a).

If only the first of the above two edges is stipulated, that is, if v*(n — 1) = j
and 1 ¢ I'§, the degree of (n,1) in Qr+ re equals four, and its neighborhood looks
as shown in Figure BI0(b).

If only the second of the above two edges is stipulated, that is, if ¥°(1) =i and
n—1 ¢ I', the degree of (n,1) in Qpr re equals two, and its neighborhood looks as
shown in Figure BI0(c).

Finally, if none of the above two edges is stipulated, that is, if 1 ¢ I'{ and
n—1 ¢TI, the degree of (n,1) in Qr: p- equals one, and its neighborhood looks as
shown in Figure BI0(d).

The vertex (n, n) can have degree three, four, or five. If I'" stipulates an inclined
edge ¢ — (n—1) for some ¢, and I'° stipulates an inclined edge j — (n—1) for some
Jj, that is, if 4"(i) = n — 1 and ¥°(n — 1) = j, then the degree of (n,n) in Qrr e
equals five, and its neighborhood looks as shown in Figure B1Ta).
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FIGURE 3.10. Possible neighborhoods of the vertex (n,1)

If only one of the above two edges is stipulated, that is, if either 4*(i) =n — 1
andn—1¢T5, orv°(n—1) =jand n — 1 ¢ I, the degree of (n,n) in Qrr re
equals four, and its neighborhood looks as shown in Figure BITl(b,c).

Finally, if none of the above two edges is stipulated, that is, if n — 1 ¢ I'{ and
n —1 ¢ T', the degree of (n,n) in Qr: re equals three, and its neighborhood looks
as shown in Figure BIII(d).

Finally, the vertex (1, 1) can have degree one, two, or three. If I'" stipulates an
inclined edge 1 — ¢ for some ¢, and I'® stipulates an inclined edge 1 — j for some 7,
that is, if 4*(1) = ¢ and 7°(j) = 1, then the degree of (1,1) in Qp: re equals three,
and its neighborhood looks as shown in Figure B12)(a).

If only one of the above two edges is stipulated, that is, if either 4*(1) =4 and
1¢T5, orv°(j) =1 and 1 ¢ I'}, the degree of (1,1) in Qr: re equals two, and its
neighborhood looks as shown in Figure BI2(b,c).

If none of the above two edges is stipulated, that is, if 1 ¢ T'§ and 1 ¢ I},
the degree of (1,1) in Qpr e equals one, and its neighborhood looks as shown in
Figure B.12(d).

We can now prove the characterization of frozen vertices mentioned at the
beginning of the section.

PROPOSITION 3.8. A wertex (i, ) is frozen in Q- if and only if i = j =1
and fi1 = det X or fi; is the restriction to the diagonal X =Y of det L for some
;C e L]_"r’]_"c.

PRrROOF. It follows from the description of the quiver that there are two types
of frozen vertices distinct from (1,1): vertices (1,j) such that j — 1 ¢ IS, see
Figure B.H(c),(d) and Figure[B9(c),(d), and vertices (i,1) such that i — 1 ¢ I'}, see
Figure B6(c),(d) and Figure BI0(c),(d).
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FIGURE 3.11. Possible neighborhoods of the vertex (n,n)

(L.1) <— (L1)
(a)

(1,1) 4; (1.1)

(b)

() (@

FIGURE 3.12. Possible neighborhoods of the vertex (1,1)
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In the first case, the horizontal edge (n — j + 1) — (j — 1) in the lower part
of Grr re is the last edge of a maximal alternating path. Therefore, the Y-block
defined by this edge is the uppermost block of the matrix £ corresponding to this
path. Consequently, 3 = j_(I'$) + 1 = j, and hence (1, j) is indeed the upper left
entry of L.

The second case is handled in a similar manner. O

The quiver Qprpe shown in Figure corresponds to the BD data I'" =
({1,2},{2,3},1— 2,2 3) and T° = ({1,2},{3,4},1 3,2+ 4) in GLs. The
corresponding graph Grr re is shown on the left in FigureB.2l For example, consider
the vertex (1,4) and note that Gr:re contains both edges 4 — 2 and 3 — 1.
Consequently, the first of the above conditions for the vertices of type (1, 5) holds
with & = 2, and hence (1,4) has outgoing edges (1,4) — (5,2), (1,4) — (2,5), and
(1,4) — (1,3), and ingoing edges (5,1) — (1,4), (1,5) — (1,4), and (2,4) — (1,4).
Alternatively, consider the vertex (4,5) and note that G re contains the edge 2 —
3, while 4 ¢ T';. Consequently, the second of the above conditions for the vertices of
type (j,n) holds with k = 3, and hence (4, 5) has outgoing edges (4,5) — (4,4) and
(4,5) — (3,5) and ingoing edges (3,4) — (4,5), (3,1) — (4,5), and (5,5) — (4,5).

FIGURE 3.13. An example of the quiver Q- re

THEOREM 3.9. Let (I'",T'°) be an oriented aperiodic pair of BD triples, then
the quiver Qr- e defines a cluster structure compatible with the Poisson bracket
ZI3) on Mat,, with r =7r" and r’' = r° given by (2.9).

REMARK 3.10.

(i) The quiver that defines a cluster structure compatible with the same
bracket on SL,, is obtained from Qrr re by deleting the vertex (1,1).
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(ii) It follows immediately from the description above that the quiver Qr: re
defined by an oriented aperiodic pair of BD triples (I'",I'°) can be em-
bedded into an orientable surface. This is not true for non-oriented BD
triples. The simplest example is given by the BD data

T = ({1,2},{3,4},1—~ 4,2+ 3) in GLs.

In this case the corresponding quiver can be embedded into the projective
plane, see [4] for details.

3.4. Outline of the proof

The proof of Theorem [3.4]is based on lengthy and rather involved calculations.
Following the strategy introduced in [I5], we consider the bracket (Z2I4) on the
Drinfeld double of SL,, and lift it to a bracket on Mat,, x Mat,,. The family Fpr pe
is obtained as the restriction onto the diagonal X = Y of the family Fpr e of
functions defined on Mat,, x Mat,, via

f=fripe={£;;(X,Y):i,5€[l,n],i#}U{f5(X,Y),£7(X,Y) i€ [1,n]}
see 31D, B2). The bracket of a pair of functions f,g € Fr: pe is decomposed
into a large number of contributions that either vanish, or are proportional to the
product fg. In the process we repeatedly use invariance properties of functions in
Fr: re with respect to the right and left action of certain subgroups of the double.

The proof of Theorem is based on the standard characterization of Poisson
structures compatible with a given cluster structure, see e.g., [I2] Chapter 4]. Note
that the number of frozen variables in Q- pe equals 1+ kpr 4 kpe, and that det X
is frozen. As an immediate consequence we get Theorem [B.3(i), which for I'" = I'®
turns into Theorem [B.2{i).

The proof of Theorem [B3|(iii) is based on the claim that right hand sides of
all exchange relations in one cluster are semi-invariants of the left-right action of
Hrr X Hrpe, see Lemma It also involves the regularity check for all clusters
adjacent to the initial one, see Theorem 6.l Theorem B2(iii) follows when I'" =
Tc. After this is done, Theorem B2(iv) and (v) follow from Theorem B9l via
13 Theorem 4.1]. To get Theorem B3|(iv) we need a generalization of the latter
result to the case of two different tori, which is straightforward.

The central part of the paper is the proof of Theorem [B3(ii) (Theorem B2{ii)
then follows in the case I'" = I'). It relies on [I5] Proposition 2.1], which is
reproduced below for readers’ convenience.

PROPOSITION 3.11. Let V be a Zariski open subset in C*™™ and C be a cluster
structure in C(V) with n cluster and m frozen variables such that
(i) there exists a cluster (f1,..., fntm) in C such that f; is reqular on V for
iel,n+ml;
(i) any cluster variable f| adjacent to fi, k € [1,n], is regular on V;
(iii) any frozen variable fn4i, i € [1,m], vanishes at some point of V;
(iv) each regular function on V belongs to Ac(C).

Then C is a reqular cluster structure and Ac(C) is naturally isomorphic to O(V).

Conditions (i) and (iii) are established via direct observation, and condition
(ii) was already discussed above. Therefore, the main task is to check condition
(iv). Note that Theorem [33(i) and [16] Theorem 3.11] imply that it is enough to
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check that every matrix entry can be written as a Laurent polynomial in the initial
cluster and in any cluster adjacent to the initial one. In [I5] this goal was achieved
by constructing two distinguished sequences of mutations. Here we suggest a new
approach: induction on the total size || + [I'§|. Let T be the BD triple obtained
from I by removing a certain root « from I'y and the corresponding root y(«) from
I';. Given an oriented aperiodic pair (I'*,I') with [I'j| > 0, we choose « to be
the rightmost root in an arbitrary nontrivial row X-run A" and define an oriented
aperiodic pair (f‘r, T'¢). Since the total size of this pair is smaller, we assume that
C = Cfr,FC possesses the above mentioned Laurent property. Recall that both C and
C are cluster structures on the space of regular functions on Mat,,. To distinguish
between them, the matrix entries in the latter are denoted z;;; they form an n x n
matrix Z = (z;;).

Let F = {f;;(X): 4,5 € [1,n]} and F = {f;;(Z): i,j € [1,n]} be initial clusters
for C and C, respectively, and @ and Q be the corresponding quivers. It is easy to
see that all maximal alternating paths in G'pr re are preserved in Gfr,l‘c except for
the path that goes through the directed inclined edge o — "(«). The latter one
is split into two: the initial segment up to the vertex o and the closing segment
starting with the vertex 7*(«). Consequently, the only difference between @ and
Q is that the vertex v = (o + 1, 1) that corresponds to the endpoint of the initial
segment is mutable in @) and frozen in Q, and that certain three edges incident to
v in Q do not exist in Q.

Let us consider four fields of rational functions in n? independent variables:

X = (C((Ell,. . .,xnn),Z = (C(le,. . -;Znn);
F =C(o115- -+, ¥nn), and F= C(P11y -+, Prn)-

Polynomial maps f : F — X and f : F — Z are given by ¢;; — fi;(X) and
Dij f”(Z) By the induction hypothesis, there exists a map P : Z — F
that takes z;; to a Laurent polynomial in variables ¢,3 such that f oP = Id.
Note that the polynomials fij(Z ) are algebraically independent, and hence f is an
isomorphism. Consequently, P o f = Id as well. Our first goal is to build a map
P : X — F that takes x;; to a Laurent polynomial in variables ¢,z and satisfies
condition fo P =1Id.
We start from the following result.

THEOREM 3.12. There exist a field isomorphism U : X — Z and an invertible
polynomial map T : F — F satisfying the following conditions:
(a) foT=Uof; )
(b) the denominator of any U(x,;) is a power of f,(Z);
(c) the inverse of T is a monomial transformation.

Put P =T 1oPoU;itis a map X — F, and by a) and the induction
hypothesis,
Pof=T'oPolUof=T 'oPofoT=T"0T=1d.
For the same reason as above this yields f o P = Id. Let us check that P takes x;;
to a Laurent polynomial in variables p,g. Indeed, by b), U takes z;; into a rational

expression whose denominator is a power of f;(Z ). Consequently, by the induction
hypothesis, P takes the numerator of this expression to a Laurent polynomial in
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®ag, and the denominator to a power of @,. As a result, P o U takes z;; to a
Laurent polynomial in ¢,5. Finally, by ¢), 7! takes this Laurent polynomial to a
Laurent polynomial in @43, and hence P as above satisfies the required conditions.

The next goal is to implement a similar construction at all adjacent clus-
ters. Fix an arbitrary mutable vertex u # v in Q; as it was explained above,
u remains mutable in Q as well. Let 1y (F) and uu(ﬁ') be the clusters obtained
from F and F, respectively, via the mutation in direction u, and let f/(X) and
f1(Z) be cluster variables that replace f,(X) and f,(Z) in ju,(F) and p,(F).
Replace variables ¢, and ¢, by new variables ¢! and ¢!, and define two addi-
tional fields of rational functions in n? variables: F' = C(@11,...,@, -, Pnn) and
F = C(P11y---,Phyy -y Prn). Similarly to the situation discussed above, there
are polynomial isomorphisms f’ : 7/ — X and f' : 7/ — Z and a Laurent map
P’ : Z — F' such that f o P’ = Id (the latter exists by the induction hypothesis).

We define a map 7" : F/ — F' via T'(@ij) = T(pi;) for (i,7) # uand T'(p.,) =
¢! @ou for some integer )\, and prove that maps U and 1" satisfy the analogs of
conditions a)-c) above. Consequently, the map P’ = (T")~* o P’ o U takes each x;;
to a Laurent polynomial in @11, ..., ¢, ..., ©nn and satisfies condition P'o f/ = Id.

Thus, we proved that every matrix entry can be written as a Laurent polynomial
in the initial cluster F' of Crr pre and in any cluster u,(F) adjacent to it, except
for the cluster u,(F). To handle this remaining cluster, we pick a different a:
the rightmost root in another nontrivial row X-run (if there are other nontrivial
row X-runs), or the leftmost root of the same row X-run (if it differs from the
rightmost root), or the rightmost root of an arbitrary nontrivial column X-run and
an aperiodic pair (I'",T¢) (if |T$| > 0), and proceed in the same way as above.
Namely, we prove the existence of the analogs of the maps U and T satisfying
conditions a)—c) above with a different distinguished vertex v. Consequently, f,(F")
is now covered by the above reasoning about adjacent clusters.

Similarly, if the initial pair (I'*, I'°) satisfies |T'{| > 0, we apply the same strategy
starting with column X-runs. It follows from the above description that the only
case that cannot be treated in this way is |I'j| + [I'§| = 1. It is considered as the
base of induction and treated via direct calculations.

We thus obtain an analog of Theorem B.3|(ii) for the cluster structure Crr pe on
Mat,,. The sought-for statement for the cluster structure on SL,, follows from the
fact that both Ac(Cre re) and O(SL,) are obtained from their Mat,, counterparts
via the restriction to det X = 1.
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CHAPTER 4

Initial basis

The goal of this chapter is the proof of Theorem B4l In [I5], where the corre-
sponding statement was proved for the case of the Cremmer—Gervais Poisson—Lie
bracket, we were able to rely on the fact that all functions in the initial basis were
realized as minors of the same block matrix. Thus, the proof of log-canonicity, while
still rather cumbersome, was essentially reduced to a direct calculation. In the case
of BD data of arbitrary complexity, such approach becomes untenable. Therefore,
the proof below hinges on a number of observations exploiting the combinatorics
of matrices in the family £ and, most importantly, the invariance properties of

functions of the initial basis (cf. (ZI1) and (£12)).

4.1. The bracket

In this paper, we only deal with g = sl,,, and hence gr, and gr, are subalgebras
of block-diagonal matrices with nontrivial traceless blocks determined by nontrivial
runs of I'y and I's, respectively, and zeros everywhere else. Each diagonal compo-
nent is isomorphic to slg, where k is the size of the corresponding run. Formula
(213), where Ry = RS and R/, = R!, are given by ([29) with S skew-symmetric
and subject to conditions (ZI0), defines a Poisson bracket on G = SL,,. It will be
convenient to write down an extension of the bracket (ZI4]) to the double D(GL,,)
such that its restriction to the diagonal X =Y is an extension of [ZI3]) to GL,
(for brevity, in what follows we write {-,-}” instead of {., -}fr,).

To provide an explicit expression for such an extension, we extend the maps
~v and v* to the whole gl,. Namely, v is re-defined as the projection from gl,
onto the union of diagonal blocks specified by I'y, which are then moved by the
Lie algebra isomorphism between gr, and gr, to corresponding diagonal blocks
specified by I's. Similarly, the adjoint map +* acts as the projection to gr, followed
by the Lie algebra isomorphism that moves each diagonal block of gr, back to the
corresponding diagonal block of gr,. Consequently,

vy =1, " =1,

Wy=v Y=

where IIp, is the projection to gr, and Ilr, is the projection to gr,. Note that the

restriction of v to gr, is nilpotent, and hence 1 — v is invertible on the whole gl,,.
We now view m~, m- and my as projections to the upper triangular, lower

triangular and diagonal matrices, respectively. Additionally, define 7> = - + mo,

m< = m< + 7o and for any square matrix A write As, A, A, A>, A< instead of

s A, m A, moA, m> A, m< A, respectively. Finally, define operators Vx and Vy via

B 6f n B 3f n
va - (axji)i7j_17 VYf — <6yji)i7j_17

29

(4.1)
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30 4. INITIAL BASIS

and operators
EL=VxX+VyY, Ep=XVyx+YVy,
=7 (VxX)+VyY, &r=XVx+7"(YVy),
nL=VxX+7"(VyY), nr=7"(XVx)+YVy

via Epf =Vxf-X+Vyf Y, Erf =XVxf+YVyf, and so on. The following
simple relations will be used repeatedly in what follows:

1 1 1
Ep=VxX+ ——
e X +1_WC§L,

1
=XV
1= X+1_vr771%,

e Pr Y +1_7C*77L, [ R Y+1_7r*§R7
nL =" (€0) + e (VxX),  nr=17"(r) + g (YVy),

where Hrl is the orthogonal projection complementary to le forj=1,2,1=r,c.

The statement below is a generalization of [15] Lemma 4 1].
THEOREM 4.1. The bracket 2I4)) on the double D(GL,,) is given by
(43) {fla f2}D(X, Y) = <R3r(ELf1)a ELf2> - <R:~(ERf1)a ERf2>
+ <XVXf1aYVYf2> - <va1 ! vaYfz : Y>a

where

1
(@) By = =G5

1
- % (1 j o + ﬁ) Go — % (Tr(¢)S' — Tr (¢S') 1)

1 1 1
1 _
> _5(1—71_1—v1*)1
forl=r,c.

PROOF. We need to “tweak” R, to extend the bracket (ZI3]) to GL,, in such
a way that the function det is a Casimir function. This is guaranteed by requiring
that R, is extended to an operator on gl, which coincides with the one given by
23) on sl,, and for which 1 € gl,, is an eigenvector. The latter goal can be achieved

by replacing ([2:9)) with

1 y* 1

4.5 R, = T — T« + =mp + 7Sy,

(4.5) +1_7>1_7*<20 0

where 7 is the projection to the space of traceless diagonal matrices given by 7 ({) =
¢— % Tr(¢)1, 7* is the adjoint to m with respect to the restriction of the trace form
to the space of diagonal matrices in gl,,, and S is an operator on this space which
is skew-symmetric with respect to the restriction of the trace form and satisfies
@.19).

The operator S in ({3 can be selected as follows.

with

LEMMA 4.2. The operator

1 1 1
o) S_5<ﬁ_1—v*>
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with v,~v* understood as acting on the space of diagonal matrices in gl,, is skew-
symmetric with respect to the restriction of the trace form to this space and satisfies

(Z10).
PROOF. Rewrite (£0) as
11
g1 +7 1 vy n 1 _
21—y 2\1—7v 1—~*

The first term above clearly satisfies (ZI0). The second term, multiplied by (1 —7)
on the right, becomes

LGRS PR DU S RO
o\ T ) T e T

and vanishes on hr, C b spanned by ho, 0 € I'y. (Il

We can now compute
1

TS5 (Go) = S(Go) = — (Tr(¢)S(1) + Tr(S(Co))1)
1
= 5(Co) = — (Tr(()S(1) = Tr(¢S5(1))1)
and plug into (L)) taking into account (4.6), which gives ([@4]). Expression (£3) is
obtained from (21 in the same way as [15] formula (4.2)]. O

4.2. Handling functions in F

It will be convenient to carry out all computations in the double with functions
in fpr pe, and to retrieve the statements for Fr- pe via the restriction to the diagonal.
Recall that matrices £ used for the definition of the collection frr pe are built
from X- and Y-blocks, see Section We will frequently use the following com-
parison statement, which is an easy consequence of the definitions, see Figure E.11

PROPOSITION 4.3. Let X7, X}]/ be two X -blocks and Yl—j, YI—‘?/ be two Y -blocks.
(i) If B < B (respectively, o' > «) then Xj]// fits completely inside X{; in
particular, o' > o (respectively, B’ < 3). i
(i) If B > B (respectively, &' < 6[)7 then YI—{, fits completely inside YiJ; n

particular, & < & (respectively, 5’ > j3).

I
b o

Ql

QI

BB

FIGURE 4.1. Fitting of X- and Y-blocks
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Consider a matrix £ defined by a maximal alternating path in Gprrpe. Let
us number the X-blocks along the path consecutively, so that the tth X-block is
denoted X}]:. In a similar way we number the Y-blocks, so that the tth Y-block is

denoted Yf{t' The glued blocks form a matrix £ so that llLtt = X}]: and ﬁ}% = Yf{t7
which we write as

4 £= Y X+ Yok
t=1 t=1

According to the agreement above, if the tth X-block is non-dummy, then the
tth Y-block lies immediately to the left of it, and if the tth Y-block is non-dummy,
then the (¢ + 1)-th X-block lies immediately above it. In more detail, all K,’s
are disjoint, and the same holds for all K,’s; moreover, K; N K;,_; = @. If both
tth blocks are not dummy, put ®; = K; N K;. Then ®, # & corresponds to the
nontrivial row runs A(a;) and A(a;) = 7 (A(ay)) along which the two blocks
are glued. Consequently, ®; is the uppermost segment in K; and the lowermost
segment in K;. If the first block is a dummy X-block and A(ay) is a nontrivial
row Y-run, define ®; as the set of rows corresponding to A(ay); if this Y-run is
trivial, put ®; = @. Similarly, if the last block is a dummy Y-block and A(ay) is a
nontrivial row X-run, define @, as the set of rows corresponding to A(ay) and put
I, = 7" (A(ay)); if this X-run is trivial, put ®, = @. We put K; = ®; for a dummy
first X-block and K, = ®, for a dummy last Y-block to keep relation &, = K, N K,
valid for dummy blocks as well.

Ly,

FIGURE 4.2. The structure of £

Further, all L; are disjoint, and the same holds for all L;’s; moreover, L; N\ L, =
@. For2<t<s,put ¥, =L, NL;,_;, then ¥, # @ corresponds to the nontrivial
column runs A(3;_1) and A(B;) = v*(A(B;—1)). Consequently, ¥ is the rightmost
segment in L, and the leftmost segment in L;_;. If the first block is a non-dummy
X-block and A(f1) is a nontrivial column X-run, define ¥y as the set of columns
corresponding to A(S); if this X-run is trivial, or the block is dummy, define
U, = @. Similarly, if the last block is a non-dummy Y-block and A(B,) is a

nontrivial column Y-run, define ¥, as the set of columns corresponding to A(S;)
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and put Joy1 = 7*(A(Bs)) (note that Jei; does not correspond to any X-block
of £); if this Y-run is trivial, or the block is dummy, define ¥4 = @. We put
Ly = T4 and Lsy1 = Ugyy to keep relation Uy = L, N Li_qvalidfor 1 <t<s+1.
The structure of the obtained matrix £ is shown in Figure

It follows from (7)) that the gradients Vxg and Vyg of a function g = g(£)

can be written as
S S

(4.8) Vxg=Y (Vea)i 03 Vyvg=Y (Veg)lh o
t=1 t=1
Note that unlike (@), the blocks in (48] may overlap. B B

Direct computation shows that for I = [a,n], J = [1,5], I = [1,a], J = [5,n]

one has
K—1_ |0 * KT _ Y,j(ch)If 0
Here and in what follows we denote by an asterisk parts of matrices that are not
relevant for further considerations. Note that the square block X7 (V c 9K is the
diagonal block defined by the index set I, whereas the square block YI—J (Ve g)IE{ is
the diagonal block defined by the index set I
Similarly, for I, J, I, J as above,
(4.10)
K—I _[(Veg)t - X{ o+ K—I 0 0

(Veg)ply - X = OL ! ol (Veg)pZ7 Y = % (Vgg) yJ
and the corresponding square blocks are diagonal blocks defined by the index sets
J and J, respectively.

Let N, N_ € GL, be arbitrary unipotent upper- and lower-triangular ele-
ments and 77,75 € H be arbitrary diagonal elements. It is easy to see that the
structure of X- and Y-blocks as defined in Section and the way they are glued
together, as shown in Figure B2l imply that for any £ € Fpr re one has

(411) £V X,exp(7)(N1)Y) = £ (X exp(y*)(N_), YN_) = £(X,Y)
and
(4.12) £ ((T1 X exp(y7")(T2), exp(y")(T1)Y T2) = a®(T1)a"(T2)£(X,Y),

where a°(T}) and o (T») are constants depending only on T; and T5, respectively.

It will be more convenient to work with the logarithms of the functions f €
Fr: re, instead of the functions f themselves. The corresponding infinitesimal form
of the invariance properties (LI} and (£I2)) reads: for any f € Fpr e,

(413) <§Rg7 n+> = <§Lg7n*> =0
and
(4.14) (€rg)o = const, (Erg)o = const

with g = log f. Additional invariance properties of the functions in Frr pe are given
by the following statement.

LEMMA 4.4. For any £ € Fpr re, any X-run A and any Y -run A,
Tr(Vxg- X)a = const, Tr(XVxg)X = const,
Tr(Vyg- Y)% = const, ’IT(YVyg)é = const
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with g = log £.

ProoF. Consider for example the second equality above. Let 1A denote the
diagonal n xn matrix whose entry (j, j) equals 1 if j € A and 0 otherwise. Condition
Tr(XVxg)A = aa for an integer constant aa is the infinitesimal version of the
equality

(4.15) £(Ly + (2 — D1A)X,Y) = 2%4£(X, Y).

To establish the latter, recall that £(X,Y) is a principal minor of a matrix
L € L. Clearly, £((1, + (2 —1)1a)X,Y) represents the same principal minor in the
matrix £(z) obtained from £ via multiplying by z every submatrix ,C]L{t’ such that the
row set R; corresponds to the X-run A. There are two types of such submatrices:
those for which R; lies strictly below ®; and those for which R; coincides with &,
(the latter might happen only when the run X is nontrivial). To perform the above
operation on each submatrix of the first type it suffices to multiply £ on the left
by the diagonal matrix having z in all positions corresponding to R; and 1 in all
other positions. To handle a submatrix of the second type, we multiply by z all
rows of £ starting from the first one and ending at the lowest row in Ky, and divide
by z all columns starting from the first one and ending at the rightmost column in
L;, see Figure Clearly, this is equivalent to the left multiplication of £ by a
diagonal matrix whose entries are either z or 1 and the right multiplication of £ by
a diagonal matrix whose entries are either z—! or 1. Consequently, every principal
minor of £(z) is an integer power of z times the corresponding minor of £, and
(A15) follows.

A similar reasoning shows that the remaining three equalities in the statement
of the lemma hold as well. |

Furthermore, the following statement holds true.

LEMMA 4.5. For any f € Frr pe,
(416) Hfll (Vxg- X)o = const, Hfll (XVxg)o = const,
Hﬂz(Vyg -Y)o = const, Hflz (YVyg)o = const
with g =logf and1=c,r.
PROOF. Same as in the proof of Lemma 4] we will only focus on the second

equality in ([@I6), since the other three can be treated in a similar way.
For any diagonal matrix ( we have

(4.17) Z A Tr(C])1a,
where the sum is taken over all X-runs. Let ( = (XVxg)o, then by Lemma 4] all
terms in the sum above are constant. (]

COROLLARY 4.6.
(i) For any £ € Frr e,
Tr(Vxg- X) = const, Tr(XVxg) = const,
(4.18) Tr(Vyg-Y) = const, Tr(YVyg) = const

with g =logf.
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(ii) For any f € Frr pe,
(4.19) (nLg)o = const, (nrg)o = const
with g = log £.
PROOF.

(i) Follows immediately form Lemma and equality Tr{ = ’HHfll ¢ =
Tr Hfg((:) for any ¢ and 1 = c,r.

(ii) Follows immediately form Lemma .5 and (£I4]) via the last two relations
in ({@2).

(I

4.3. Proof of Theorem [3.4t First steps
Theorem [3.4] is an immediate corollary of the following result.
THEOREM 4.7. For any £',£2 € Fr+ pe, the bracket {log £!,log £2} P is constant.

The proof of the theorem is given in this and the following sections. It comprises
a number of explicit formulas for the objects involved.

4.3.1. Explicit expression for the bracket. Let us derive an explicit ex-
pression for {logf!,log£2}?. To indicate that an operator is applied to a function
log %, i = 1,2, we add i as an upper index of the corresponding operator, so that

ViX =Vxlogt!- X, E? = FEp log£?,
etc.

Let
(120)  Ro(Q) = — (2 + o ) G- - (THOS ~ T (¢8) 1)

. =—— - = —Tr
0 2\1—y 1—7* n ’
for ¢ € gl,,, cf. [@4); clearly, Ro(¢) is a diagonal matrix.

PROPOSITION 4.8. For any £!,£2 € Fr« e,
(4.21) {log £*,log £2}7

— (RS(EL), B3) ~ (Ry(ER), E) + (b, ;=== o)

~ (ko == (€00 ) + (T (e o, Ty (V31
()<, (2)>) = {(nR)>, (n) <)
+ (€D < (VEY)) + (1 (€R)2 V(X VX)) -
PRrROOF. First, it follows from Theorem [A.1] that
(422)  {logt' log£*}” = (RS(EL) — VXX, B} ) — (R (ER) — XV, E%).
By ([@.2) and {@.20),

c . 1 1
RS (Ep) - VxX = R§(Ep) + 1_—70(&)2 v (n1)<
. 1 1
= R§(BL) + 1_—70(&)0 - W(ni)«
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the second equality holds since £} € b_ by (@I3). Similarly,

. . 1 1
R (ER) — XV = Ry(ER) + = S(1R)> — 1= = (ER)<
Y Y
(4.23) )
:Rr El 1 .
o(ER) + 1= (MR)>;

the second equality holds since £, € by by (@I3).
Consequently, the first term in [@22) is equal to

1
e B ) - (o)< B ).

The second term in ([£24]) can be re-written via ([@2) as

1

1
<1_—7C(§i)ani> = <(€1%)0, ViY + mﬁ%>

sy (miED.E)+ (

= (o o) + (Mg o Ty (V37)
+ (g (Eb o, Ty (V3 V)

— (Do 7=z 2o ) + (T 6h)o. Ty (V3 o)
+ (7 (€0 (VRY)),

where the last equality follows from (Z.T]).
We re-write the third term in (£24]) as

1 1
<(77£)<7 1——W’°E%> = <(ﬁi)<,V§<X + 1_—vcfi>

where the second equality follows from ([£I3)), and the last equality, from ([£.2]) and
<Hfi (A),VC*(B)> — 0 for any A, B.

Similarly, the second term in in [@22) is equal to
(4.25)

(Ry(ER), )+ { T (k). B3 ) = (RS(ER).BR) + (k). V%)

1
+ (ko 7= (€
1
— (R(ER), BR) + (ko = (€R)o )
+{((1R)=,mk) — (V' (€R)= 7V (X VX))
Combining [@24)), (£25) and plugging the result into (£.22]), we obtain (@21

as required. (Il
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4.3.2. Diagonal contributions. Note that the third, the fourth and the fifth
terms in ([{21]) are constant due to ([LI4) and [@IG). The first two terms are
handled by the following statement.

LEMMA 4.9. The quantities (Ro(EL), E7) and (Ro(Eg), E%) are constant for
any £',£% € Fr« re.

PRrROOF. Let us start with

420 (RoE}).B8) =3 ( (12 + 1= ) (BLn. )

_ % (Tr(E}) Tr(E3S) — Tr(E}S) Tr(E3))

where 7 = 4°. First, note that

(4.27) Tr(ELS) = <EL (ﬁ 1 _17> 1> =T ((1 —17* - ﬁ) Ez)

1 A 1 , A
=Tr ng — & +VyY — V5 X> = const
<1_,Y*L P Y b'e

1
for ¢ = 1,2 by (@2), (@I4), @IR) and (EI9). Thus, the terms in the second line

in ([A26) are constant.

Next, by (@2]),
0% 1 1 1
Er
(1_ 1— > 1_ §L+1—’7*77L,
1
(4.28) < 1— fLa EL> <§L7 V P 77%> )
1 771 E2 _ 771 v2X+ 1 62
1_7* L>»*~L Ly VX I_VL ’
and hence

(4.29) <<% + 1 _17) (EL)o, E%>

— (€D T3y + =)+ (o VX + 6
= (Do 7= 00 )+ { (o, 7= (EDo ) + ((Ebos (€2))

+ ((11)0, VX X) = ((£1)0, 7 (VX X)) .

Each of the three first terms in (£29) is constant by ([£I4) and (£I9). Note that
by @1,

((€£)0, (VX X)) = (V7 (Vi X)o +7"(VyY)o, VA X) = (Ir, (7)o, VX X))
with T'; =T'§, and so the last two terms in (£29) combine into
<Hf1 (n1,)o, g, (V§<X)0> ;
which is constant by ([@I6l).
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Similarly,

(4.30) <R0(E}3),E§>_—%<<%+ ! >(E112)07E12%>

-

1
_%(T (ER) Tr(E%S) — Tr(ERS) Tr(E7))

with v = +*. As before,

) = (£ (75 - =5 ))

1 7 1 7 i %

fori=1,2, and

v 1 1 2
<(1—v+ 1—7*) (ER)O’ER>
1 1
= <(77113)0,YV% + mfzz{> + <(§113)07XV§( t1z 77712;:>

- <<m%>o, o)+ (€ T (o ) + (€ (E0)
+ ()0, YV5) = ((€R)0, 7" (Y V)
Each of the three first terms above is constant by (£I4) and (£I9]), while
()0, YV3) = ((€h)o. 7" (Y V) = (T, (k)o. Lp, (Y V3 )o ) = const

with I'y = I'y. Thus, the right hand side of ([@30) is constant as well, and we are
done. g

4.3.3. Simplified version of the maps v and ~*. To proceed further, we
define more “accessible” versions of the maps v and ~*. Recall that gr, and gr,
defined above are subalgebras of block-diagonal matrices with nontrivial traceless
blocks determined by nontrivial runs of I'y and I'y, respectively, and zeros every-
where else. Each diagonal component is isomorphic to sli, where k is the size of
the corresponding run. To modify the definition of v, we first modify each nontriv-
ial diagonal block in gr, and gr, from sl to Maty by dropping the tracelessness
condition. Next, ¥ is defined as the projection from Mat,, onto the union of di-
agonal blocks specified by I'y, which are then moved to corresponding diagonal
blocks specified by I's. Similarly, the adjoint map ¥* acts as the projection to
Matr, followed by a map that moves each diagonal block of Matr, back to the
corresponding diagonal block of Matr,. Consequently, ringed analogs of relations
(IE[I) remain valid with le understood as the orthogonal prOJectlon to Matr, and
sz as the orthogonal projection to Matr,. Further, we define §L, fR, 1 and 7R
with 4" and 4°¢ replacing 7" and ¢ and note that the ringed versions of the last
two relations in ([{2]) remain valid with flfl and ﬁfz being orthogonal projections

complementary to ﬁpl and ﬁpz, respectively. Observe that the ringed versions of
the other four relations in (£2)) are no longer true, since 1 —4 and 1 —4* might be
noninvertible.

It is easy to see that 4 and 4* differ from v and ~*, respectively, only on
the diagonal. Consequently, invariance properties ([I1]) and (I3]) remain valid
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in ringed versions. Further, the ringed version of the invariance property ([{I2)
remains valid as well, albeit with different constants a®(T}) and a"(T5), which yields
the ringed version of (L14]). Ringed relations ([@I6]) also hold true: indeed, the sum
in (AIT) is now taken only over trivial X-runs. As a corollary, we restore ringed
versions of relations ([I9]).

Recall that to complete the proof of Theorem 7 it remains to consider the
four last terms in ([@27]). The following observation plays a crucial role in handling
these terms.

LEMMA 4.10. For each one of the last four terms in ([@21), the difference
between the initial and the ringed version is constant.

PROOF. The equality ((n})<,(n7)>) = ((})<, (1%)>) is trivial, since v* and
~4* coincide on ny and n_.
For the second of the four terms, we have to consider the difference

{(7R)o, (7R)o) — ((nR)os (MR)o)
= (3" (XVi)o =7 (XVi)o: (YV)o) + (Y V)0, 5 (X V& )o — 7' (X V)o)

+((F" =X V)0, 7 (X VX )o) + (7 (XVi)o, (F = 7N (X VX )o) -

The first summand in the right hand side above equals

"(A)
Z A Tr(X V)R Tr(YVE) ()

where the sum is taken over all nontrivial row X-runs. By Lemma [£4] each factor
in this expression is constant, and hence the same holds true for the whole sum.
The remaining three summands can be treated in a similar way.

The remaining two terms in ([£.2]]) are treated in the same way as the second
term. (]

Based on Lemma [£.10] from now on we proceed with the ringed versions of the
last four terms in (@2T]).

4.3.4. Explicit expression for ((1})<, (177)> ). Let £ be the I x I’ trailing
minor of £?, then

(4.31) LV, = {O ].li:| , YL = L 111] .

Denote [ = N (L) — 1" + 1. From now on we assume without loss of generality
that
(4.32) reLlUL) .

1
Consider the fixed block X}]{’ in £' and an arbitrary block X}IQ”Q in £2. If

B; > (% then, by Proposition d3](i) the second block fits completely inside the first
one. This defines an injection p of the subsets K? and L? of rows and columns of
the matrix £? into the subsets K; and Lzl, of rows and columns of the matrix £.
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Put

(433) Bl = <(z VE) b (25t (V2) >7

(430 B = (v} Zéiz (VE)ai " (%2, ).

(435) B%H < L \‘Ij (VL‘,)L2\\I,2 (EQ)K2> .
LEMMA 4.11.

(i) The expression for ((11}.)<,(1})>) is given by

(4.36) ()< (iE)>)= > (Bi+B)+ > B"

Bz <8, Bi=0;

+ 3 (v (@298)e) - (Ve (T260)11))

BE<p}

if e Lllj, and vanishes otherwise.
(ii) Both summands in the last sum in [L3Q) are constant.

REMARK 4.12. Since <A1A2 L ATAZ L > = Tr(A1Ay... AYA? .. .), here and
in what follows we omit the comma and write just (414, ... A*A?...) whenever
A1, Ao, ... and A', A%, ... are matrices given by explicit expressions.

PRrOOF. First of all, write

(4.37)
(1)< (2)>) = (T, ((1)<) Ty ((3)=) ) + (T, ((G1h)<) Ty, (GF)=) )
with Ty = IS
It follows from the ringed version of (£I)) that for i = 1,2,
(4.38) Ir, (i) = 57 (€3)

with ¥ = 4°. Consequently,

(Tie, ((11)<) Ty (2)>) ) = (Tie, ((1)<) 5" ((€2)=) ) = 0
via the ringed version of (£13).
Note that Iz (%*(V4Y)) = 0 by the definition of 4*, therefore HFI(nZL) =
1. (Vi X). |
Let us compute V% X. Taking into account (£8) and @I0), we get

ey
-3

t=1

(VX (V) le]
0

0 0 0

AR ‘I’ % KtL \I/:: B K; th
(v ‘C) \ (VL)L; ‘CKz (VL)L; XIZ‘|,

where Ji = [1,n] \ J/. The latter equality follows from the fact that in columns

Li\ ! all nonzero entries of £! belong to the block (U)K’ = X7, whereas in

IL7
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columns Wi nonzero entries of £¢ belong also to the block (EZ)LI !
1
Figure 4.2 In more detail,

Ji
=Y.', see

tf t—1

i L‘ ‘I" % ,Z A i tl jti
Si (v E )L'qu/l (v )Ll\\I]Z (‘C ) l (v )LZ\\I/ZX i
(4.39) V X = Z (Vi Lz)L A\ (Vv [l)\lljs ([’Z)KZ (vzﬁ)\y{ X[Z
B 0 0 0

Note that the upper left block in ([£39) is lower triangular by (£31]). Besides,
the projection of the middle block onto I'; vanishes, since it corresponds to the
diagonal block defined by the nontrivial X-run A(B!) (or is void if + = 1 and
Ul = &),

It follows from the explanations above and ([@3T]) that the contribution of the
tth summand in [@39) to ﬁfl ((7})<) vanishes, unless ¢t = p. Moreover, if ' e

Ly 1 \'W}, it vanishes for ¢ = p as well. So, in what follows we assume that e L.
In this case ([£39) yields

N 3 N vl ﬁl Lp) 0
(4.40) e, ()<) = i, | (V5%
0 0
On the other hand,
w? I
s2 |0 (VQ)Lz\qﬂ(EQ)KE (v2)L2\\y2X 2
(441) 2 0 0 (V2) }]2 5
0 0 0

where the tth summand corresponds to the tth X-block of £2.

If 3 < 7, then the contribution of the ¢{th summand in ([@ZI) to the second
term in (L37) vanishes by ([@40), since in this case J) C JZ \ A(57), which means
that the upper left block in ([@40) fits completely within the zero upper left block
in (@A10).

Assume that 6; > (2. Then, to the contrary, J? C JZ} \ A(B;), and hence
p(L7) € L, \ ¥,. Note that by 40), to compute the second term in [@3T) one
can replace J2 in (ZA4I) by Jy \ JZ. So, using the above injection p, one can rewrite
the two upper blocks at the ¢tth summand of ﬁfl ((77)>) in (@A) as one block

Ly\p(L{\¥})
(V2)L2\‘I’2 (‘Cl)p(p[(;) I

and the remaining nonzero block in the same summand as

oNK7 ;a1 Lo\p(L7)
(VE)uz (£, 0z

The corresponding blocks of flf ((})<) in @Z0) are

1 p1\P(LIED) 1\P(LITT)
(V££ )L;\p(Lf\qﬂ - (vﬁ)Ll\p(LZ\qﬂ)(E )K;

and . (
(w2 K} w2
(VCE )Ll\p(L2 - (V}:)Lg\p(LQ (El)p

The equalities follow from the fact that all nonzero entries in the columns p(L?) of
L' belong to the X-block, see Figure
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The contribution of the first blocks in each pair can be rewritten as
1 Lp\p(LI\TD) K, 1\P(LINTE)
(4.42) <(£ ) o(ic2) (Vﬁ)Ll\mB\w(ﬁ )iy (Vﬁ)b2\q“2>'

Recall that p(K7?) C K. If the inclusion is strict, then immediately

L\p(LI\Y7)
(4.43) (£1), () (Vﬁ) Ll\P(L2\‘I’2)
L2\ 9?2
(E Vﬁ) K?) (E ),)((m )(vﬁ)p(L2\‘1/2)
L? \‘1;
(C Vll)p(Ki’ (52) (vﬁ)p(L2\\If2)

Otherwise there is an additional term
T 1
_(‘Cl)Kl (VL) 1p
in the right hand side of [@43]). However, for the same reason as above,

(Vﬁ) (£1)P(L AN (Vlﬁ ) p(LI\T? )

»@—A

Note that p(L7 \ ¥7) C L}, and L, lies strictly to the left of L], see Figure
Consequently, by (E31)), the latter submatrix vanishes. Therefore, the additional
term does not contribute to ([&.42)).

To find the contribution of the second term in (@43)) to (£42), note that

p(L2\T2) p(LI\¥7)
(4.44) (vﬁ)p(LZ’\\I/Q)(El) (VEC ) (L3\9?%)
and

(V3) e (C5 ™" = (V2L3)

for the same reason as above, and hence the contribution in question equals

L2\¥? LA\ W2
= ((VEL2) gt (VELY) gty ) = const

by @31).
Similarly to [@42), [@43]), the contribution of the second blocks in each pair
can be rewritten as

(4.45) <(£1V£) (K2 - (El)zgf@) (Vﬁ) (L2)7 (£1)PK(§’{)(V2£)§§ > ’

As in the previous case, an additional term arises if p(K7?) = K}, and its contribu-
tion to (@45) vanishes.
Note that by (£31]), one has

p(L2\T2) (K2?) (L\T)
(E10 ) ey (5 = (£1W )20 (21t
and
K p(¥?) PUKD) ( p1yP(2D)
(L£7V2) e (e = (LTVE) ey (£
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hence the total contribution of the first terms in (£43) and (£45) equals

(K7) (L\T?) K} (v?) K3
(4.46) <(£1vlﬁ)p(K2)a (51)2(1@) (VZ )LQ\\Iﬂ + (EI)Z(KQ) (vz) >
(K7) L \‘1’
= ((£'V1) e (£ (v2)LW + (2 )KQ(v2)W>
<(£ Va),iﬁﬁijzi (£2V£) ~U(V2) 7 >
where _
L2
v, = | (E)at ]
0
Note that

<(£ Vﬁ) Kz)(EQVL) > = const
by ([@3T)), which gives the first summand in the last sum in (30). The remaining
term equals

— (L) TV ) = = ((E'VE) e ()2 (V31 )
= (L)) (25 (V)7 )

which coincides with the expression for B} in [@33)); the last equality above follows

from ({37).

It remains to compute the contribution of the second term in (48]). Similarly
to ([{A44), we have
1,2(%3) 1 p1\P(%7)
(VL) oy (L5 = (VLY) )
On the other hand, similarly to (IEEI) we have

(VR = (VL) - (V2T W

\1,2
where
vi=[o @y ]
t 1
As before, we use ([L31)) to get
1 p1\P(¥3) (o2 p2y Li 1 p1\P(¥3) (o2 2y ¥7
—((VEL) ) (T2L2) g ) = = ((VELY) Syt (VEL?) g} ) = const,

which together with the contribution of the second term in ([{43]) computed above

yields the second summand in the last sum in ([@36). The remaining term is given
by

1 p(¥7) (o2 1 p(¥7) (o2 2
((VELY)2E (VE)gs Vi) = ((TELY) 0t (V) (£3)% ),
which coincides with the expression for B in (Z34).
Assume now that 3} = 7 and hence J} = JZ. In this case the blocks X7 e * and

Jt .
X7 have the same width, and one of them lies inside the other, but the dlrectlon

P
of the inclusion may vary, and hence p is not defined.
Note that by [@40), to compute the second term in (A37) in this case, one can
omit the columns J? in (&A1), and hence the contribution in question equals

(L) (V2) fhaa (L2
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which coincides with the expression for B! in ([f3H). O

4.3.5. Explicit expression for ((17})>, (71%)<). Recall that e LyULl
by @32). Consequently, I* € K} UK} _; more exactly, either e K, \ @}, or

(4.47) ilel_(l withg=porg=p—1,

see Figure Consider a fixed block YZ1 in £! and an arbitrary block YZ2 in £2.

If aj > a7 then, by Proposition E3(ii) the second block fits completely 1n81de the
first one. This defines an injection o of the subsets K? and L? of rows and columns

of the matrix £2 into the subsets K ; and E}] of rows and columns of the matrix £!.
Put

(419 Bl == (VLN (R e ).

(4.49) Bi' = <(£lvﬁ)”ﬁi£<£2>¢z (V2)) >

(4.50) B = <(£ Vg)Kl\q)l(ﬁz)qﬂ (V2" >
LEMMA 4.13.

(i) The expression for ((g)>, (1%)<) is given by

(4.51)  (UiR)=>, (i)<) = ((R)o, (ik)o) + > (Bi+Bi)+ > B"

a$<a}z 6/;’:07})
+ 30 ()G (VR ) — (€92 (9 h)

<a1

iflt e K}, and equals ()0, (1%)o) otherwise.
(ii) The first term and both summands in the last sum in the right hand side

of @XHI) are constant.

PROOF. Clearl% <(77R)>7 (773 > - < 773 05 773) >+ <(70711%)>a (ﬁ?%)<> The first
term on the right is constant by the ringed version of ([{I9]), so in what follows we
only look at the second term. Similarly to (£37), we have

(4.52)
(GiR)>+ (i) <) = (Tie, ((k)>) T, (G)<) ) + (T, (()>) 115, (()<) )
with Ty = T'%.
Tt follows from the ringed version of (£I)) that for i = 1,2,
(4.53) I, (i) = (&R

with ¥ = 4". Consequently,

(Tir, ((i)>)  Tir, ((2)<) ) = (Tir, ((7h)>) 5 (€)<)) =0
via the ringed version of ([@I3]).
Note that ﬁfz (9(XV)) = 0 by the definition of ¥, therefore flf2 (1) =
g, (YV%).
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Let us compute Y V% . Taking into account (8] and (@), we get

DA AT (v )Kl\q}il ’
A S S N D w> (Ve 0],
et Yg_“(vlg)[j{ 0 t=1 K;'

where f ! = [1,n] \ If; the latter equality follows from the fact that in rows K \ ®!

all nonzero entries of L£¢ belong to the block (U) [

i whereas in rows ®¢

nonzero entries of £ belong also to the block (U) K= = X7, see Figure In

IL )
more detail,

ioi \Ki\2i ivi 2l
G )KZW (L'Ve) Fgs O
7 i z t ‘b 7 ’L ‘b;
(4.54) YV =) (ﬁ) ( )i e )<1>;‘( o 0
t=1 i \Ki\e T} i \ @
VI e o

Note that the upper left block in m is upper triangular by (E3T]). Besides,
the projection of the middle block onto I'y vanishes, since for ®; # &, the middle
block correspondAs to the diagonal block defined by the nontrivial Y-run A(at).

Recall that I' € K, UK ,, therefore by ([@3)), the contribution of the tth
summand in ([£54) to ﬁfz ((77}13)>) vanishes, unless ¢t # ¢, where ¢ is either p or
p — 1. Moreover, if e K; \ @11), this contribution vanishes for ¢t = ¢ as well, see
Figure So, in what follows ek ,}, in which case

N N 171 ~a
(4.55) e ((h)s) =11, (“ V‘)Ké>> :
0 0

On the other hand,

O 0 0

L (g2 K \ei
(Bap Vel * 0 0],
— J Ji @3
U YRV )s\ V. (VR) 0

t

2

w

(4.56) 117, (

where the tth summand corresponds to the tth Y-block in £2.

If c‘u}] < &2, then the contribution of the tth summand in ([56) to the second
term in ([@52) vanishes by (EL53), since in this case I C I7 \ A(a7).

Assume that a! > &?. Then, to the contrary, I? C I} \A(&;), and hence

_ - q
o(K?) € K, \ ®;. Note that by (53], to compute the second term in #52)), one

can replace I? in [@50) by I} \ I7. So, using the above injection o, one can rewrite
the two upper blocks at the tth summand of H ((77}23)<) in (@356) as one block

o(L?) KP\@7
(51)1’(;\0(123\@2 (Vﬁ) ,
and the remaining nonzero block in the same summand as

a(L?)

() Rk (VE) 1
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The corresponding blocks of H ((7711%) ) in 3H) are

o Lt o
(! Vﬁ)K;;’z\(f;)\@ Do, (Vﬁ)K N (R7\7)
and o
K \o(K; KN\o K
(ﬁlv%)g(ﬁf)( ) _ ([’1) (a2 )(V£) \ ( )

The equalities follow from the fact that all nonzero entries in the rows o(K?2) of £}
belong to the Y-block, see Figure
The contribution of the first blocks in each pair can be rewritten as

RN (R2\®?) , 41 a(L?) R\ a1y Lg
(4.57) < (VE) s (L) kivorzen) (VE)gs (L] )05K3\4>%>> :

Recall that o(L?) C El. If the inclusion is strict, then immediately

1o (L7)

KEN\o(K2\®?
) 2\ )(ﬁ )R;\a(f@\w)

(4.58) (Vi
o(L K \ Py o 73
- (vzﬁ);; D (@R el L
o 7t o K?
= (vhL) <vz>ii D) s

Otherwise there is an additional term
1\Kq ( p1yLg
_(Vﬁ)if (£ )Kq;
in the right hand of [@58]). However, for the same reason as those discussed during
the treatment of ([£.42),

1yLq
(£ )a(K2\<1>2 (Vﬁ) - (E Vﬁ) (K2\®2)"
Note that o(K7\ ®7) C K, \ ®} and K(} lies strictly below K \ @, see Figure E21
Hence by (@31)) the above submatrix vanishes, and the additional term does not

contribute to ([{51).
To find the contribution of the second term in (58] to (LE1), note that
L} K2\ 03 o (K7\®7)
(4.59) ("31)0(1’{5\¢$) (vﬁ) ( 2 (lelﬁ)a(ff?\‘b?)
and
ik K2\ o2
(s (VO = (VR ot

and hence the contribution in questlon equals

- <(£2V%)I:(;z\q>f (£1V};)ZE§2\¢$)> = const

K\®7 7\e7)

by (&31)).
Similarly to (£45]), the contribution of the second blocks in each pair above
can be rewritten as

(4.60) <(VL£) (; (Vﬁ)U(K >(£1)Z§f<2) (V2)] (E )E% )>.

As in the previous case, an additional term arises if o(L?) = Eé, and its contribution

o ([£&0) vanishes.
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To find the total contribution of the first terms in (£.38) and (.60), note that
by (@31, in this computation one can replace the row set L} of L'V 1 with o(L7).
Therefore, the contribution in question equals

(4.61) <(V££ ) (L2)7(V2)K 2\@? “(Lch E§2>\¢2 + (V2)?£(£1)Zgz§>
= ((TEL) I (T2) 1 ™ () g + (V2) (L2050 )

:<(V}151)0<L2>=(Vc£2)§ (VZ): Hth>’
where

2 t+1
W= @i ol
Note that ~ ~
1 p1\9 (L)) (o2 p2yLE
<(V5£ )o(if) (V2L )L§> = const
by (@3T)), which gives the first summand in the last sum in (£5I). The remaining
term is given by

o(L i1 o(Uiga t+1 t+1
_<(v;£ ) (VR 5 r Wt> = <(V££) Eg,; N(VR) i (L) >

t+1 t41

which coincides with the expression for B} in ([£48).
It remains to compute the contribution of the second term in (L&0). Similarly

o ([£X9), we have
K2 2
()5t (VE) ) = (£191) 7).
On the other hand, similarly to (IEID we have
(52)K2 (V% )Lz = (£2v2) —z(v2) %

0
(L2)g8 |
Using ({31)) once again, we get
(V) (VR ) = — (L9708 (£3V3) g3 ) = const,

(27) o(®?)

L2?

where

Zy =

which together with the contribution of the second term in (58] computed above
yields the second summand in the last sum in (£5I). The remaining term is given

by
o (®F : :
(V1) 2(V3) 1) = ((£'9h) et ()6 (V3) 14 )
which coincides with the expressmn for B! in (£49).

Assume now that af = @} and hence I? = I}. In this case the blocks v f * and

Y— have the same height, and one of them lies inside the other, but the direction

of ‘the inclusion may vary, and hence o is not defined.
Note that by ([@55), to compute the second term in (£52) in this case, one can

omit the rows I? in ([@356), and hence the contribution in question equals

(v @ ).
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which coincides with the expression for B! in ([50). O

4.3.6. Explicit expression for <%C*(§£)S,%C*(V%Y)>. Assume that p is

defined by @32). For any fixed ¢’ with 32 < B_ql, we define the injection o of K?

and L? into K, 3, and f/é,, respectively, similarly to the one defined at the beginning
of Section .3.5] and put

(42) B = (VL) (T, ).

t+1

In what follows specific values of ¢’ are indicated in the summation index. Note
that ¢’ may not coincide with ¢ defined by ([47).

LEMMA 4.14.
(i) The expression for < (EL)<7 *(V%,Y)> s given by

(4.63)
()< (W) = X B+ ¥ BY
BE<BL BE>By 4
Liosdl en L2\W2,, —J2\A(F?)

+ZZ< (VL) 205 A7 (VEL) i :—>J2\A(B?)>

u=1t=1

p—1 s? _ _ _ Y

1 a1\ Lo \VL L —TNA(BY) o Ao L2\UZ, = T\A(F?)

+Z_:1; <(Vﬁﬁ zived rhoinac s (VEL) e v

32

£ (e <p 82 20+ Hu<p: B < BN (VD5 ().
t=1

where Bi' is given by @34) with p(®7) replaced by ®, for B = B7, and

Bl is given by ([{62).
(ii) Fach summand in the last three sums in [@63) is constant.

PrOOF. Recall that by (£38), this term can be rewritten as
(Tir, (71)<, 4" (V3 V)
with I'y = I'{ and 4 = 7°.

Note that Vi X has been already computed in ([#39). Let us compute
4*(V4Y). Taking into account () and {I0), we get

v v 0
, sHL 0 0 s+l i VKioa g piyEioa
44( %/Y):Z’Y* [* (vl)_.—lyjtil _Z,y* * (Vi)g: ,(;C)Kti s
t=2 Li "I, t=2 % (vz ‘Cz)gg i
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the latter equality is similar to the one used in the derivation of the expression for
V% X in the proof of Lemma LTIl In more detail,

(464) (Vi) =
st41 0 O 0 stH1

0
7 t 1 z l i
S5 o ot e, o435y o]
= 0 "0 0 e
Note that the diagonal block in the first term in (.64) corresponds to the

nontrivial column Y-run A(B}_;), unless ¢ = s’ + 1 and ¥, iy1 = 9. Therefore, ¥~

moves it to the dlagonal block corresponding to the nontrivial column X-run A(fY)
occupied by (V% ) (Ll) ’ in (Z39). Consequently, the resulting diagonal block in
17t is equal to
(4.65) (Vi)y (EZ) +(Vz ) wi LY = (VRLY

t— t

for 1 <t < s* + 1; note that the first term in the left hand side of (£5E) vanishes
for t = s* + 1, and the second term vanishes for t = 1.

Further, the projection IIr, of the second block in the first row of ([E39) van-
ishes. Summing up and applying ([@31]), we get

0 0 0
1 1
. S . 1 p1\Ly 3
(466) Tip, (7})< = S 1tn, | (VEELE Oy o (vienls s g
u=1 0 1+1
0 0 0
s+1

+Z'y

where the nonzero block in the second term occupies rows and columns Js11, see

Section 2] after ({AT).

Recall that I* € LYULL | by [@32). Therefore, for any u > p all three terms in
([£566) vanish. Consequently, by the ringed version of (1), the contribution of the
second term in expression ([@64) for the second function to the final result equals

p s’ g
Liogl ., LAW2, = JN\ABD)
ZZ< (VELY D564 (Viﬁ)y\\u@iﬁﬂ\awz)>

p—1 g2 _
L \TL L S TINABL) o L2\UZ, | = J2\A(B?)
+ ZZ< Ll\\II N —JINA(BL)? HF2(V L )L;\q, ’ HJQ\A(52)>’

+1 t+1
u=1t=1 “

0
ek
0 (VEL)[ i

which yields the third and the fourth sums in (£63)). Note that each summand in
both sums is constant by (Z3T]).

Further, for any u < p, the nonzero blocks in all terms in ([£G6) are just
identity matrices by (£31])). Hence, the corresponding contribution of the first term
in expression ([£.64) for the second function to the final result equals

2

(467) 3 (u<p s 5L = )+ Hu< s B < ) (20, (€03 ).

t=1
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which yields the fifth sum in (£.63). It follows immediately from the proof of Lemma

M4 that the trace <(V£)q;t+lﬁ}ll—<i“> is a constant.

Finally, let u = p. Let us find the contribution of the first two terms in (Z60).
From now on we are looking at the ¢th summand in the first term of (Z.64)) for the
second function. If B} < 87 then the contribution of this summand vanishes for the
same size considerations as in the proof of Lemma [£.17]

If 511) > B2 then the contribution in question equals

((VELY) o) (VE)gi (£ ).

which coincides with Bi! given by ([@34) and yields the first sum in ([Z63).

If 6; = /32 then the contribution in question remains the same as in the previous
case with p(¥7) replaced by ¥,

Let us find the contribution of the third term in ([4.60). Note that 4* enters
both the third term in ([£.60) and the first term in ([4.64)), consequently, we can drop
it in the former and replace by ﬁF2 in the latter, which effectively means that ¥*
is simultaneously dropped in both terms.

From now on we are looking at the ¢th summand in the first term of (Z.64).
However, since we have dropped ¥*, this means that we are comparing the (¢ — 1)-
st Y-block in £2 with the (p — 1)-st Y-block in £!. If 5;71 > (2, then the
contribution of this summand vanishes for the same size considerations as before.

If 511,71 < [%_,, then the contribution in question equals

((VEL) T (V2w (E3% ),

which coincides with B}Y; given by ([#62), and hence yields the second sum in

(EE3). O

4.3.7. Explicit expression for <’°yr(£11{)2,’°yr(XV§()>. Assume that p and ¢

are defined by [@32) and (£41), respectively, ¢’ and o are the same as in Section
3.8 and let p be the injection of K7 and L7 into K} and L), respectively, defined
at the beginning of Section 3.4l Put

(4.68) BY = <(£ vﬁ)”(q’ ’(ﬁ)@z(v?) >
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LEMMA 4.15.
(i) The expression for <'°yr(§o}%)2,"’yr(XV§()> is given by
(4.69)
(5 (ER)2 7 (X %)) = Bl+ > B+ > BY
ai<lay a;<al ai>al
K HI 2 P\ II\A(a)
+ Z Z< (L'VE) % V(L vﬁ>K§\{>fa]f\A(af)>
u=1t=1
p s
1 K1\<I>1~>II\A(041) 22 \K2\BI 5 TH\A ()
+ ZZ<(£ Vl; Kl\élﬁll\A(al)’HF ([' \ )K%\@%—ﬂf\A(a% >
u=1t=1
L} o7
+Z {u<p-1:a, = af}+|{u<p:al <af}]) (£2(VE)}))

where B is given by @AJ) with o(®7) replaced by ®} for al = ai, and
BV is given by ([A6S).

(ii) Each summand in the last three sums in ([EG3) is constant.
PROOF. Recall that by ([@53), this term can be rewritten as
(Tie, (i), 5(X V%))
with I'y = T'j and 4 = 4". Note that YV% has been already computed in ({54).
Let us compute ¥(X VY% ). Taking into account (@8] and (£9), we get
0 0 0

i 0
(4.70)  4(XVY) ZV 0 (L) (VDT 0| D07 | (oo gkt |-
0 0 ! 0 t=1 ( L)Kf\':b;i

similarly to (£.64).

Note first that the diagonal block in the first term in (£Z70) corresponds to
the nontrivial row X-run A(fS{), unless ¢t = 1 and the first X-block is dummy, or
t =s' and ®,; = @. Hence, ¥ moves it to the diagonal block corresponding to the
nontrivial row Y-run A(3¢) occupied by (U) (VZ ) in (@54). Consequently, the

resulting diagonal block in n}{ is equal to
iNLi (i \®1 iNLi i \ @i i \ Pl
(471) (L) (V) FE 4 (L5 (VRS = (L)
(if the first X -block is dummy and ®i # @, the second term in the left hand side
vanishes; for ®, = & relation ([@T71)) holds trivially with all three terms void).
Moreover, the projection IIr, of the second block in the first column of [{54)
vanishes. Summing up and applying ([£31]), we get

cvnEe o] K0 0
( OL)Ku 0 +Z’Y 0 (Clvl)Ki\‘i’; ;

Ki\®,,

Sl
(472) I, (jg)> = I,
u=1

note that if the last Y-block is dummy then the block (£!V1) Kil is not leading

any more: it occupies rows and columns I, see Section A2 after (E:ﬂ)
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Recall that [! € K, U K,_1, see Section .35 Therefore, for any u > p both
terms in (£T2) vanish. Therefore, the contribution of the second term in ([@X10) to
the final result equals

p s’
K.,—I) - KI\®;—I7\A(0f
DYV VR e )

u=1t=1

p s
KIN\®L I \A(ay) ¢ K2\®? I \A(o
+ 33 (VR it e TND).

which yields the fourth and the fifth sums in [@69). Note that each summand in
both sums is constant by (@.31]).

For any u < p — 1, the nonzero blocks in both terms in (£72)) are just identity
matrices by ([@31)). Therefore, the corresponding contribution of the first term of
(@70) for the second function to the final result equals

82

2 2

S ({u<p-1:al > a2+ {u<p-1:al <a2}) (L5 (VH)E).

t=1
which is similar to ([@67)) and is constant for the same reason.

Further, let w = p — 1. Then the nonzero block in the second term in({@72) is
again an identity matrix, and hence the inequality v < p — 1 in the second term
above is replaced by u < p, which yields the last sum in ([Z69).

Let us find the contribution of the first term in (£72]). From now on we are
looking at the summation index ¢ in ([@T0) for the second function; recall that
it corresponds to the tth Y-block. If d;kl < &7 then the contribution of this
summand vanishes for the size considerations, similarly to the proof of Lemma
EI4 If &y, , > &7, then the contribution in question equals

2 2 2
(V) L) (V3) 1)
which coincides with Bj' given by @49). If &, ;, = &7 then the contribution in
question remains the same as in the previous case with o(®?) replaced by <I>11,71.
Consequently, we get the first sum in (Z69]).

Finally, let uw = p. Then the first term in (£72) is treated exactly as in the case
u = p — 1, which gives the second sum in (£.69).

Let us find the contribution of the second term in ([@72]). Note that ¥ enters
both the second term in [@72) and the first term in (@70, consequently, we can
drop it in the former and replace by 12[1"1 in the latter, which effectively means that
~ is simultaneously dropped in both terms.

From now on we are looking at the summation index ¢ in ({70Q) for the second
function. However, since we have dropped 7, this means that we are comparing the
tth X-block in £2 with the p-th X-block in £'. If ozzl, > af then the contribution
of the tth term in ([f70) vanishes for the size considerations.

If a; < o? then the contribution in question equals

(@7) L7 @7
(V) ()5 (VE) 12 )

which coincides with the expression ([@68) for B}V and yields the third sum in

(E59). O
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4.4. Proof of Theorem [3.4t Final steps
Let us find the total contribution of all B-terms in the right hand side of

([@.36), @.51), E.63) and (£.69). Recall that I! lies in rows K}UK]}_, and columns

L; u L;fl. We consider the following two cases.

4.4.1. Case 1: [' lies in rows K} and columns L. Note that under these

v . S0
conditions, the matrix (Vcﬁl)o(‘y;*l; in the expression [@AR8) for B} in @51
vanishes, since rows and columns o (U2 1) lie strictly above and to the left of I
Besides, the matrix (£'V E) in the expression ([Z50) for B in ([51) vanishes

as well. Indeed, the column (£! )K1\<I>1 vanishes if j lies to the right of L,. On the

K1\®}

other hand, the ith row of V] vanishes if i lies above the intersection of the main
diagonal with the vertical line corresponding to the right endpoint of L,.

Finally, for any ¢ such that ﬂ; > B2, the contributions of the term B! given by
(E34) in ([@36) and ([EG3) cancel each other. Similarly, for any ¢ such that &y, > a7,

the contributions of the term B}’ given by ([£49) in @51 and ([@69) cancel each

other as well. Taking into account that dzl, = a? is equivalent to ozzl, = a?, we can

rewrite the remaining terms as

(4.73) S {BYY = Bi: By > 8,05 < af}
—|—Z{BH Bl : ﬂl >Bt,a =a?}
+ D AB: By < B7op = o)
+D B - B": By =B,y > af}
+> (B =B"+BY : Bl =80, <o}
+ D ABI =B+ Bl s 8, = Bf,05 =0}
+Y ABY: By < By + Y AB: apy 2 a7}
where Bl, B'' BIV and B}V are given by [@33), (£35), (468), and (E62), re-

spectively.
LEMMA 4.16.
(i) Ezxpression (II_B]) is given by

> ((@Vh)a (e2va)) + S ((CVh)g(e2vE)g))

BE<B} BE#B
a?>al a?=al
2 v2 K7, 1 o1y (o2 p2y L7
- P
+ > < (L)%s | (VZ)5s >+ > <(sz£ )i (VZL )Lg>
BE=8} BE=8}
of <ol a3z
2 2 2 -2
t\‘I> 272 Kt\q:‘t a 24\ % 2\ K
- > <(£ Vﬁ) ey (L2VE) g )+ D ((EDke (V2) g3
s2=8} BE=hp
aZ>al aZ=al
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BE=83 BE=83
aZ2=al a2=al
t P t P

2 2

X (@RrER ) 3 (o)
BZ>BL_ a;<a,

where " is taken over the cases when the exit point ofX s lies above
the exit point of le.
p
(ii) Each summand in the expression above is a constant.

PRrROOF. To find the first term in ([@73]) note that for any fixed ¢ satisfying the
corresponding conditions one has

(4.74)
BY - B = ((VED B () + (v e (v
= (£ (£292)3]) = cons

via (71 and (@31]), which yields the first term in the statement of the lemma.
Similarly, to treat the second term in ([73]) we note that under the correspond-
ing conditions

(4.75) BY - Bl = <(£1V})zz <a2>g§(v%);> <(£ vEh)e (cz)qﬂ(v?) >
= <(£1V‘15)g’ (EQV%)ZE> = const
via (71 and (@3T).

To find the contribution of the third term in (£73]), rewrite it as

<(£ Vi) (£2V£) >—<(£1Vz:) (52)<1>2(V£) >

and note that the second term equals
(4.76) — <(,c )q>1 (vﬁ) (52)¢2 (v2) > ,

since (V) jl

1
-7 vanishes. Further, the block X }]f’ is contained completely inside the
p P 1 1
block X}]g. We denote by p the corresponding injection, so (El)ég = (CQ)Q(?L”).
Therefore, [{70]) can be written as
K\®} (Ly)
(@R e, ).
where we used the fact that
(L ) K2\ ®? (L) (Lp)
(V3)7 (52)1) H(VE)zs (L) galae = (V2L =0,
Finall (£2)p(L) = (El) and
Y7 K2\<I>2 - Kl\q;.la

Ll
(£ )Kl\cbl (Vﬁ) (£ vﬁ)Kl\qﬂ =0,
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hence ([@.70) vanishes, and the contribution in question is given by the same expres-
sion as in (£7H), and thus yields the second term in the statement of the lemma.

To find the fourth term in (73] note that for any fixed ¢ satisfying the corre-
sponding conditions we get

(4.77) B — B!
1,1\ (o2 \Kio1 g p2\YF 1,1\ L\ o2\ KT 2\ V7
= <(VL£ Jol (V) ys ™ (£ )R§,1> - <(V0’3 Voo P (VZ) s (£ )Kg>-
Applying (£E0) to the first expression and using the equality
LI\U K? vl K? L} K?
(VLY TR L + (VL) (VR = (VL) (T2
we get
vl w2 L} K? w2
(478) B = B = ((VELY) 2 (VEL2) b ) — ((VELY) gt (VE) 1 (£D)55).-
Clearly, the first term above is a constant.

Jp . . R
Note that a; > o, and hence the block X, is contained completely inside
p

2
the block XIJ§ , which means, in particular, that p > 1. Consider two sequences of
t
blocks
jl Jl jl 72 J2 j2
(4.79) {Yfl”’l,XIf’l,Yff’z, ...} and {Yfz”‘l,Xp’"l,Yf;‘z, b
p—1 p—1 p—2 t—1 t—1 t—2

There are four possibilities:

. . . Jr J? 7 =
(i) there exists a pair of blocks Y7," ™ and Y7,""™ such that J,_,, = J7

p—m t—m

— — 71
I;fm # I? ., and the subsequences of blocks to the left of Yj{”’m and

72 o
Y™™ coincide;
t—m B 5
. . . J J,
(i) there exists a pair of blocks X;/~™ and X5 ™ such that I} , = I,
p—m t—m
Jl
J;fm # J2 ., and the subsequences of blocks to the left of X, 77" and
p—m
J? o
X3~ coincide;
t—m

(iii) the first sequence is a proper subsequence of the second one;
(iv) the second sequence is a proper subsequence of the first one, or is empty.

see Figure 4.3

where blocks X}Ii’z and YI—{’Z are for brevity denoted X} and Y}, respectively.
k k

CASE (i). Clearly, this can be possible only if IZ ,, C I}

p—m>

Denote
(480) ©i= |J(Ki_,UKi_)UKi_,, == |J(Li_,ULl_)uLi_,.
Jj=1 j=1

=2 =1
Note that the matrix (£?)g5 coincides with a proper submatrix of (£')g} ; we denote
t P
the corresponding injection o (it can be considered as an analog of the injection o
defined in Section E3.3]). Clearly,

: : : Ch :
(4.81) (V) 13 (£3)s = (V2L) 13 — (V3) 14 (£%)as-
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>
Nl N s

[
Y p- Yt—l
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FIGURE 4.3. Case [(i)]

The contribution of the first term in (£81]) to the second term in (78] equals

Lt w2 v, w2
~((VEL) G (VRL) 1) = = ((VELY) gt (VELY)3E)

and cancels the contribution of the first term in ([L178) computed above.
To find the contribution of the second term in (@8I to the second term in

[#8) note that

MU L,
(4.82) (VeL! )w = (vﬁ) (LYK en
so the contribution in question equals
Kiue! L
(4.83) <(v£) (£2)@2 (VE) gl (cl)KEU®;>.
Taking into account that (£2)92 = (51)0(92)7 (£2)“t\‘1/ (Cl) (92 7 and that
Kiue, Kiue, E, \\1/ Kjue,
(4.84) (c! ) 5 (Ve)ol " = (LY ez — (£ ) 2y (VE)zliwrs

this contribution can be rewritten as
K, ue, L, =2\ w? K ue, L}
<(V2) (‘Clvﬁ) o (©2) (‘CI)K’}UG;>_<(V2) (‘62) : (vlﬁ)gé\\pé (‘CI)K’}U@;>-

Next, by @31,
(v2) (£2)~t\'1’ (VQ £2)~t\‘1’ _ O7

since the columns L? lie to the left of =2\ W2,
Finally, by (@31,
Kyue!

(E VL) (©2)

=[0 1 0],
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where the unit block occupies the rows and the columns o(©?). Therefore, the
remaining contribution equals

L? e? L? K2,
(3 ) = (8 E25) = (@5 (05,
which is a constant via Lemma [£4] and yields the third term in the statement of

the lemma.

CasE (ii). Clearly, this can be possible only if J) , C J?Z ., see Figure {4
where we use the same convention as in Figure 3]

N

12
Y/H Yr—l

1o _2
p-m L i-m

Y

KeWtol

FIGURE 4.4. Case [(ii)]

Let ©! and =% be defined by (ES0). Note that the matrix (El)olukl

—m

2
coincides with a proper submatrix of (£2)92U K2 5 we denote the correspond-

ing injection p (in a sense, it can be considered as an analog of the injection
p defined in Section L34 however, it acts in the opposite direction). Clearly,
p(O, UK} ) =0;UK? . Similarly to (£384), we have

(L4871 (VE) gt ™

o &

)K U@
S1\v}

The first two terms in the right hand side of this equation are treated exactly as in
Case|(i)| and yield the same contribution. The third term yields

(TR (T )

p—m

since (Ll) - (ﬁz)p( r-m) Ty proceed further, note that

(VE) (EZ)P(Lp m _ (vﬁﬁQ)P(l’p m (vﬁ) \<I>t m(£2) \(122

—m m
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The first term on the right hand side vanishes, since VL is lower triangular, and
columns L7 lie to the left of p(L;,_,,). The second yields

2 \e7_ L; Kiuel
(R e o (T )

2 Kffm\‘Pffm 1 K,ue, 1Ly
= <(V£)L§ (L'VE) KL m\<1>,1, m(ﬁ )K;ue;,
1
via (132) Pl i"qz? (,/jl)Klu”(L)1 Finally, (L'V} )K Ug\q)l vanishes, since £V ¢
is upper tmangular7 and rows K p_m \ <I> m lie below K1 U @1

CASE (iii). This case is only possible if the last block in the ﬁrst sequence is of
type Y, see Figure .5 on the left. Assuming that this block is YJ’ ™ we proceed

p m

exactly as in Case with Lzl)fm = @ and get the same contribution.

=2 | 122
YpiTYin ! YpaTY i

3_

12 2
Yf/*m_yl*m X

t-m

1
p-m

2
t-m

L

FIGURE 4.5. Cases and

CASE (iv). This case is only possible if the last block in the second sequence
is of type X, see Figure .5l on the right. Assuming that this block is X, Ji- T we

—m+1

proceed exactly as in Case[(1)] with K? ,, = @ and get the same contrlbutlon.
To treat the fifth sum in (@73), note that al < o implies that the block
2
X}Jz is contained completely inside the block X - Therefore, injection p can be
defined as in Section 3.4} _moreover, p(¥?) = \Ill and p(L7) = Ly, since [31 B2
Consequently, the block Y— b is contained completely inside the block Y— Ji- ', and

—1
injection o can be defined as in Section 4.3.5]
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We proceed similarly to the previous case and arrive at
485) B _ gl L gIvV _ /(ylpl v, V2 2 vi
(')t t+t_(£)\pé(ﬁ)2
1,1\ Ly (o2 \ B p2\ 97 1 2
- <(sz5 Jui (VZ) s (£ )K3> <(£ Vet (ﬁ )qﬂ (V)] >

Clearly, (v;gl)L = (vﬁ)K sy

equals

KiuRL_ > 5O the second term in (Z85)
o1’

186) (100 7huiy (V2 e (T2 1)
(i | (TR @O (VD)
(), (TR @G )
The first term in ([£80) equals
(@ (2 e (@b )
= () (TR s ) = (TR [VE(VELY rie ) = const,

which together with the contribution of the first term in (£8H) yields the fourth
term in the statement of the lemma for o > a;.

By (@31, the matrix (clvc)K \p)( 2 vanishes. Next, we use injection o

mentioned above to write (£ )j(K?)UK; . (ﬁz)KzUO_(K1 Bt and hence the second
term in ([@80) can be written as

p(K7)UK
(4.87) - <(£1v1£)p( K2) (£2)K2UU(K1 )

(KHu
= <(£1V}:)Z(K%) (£2V2 K2UU(K1 )>
P(KP)UK] K?2
(TR iy (TR >
p(K2URL 2 w2
(e e 0 ).
By (31)), the first term in (£J7) equals

(4.88) - <(£1V£)p§§2) (£2V2) > = const.

o L2 .
Recall that the matrix (£ )(If<§\¢%)ucr(f(;,1) vanishes, and so the second term
in ([A87) can be rewritten as

((L0h) 2 ()5 (V)5 ) = ((L'9E) e ()5 (V) 2
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by ([@31I). Taking into account the third term in ([£85]), we get exactly the same
contribution as in (@4, which together with ([A88]) yields the fifth term in the
statement of the lemma for af > «.

To treat the third term in (£.87) note that

p(KPUK,

t p—1 K2)UK}
(ﬁlvlﬁ)pu@) = (Cl)p(K2 (Vc) ?

p—1

and that the matrix (52) o\ vanishes. Consequently, the term in question
equals

1 P(KUK, 1 aoy LY\ VY 2\ K7
<(£ )p(K2 (V) (£ )K,?ula(z(;_l)(vz:)zgl\qjg>
KDy L2 \WL o K
= (€0 (V2 @R DR e

since (£?) E Kll\‘p) (ﬁl) e\ . The obtained expression vanishes since
-1

p 1
T2
(VE) g (e = (e g™

vanishes by (@31]).
Further, consider the sixth term in (@73]). Using [@78]) we arrive at

(489) BN BN 4 Bl = <(vlﬁcl)q’r} (v2e2)5)

~((VELY)y (vL) (g?)K2> <(£1vc) P (VR)) > .
Clearly, the first term in (£389) is a constant.

J) 2 . .
Note that the blocks X ¥ and X}IQ‘ coincide. Similarly to the analysis above,
P t

we consider two nonempty sequences of blocks (Z79) (the cases p=1ort =1 are
trivial). We have the same four possibilities as before, and, additionally,

(v) the sequences coincide.

Each one of the possibilities (i)—(iv) is further split into two cases:
(a) the exit point of X ¢ lies below the exit point of XI1 ;

(b) the exit point of X ¢ lies above the exit point of X

CaSE (ia). Clearly, this can be possible only if I}, C It m» See Figure [2

Define ©° and Z! in the same way as in (MII) Usmg equalities (A.82) and
(,CZ)KQ = (,Cl)Kl, we rewrite the second term in (89 as

K ue, s
- (T (e )
L \xp
+ < (VL)Ll\\Ifl (EI)K1u01>
()

Kiue; L
(DD e, )

P
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L
XX,

12
Y, 7Y,

FIGURE 4.6. Case [(ia)]

Note that (£1)L AN (52)]: 2 and

<} L} L}
(V[,)Ll\u\l,lp (‘CI)KP1U@1 = (VIL‘CI)L};\\IA )

hence the second term in the expression above equals
1
((VELY) 10 (VEL2) 12T ) = ((TEED) TR (VALY iyt ) = const,

which together with the first term in ([£89) yields the eighth term in the statement
of the lemma, as well as the fourth term for a? = o}

-

. Klue! . . 7 .

Finally, (Vlﬁ) Ixt “®7 Vanishes since the columns Lzl, are strictly to the left of
P

K ; U @11), so the third term in the expression above vanishes

Note that
(£'95) " (£ e
- (clvlﬁ)‘fﬁ (£Y5] + (£1VE) (£ )fgl;\q)l +(L'VE) 22 (L))
By @31), (£ VL) \o1 vanishes; besides, (£2) (ﬁl) . Hence

<(‘C Vl:) (‘Cl)qﬂ (vﬁ) > <(C Vz:) (£2)¢2 (Vc) > )
that is, the first term in the equation above cancels the third term in ([R9). Further
(El)Kl\(I>1 = (Cz) 2\ 02 and

(c2)K2\¢2 (VL)LQ = (EQVL)K2\¢2,
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and hence
K)\®} L. K? Ko\
(4.90) —<(£1v£) (L )Kf;\%(v%)L»— ((C'Ve) (L2VE) o0 )
K;\q>; K2\®?
= — ((£"VE) el (C2VE) it

= const.

The remaining contribution of ([€89]) equals
ol wl ?
(4.91) <(c Vh) (51)91 (V2) 14 > = - <(clv};)§§(£1)®g (V%)$3>,

since the deleted columns and rows of £!'V% and £! vanish.
Next we use the injection o (similar to the one used in Case|(i)|above but acting

in the opposite direction) to rewrite (,Cl)@l (,CQ) @1), and to write

E2\¢?
(Lz)a(el (Vz)qﬂ‘ - (£2v£) (@1 (52)0(91 (VL)HQ\\IJ%

which transforms the above contribution into

(VD (EVE) op) + {(E'VE) (6076 (VE) s )

Clearly, the first term above vanishes since (,(ZQV2 )0(61) = 0. The second one
vanishes since
LuL}
(4.92) (c! VL) - = (L)g} (Vﬁ)Llw,
1
(52)“*\\1/ (ﬁl) P\ and

el =h\wl vl
(Vlﬁ)qui;(ﬁl)eE h= (Vlﬁﬁl)LzuE‘i =0.

CasE (ib). Clearly, this can be possible only if 12, C I}, cf. Figure E3l
We proceed exactly as in Case retaining the definitions of ©, and Z,, and
arrive at (LOI). As a result, we obtain two contributions similar to those obtained
in Case one is similar to the eighth term in the statement of the lemma and
is given by

a L L?
(4.93) > ((VEL) 1 (VEEY) )
Bh=82

1,2
ap=af

while the other together with (£90) yields the fifth term in the statement of the
lemma for of = a.

Next, we note that (Elvﬁ) - (El)<I>1 (Vﬁ) ©

1
i since (V7)1 = 0. Applying

(El)q)l (£2)@2, we arrive at

<<V£) f(Led (vﬁ)\v2<z2)¢2>.
Note that
(494 (VE)oh(£05 = (VAL2) 5k — (V2) gt ™ (£)as — (VE)0h (£,
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To treat the first term in ([£94]), we use an analog of (A63]) and get

vl L? Kl vl L?
(VR (VAL ) + <(v})L§ () (vicz)w?> .
Clearly, the first term above equals
1,1\ (o2 2\
(4.95) - <(VEC )% (ViL )\P?> = const.
The second term above can be rewritten as
K} w7 KZue? L?
(V)7 (23 (VE) g 7 (L) ez ) -

Next, we write

(4.96)
(L) (V2) gt 7% = (£292) 5 — (L2 (V) e — (£2)7 (V2) 55

The contrlbutlon of the first term in (£36) can be written as
K7007 , .1\ L; K}
(@)1 o (TR
K2ue? K
= - (e e (T E )

()0 v

KU@ KU@

K} UU(@Z) > )
where injection o is defined as in Case [(i)|above. The second term above equals
<(£2V5) L(ct Vﬁ) > = const,

and yields the seventh term in the statement of the lemma, while the first term
equals

L2UL? K,
(" () S (306 (VE) S
and vanishes, since

=y AN
(Vﬁ)L%L? (EQ)KEU(—)E = (v%£2)quif =0

by (£31).
The contribution of the second term in ([4.96) equals
L\, Uo7 ;
<(V.c) P (LY B (V2 )fz\qu (52)23u®$>
LI\w}
=~ ((VEL) (VR )
_ <(vlﬁﬁl)Lp\‘Pp (V%E )Lt\‘l’t >

LI\U! L2\¥?
= const

and together with (£05]) cancels the contribution of (£93)).
The contribution of the third term in (£396]) equals

(VA (€5 (VE) 1 7% () oo )

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



64 4. INITIAL BASIS

and vanishes, since

)K U@

(V252 (L) e = (V2L2) e =0

by (@3T]).
The contribution of the second term in ([£94) equals
L! e! K2\®?
<<£1>K’;\¢; (V) 1 (£t >@1 (VE) s >
and vanishes, since
Ll

('(:1)}{1\@1 (VL) = (£t Vﬁ)Kl\cbl =0;
the latter equality follows from the fact (£1V1 )glgl;jgf =1.

The contribution of the third term in (£94]) equals
v, CH
() (VRSO (D))

via (132) (El) Note that

SN
(£ ey (VE)ST = (£192) sy = 1 0],

and hence (L1 ) (VL) (El)@1 = (£2)®2. Consequently, the contribution in

question equals

v? o? w2 K2
~((€6:(VE)5}) = = (@R, (TB)ai )
which is a constant by Lemma [£.4] yielding the sixth term in the statement of the
lemma.

Cask (iia). Clearly, this can be possible only if J? , C J; m, see Figure L7
We proceed exactly as in Case retaining the definitions of ©% and =, and

arrive at (E31). Next, we apply (Ll);1 (£2)O2, and note that

(C)6b(V2) g = (£2V3) gk — (L)gn " (VAL 4o — (L6 ™ (V3)

—m

Consequently, (£91) can be written as a sum of three terms. The ﬁrst two are
treated exactly as in Case and yield the same contribution. With the help of
([#32), the third term can be rewritten as

LLUL,
(5 (70 sy 6 (T ),
Next, _we use the injection p (similar to the one defined in Section 34 to write
2
(52) tm = (El)g(f“""), which together with

f—m CI) m t—m f—m
<v£>LluLl<ﬂ>$§ D (V) T e = (VEEY e =0

1 1
p—m LPULP

transforms the third term into

LIUL! e \h m) ®;
- <(£1)<I>;, (Vﬁ)LluLl (El) \‘I>1 (v%)L?> ’

p—m
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XX,
y}pAZYH
1 2
®p'®l
L, |
X | X .
o_2 Ky
7777777777777777777777777777 p-m Yiim Ki—m
.:.l .:2
=, 2 .
L,
FIGURE 4.7. Case [(iia)]
. p(L2) o LE
Finally, we use (£! m = (L m and
Y (Eka " Nan_, = Ekz T ver,
2 2 2
nLim 2\® 22\ % _
(ks var, (Ve iz = (LVE) s ez =0

to make sure that the contribution of this term vanishes.

CasE (iib). Clearly, this can be possible only if J)_, C JZ ., cf. Figure £4
We proceed exactly as in Case |(ib), with the only difference: the contribution of
the first term in (£90) contains an additional term

L2uL? K2ue? L .. K
<(£2)th "(VE)iors (EDE0e, (Vk)Lf_m> ’
1 1
which vanishes since (Ll)]L(’;’U@é = (Lz)ﬁ;’jé’él) and
2\ K7UO7 1o p(Ly ) 2 poyP(Lp_1m)
(V) psore (L) ales” = (VZL7) 2™ =0.

CASE (iiia). This case is only possible if the last block in the first sequence is
1
of type X, see Figure [£.8 on the right. Assuming that this block is XIJ{”’"“, we

p—m+1

proceed exactly as in Case with R;_m = @ and get the same contribution.

CASE (iiib). This case is only possible if the last block in the first sequence is
71

. . . . gy
of type Y, cf. Figure Assuming that this block is Y;,""™, we proceed exactly
pom
as in Case with L), ,, = @ and get the same contribution.

CASE (iva). This case is only possible if the last block in the second sequence
72
is of type Y, see Figure .8 on the left. Assuming that this block is Yfi”’m, we

t—m

proceed exactly as in Case with L?_, = @ and get the same contribution.
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1 —v2 1
YpuYim Xy

Lp—m

FIGURE 4.8. Cases and

CASE (ivb). This case is only possible if the last block in the second sequence is
of type X, cf. Figure L5l Assuming that this block is X i , we proceed exactly

t 7n+1

as in Case|(ib) m )| with K2 , = @ and get the same contribution.

CASE (v). This case is only possible if the exit points of X7 e and X7y I commde
The last block in both sequences is either of type Y or of type X. In the former

case we proceed as in Case and in the latter case, as in Case m
The last two terms in the statement of the lemma a2re obtained from the last two

terms in ([73) by taking into account that (£L'V}) E‘I’Z; in the expression ([4.49)) for

Bl and (ViLY)] W;“i in the expression (IZIZI) for B}V are unit matrices, since in
both cases ¢ is an injection into the block Yy Ty . The remaining traces are treated

p 1

in the same way as in ({.671). O

4.4.2. Case 2: [! lies in rows K}_, and columns L!_,. Similarly to the
previous case,

(@2
('C vﬁ) p(qﬂ)

in the expression ([@33) for B} in ([@36) and in the expression ([6]) for B;Y in
E69),

(@)
(@3)

(£'VE)
in the expression ([E49) for B! in the fifth term in ([Z6J), as well as

1\ gl

L\Y,
1

vy

(VeLh)

in the expression ([@35]) for B! in [@386]) vanish. Further, the contributions of B}!
to ([@36) and to [G3) cancel each other for any ¢ such that 8} > 57, while the
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contributions of B! to [@XEI) and to ([@69) cancel each other for any t such that
0711, . > @?. Consequently, we arrive at

(4.97)

SABY =Bl ap > a; By < By + Y B — Bl ay >ai, B =5}
+Y (B ap o <ai By =87+ {B'=B": a),_, =a7,B),>57}
+Y {B'"+BY-B": a, , =a},B_, <57}

+ Z{BH By — B 5‘11;71 = @tﬂgzlifl =B}

A direct comparison shows that (Z97) can be obtained directly from the first six
terms of (73] via switching the roles of By and B}, replacing ; with a; and o
with 8}, and shifting indices when necessary.

LEMMA 4.17.
(i) Ezpression ([L97) is given by

> (RO (VE) - D ((VEE G (VEL) )

‘5‘?71<‘5‘;1;71 ‘5‘?71#[;1371
5?71>B;1771 Et271:[;1:71
n (£2) i1 (VQ) i (Elvl)K;—1(£2v2)R3—1
—1 L, L K;71 LIRE
af 1:&;71 5‘271:&;1771
By _1<By_1 Bi_12hy_y
o(L7_ \‘I’ 2 r2 t 1\‘1’2 1 2 L?—l 2 7,
_ vl £1 -1 v L + L \V4 t
X (e e+ X (e vk
‘;g 1:25371 ;;—li;f—l
t—12Pp_1 t—1=Pp—1
L: L? 1 K! K?
p—1 2 p2 t—1 11 p—1 272 t—1
+ ) <(VL£ )E;A(Vcﬁ )L§1> - > ( VL)R;I(E Vi)g: )
af 1:&;71 &%71:5‘;1171
5371=B;1371 Br2,71=5;)71

, , ) Jiy .
where S is taken over the cases when the exit point of Y. 7! lies to the
t—1

left of the exit point on To- L
—1

(ii) Each summand in the ewpresswn above is a constant.

PRrROOF. The contributions of the terms in (£97]) can be obtained from the
computation of the contributions of the corresponding terms in (73] via a formal
process, which replaces K., L., K., L., ®., V., ay, By, @y, B and S°% by L._1,
K, 1, L, K,, U, , ®, 1, Be_1, Gu_1, B, ay and Zl, respectively, and interchanges
p and o. Besides, matrix multiplication from the right should be replaced by the
multiplication from the left, and the upper and lower indices should be interchanged.

As an example of this formal process, let us consider the computation of the
contribution of the fourth term in ([@97). First observe, that the expression for
B — Bl in ([@T7) is transformed to

(@i o @b ) - (@ (D v, ).

—1
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which is exactly the expression for Bl ; — B!, (note that the summation index in
the statement of the lemma is shifted by one with respect to the summation index

in ([@97)).
Next, we apply the transformed version of (63 (which is identical to [{IT)
with shifted indices) to the first expression above and use the transformed equality

(V2)7s f\q)' (et Vc) el +(V2)5s 1(5 Vc) B = (V3)5 1(5 Vc)*

to get
(4.98)

Bt - B, = (ev2)i (v ) - (@) TR (v )

which is the transformed version of ([@T78]). Clearly, the first term above is a con-
stant. - ~
Note that 3, 1 -1 > (B2 ,, which is the transformed version of a}, > a? and means
1
that the block Y, Ty is contained completely inside the block YI{t’l. Similarly to

p 1 t—1
Section [£.4.1] we consider two sequences of blocks

T} I, T}
{X727 Y2, X200 and {thYthtz.. }
o, o, -, s s
and study the same four cases. Let us consider Case (i) in detail. The analogs of
©, and Z, are
(:)rfl =K, 1U U(Krfi U Krfi)a érfl =L, U U(Erfi u eri)-
i=2 i=2

We add the correspondence ©, — =,_; and =, — ©,_1, which turns the above
relations into the transformed version of (L30).

@2
we denote the corresponding injection p. Clearly,

Note that the matrix (£2) ' coincides with a proper submatrix of (£') 25~
-1

(4.99) (C2)gs (VE) i = (L93) gt ' — (L2050 (VR)E

-1

which is the transformed version of (ZEI]).
The contribution of the first term in (£99) to the second term in [@I8)) equals

(e v ) - - (v @ik

and cancels the contribution of the first term in ([£.98) computed above.
To find the contribution of the second term in (£39) to the second term in

([#398]) note that

(E Vﬁ) = (ﬁl)f?zillUHp—l (V}:)?g:iuéé717
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the latter expression is the transformed version of ([A.83]). Taking into account that

= P(E 1) g P(EEy)
(£2)<;;1 = (L5, (g5 - e, = (E61 e 1and that

(VE)ZE "m0 ) = (VEESE 0L = (V)T T A

which is the transformed version of ([A84]), this contribution can be rewritten as

Next, by {31),

(EQ)“t 1 (v2)f{t2—1 _ (£2v2)[{t2—1 —0
\¢2 1 L E?71 o L é%—l\cbf—l o
since the rows K2 ; lie above ©2 |\ ®2 |
Finally, by (&31)),
p(EF 1) 0
1,1 =t
(VL) e = (1) ’

where the unit block occupies the rows and the columns p(Z? ;). Therefore, the
remaining contribution equals

1,057 2 = 20K (o2 Lo
<(£ )K1 11 (VE) -, > = <(£ ) . (VL) - 11> = <(£ )Lf_ll(v[l)Kt?11>’
which is a constant via Lemma 4] and yields the third term in the statement of
the lemma. O
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CHAPTER 5

The quiver

The goal of this chapter is the proof of Theorem

5.1. Preliminary considerations

Consider an arbitrary ordering on the set of vertices of the quiver Qpr re in
which all mutable vertices precede all frozen vertices. Let Brr re be the exchange
matrix that encodes Qrrrpe under this ordering, and let Qprpe be the (skew-
symmetric) matrix of the constants {log f*,log f2}, f!, f? € Fr: re, provided Fpr pe
has the same ordering. Then by [12] Theorem 4.5], to prove Theorem [B.9]it suffices
to check that

Bre peQpepe = [AL 0]

for some A # 0. In more detail, denote w¥) = {log f,s,log fi;}, then the above
equation can be rewritten as

(5.1) Y owe Y wfﬂ;—{g for (2,3) = (i,.),

(2,7)—(r,s) (r,8)—(4,5) otherwise

for all pairs (i,7), (3, 7) such that f;; is not frozen. By the definition of the quiver
Qrr re (see Section [33]), a nonfrozen vertex can have degree six, five, four, or three.
Consider first the case of degree six. All possible neighborhoods of a vertex in
this case are shown in Figure B4 Figure BE(a), Figure [B.0la), Figure B7(a), and
Figure B8(a).

Consequently, the left hand side of (&) for 1 < 4,5 < n can be rewritten as

(5.2) (wly,;—wli) — (Wil —w) — (W —wily ) + (W —wily ;)

see Figure B4l In other words, the neighborhood of (i, 7) is covered by the union
of four pairs of vertices, and the contribution 55 of each pair is the difference of
the corresponding values of w. More exactly, the first pair consists of the vertices
to the north and to the east of (4, 7), the second pair consists of the vertex to the
north-west of (4,7) and of (¢, ) itself, the third pair consists of (i, ) itself and of
the vertex to the south-east of (7, ), and the fourth pair consists of the vertices to
the west and to the south of (i, 7).

It is easy to see that in all other cases of degree six, the left hand side of (51))
can be rewritten in a similar way. For example, for ¢ = 1, an analog of (5.2]) holds
with (5}j = wftj,v”(jfl)ﬂ — wijjjﬂ and (5% = W:;jﬁc*(j,l) — wﬁ-, see Figure B.5l(a).

Further, consider the case of degree five. All possible neighborhoods of a ver-
tex in this case are shown in Figure B.5l(b), Figure B.6(b), Figure BZ(b,c), Fig-
ure B8(b,c), Figure B9(a), Figure BI0(a), and Figure[BIIla). Direct inspection of
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72 5. THE QUIVER

all these cases shows that the lower vertex is missing either in the first pair (Fig-
ure BH(b), Figure B8(c), and Figure B9(a)), or in the third pair (Figure B7(b),
FigureB.§(b), and Figure[3I1l(a)), or in the fourth pair Figure B.8l(b), Figure[31(c),
and FigureBI0(a)). In all these cases the remaining function in a deficient pair is a
minor of size one, and hence all the above relations will remain valid if the missing
function in the deficient pair is replaced by f = 1 (understood as a minor of size
zero).

Similarly, in the case of degree four there are two deficient pairs (any two of
the pairs 1, 3, and 4), and in the case of degree three, all three pairs are deficient.
However, adding at most three dummy functions f = 1 as explained above, we can
always rewrite (B.1]) as

A for (3,7) = (4,7
(5.3) A= 51.1]. — 5% — 5% + 5;; — { or (i,7) = (i, 4)

0 otherwise.

Equation (B3]) can be obtained as the restriction to the diagonal X = Y of
a similar equation in the double. Namely, assume that ¢ # j, r # s, and put
wi, = {log £,.5, log £;;}7. If additionally 1 < i,j <n and i # j,7 £ 1, we deﬁne

)

1 77 ]
4 Wi

ij = Wim1g T Wi+
3 _yd Y 4 _ i)
d =y —wha g A= Wy

271]
d wzljl

If i or j equals 1 or n, the above definition of di?j should be modified similarly to
the modification of 5’“ explained above. It follows immediately from BI)), (32)
that each df; is a dlfference {log £;xjx,log £5;}2 — {log £, log £3;}7, where £
and f, ik 4+ are two trailing minors of the same matrix that dlffer in size by one. For
example for i = 1 we get f151 = £, ye=(j_1)41, £i2j2 = £ qex(j—1), Ti353 = f15,
and fja;4 = £ ;1. We say that dk is of X-type if the leading block of £~ is an
X-block, and of Y-type otherwise.

If i = j+1 then we set £;10 = £, ;- Consequently, in this case all four dfj are

of X-type. Similarly, if ¢ = j — 1 then we set f;a;4 = £ Consequently, in this

2,j—1°
case all four df?j are of Y-type. In what follows we will use the above conventions
without indicating that explicitly.

For i # j equation (B3] is the restriction to the diagonal X =Y of the equation

A for (i) = (4,9),

5.4 D :dl dZ — a3 +qt =
(5.4) j (] 2 v 0 otherwise

in the Drinfeld double. Note that all the quantities involved in the above equation
are defined unambiguously.

The case ¢ = j requires a more delicate treatment. It is impossible to fix a
choice of f;2;2 and f;s;s in such a way that (B.4) is satisfied. Consequently, to
get (B3), we treat each contribution to D;; computed in Section Ml separately, and
restrict it to the diagonal X = Y. The obtained restrictions are combined in a
proper way to get A;; and to prove (53] directly. In more detail, we either set
252 =f5 1,-1 and f;s 3—:EU,01":E2 2 =f7 1-1 andfisjsszj. In the former
case dfj and df are of X-type and d1 and d3 are of Y-type, while in the latter
case dg’j and d? are of X-type and d1 and d2 are of Y-type. Note that in both
cases the restriction to the diagonal ylelds the same pair of functions.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Similarly, in the case 2 = j we set either £ = ffj or f2 = fi>j, depending on the
choice of the corresponding f!, so that £! and £2 have the same type.
5.2. Diagonal contributions

Recall that the bracket in the double is computed via equation (2I)). In this
section we find the contribution of the first five terms in (2] to D;.

PROPOSITION 5.1. The contribution of the first term in ([@21)) to D,;; vanishes.

PROOF. Similarly to operators £z and Eg defined in Section LT} define oper-
ators E, and Er via Ef, =VxX —VyY and Er = XVx —YVy.
Note that by ([@20), ([{.29), the first term in (@21 can be rewritten as

(5.5) (RG(EL),E) = ((€1)y-AL) + (1), BL) + Te(EL) - pi
+Tr <ﬁ7ﬁ> ~q7 —Tr (ﬁfi) -qi — Tr(EL) - 47,

where A2 and B2 are matrices depending only on £2 and p? and ¢? are functions
depending only on f2.

LEMMA 5.2. The contribution of the third term in (BE) to any one of d”,
1 <k <4, equals p2.

Proor. For any f,

1 « of of d
nEos0) = ¢ 3 (et ) =
i 17 13

4,j=1

log £(tX,tY).
t=1

If £ is a homogeneous polynomial, then the above expression equals its total degree.
Recall that £;x;x satisfies this condition, and that degf ;s — degf; ik ik = L. ]

LEMMA 5.3. The contribution of the sixth term in (BI) to any one of dw’
1 <k <4, equals g7 if dij is of X -type and —q3% otherwise.

Proor. For any £,

= 1 [ 0f of d
n(Bulozt) =1 3 (g~ o) = 4
1 ) 1]

i,j=1

log £(tX,t7'Y).

t=1

If £ is a homogeneous polynomial both in z-variables and in y-variables, then the
above expression equals deg,f — deg,f. Recall that £, ;x satisfies this condition
and that deg, f;x —deg, £ jr equals 1if £, is of X- type and 0 if it is of Y-type,
while deg, £ jx — degyflk % equals 0 if £;5 is ofX -type and 1 if it is of Y-type. O

Recall that every point of a nontrivial X-run except for the last point belongs
to I'y. We denote by I'; the union of all nontrivial X -runs, and by 4 the extension
of  that takes the last point of a nontrivial X-run A to the last point of v(A). In
a similar way we define ', and A*.

LEMMA 5.4.
(i) The contribution of the first term in (B.3) to d3; equals (AQL)” if &, is of
Y -type, (A7 )se(iysei) — 1AG)]™ 1EkeA(j)(A%)kk if a3; is of X-type and
j €T'§, and 0 otherwise.
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(ii) The contribution of the second term in (5.E) to df; equals (BE);; if d3; is
of X-type, (BE)se=(iyie=() — 1A ™ Xpeagy (B wk of & is of Y-type
and j € I's, and 0 otherwise.

PRrOOF.

(i) Define an n x n matrix J,,(t) as the identity matrix with the entry (m,m)
replaced by t, and set X,,,(t) = X Jp, (), Yo (t) = Y I (t). By the defini-
tion of &, for any f one has

n

1
log £)y == !
(€ log £)u fg Wc*(lw», o+ Zay Yil
d
t=1

If £ is a minor of a matrix £ € LU {X,Y}, then the above expression
equals the total number of columns [ in all column Y-blocks involved
in this minor plus the total number of columns ¥°x(I) in all column X-
blocks involved in this minor (note that I # 3¢*(I), and hence all such
columns are different). Recall that the minors f;3;5 = £;; and ;s ;8 differ
in size by one, and that the column missing in the latter minor is j.
Consequently, if d?j is of Y-type, (§L log f;33) — (§L log £5;3 )i equals 1
if | = j, which yields (A%),;, and vanishes otherwise. Similarly, if d3-
is of X-type, this difference equals 1 if j € I‘C and I = 5°(4), Wh1ch
yields (A7)4e(j)4¢(j)> and vanishes otherwise. Fmally, the additional term
—|A()|~ ZkeA(J)(A )ik stems from the difference between (£, logf)o

and (£, log £)o, see Section E3.31
(ii) The proof is similar to the proof of (i). O

To prove Proposition (.l consider the contributions of the terms in the right
hand side of (B.5) to D;;.

Let us prove that the contributions of the first term to d1 and d3 cancel each
other, as well as the contributions to dfj and d:*] Assume ﬁrst that 1 <i<j<n
Clearly, in this case all dfj are of Y-type, and

(5.6) d4;; = d; d; =d} ,,; ,, d=d}; .

i—1,5°

Hence by Lemma [B4(i), the sought for cancellations hold true, consequently, the
contribution of the first term in (5.5]) to D;; vanishes.

Assume next that 1 < j < ¢ < n. In this case all dfj are of X-type, and (0.0)
holds. Hence by Lemma [5.4(i), the contribution of the first term in (55 to D
vanishes, similarly to the previous case.

The next case is 1 < 7 = j < n. In this case we choose f;2;2 and f;3;s in such a
way that d1 and d3 are of Y-type and d2 and d4 are of X- type and (]IGD holds,
so the contrlbutlon of the first term in (E)E) to D” vanishes once again.

Assume now that 1 =4 < j < n. In this case dj; and d3; are of X-type and
dj; and dj; are of Y-type. Relations (5.6)) are replaced by

2 4
dlj_dnh dj _dnl 15 dj _d1g 15
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where v¢(I—1) = j—1, see Section B3] and in particular, Figure 5 Consequently,
¥l —=1) = 7 —1 and 3°(I) = j, and hence by Lemma [B4(i), the sought for
cancellations hold true.
Fmally, assume that 1 = j < i < n. In this case d}; and d?, are of X-type and
2 and d}, are of Y-type. Relations (5.0) are replaced by

1 2 _ 3 4 _ 3
dj =d}_ 1,1 din =411 s diy = djp,,

where 4" (i —1) = [ —1, see Section B3] and in particular, Figure Consequently,
by Lemma [5.4((i), the sought for cancellations hold true.

To treat the second term in (B3] we reason exactly in the same way and use
Lemma [54((ii) instead.

The third term in (&5 is treated trivially with the help of Lemma

Cancellations for the fourth term follow from the cancellations for the second
term established above and the fact that ﬁ is a linear operator. Similarly,
cancellations for the fifths term follow from the cancellations for the first term
established above and the fact that 1jyc is a linear operator.

Finally, the sixth term is treated similarly to the first one based on Lemma
O

PROPOSITION 5.5. The contribution of the second term in ([@2I) to D;; van-
ishes.

PROOF. The proof of this proposition is similar to the proof of Proposition (5.1
and is based on analogs of Lemmas E2H54l Note that the analog of Lemma [5.4]
claims that contributions of (k)0 and (nk)o to D;; depend on 4, 57 (i), and §7*(4).
In the treatment of the case 1 < i = j < n we choose f;2;2 and f;s;3 in such a way
that dllj and df» are of Y-type and d3 and d4 are of X-type. O

PROPOSITION 5.6. The contributions of the third, fourth, and fifth term in

@21)) to D;; vanish.

PROOF. The claim for the third term essentially coincides with the similar
claim for the first term in (&3)), the claim for the fourth term essentially coincides
with the similar claim for the second term in (B3], and the claim for the fifth term
uses additionally the fact that Hfi is a linear operator. ([l

3. Nondiagonal contributions

In this section we find the contributions of the four remaining terms in (.21
to D;;. More exactly, we will be dealing with the contributions of the corresponding
ringed versions. The contribution of the difference between the ordinary and the
ringed version to D;; vanishes similarly to the contributions treated in the previous
section.

5.3.1. Case 1 < j < i < n. In this case all seven functions £, fikjk
satisfy the conditions of Case 1 in Section .4.Jl Consequently, the leadlng block
of f;1;1 = f;_1; and £; i1 = fi541 18 XI, the leading block of f;252 = £;_1;_1,
fzzjz = fi3;5 = £, and fls s = f,41 541 18 XI, and the leading block of f;4,4 =
£i5-1 and Fa50 = £41 5 is X,,,’.

We have to compute the contributions of (@30, (@51, ([E63), and (E69J).

Note that the first term in (5] looks exactly the same as terms already treated
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in Section 5.2} and hence its contribution to D;; vanishes. The fourth term in ([@.5])

72 2
ik and (L'VE)7
vanish. Next, the contribution of the last term in (£.G3)) to any one of di—“j vanishes,
since the leading blocks of f;x;x and f;x;» coincide. The same holds true for the
last term in (@GJ). Further, the contributions of the third term in (&G3) to dj;
and to df’j coincide, as well as the contributions of this term to dfj and to dfj,
they depend only on j*, and j' = j2 = j, j2 = j* = j — 1. The same holds true for
the foutrh term in (LG3]). Similarly, the contributions of the fourth term in (G9)
to dgj and to dfj coincide, as well as the contributions of this term to d?j and to

vanishes under the conditions of Case 1, since both (Vlﬁﬁl)

since

dfj, since they depend only on %, and i' =2 =i — 1, i3 = * = i. The same holds
true for the fifth term in (£.69).

The total contribution of all B-terms involved in the above formulas is given in
Lemma[LT6 Note that the contributions of the third, sixth, ninth and tenth terms
in Lemma to any one of dfj vanish, since the dependence of all these terms
on f! is only over which blocks the summation goes. The latter fact, in turn, is
completely defined by the leading block of £!, and the leading blocks of f5,% and
fikjk coincide.

To proceed further assume first that X7 = X7, = X7,. Consider the first sum
in the third term in ([@30). Each block involved in this sum contributes an equal
amount to dgj and d%j, as well as to d%)’j and dfj, so the total contribution of the
block vanishes. Similarly, for the second sum in the third term in [@36]), each block
involved contributes an equal amount to d; and d};, as well as to df; and df;, so
the total contribution of the block vanishes as well.

The first, the second, and the fifth term in Lemma are treated exactly as
the first sum in the third term in ([@36]), and the fourth term, exactly as the the
second sum in the third term in [@36]). Consequently, all these contributions vanish.
We thus see that D;; = D;;[7] — D;;[8], where D;;[7] and D;;[8] are the contributions
of the seventh and the eights terms in Lemma to Dyj.

To treat D;;[7], recall that the sum in the seventh term is taken over the cases
1

. . 2. . . J,
when the exit point of X}Ig lies above the exit point of X ;. Consequently, the
t P
treatment in the cases when the exit point of £2 lies above the exit point of ;1 1
is again exactly the same as for the first sum in the third term in (#38]), and the
corresponding contribution vanishes. If the exit point of £2 coincides with the exit
point of £;1;1, that is, if i — ) =4 — j — 1, one has
1 ~ .
9 3 4 J—# —1 for 7 < 4,
(5.7) Di;[7] = —aj;[7] — a3;[7] + d;5(7] = {_#1 for i >4,

where #' is the number of nonleading blocks of £2 satisfying the corresponding
conditions. If the exit point of £2 coincides with the exit point of f;252, that is, if
1—j=1—j, one has

#24+1 for ¢ <1,

#2 for 7 > 1,

%M—%M—{

where #2 is the number of nonleading blocks of £? satisfying the corresponding
conditions. The cases when the exit point of £2 lies below the exit point of £,z 42 do
not contribute to D;;[7].
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Similarly, the treatment of D;;[8] in the cases when the exit point of £2 lies
above the exit point of £;1;1 is exactly the same as for the second sum in the third
term in (€36), and the corresponding contribution vanishes. If the exit point of £2

coincides with the exit point of f;1;1, one has

—# -1 forj<j,

5.8 D,:[8] = —d2.[8] — a2.[8] + d%.[8] =
( ) ][] zg[] lj[] z_][] _#1 fOI'j>j,
where #! is the same as above. If the exit point of £2 coincides with the exit point

of £;2;2, one has

#2411 for 7 < 4,
#? for j = j,
where #2 is the same as above. The cases when the exit point of £2 lies below the

exit point of f;2;2 do not contribute to Dy;[8].

It follows from the above discussion that for i —j=4i—j5—1

Di;[8] = dj;[8] = {

1 for 2 >1, j <7,
Dij[7]—Dij[8} =< -1 fori<i,j>j,
0 otherwise.

Consequently, D;; vanishes everywhere on the line ¢ — j = ¢ — j — 1. Further, for
?—)=1— 7 one has

1 forz<i, j>j,
Dij['?]—Dij[g} =< —1 f01"§>i,j<j,
0 otherwise.

Consequently, D;; vanishes everywhere on the line ¢ — j = i — j except for the point
(3,3) = (i,7), where it equals one. Therefore, for X{ = X}],/ = Xj],/,/ relation (B.4)
holds with A = 1.

There are three more possibilities for relations between the blocks X7, X I/',
X j]/l// :

(a) X{ # Xy, = X},
(b) X{ =X, # Xy
() X7 # X7 # X}

To treat each of these three one has to consider correction terms with respect
to the basic case X{ = X7/ = X{.. We illustrate this treatment for the first of
the above possibilities.

By Lemma [£3] case (a) can be further subdivided into three subcases:

@) I'=1,J C J;
(a)(2) I' C 1, ' = J:
(2)(3) I'C 1, J CJ.

In case (a)(1) we have the following correction terms. For the third term in
(#34), there are blocks X I~J " that satisfy the summation condition 87 < 6; for the
pair 151, fi ;1 but violate it for the other three pairs. By Lemma 3] such blocks
are characterized by conditions Icr, Jjg=J. Consequently, these blocks produce

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



78 5. THE QUIVER

the correction term

=3 eV (£2v£) >+ > ((veLh) LQ)(vcﬁ) >

J=J’ J=J'

to dj;.

For the first term in Lemma [L.T6] the correction terms are defined by the same
blocks as above except for the block X7, itself (because of the additional summation
condition a? > « ) Consequently, these blocks produce the correction term

Z <(£ vg)p(i2;(£2v2) >_ Z <(£ vﬁ)p@’)(ﬁzvz) >

J=J’ J=J/

I=r
to dj;,
For the second term in Lemma EI6, the block X7 violates the summation
condition 8% # B;, al = 0411) for the pair f;1;1, filjl but satisfies it for the other
three pairs. Besides, the block X{,/ satisfies this condition for the pair f;i 1, filjl
but violates it for the other three pairs Consequently, these two blocks produce

correction terms

> ((£1VE) o (£2V2)5) = D ((£1VE)5 (£2V2);)

J=J’ J=J
I=r’ I=r1

where ®' corresponds to the block X }I,/.

to dl., where ® corresponds to the block XIJ.

YR
For the fourth term in Lemma [ the blocks X7 7" Violate the summation
condition 32 = p, 2> al for the pair le‘]l, lejl but satlsfy it for the other three
pairs. Besides, the block X }] satisfies this condition for the pair f;1;1, £; i151 but

violates it for the other three pairs. Consequently, these blocks produce correction

terms
- z ((TEL) (VL) 1) + 37 (VL) [ (VEL?)])
to dllj7 where L corresponds to the block X }] .

Summation conditions in the fifth term in Lemma .16l are exactly the same as
in the fourth term. Consequently, one gets correction terms

p(KE\®? K2\®? K\® K\®
3= ((E V) iceh) (E98) i) = 30 (£ V) a (£ VE)as)
J=y =7
I=1

to dU7 where K corresponds to the block X7 .

For the seventh term in Lemma 16, the block X{ satisfies the summation

condition 32 = ;, al = 0411, for the pair £;1,1, £;,1,1 but v1olates it for the other three

itgls
pairs. Besides, the additional condition on the exit points excludes the diagonal

1—j7=1—j— 1. Consequently, this block produces correction terms

> ((£'VE) g (£2VE)g) + D7)

I=1

to dj;,

where D;;[7] is given by (5.1).
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For the eights term in Lemma .16 the situation is exactly the same as for the
seventh term. Consequently, one gets correction terms

- Z< VL) (VELY),) ~Dyl8

~iS

to dj;, where D;;([8] is given by (5.8).

It is easy to note that the correction terms listed above cancel one another
(recall that vanishing of D;;[7] — D;;[8] for i — j = i — j — 1 was already proved
above), and hence relation (54 is established in the case (a)(1). Cases (a)(2),

(a)(3), (b), and (c) are treated in a similar manner.

5.3.2. Other cases. The case 1 < i < j < n is treated in a similar way with
([@38) replaced by (£EI) and Lemma replaced by Lemma AT7

Consider the case 1 < i = j < n. The treatment of the first term in (@51, the
last terms in ([A63]) and (£6Y]), the third, sixth, ninth and tenth terms in Lemma
[AT6l and the third and the sixth terms in Lemma FI7 is exactly the same as
in the previous section. The third and the fourth terms in (£G3)), as well as the
fourth and the fifth terms in ([GY), are treated almost in the same way as in the
previous section; the only difference is an appropriate choice of the functions on the
diagonal, which ensures required cancellations. To treat all the other contributions,
recall that by the definition, the leading block of £ is X, and the leading block of
£ is Y. Denote by X the leading block of £;;_1, and by YI—J the leading block of
£;_14. Similarly to Section [.3.0] there are four possible cases: X{ = X, YI—J =Y;
X{ +£X, YI:]:Y; X! =X, YfJ;«éY; X7+ X, YTJ;«EY.

Let us consider the first of the above four cases. Contributions of all terms
except for the seventh and the eights terms in Lemmas and 17 are treated
in the same way as the third and the fourth terms in ([£63]) above. For example,
to treat the first sum in the third term in ([f36) we choose f;2;2 = fi<—1,j—1 and
f;555 = 1,5, so that this sum contributes only to 67; and éf], and the contributions
cancel each other. For the remaining four terms, there is a subtlety in the case
i = j. We write fi = $£5|,_, + 3f57|_, and note that X is the only block
for £5; and Y is the only block for £. Consequently, for £2 = 1f5, the terms
involved in Lemma contribute zero for ¢ # i and 1/2 for i = 4, while the terms
involved in Lemma EI7 contribute zero for any 4. Similarly, for £2 = 1fi>i, the
terms involved in Lemma contribute zero for any 7, while the terms involved
in Lemma A7 contribute zero for 7 # i and 1/2 for ¢ = 4. Therefore, we get
contribution 1 for (¢,5) = (i, ), as required. In the remaining three cases one has
to consider correction terms, similarly to Section 3.1l

It remains to consider the cases when ¢ or j are equal to 1 or n. For example,
let 1 < j < i =n and assume that the degree of the vertex (n, j) in Qrr p- equals 6,
see Figure B.7((a). It follows from the description of the quiver in Section [3.3] that
(n,j — 1) is a mutable vertex. In this case the functions f;3;5 and f;u,4 satisfy
conditions of Case 2 in Section [£4.2] and all other functlons satisfy condltlons
of Case 1 in Section .41l Consequently, the leading block of f;1;1 = £,,_; ; and
£; i1 =41 1SXI,thelead1ngb10ckoff 242 —fn 1,51 and £; 252 = f4558 = £ is

I, the leading block of f;aj4 = £, ;1 is XI,, , the leading block of flsjs =1f1 541

with k = ~°(j) is YJ and the leading block of £; jaj0 = f1p is Y— .
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The treatment of the last three terms in (£LG3) and the last three terms in
(#89) remains the same as in Section B3l To proceed further, assume that
X{=X }7,/ =X ;],/,/ and Yj Yj " In this case it is more convenient to replace G4
with Dy; = dj; —d7; + d;13 d;*j’, where df? = £, ;1 — f;; and dfF = f1, — £1,841,
so that the first three terms in D;; are subJect to the rules of Case 1, and the last
term to the rules of Case 2.

The contributions of the third, ninth and tenth terms in Lemma to any
one of dj;, d7; and dj vanish for the same reason as in Section B3Il The same
holds true for the contribution of the third term in Lemma 17| to &?53.

The first sum in the third term in ([@30) contributes the same amount to d}j
and dj;, and zero to d;f. The same holds true for the first, second and the fifth
terms in Lemma The second sum in the third term in ([£36]) vanishes since
p(L?) for every X-block of £2 such that 87 < S} lies strictly to the left of the
column j — 1.

Further, (£'V} )UEEQ) in the second sum in the fourth term of (@51 is an

identity matrix, and hence the contribution of this sum to &?]»3 vanishes, since both
sides in this difference depend only on £2. The same reasoning works as well for
the first, the fourth and the fifth terms in Lemma 17 and for the first sum in
the fourth term of ([@X1)) in the case 87 ; > B;_l. The contribution of this sum to
<~i43 for the case 32 | = 511) 1 cancels the contribution of the second term in Lemma
IZ:EE for the case a7 ; < aj_,.

Let us consider now the contribution of the fourth term in LemmaET6l Assume
that a tth X-block of £2 satisfies conditions a? > azl, and 7 = 611,. Consequently, the
(t—1)-th Y-block of £ satisfies conditions a7 ;, > a}_, and #7_ | = 8}_,. Consider
first the case when the inequality above is strict. If the Y-block in question is not
the leading block of £2, then the contributions of the X-block to d};[4] and d7;[4]
cancel each other, whereas the contribution of the X-block to d;lf [4] cancels the
contribution of the Y-block to Elfj‘?’ [2]. The same holds true if the Y-block is the
leading block of £2 and 7 < 7¢(j). If j = v°(j) then the contributions of the X-block
to d7;[4] and d}?[4] vanish, whereas the contribution of the X-block to dj;[4] cancels
the contrlbutlon of the Y-block to a;;jg [2]. Finally, if j > 7°(j) then all the above
contributions vanish

Otherwise, if a? | = ozzl, 1, the sixth, the seventh and the eights terms in
Lemma [£.17 contribute to both sides of df’, since in both cases the exit point for
£2 lies to the left of the exit point for £'. Consequently, the contributions of the
sixth and the eight terms vanish, while the contribution of the Y-block to &ﬁ [7]
equals the total contribution of the X-block to dj;[4], d7;[4] and d;?[4], similarly to
the previous case.

Assume now that a tth X-block of £2 satisfies conditions af = a, and 57 = ).
We distinguish the following five cases.

A. 7 —)>n—j+1; consequently, the sixth, the seventh and the eights terms

in Lemma [L.T6] do not contribute to D;;, since in all cases involved the exit point

for £2 lies below the exit point for £!. Besides, a? ; > &, and B2 = 11, 1- The

treatment of this case is exactly the same as the treatment of the case a? > a}, and
B7 = B} above.
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B. i—j=mn—j+ 1; consequently, a? | = 0711,71 and B? | = _;71. Similarly
to the case A, the sixth, the seventh and the eights terms in Lemma do not
contribute to D;j;, since in all cases involved the exit point for £2 lies below or
coincides with the exit point for £!. On the other hand, the sixth, the seventh
and the eights terms in Lemma [ET7 contribute only to the subtrahend of &?f,
but not to the minuend. If the Y-block in question is not the leading block of £2
then the contributions of the X-block to d;;[4] and d;[4] cancel each other, the
contribution of the X-block to dfj‘?’ [4] equals one, while the contributions of the Y-
block to df3[6], d}?[7] and d}?[8] are equal to n+1—af_, —v°(j), 7°(j)—n and ai_,,
respectively. Consequently, the total contribution to D;; vanishes. If the Y-block is
the leading block of £2 then the contributions of the X-block to d7;[4] and d;7[4]
vanish. Further, if ¢ > 1 then the contribution of the X-block to d%j [4] vanishes as
well, whereas the contributions of the Y-block to d{?[6], d{7[7] and d;?[8] are equal
ton+i—a? | —j j—n—1and a? | +1—1i, respectively. Consequently, the total
contribution to D;; vanishes. Finally, if ¢ = 1 then the contribution of the X-block
to d};[4] equals one, whereas the contributions of the Y-block to d;?[6], a;l;" [7] and
d}?[8] are equal to n+1—a7 | —7°(j), 7°(j) —n and a7, respectively, and again
the total contribution to D;; vanishes.

C. i—)=n— j; consequently, &7 ; = @}, and 8% | = B} ;. Here the sixth,
the seventh and the eights terms in Lemma FLT7 do not contribute to a?f,
in both cases involved the exit point for £2 lies to the right or coincides with the
exit point for £'. On the other hand, the sixth, the seventh and the eighth terms
in Lemma, do not contribute to d}j, dfj and to the subtrahend of d?f, but
contribute to its minuend. If the X-block in question is not the leading block of
£2 then its contributions to d;;[4] and d;[4] cancel each other, and its contribution
to d;?[4] equals one. The contributions of this block to d;?[6], dj7[7] and d;?[8] are
equal to a? — 7, 1 and j — 2 — a2, respectively. Consequently, the total contribution
to Dj; vanishes. The same holds true if this X-block is the leading block of £2 and
@ <mn. If i = n, and hence j = j, then its contribution to df;[4] and d;[4] vanish,
and the contribution to dj;[4] equals one. The contributions of this block to d}?[6],
d}?[7] and d{?[8] are equal to af —j, 1 and j—1—a7, respectively. Consequently, the
total contribution to D;; equals one. If the Y-block in question is the leading block
of £2 then the contributions of the X-block to d};[4], d?;[4] and d}?[4] vanish, as
well as the contribution of the Y-block to dfja [7], and the contributions of Y-block
to d}?[6] and d;7[8] cancel each other. Consequently, the total contribution to Dy
vanishes.

D. i—j=n—j—1; consequently, a7 ; < &, ; and B2, = B;_l. Here the
sixth, the seventh and the eighth terms in Lemma do not contribute to d}j,
but contribute to df; and dj?. Assume first that a7 , = a,

since

»—1, then the sixth, the
seventh and the eights terms in Lemma [£.17] do not contribute to 8211-3 similarly to
case C. If the X-block in question is not the leading block of £2 then its contributions
to d};[4] and d;[4] cancel each other, and its contribution to dj?[4] equals one.
Further, its contributions to d7;[6] and d}?[6] vanish, and contributions to d; 8] and
d;?[8] cancel each other. Finally, its contribution to d3;[7] cancels the contribution
to d?]s [4], and hence the total contribution to D;; vanishes. The same holds true if
the X-block is the leading block of £2 and 7 > n—1. If i = n—1 the contributions to
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d7;[4] and d}?[4] vanish and the contributions to d;[4] and d,[7] cancel each other.
If 3 = n, or if the Y-block in question is the leading block of £2 then all the above
mentioned contributions vanish. The case @7 | < @, _, is similar; additionally to
the above, the contribution of the Y-block to aﬁ vanishes.

E. i —j < n—j—1; consequently, &;_; < 0211)71 and 32, = 511,71. This case
is similar to the previous one, with the additional cancellation of the contributions
to d};[7] and d;[8].

Therefore, the total contribution to D;; vanishes in all cases except for the case
(i,7) = (n,j) when it is equal one, hence under the assumptions X/ = X/ = X7,/
and Yl—j = Yf/j/ relation (4] holds with A = 1. If these assumptions are violated,
one has to consider correction terms similarly to Section [5.3.11
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CHAPTER 6

Regularity check and the toric action

The goal of this chapter is threefold:
(i) to check condition (ii) in Proposition [B.11] for the family Fpr e,
(ii) to prove Theorem B.3[iii), and

(iii) to prove Proposition

6.1. Regularity check

We have to prove the following statement.

THEOREM 6.1. For any mutable cluster variable f;; € Frrre, the adjacent
variable ’ 18 a reqular function on Mat,,.

PROOF. The main technical tool in the proof is the version of the Desnanot—
Jacobi identity for minors of a rectangular matrix that we have used previously for
the regularity check in [15]. Let A be an (m — 1) x m matrix, and o < 8 < 7 be
column indices, then

(6.1) det A% det A(?;Y + det AV det A?B — det AP det A?;Y,

where “hatted” subscripts and superscripts indicate deleted rows and columns,
respectively.

Let us assume first that the degree of (i, j) equals six. Following the notation
introduced in the previous section, denote by f;1;1 and le ;1 the functions at the
vertices to the north and to the east of (4, j), respectively, by fi2;2 and fls i3 the
functions at the vertices to the north-west and to the south-east of (i, 7), respec-
tively, and by f;s;4 and fi4 ;4 the functions at the vertices to the west and to the
south of (7, j), respectively. Let £ be the matrix used to define f;2;2, f;; and f~i3j3,
L4 be the matrix used to define f;:;1 and filjl, and £_ be the matrix used to
define f;4;4 and fi4j4

Assume first that degf;; < degf;i,;1. Define a degfii;1 x (degfii;1 + 1) ma-

trix A as follows: if s(il,j!) > 1 then A = (EQEE?;I;_A;(gY;]*)], otherwise A

is obtained via adding the first column of E[s(m; LN 51 the left to the ma-

1,N(L)]
. s(it,5Y),N(L s(i,5)—1,N(L 1,degf;;+1
trix (E.QEEEI;I;NELB} Then it is easy to see that ﬁ{ggzi) L NEL;} {Ldiiﬁﬁl%’

and moreover, that Aﬁ’giglf iﬂ is a block in the block upper triangular matrix
) ij
[1,degf;1,1]
A[l,dcgfiljl]- COIlsequently7

fajo=det AL fup =det A2 fop-det B=detA™, f;-det B = det Al

83

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



84 6. REGULARITY CHECK AND THE TORIC ACTION
. [degfij+2,degf;1,1] . .

with B = A[dcgfij+2,dcgf,i1j.1] and m = degf;1;1 + 1. Applying (1)) with a = 1,
8=2,v=m,d =1, one gets

fagi-det A2 4 oo -det B- fuy = det A% - f; - det B.

Note that det A?m = det A? det B with A = A{ijgi?jiﬂ, and hence

(6.2) fz'ljl det A? + fizjzfiljl = fi; det AQ.

Let now degfi; > degf;i;1. Define a (degf;; + 1) x (degfi; + 2) matrix A
via adding the column (0,...,0,1)7 on the right to the matrix 428%:}%%2%
[s(i'3"),N(L1)] _ yl2.degf;n 50 +1]

Then it is easy to see that (£+)[S(il7j1)7N(£+)] = Al deafi 1]

, and moreover, that

[2,degf;1,1+1] | . . . [2,degfi;+2]
[1,degf,¢1;1] is a block in the block lower triangular matrix A[l,degfi;Jrl]' Conse-
quently,

faji-detB=det A', fuji-det B=det A2, fio2 =det AT, fi; = det Al

: _ [degf;1,1+2,degfi;j+2]
with B = A[degfilj-l-i-l,degfij-fl]
B:Q,’y:m,é:l’()negets

filjl - det B det A% + fi2j2 . filjl -det B = det AQ - fij

and m = degf;; + 2. Applying (@I) with o = 1,

where A = Aﬁjigéiﬂ is the same as in the previous case. Note that det A% =
det A2 det B, where A = Aﬁj:ﬁf 1
matrix A in the previous case. Consequently, relation (6.2)) remains valid in this
case as well.

To proceed further, we compare degf;; with degf;s ;4 and consider two cases
similar to the two cases above. Reasoning along the same lines, we arrive to the
relation

(63) f” det C% + f;‘SijiALjél == fi4j4 det A?

is given by the same expression as the whole

with C' = (E,)Egzi;zgxggiﬁ and A the same as in ([6.2). The linear combination
of (62) and ([63) with coefficients fi4j4 and f;1 1, respectively, yields
(6.4) fij(ﬁ4j4 det AQ - filjl det C%) = fi2j2ﬁ1j1ﬁ4j4 + filjlfisjsfi4j4.

Combining this with Theorem we see that f], = fi4j4 det A% — fi1 ;1 det C’% is a
regular function on Mat,,.

For vertices of degree less than six, the claim follows from the corresponding
degenerate version of ([G.4]). For example, for vertices of degree five there are three
possible degenerations:

(i) degfir;1 =1, and hence filjl = 1, which corresponds to the cases shown
in Figure BH(b), Figure B.8(c) and Figure B.9(a);
(ii) degf;aja = 1, and hence fi4j4 = 1, which corresponds to the cases shown
in Figure B.0(b), Figure B1(c) and Figure B.10(a);
(iii) degfi;; = 1, and hence fisjs = 1, which corresponds to the cases shown in
Figure B7(b), Figure B8(b) and Figure B.11l(a).

Vertices of degrees four and three are handled via combining the above degen-

erations. (]
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6.2. Toric action

To prove Theorem [B3|iii) we show first that the action of Hpr x Hre on
SL, given by the formula (Hy, H2)X = H;X Hy defines a global toric action of
(C*)kretkre on Cpr pe. In order to show this we first check that the right hand
sides of all exchange relations in one cluster are semi-invariants of this action. This
statement can be expressed as follows.

LEMMA 6.2. Let fi;(X)f];(X) = M(X) be an exchange relation in the initial
cluster, then M (H1 X Hy) = xM (H1)M (X)x¥ (Hz), where x¥ and x}¥ are left and
right multiplicative characters of Hpr X Hre depending on M.

ProOF. Notice first that all cluster variables in the initial cluster are semi-
invariants of the action of Hrr X Hpe. Indeed, recall that by B1)), (32) any cluster
variable f;; in the initial cluster is a minor of a matrix £ of size N = N(L). Clearly,
minors are semi-invariant of the left-right action of the torus Diag, x Diagy on
Maty, where Diag, is the group of invertible diagonal N x N matrices. We con-
struct now two injective homomorphisms r : Hpr — Diagy x Diagy and ¢ : Hpe —
Diag x Diagy such that the homomorphism (r,c¢) : Hp X Hpe — Diagy x Diag
given by (r,c)(Hy, Ha) = r(Hy) - ¢(Hz) extends the left-right action of Hr+ X Hpe
on SL, to an action on Maty. Note that Diag, x Diag, is a commutative group,
so (r,c) is well defined.

We describe first the construction of the homomorphism r. Let A be a non-
trivial row X-run, and A = 47(A) be the corresponding row Y-run. Recall that
Hr: = exp hr-. Consequently, it follows from (28] that for any fixed T' € Hp: there
exists a constant gi (T') € C* such that for any pair of corresponding indices i € A
and j € A one has Tj; = g%\ (T) - Ty;. Clearly, g is a multiplicative character of
Hrer.

Fix a pair of blocks X}]: and Yl—{t in £. Let A; be the row X-run corresponding
to @, then we put g; = g, and define a matrix A}(T) € Diagy such that its entry
(4,7) equals g§(T) for j € U!Z} (K; U K;) U (K; \ @;) and 1 otherwise, and a matrix
BI(T) € Diagy such that its entry (j, ) equals (g5(T)) " for j € ULZH(L;UL;) UL,
and 1 otherwise, see Figure

Put AY(T) = TI;_, A5(T) and B*(T) = [[;_, B{(T). Finally, for any j €
[1, N] define (*(j) as the image of j under the identification of K; and I if j €
K, and as the image of j under the identification of K; and I, if j € K, \ Dy,
and put C*(T) = diag(TCr(j))Cr(j))‘;v:l. Then, similarly to the proof of Lemma
44 one obtains L(TX,TY) = A"(T)C*"(T)L(X,Y)B*(T), and hence r : T —
(A*(T)C*(T), B*(T)) is the desired homomorphism.

The construction of the homomorphism c is similar, with gf defined by the
column X-run corresponding to ¥;, A$(T) having ¢f(T) as the entry (j,j) for
j € UZ{(L; UL;) \ ¥ and 1 otherwise, Bf(T) having (¢¢(T))~" as the entry
(j,j) for j € U_,(K; UK;) and 1 otherwise, A°(T) = [[;_, AS(T), B(T) =
[T,y Bf(T), and C(T) = diag(T¢e(j)ce(;)) fo1, Where ¢°(j) is the image of j under
the identification of L; and J; if j € L;, and the image of j under the identification
of Ly and J; if j € Ly \ ¥;,1. Consequently, the desired homomorphism is given by
C:Tw— (A(T),B(T)C(T)).

We thus see that any minor P of £ is a semi-invariant of the left-right action
of Hr: X Hre on SL,, and we can define multiplicative characters x} and x% as
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the products of the corresponding minors of A", A° and C*, or B*, B¢ and C°,
respectively.

To prove the lemma, we consider first the most general case when the degree
of the vertex (4, ) is 6. Then, borrowing notation from the proof of Theorem [6.1]

M(X) = filjl(X)fi?jz(X)fi‘lj‘* (X) + filjl(X)ﬁ3j3(X)fi4j4(X)~

It follows from (6.2]) that Xfilfl + Xfizﬂ =T 4 Xdet(‘i%), where x means xr, or
Xr- Similarly, it follows from (€3] that Yl 4 Xdet(A?) = yfitit 4 yfi2i . Adding
to both sides of the first equality x7#i*, to the both sides of the second equality
Xf i'5' and adding these two equations together we obtain

Xfiljl + Xflajz + Xfi4j4 — Xfiljl 4 X.fi3j3 + Xfi4j4 — XMu

which proves the assertion of the lemma.

Other cases are obtained from the general case by the same specializations
(setting one or more functions above to be 1) that were used in the proof of Theorem
[6.11 above. This concludes the proof of the lemma. O

To complete the proof we have to show that any toric action on Crr re can be
obtained in this way. To prove this claim, we first note that the dimension of Hp-
equals krr, and the dimension of Hre equals kpc. Consequently, the construction
of Lemma produces kprr + kpe weight vectors that lie in the kernel of the ex-
change matrix corresponding to Qrr re, see [12, Lemma 5.3]. Assume that there
exists a vanishing nontrivial linear combination of these weight vectors; this would
mean that all cluster variables remain invariant under the toric action induced by
a nontrivial right-left action of Hpr x Hre on SL,. However, by Theorem [T.1] be-
low, every matrix entry of the initial matrix in SL, can be written as a Laurent
polynomial in the cluster variables of the initial cluster. Hence, a generic matrix
remains invariant under this nontrivial right-left action on SL,, a contradiction.
Note that the proof of Theorem [[.1] does not use the results of Section

6.3. Proof of Proposition

(i) We will focus on the behavior of det £(X,Y) under the right action of
D_ = D°. The left action of D can be treated in a similar way. In
fact, we will show that det £(X,Y") is a semi-invariant of the right action
of a larger subgroup of D(GL,). Let P+ be the parabolic subgroups in
SL,, that correspond to parabolic subalgebras [2.I1]), and let P, be the
corresponding parabolic subgroups in GL,,. Elements of 75+ (respectively,
’ﬁ,) are block upper (respectively, lower) invertible triangular matrices
whose square diagonal blocks correspond to column X-runs (respectively,
column Y-runs).

It follows from (ZI2) that D_ is contained in a subgroup D_ of P x
P_ defined by the property that every square diagonal block in the first
component determined by a nontrivial column X-run A coincides with
the square diagonal block in the second component determined by the
corresponding nontrivial column Y-run. For g = (g1, ¢2) € D_, consider
the transformation of £(X,Y) under the action (X,Y) — (X,Y) g, in
particular the transformation of the block column L, UL, as depicted in
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Figure In dealing with the block column we only need to remember
that (g1,¢92) can be written as

A A Ass B 0 0
(91,92) = 0 C Ax|,|Ba C 0 ,
0 0 A33 B31 B32 B33

where Ai1, Ass, B11, B3z and C are invertible and C' occupies rows and
columns labeled by A(B;) in g; and rows and columns labeled by A(B;_1)
in go (recall that both these runs correspond to ¥;). Then the effect of
the transformation (X,Y) — (X,Y) - g on the block column is that it is
multiplied on the right by an invertible matrix

An A 0
0 C 0
0 B3z Bss

The cumulative effect on £(X,Y) is that it is transformed via a multipli-
cation on the right by an invertible block diagonal matrix with blocks as
above, and therefore det £(X,Y) is transformed via a multiplication by
the determinant of this matrix. The latter, being a product of powers of
determinants of diagonal blocks of g1 and g¢s, is a character of D_, which
proves the statement.

(ii) The claim follows from a more general statement: det £(X,Y) is log-
canonical with all matrix entries x;;, y;; with respect to the Poisson
bracket (ZI4]) which, in our situation, takes the form (@3]). Semi-
invariance of det £(X,Y") described in part (i) above, together with the

fact that subalgebras 9_ = 0" and 9’ = 0¢ are isotropic with respect to
the bilinear form ((, )) implies
VEfeo +(,nhah), VEfed (v nhah)

for f =logdet £(X,Y). This means that in (ZI4)
Rp(V'f) ==V f+m, (V*f),,  Rp(VEf)==Vf+x, (Vf),,

where (), denotes the natural projection to D(h) = bh @ b and 7Tg+,7T/D+
are projections to 04 along d9_,0’ respectively. Due to the invariance of

((,)), @I4) then reduces to

10300 = 5 ((mo, (T 7)o, (T6) ) — (ims, (T o, (T) 1)

for any ¢ = p(X,Y).

Let now ¢(X,Y) = logz;;. Then (VL@)O = (e;;,0), (VRap)O —
(€ii,0). Thus, to prove the desired claim we need to show that m,, (V- f)o
and wg+ (VE£)o do not depend on X,Y. To this end, we first recall an
explicit formula for o, :

o, (§;m) = (= Ry (§—n),§ — Ry (E—1)),

which can be easily derived using the property R, — R_ = Id satisfied by
R-matrices ([Z.8). Since in our situation the left gradient V*f computed
with respect to ((, )) isequal to (Vxf-X,—Vyf-Y), we conclude that
components of m,, (VX f)g are equal to (Vxf-X — Ry (ELf)),, where
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()o now means the projection to the diagonal in gl,,. By @.23), [.28),

)

1

(Vxf X = R (BLf = 5 (1 @+ 1= () )

+ % (Te(ELf)S — Tr (ELf)S)1).

By ([@I4), Corollary I8 and ([{.2T)), the right hand side above is constant.
The constancy of wng(VRf)o and the case of p(X,Y) = logy,;; can be
treated similarly. This completes the proof.
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CHAPTER 7

Proof of Theorem [3.3)(ii

As it was explained in Section [3.4] we have to prove the following statement.

THEOREM 7.1. FEvery matriz entry can be written as a Laurent polynomial in
the initial cluster Fr- pe and in any cluster adjacent to it.

Below we implement the strategy of the proof outlined in Section [3.4]

7.1. Proof of Theorem [3.12] and its analogs

Given an aperiodic pair (I'",T'°) and a non-trivial row X-run A', we want to
explore the relation between cluster structures C = Crr e and C = Cp, ., Where

I = fr(Xr) is obtained by deletion of the rightmost root in A" and its image in
~v(A"). Note that the pair (ff(Zf), I'°) remains aperiodic.

Assume that A" is [p+ 1,p + k], and the corresponding row Y-run y(Ar) is
[¢ 4+ 1,9 + k]. Then, in considering (f‘r(Ar),I‘C), we replace the former one with
[p+1,p+ k — 1], and the latter one with [¢ + 1,q + k — 1]. Besides, a trivial row
X-run [p+k,p+ k| and a trivial row Y-run [q+ k, ¢ + k] are added. The rest of row
X- and Y-runs as well as all column X- and Y-runs remain unchanged. In what
follows, parameters p, ¢ and k are assumed to be fixed.

We say that a matrix £ € L is r-piercing for an r € [2,k] if T(p+7r,1) = (L, s;)
for some s, € [1, N(L)]. Note that two distinct matrices cannot be simultaneously
r-piercing. On the other hand, a matrix can be r-piercing simultaneously for several
distinct values of r; the set of all such values is called the piercing set of L. If a
piercing set consists of ri, ..., r;, we will assume that s,, > --- > s,,. The subset
of all matrices in L that are not r-piercing for any r € [2, k] is denoted L.

Let L = Lfr(Kr),rﬁ J = jfr(Xr),rc’ and let the functions £;;(X,Y’) and fij (X)
be defined via the same expressions as £;;(X,Y’) and f;;(X) with L and J replaced

by L and J. It is convenient to restate Theorem 312 in more detail as follows.

THEOREM 7.2. Let Z = (z;;) be an n xn matriz. Then there exists a unipotent
upper triangular n x n matriz U(Z) whose entries are rational functions in z;; with

denominators equal to powers of prrk,l(Z) such that for X = U(Z)Z and for any
i,j € [1,nl,

Fis( D) fpsna(2) i T(i5) = (L*,s) and s < sy,

fiy(X) = {fij(Z) otherwise,

where L* is the k-piercing matriz in L.

PrOOF. In what follows we assume that i # j, since for i = j the claim of the
theorem is trivial.

89
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For any £(X,Y) € L define £(X,Y) obtained from L(X,Y’) by removing the

last row from every building block of the form Y[i] otk In particular, if £(X,Y)

does not have building blocks like that then £(X,Y) = £L(X,Y).

Note that all matrices £ defined above are irreducible except for the one ob-
tained from the k-piercing matrix £*. The corresponding matrix L* has two ir-
reducible diagonal blocks £%, £} of sizes s, — 1 and N(£*) — sj, + 1, respectively.
As was already noted in Section B.4] all maximal alternating paths in Gr: pe are
preserved in Gfr (Br)Te except for the path that goes through the directed inclined
edge (p+k—1) — (¢+ k —1). The latter one is split into two: the initial segment
up to the vertex p+k —1 and the closing segment starting with the vertex ¢+ k—1.
Consequently, L = {£: L € L, L # L*YU{L}, L3}

Further, if 7 (i,j) = (£,s) and £ # L£* then J(i,7) = (£, s). Furthermore, if
L € Ly then additionally £;;(X,Y) and £;;(X,Y) coincide. However, if J(i,5) =
(L*,s) then

i, ) = (L%, s) for s = s(i,7) < sk,
)= (L3, s —sp+1) for s = s(i,7) > sk.

It follows from the above discussion that the claim of the theorem is an imme-
diate corollary of the equalities

s,N(L A s,N(L
(71) det E(X’X){S,NE,CH = det ‘C(Z7 Z){S,NE[,H

for any £ € L and s € [1, N(L)].
To prove ([1]), we select a particular “shape” for U(Z). Let

k—1
(7.2) Uo=Uo(Z) =1n+ > e Z)eqsseqgins
x=1
where a,,(Z) are coefficients to be determined, and
—
(7.3) U=U(2)=]], o) (U(2)).

Due to the nilpotency of 4 on n, the product above is finite. Clearly, if a,.(Z)
are polynomials in z;; divided by a power of fp+k71 then the same is true for the
entries of U(Z).

The invariance property ([EITI) implies that for every (i, 7),

£1,(UZ,UZ) = £;(Z,exp(y" ) (U U Z) = £,;(Z,Up2);

here the second equality follows from (Z3]). Thus, to prove (1)) for X = UZ it is
sufficient to select parameters a,.(Z) in (T2) in such a way that

(7.4) det £(Z,UoZ) NN = det £(2, 7)1 N 4]

[s,N(£)] — [s.N(L)]
for all £L €L and s € [1, N(L)].

Observe, that the equation above is satisfied for any choice of a,, if £ € Ly,
that is, if £(X,Y) = £~(X7 Y'). Indeed, in this case any Y-block in L either does not
contain any of the rows g+1, ..., g+k, or contains all of them but without an overlap
with the X-block to the right. If the former is true, the block rows corresponding to
this Y-block in £(Z,UyZ) and L(Z, Z) coincide, while if the latter is true, then the

block of k rows under consideration in £(Z, UyZ) is obtained from the corresponding
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block row of E(Z Z) via left multiplication by a k x k unipotent upper triangular
matrix 1 + Z%,I a,.(Z)e,.r, which does not affect trailing principal minors.

Let us now turn to matrices £ € L\ Lg. In fact, the same reasoning as
above shows that for any such matrix, the functions in the left hand side of (7.4)
do not change if L(Z,UyZ ) is replaced by L(Z,UyZ) obtained from L(Z,Z) via

replacing every Y-block Z/ by (UgZ )[1 k] and retaining all other Y-blocks

1 q+k
Z IJ . Therefore, in what follows we aim at proving

A s,N(£)] _ s,N(£L)
(7.5) det £(Z,UoZ ){s N(z:)} = det £(Z, Z){s N(ll)%

for all L € L\ Lg and s € [1, N(L)].

Assume that £ = L£(X,Y) is r-piercing, and so there exists s, € [1,N(L)]
such that £(X,Y ), s = Tp-tr,15 the X-block of £L(X,Y") that contains the diagonal
entry (s, s,) is denoted X We can decompose £ = £(Z,UyZ) into blocks as

[p+1,n]"
follows:
AT 0
(7.6) L(Z,UyZ)= |A; Br|,
0 B

where the sizes of block rows are s, — r, k and N(L) — s,, — k + r, and the sizes of
block columns are s, — 1 and N(L) — s, + 1. Note that the blocks are given by

. * * .
A= [0 (Uoz)fﬂq]] o A= W) )
and o
Bj = [Zfz]a:rl,p+k} O} ’ By = [Z[HI:FLR] ﬂ ’

It will be convenient to combine A} and A} into one (s, 4+k—7) x (s, — 1) block
A", and BT and Bj into one 6, x (6, —r + 1) block B" with 6, = N(L) — s, + 7.
A similar decomposition into blocks of the same size for £ = £(Z, Z) contains
blocks fl{, Ag, B{ and Bg that may be combined into A" and B, respectively;
consequently, the last row of Ag (and hence of flT) is zero. Note that since exactly
one matrix in L \ Ly is r-piercing for any fixed r, notation AT, BT, and Ar, B is
unambiguous.

Denote the column set of the second block column in (7Z.0) by M,. Let
7) o (Z) = det(L" )uvfk\{sk});{swu B,

det(L*)
note that o, = 1. We claim that Uy(Z) given by (Z2) and (1) satisfies condi-
tions (ZH). Note that the denominator in (Z7) equals fpix1(Z), and hence the
denominators of the entries of £ defined by (Z3) are powers of fyix.1(Z).

Assume that the piercing set of £ is {r1,...,r}; additionally, set s, , = 1.
Recall that Y-blocks of the form Z[1 k] do not appear in the columns M,, in £,
and hence (7)) is trivially satisfied for s > s,.,.

For s., < s < s, — 1, we are in the situation covered by Lemma [[7] (see
Section [) with M = £y,%, M = L3y, N =0, =12+ 1, Np = 0, — 11 +1,
and k; = r; — 1. Condition (iii) in the lemma is satisfied trivially, since in this

sk
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case B = B. Consequently, ([CH) is satisfied if the parameters «,, = «,.(Z) satisfy
equations

(7.8) Z(—l)a”sa% det(Bm)(S\{x})U[kJrl.ﬂrl] =0
»ES

for any (k — r1 4 2)-element subset S in [1, k] such that k& € S, where
€xs =#{i €S 0>}
If | = 1, there are no other conditions on the parameters a,,, since s,, = 1.

Otherwise, let s, < s < s,, — 1 and consider the block decomposition (7.0]) for
r = ry. We claim that the situation is now covered by Lemma [ with M = ﬁ%:i,

M= E%TS, N =6,,—r3+1, No =6,,—r2+1, and k; = ro—1. To check condition
T3

(iii) in the lemma, we pick an arbitrary subset T' C [s,, — 2 + 1,8, — 72 + k] of

size k —ro + 1 and apply Lemma [[.7] to matrices M = EALL:M”\[ST"”S” 2 and

M = ELL:MTQ\[S“‘”S” —rathl with parameters N = 0,, —ro+1, Ny =0,, —r1 + 1,

and k1 = 731 —1. It follows that the condition in question is guaranteed by the same
equations (Z8). Consequently, by Lemma [777] equations ([ZH) for s,, < s < s, — 1
are guaranteed by equations (Z.8) with r; replaced by rs.

Continuing in the same fashion, we conclude that if conditions

(7.9) D (=1)*5 s, det(B") s\ (e} yufir1.6,] = 0
x€ES

2

are satisfied for any r € {rq1,...,r;} and any (k — r + 2)-element subset S in [1, k]
containing k, then ((C3) holds for any s € [1, N(£)]. It remains to show that (7.9)
are valid with «;,, defined in ((T.7).

Rewrite (T71) as

- det(B*) 0kt 1,04]

(7.10) o, (Z L
det(Bk)[kﬁk]

, »x=1,... k.
If r = k, and hence £ = L*, then every S in ([Z9) is a two element set {sr, k} with
€ [,k —1], e,.s = 1, exs = 0. Plugging (CI0) into the left hand side of (T3]
and clearing denominators we obtain two terms that differ only by sign and thus
the claim follows.

For r < k, we need to evaluate

(7.11) Z (—1)73 det(B®) Gapuin+ 1,6, det(BT) s\ (e} Lo 1.0,
»€eS

Note that the blocks Z[‘;il,n] and Z[‘;

of the former lies below the exit point of the latter. Consequently, J* C J”, and
the first of the blocks is a submatrix of the second one. Therefore, we find ourselves
in a situation similar to the one discussed in Section .Z.1] above while analyzing
sequences ({79) of blocks. Reasoning along the same lines, we either arrive at the
cases (ii) and (iii) in Section 4Tl and then

Uy U O p_[U U2 Us Us 0
0 Wi V| “lo 0 0 Wy Wy

iH,n] have the same row set, and the exit point

(7.12) BF = {
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where odd block columns and the second block row of B¥ and B” might be empty,
or at the cases (i) and (iv) in Section 4] and then

U, 0
Uy 0 Uy 0
(7.13) B¥=1|Us 0|, B =|U Wi,
Uy W 0 Wy
0 Vi

where odd block rows and the second block column of B¥ and B” might be empty.
In particular, if B is a submatrix of B” (cf. case (iv) in Section EEZA1]) then (TIZ)
applies with an empty second block row and third block column in the expression for
B*. Similarly, if B" is a submatrix of B* (cf. case (iii) in Section EZT) then (ZI3)
applies with an empty second block column and third block row in the expression
for B”.

Suppose ([I2]) is the case. Define 74 > 73 > 72 > 7 > 19 =0and o0 > 0
so that the size of the block U; equals o x (1; — 7;_1) for 1 < i < 4. Note that
oc>n—p>kand o > 713. We will use the Laplace expansion of the minors in
([CII) with respect to the first block row:

(7.14)
E €e Bk 1m1]UO Pk OU[r2 41,0, —k
det(B) apuisra = D (~1)7 det(BY LGRS, det(BYR T Y,
©
BT _ = S [1,73] U S EU[Ta+1,0, —r+1]
det(B")(s\ {>})Ulk+1,0,] = Z(—l)a det(B") 6\ oyup,0] €8 (B ) ot o, )

Here the first sum runs over all © C [r; + 1, 2] such that |©| =0 — 7 —k + 1, and

O is the complement of © in [r; + 1, 73]; the second sum runs over all = C [13+1, 74]

such that |Z| = 0 — 73 —r + 1, and = is the complement of = in |73 + 1, 74]; o and

ez depend only on © and E, respectively, and [k + 1,0] is empty if o = k. Plug

([TI4) into (ZII) and note that for any fixed pair ©, Z, the coefficient at
det(Bk)[G;Ljr[lr’z(;;]l,erkJrl] det(Br)[EULjr[ﬁ;]l,eﬁr+1]

is equal to

s X Hry[1,71]Ue S [1,73] U=
(7.15) (—1)%e+e ZS(—l)E S det(B") 2y 0ikr1.00 9t (BT (0 ooyt 1,01
S

since the upper left o x 75 blocks of B” and B* coincide. Observe that [1,7,]U© C
[1, 73], and hence ([ZIH) is equal to the left-hand side of the Pliicker relation ([Z.37)
with A = B, I =8, J=1[k+1,0, L =[1,n]UO and M = ([1,73]UE) \
([1, 7] U®). Thus (TIT) vanishes for any ©, =, and so ([.I1]) is zero in the case
([CI2). The case ([TI3) can be treated similarly: using the Laplace expansion with
respect to the first block column, one concludes that (ZI1]) is zero. This proves
that with «,, defined by (7.7, all conditions ([.9) are satisfied, and therefore (7.5)
is valid, which completes the proof of the theorem.

(]

As it was explained in Section 3.4] we also need a version of Theorem
relating C = Cp+ e and C = Cir o, Where = ff(Zf) is obtained by the deletion
of the leftmost root in AT, The treatment of this case follows the same strategy as
above. Once again, we assume that the non-trivial row X-run that corresponds to
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A' Cc T is [p+ 1,p + k|, and the corresponding row Y-run is [¢ + 1,¢ + k]. This
time, in considering (f‘r, I'°), we replace the former one with [p + 2,p + k], and the
latter one with [¢+ 2, ¢+ k], and add a trivial row X-run [p+1,p+ 1] and a trivial
row Y-run [¢ + 1,q + 1]. The rest of nontrivial row X- and Y-runs as well as all
column X- and Y-runs remain unchanged. In what follows, parameters p, ¢ and k
are assumed to be fixed.

Let L = Lfr(Zr),Fc’ J = jfr(Zr),Fc’ and let the functions £;;(X,Y’) and ﬁ-j (X)
be defined via the same expressions as £;;(X,Y) and f;;(X) with L and J replaced

by L and 7. A suitable version of Theorem can be stated as follows.

THEOREM 7.3. Let Z = (z;;) be an n xn matriz. Then there exists a unipotent
upper triangular n x n matriz U(Z) whose entries are rational functions in z;; with
denominators equal to powers of fpy21(Z) such that for X = U(Z)Z and for any
i,j € [1,nl,

Fii(X) = {inj(z)fpﬂ,l(z) if j(l,j) = (L*,s) and s < sa,
fii(Z) otherwise,

where L* € L is the 2-piercing matriz in L.

PROOF. Our approach is similar to that in the proof of Theorem

For any £(X,Y) € L define £(X,Y) obtained from £(X,Y) by removing the
first row from every building block of the form X[{H—LN]' In particular, if £(X,Y)
does not have building blocks like that then £(X,Y) = £(X,Y).

Similarly to the previous case, all matrices L defined above are irreducible
except for the one obtained from the 2-piercing matrix £*. The corresponding
matrix £* has two irreducible diagonal blocks ET, L3 of sizes sy — 1 and N(L*) —
ss + 1, respectively. As was already noted in Section B.4] all maximal alternating
paths in Gr: e are preserved in G, (&r) e except for the path that goes through
the directed inclined edge (p + 1) — (¢ + 1). The latter one is split into two: the
initial segment up to the vertex p + 1 and the closing segment starting with the
vertex ¢ + 1. Consequently, L = {£: £ € L, £ # L£*} U{L*, L}}.

As before, if J(i,7) = (£,s) and £ # L* then J(i,5) = (£, s). Furthermore, if
L € Ly then additionally £;;(X,Y) and £;;(X,Y) coincide. However, if J(i,7) =
(L*,s) then

S Li,s for s = s(i,7) < 2,

Firj) = { E09) (t,5) <22
(L5,s—s24+1) for s = s(i,7) > sso.

It follows from the above discussion that the claim of the theorem is an imme-

diate corollary of the equalities (I]) for any £ € L and s € [1, N(L)].
Let

k
(7.16) Uo(Z) =1, + Z Q3 Cqt1,q43¢

=2

and
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As before, the invariance property ({I1]) allows to reduce the problem to selecting
parameters «,, = «,,(Z) such that the analog of (C4]) with Uy(Z) given by (18]
is satisfied for all £ € L and s € [1, N(£)].

Once again, this relation is satisfied for any choice of «,, if £ € Ly, that is, if
L(X,Y) = L(X,Y), while for matrices £ € L \ Ly one has to replace £(Z,UyZ)
by the matrix £(Z,UyZ) similar to the one defined in the proof of Theorem
Therefore, in what follows we aim at proving the analog of (73] for all £ € L'\ Ly
and s € [1, N(L)].

We can again use decomposition (7.6) for L and L, except that now By is
obtained from B{ by replacing the first row with zeros, whereas the last row of [15
remains as is, unlike the previous case. Consequently, for s > s,, the analog of
([T3) is satisfied trivially.

For s,, < s <s,, —1, we are in the situation covered by Lemma [[.8 with M =
ﬁﬁz, M= E%;g, N =0,,—ro+1, No = 0,, —r1+1, and k; = r;—1. Condition (iv)

in the lemma is satisfied trivially, since in this case By, _r,42,8] = B[N, —k,+2,N]-
Consequently, the analog of (ZH) holds true if the parameters o, = «,.(Z) satisfy
equations

(7.17) Z (=) a, det(Brl)SU{z}U[kJrl,Orl] =0
»x€[1,k]\S

for any (k — r1)-element subset S in [2, k].
Continuing in the same way as in the proof of Theorem [(.21and using Lemma [T
instead of Lemma [Tl we conclude that if conditions

(7.18) Z (=1, det(ET)SU{x}U[kJrl,OT] =0
»#€[1,k]\S
are satisfied for any r € {r1,..., 7} and any (k — r)-element subset S in [2, k], then

the analog of (Z4) holds for any s € [1, N(L)].

In particular, when r = 2, and hence £ = L*, every S in ([.I8) is obtained by
removing a single index s from [2,k]. Therefore, the sum in the left hand side of
([T18) is taken over a two-element set {1, >} with 3¢ € [2,k]. Since €156 =k —2 and
€58 = k — 2, a,, is determined uniquely as

-1 det (B2)[1,0,)\ ()

(7.19) a,.(Z)=(— . , x=1,...k
det(B2)[2792]

Therefore (TI8) is equivalent to vanishing of

(7.20) Z (—1)E”S+% det(B2)[1,92]\{%} det(Br)Su{%}u[kJrLgr] =0.

»€[1,kI\S
Denote S = [1,k]\S, then ¢,.s+¢, 5 = k— s, and hence (Z.20) can be re-written
as
C Z(—l)s"g det(B?) 8\ (51 usUk-+1,60] det(B") eyusuper,0,) = 0.
»€S

The latter equation is similar to (ZI1]) in the proof of Theorem [2] and the cur-
rent proof can be completed in exactly the same way taking into account that the

denominator in (ZI9) equals f,i2.1(Z). O
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There are two more versions of Theorem [3.12] relating the cluster structures
Crere and Cp. pe, where I' = T°(A°) or I'* = I'°(A°) for a nontrivial column
X-run A°. They are obtained easily from Theorems and [[3] via the involution

Lrepe 2 L(X,Y) = L(YT XT)T € Lpe

where T, = (I2, I,y : Ty — Ty) is the opposite BD triple to T' = (I'y, T2,
'y — T'y). Consequently, X is obtained from Z via multiplication by a lower
triangular matrix, and the distinguished function f,(Z) equals f~17q+k(Z ) for I'® =
fC(XC) and equals fi 44 2(Z) for T° = fC(XC)

7.2. Handling adjacent clusters

Let us continue the comparison of cluster structures C = Crr re and C= Cr 1o

where I = fr(Kf) Recall that the corresponding initial quivers @ and Q differ
as follows. The vertex v = (p + k,1) is frozen in @, but not in Q. Three of
the edges incident to the vertex (p + k,1) in @—the one connecting it to the
vertex (p + k — 1,1) and the two connecting it to the vertices (v*(p + k& — 1),n)
and (7"(p 4+ k — 1) 4+ 1,n)—are absent in @ (in more detail, the neighborhood of
v in @ looks as shown in Figure B(b), Figure BI0(a), or Figure BI0(b), while
the neighborhood of v in @ looks as shown in Figure B6(d), Figure BI0(c), or
Figure [BI0(d), respectively).

As it was explained in Section B4l we have to establish an analog of Theo-
rem B2 for the fields F'=C(11, .-, @l - -, ©nn) and .7:"'2((3(@11, ey Bl Prn)
and the map 7" : F' — F' given by

/ T(pij)  for (i,7) # u,
7.21 T' (i) =
(T2 o) {@;@3“ for (i,7) = u

for some integer A\, where T : F — F is the map constructed in Theorem
The map U : X — Z is also borrowed from Theorem [[2 so condition (b) in
Theorem B 12 holds true. Condition (c) follows immediately from (.2I]). Condition
(a) reads f' o T =Uo f'.

Recall that cluster mutation formulas provide isomorphisms u : 7' — F and
[i: F' — F such that f' = fopand f' = foji. Consequently, condition (a) above
would follow from i o T’ = T o u. The latter statement can be reformulated as
follows.

PROPOSITION 7.4. Let 9 be the cluster variable in C(Q,c,b) obtained via a se-
quence of mutations at vertices (i1,51), ..., (in,Jn) in Q avoiding v, and let ¢
be a cluster variable in C(Q, ) obtained via the same sequence of mutations in Q.
Then ¢ = 1/3(,5;}" for some integer A\, .

PROOF. Define a quiver @, by freezing the vertex v in @ and retaining all
the edges from v to nonfrozen vertices. Then any sequence of mutations in Q
avoiding v translates into the sequence of mutations in @Q,, and all the resulting
cluster variables in C(Q, ¢) and C(Qy, ¢) coincide. We will use the statement that
describes the relation between cluster variables in two cluster structures whose
initial quivers are “almost the same”. That is, there is a bijection between vertices
of these quivers that restricts to the bijection of subsets of frozen vertices and under
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this bijection the two quivers differ only in terms of edges incident to one specified
frozen vertex.

LEMMA 7.5 ([I5, Lemma 8.4]). Let B and B be integer n x (n +m) matrices
that differ in the last column only. Assume that there exist w,w € R ™ such

that B = Bw = 0 and Wp4m = Wpym = 1. Then for any cluster (z4,...,x],,,,)

in C(B) there ezists a collection of numbers X,, i € [L,n +m)], such that x;w;\ﬁm
satisfy exchange relations of the cluster structure C(B). In particular, for the initial

cluster \; = w; —w;, © € [1,n+ m).

In our current situation, B and B are adjacency matrices of quivers Q and Q,,
respectively. The last columns of Band B correspond to the frozen vertex (p+k,1).
To establish the claim of Proposition[7.4] we just need to define appropriate weights
@ and w and to show that for any nonfrozen vertex (4, j), \i; = w;; —W;; coincides
with the exponent of fp+k’1(Z ) in the right hand side of the expression for f;;(X)
in Theorem

Put di; = degfi;j(Z) and d;; = degfi;(X). A direct check proves that the
vectors d = (d;;) and d = (d;;) satisfy relations Bd = Bd = 0. Besides, d, = d, = 4,
and hence vectors w = %dN and w = %d satisfy the conditions of Lemma
Moreover, Jij and d;; coincide for any f;; that is a minor of £ # £*, or a minor of

L* with s(i,j) > si. If f;; is a minor of £* with s(i,5) > s then d;; — d;; = 9.
Consequently \;; satisfies the required condition. O

7.3. Base of induction: The case [T'j| +|I'{| =1

It suffices to consider the case [I'j| = 1, |I'{| = 0, the other case can then be
treated via taking the opposite BD triple. In this case all the reasoning exhibited
in Sections[Z.1] and is still valid, so to complete the proof we only need to check
that every matrix element z,g can be expressed as a Laurent polynomial in terms
of cluster variables in the cluster p,(F). We will do this directly.

Let T = ({p},{q},p— ¢) with ¢ # p and I'* = &. The functions forming the

initial cluster Fr- o are f;;(X) = det X[[f’:fiﬂ] for i > j, fi;(X) = det X[[f’:lj+i]
fori < j,j—i#n—q,and f;n_q+i(X) = det N for i e [1,q], where N = n—p+q

and the N x N matrix £ is given by

[n—g+1,n]
X[[l’q_ﬂl ] [10 ]
_ n—q 3T s N—p
(7'22) L= X[q7q+1] X[[x?p-s-l}]
;N—p
0 Xipk2,n]

These last ¢ functions distinguish Frr & from Fy o that forms an initial cluster for

the standard cluster structure on GL,,. Also, the function f,411(X) = det X [[;fff]]
is a frozen variable in Cy, &, but is mutable in Crr &. The mutation at v = (p+1,1)

transforms fj41.1(X) into
_ fpl(X)fp+2,2(X)fq+1,n(X) + fp+1,2(X)fqn(X)

f X
(7.23) ot o)
. [n] [2,n—p+1]
= det [X[q’qﬂ] X[[g’itlp]ﬂ]}
0 Xpiam
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with fp422(X) = 1 in case p = n — 1, see Figure B6(b) and B.I0(b). The last
equality follows from the short Pliicker relation based on columns 1,2,3,n —p+ 3
applied to the (n —p+1) X (n — p+ 3) matrix

1 [n] [1,n—p+1]
0 Xaar1 Xppty

[1,7l—p+1]
0 0 Xy om

Observe that {f;;(X) = fi; (X[[;fl]m]) ci€lg+1,n],j € [1,n]} together with
the restriction of Qg & to its lower n — ¢ rows and freezing row g+ 1 form an initial
cluster for the standard cluster structure C, on (n — ¢) x n matrices. It follows
immediately from [12] Proposition 4.15] that every minor of X with the row set in
[¢+1,n] is a cluster variable in C,, and hence can be written as a Laurent polynomial
in any cluster of C,. Note that for p > ¢ — 2 the variable fp11,1(X) is frozen in
Cy, therefore, by [12] Proposition 3.20], it does not enter the denominator of this
Laurent polynomial; for p < ¢ — 2 this variable does not exist in C,;. Consequently,
all such minors remain Laurent polynomials in the cluster adjacent to the initial
one in Crr o after the mutation at (p+ 1,1). In particular, for any i € [¢ + 1,n],
J € [1,n], z;; can be written as a Laurent polynomial in this cluster.

For s < ¢ — 1, consider the sequence of consecutive mutations at (s + 1,n),

., (s+1,8), (s+1,s+1), ..., (s+1,2) starting with the initial cluster in Crr &
and denote the obtained cluster variables f{ ., _41(X), t € [1,n — 1]. The same
sequence of mutations in Cg & produces cluster variables

7 _ [n—t,n]
f;+l,n—t+1(Z) = det Z{S}U[s+2,s+t+1]7 le [15 n—s— 1]a

n—t2n—t—s—1
f;+17n7t+1(2) = det ZES}S[S+272] ], ten—sn—1].

(7.24)

Indeed, every mutation in the sequence is applied to a four-valent vertex, and we
obtain consecutively

Y] fs nfl(Z)ferQ n(Z)+fs+1 nfl(Z).fsn(Z)
Z — ) ) L )
fs+1,n( ) ferLn(Z)

and

% fs,nftfl(z)ferZ,nft(Z) + fSJrl’n*t*l(Z)f;Jrl nitJrl(Z)
+(Z) = f. |
ferin—t(Z) Jot1,n—t(2)

for t € [1,n — 2]. Explicit formulas ([Z.24)) now follow by applying an appropriate
version of the short Pliicker relation.

Recall that by Theorem [7.2] X and Z differ only in the g-th row. Moreover,
every minor of X whose row set either does not contain g or contains both ¢ and g+1
is equal to the corresponding minor of Z. Let ¢)(Z) be such a minor; invoking once
again [12] Prop. 4.15], one can obtain it by a sequence of mutations in Cy &. Let
(X)) be the cluster variable obtained by applying the same sequence of mutations
to the initial seed of Cpr z. By Proposition [T (X) = 4 (Z) (prrl’l(Z)))\ =
D(X) (fpa1a(X ) for some integer A. Clearly, minors in (Z24) satisfy the above
condition unless s +t + 1 = ¢, and hence

fs/+1,n7t+1(X) = J?§+1,n7t+1(X) (prrl,l(X)))\Sﬂ’nft+1
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for t # ¢ — s — 1. However, the exponents A;11 ,_¢+1 are easily computed to be all
zero. Thus, we conclude that

(725)  det X500 ey = flainn(X), t€[Ln—s—1\{g—s—1},

and

(7.26) det Xﬁ}_j[iigtn_]s_l] = forin—t41(X), t€[n—sn—1],

are cluster variables in Crr g.
Now we are ready to deal with the entries in the ¢-th row X. First, expand

fhr11(X) in (Z23) by the first column as

2,n—p+1
P11 (X) = Tonfpi12(X) + 2gp1pdet XETT P00

For p > g, the row set of det Xﬁ’ﬁ;{g Ll]n} lies completely within the last n — ¢
rows of X, and hence, as explained above, it is a Laurent polynomial in the cluster
we are interested in. For p < ¢, this determinant is a cluster variable in Cr» &
by (£28) with ¢ = n — 2, and hence it is a Laurent polynomial in any cluster in
Cr: . Consequently, in both cases x4, is a Laurent polynomial in the cluster we are

interested in. Further, this claim can be established inductively for 4,1, g n—2,

..., Tq1 by expanding first the minors fy ,—+(X) = det X[[;L;fr’g], te[l,n—gq|, and
then the minors fq,,—¢(X) = det X[[;;]t’zn_t_q], t €n—q+1,n—1], by the first
row as fgn—t(X) = Tgn-tfer1n—t+1(X) + P(Tqn—t41,---,Tqgn, Tij @ > q), where

P is a polynomial.

Finally, for s < ¢, zs, is a cluster variable in Crr &, and hence is a Lau-
rent polynomial in any cluster. For ¢ = 1, ..., ¢ — s — 1, Laurent polynomial
expressions for z, ,—; can obtained recursively using expansions of the cluster vari-

able fs,—+(X) = det X[[Zs_f_’g] by the first row exactly as above. For t = q — s,
..., n— s — 1, such expressions are obtained recursively by expanding the clus-
ter variable f; q, ,.1(X) given by (Z25) by the first row as f{ 1, ;1(X) =
Tsn—tfotr2n—t+1(X)+ P (Zsn—t41s---+Tsn,Tij 11> 5), where P’ is a polynomial.
For t =mn —s, ..., n—1 we use the same expansion for f,;, ,;(X) given by

([T28). This completes the proof.
REMARK 7.6. In fact, one can show that every minor of X whose row set either
does not contain ¢ or contains both ¢ and ¢ + 1 is a cluster variable in Cpr g.
7.4. Auxiliary statements
In this section we collected several technical statements that were used before.

LEMMA 7.7. Let N = Ny + No, k = ki + ko, and let M, M be two N x N
matrices

Al 0 B /11 9
(7.27) M= Ay Bi|, M= 14y Bi|,
0 B> 0 By

with block rows of sizes Ny — k1, k and Ny — ko and block columns of sizes N1 and
Ny. Assume that

(1) A1 = Ah'
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(ii) there exists Ay such that Ay = (lk + Zi:ll aieik) Al and Ay is obtained
from AL by replacing the last row with zeros;
By

B } that contains the last No — ko Tows
2

(iii) every mazimal minor of B = {

coincides with the corresponding minor of B = {gl} .
2

Then conditions
(7.28) > (1) a,. det Bs\ ey Uit 1,Na k] =0
»€eS
for any S C [1,k] such that |S| =ka+ 1 and k € S guarantee that

[s,N] _ ~[s,N]
(7.29) det My = det M7y

for all s € [1,N]; here e,,s = #{i € S 11> s} and oy, = 1.
PRrROOF. Denote
go=det MY & =det MY

By condition (iii), we only need to consider s < Nj. First, fix s € [N — k1 + 1, Nq],
which means that M is in the block A>. We use the Laplace expansion of £, and
&s with respect to the second block column. Define ¢t = s — Ny + k1, then

& = Z(_l)ET det(A2)? det By k41, No4k1]
T

£ = Z(—l)ET det(As)? det Byt 1, Nga)»
T
where the sum is taken over all (N7 —s+1)-element subsets T in [t, k], T = [t, k]\T
© =[s,N1] and e7 = ), i + &, with £, depending only on s.
By condition (ii),

(7.30)

o det(A%)9 if ke,
31 det(A = €T 1
(T:31)  det(42)7 = | det(Ap)2 + 5 ()T det (A (g KR ST,
1S
and
~ 0 ifkeT
7.32 det(A5)9 = ’
(7.32) et(4a)7 {det(A’)@ ith¢T.

Besides, det BTU[k+1 Natky) = det BTU[k-H Na-+ky) DY condition (iii). Therefore, the

difference &, — &, can be written as a linear combination of det(A%)9 such that
keT. Let T = T'U{k}; define S =T" = T U {k}, then |S| = ky +1 and k € S.
The coefficient at det(A%)$ equals, up to a sign,

(7.33) Z (—I)E%YT'UUC}J”’OL% det B(S\{%})U[k+1,N2+lc1]
€[t k]\T'

= (-D* Z (=1)%*%a,, det B(s\ {3c})U[k+1,Na+k1]»
»EeS

since €, rugk) + €5 = k — 2. Thus for (Z29) to be valid for s € [Ny — k1 +1, Nq]
it is sufficient that (T28]) be satisfied for any S C [¢, k], |S| = k2 + 1, k € S. In fact,
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since (C31)) and (7.32) remain valid for any set © C [1, N1] of size |©] = Ny —s+1,
similar considerations show that ([C28]) implies

(7.34) det ME N = det MM

for any such © and s € [Ny — k1 + 1, Nq|. This, in turn, results in (Z.29) being valid
for all s € [1, N7 — k1]. To see this, one has to use the Laplace expansion of £, and
&s with respect to the block row [s, Ny — k1]:

€ OU[N1+1,N
s = Z( 1)%e det(4, )[s Ni—ky] det M ’ Iil—:»l z\]r]
e
x e 5\ 6 OU[N;+1,N
£ = Z(—l) & det(A1){ n, ) det/\/l U 1;—:11 z\]r]
e
where © = [s, N1] \ ©, and the sums are taken over all subsets © in [s, Ny] of size

|©| = k1. It remains to note that det(A )[S Ni—k] = det(Al)[5 Ny—k,] by condition
(i), and det M@u N,iill]\]]\],] de tM[GJ)é[N,itrllAjl\][] is a particular case of (7.34) for
s = N1 - kl + 1 O

LEMMA 7.8. Let M and M be two N x N matrices given by (TZD) with the
same sizes of block rows and block columns. Assume that

() Al = Al;'

(i) A (lk + Zf 9 Oéz'ffu) As;

(iii) 31 is obtained from By by replacing the first row with zeros;
)

(iv) every mazimal minor of B = g; that contains the last No — ko Tows
and does not contain the first row coincides with the corresponding minor
N By
B=|~"]|.
o {BJ
Then conditions
(735) E%SOK det BSU{%}U[k+1 N2+k1] =0
€[1,k]\

for any S C |2, k] such that |S| = ko — 1 guarantee that

[s,N] ~[s,N]
(7.36) det My = det M7y,

for all s € [1, N]; here a; = 1.

PROOF. The proof is a straightforward modification of the proof of Lemmal[Z7
For s € [Ny —k1+2, Ny], Laplace expansions of £ and & with respect to the second
block column are given by (Z30). By condition (ii), det(42)@ = det(A42)Q, while
by condition (iv), det Bpyi1,n,+k,] = det BTU[k+1 Na+ky]- Consequently, & — &

vanishes, and hence (7.30) holds true.
For s € [1, Ny — k1 + 1], the corresponding Laplace expansions are given by

- [s,N1]
&s = Z( )gT det A[s Ni k1]uT det B?u[k+1,N2+k1]’
T

- T15,N] :
§s = Z( )gT de tA[s Ni kq)uT det B?U[k‘f*l,NQ“rkl],
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where T' runs over all k;j-element subsets in [Ny — k1 + 1, Ny + ko] and ? ={i—
N1+k12i€T} for T = [Nl —]{71+1,N1+k2}\T.
Next, by conditions (i) and (ii),

det AL if t ¢ T,
det AL — o] kio1-c 7l5.N1] -
S0 T Y det Aghy + X%IT(—I) TR det Al oy HEET,

where = = [s, N7 — k1], t = Ny — k1 + 1 and » = x — Ny + k1 € [1,k]. Further, by
conditions (iii) and (iv),
i B o if ¢ ¢ T,
BT U4+ 1,N0 48] ~ Y det B‘Tu[kﬂ Noth] ifteT.

Therefore, the difference &, — &, can be written as a linear combination of det /I[Eslﬁl]
such that ¢t ¢ T. Let T = {t} UT’; define S = T =T \ {1}, then S C [2,k] and
|S| = ko — 1. Consequently, the coefficient at det A[Es,if;l] equals, up to a sign,

Z (=1)**% i, det Bgufse}Ulk+1,Na-+hi]s

»x€[1,k]\S
and the claim follows. O
LEMMA 7.9. Let A be a rectangular matriz, I = (i1,...ix) and J be disjoint

row sets, L and M be disjoint column sets, and |L| = |J| + 1, |M| = |I| — 2. Then

k

(737) Z(_l)A det, Afi,\}UJ det A%‘I%%A})UJ =0.
A=1

PrROOF. The formula can be obtained from standard Pliicker relations via a
natural interpretation of minors of A as Pliicker coordinates for [1 A]. g
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