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Abstract

We continue the study of multiple cluster structures in the rings of regu-
lar functions on GLn, SLn and Matn that are compatible with Poisson–Lie and
Poisson-homogeneous structures. According to our initial conjecture, each class
in the Belavin–Drinfeld classification of Poisson–Lie structures on a semisimple
complex group G corresponds to a cluster structure in O(G). Here we prove this
conjecture for a large subset of Belavin–Drinfeld (BD) data of An type, which in-
cludes all the previously known examples. Namely, we subdivide all possible An

type BD data into oriented and non-oriented kinds. We further single out BD data
satisfying a certain combinatorial condition that we call aperiodicity and prove
that for any oriented BD data of this kind there exists a regular cluster structure
compatible with the corresponding Poisson–Lie bracket. In fact, we extend the
aperiodicity condition to pairs of oriented BD data and prove a more general re-
sult that establishes an existence of a regular cluster structure on SLn compatible
with a Poisson bracket homogeneous with respect to the right and left action of two
copies of SLn equipped with two different Poisson-Lie brackets. Similar results hold
for aperiodic non-oriented BD data, but the analysis of the corresponding regular
cluster structure is more involved and not given here. If the aperiodicity condition
is not satisfied, a compatible cluster structure has to be replaced with a generalized
cluster structure. We will address these situations in future publications.
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CHAPTER 1

Introduction

In this paper we continue the systematic study of multiple cluster structures
in the rings of regular functions on GLn, SLn and Matn started in [13–15]. It
follows an approach developed and implemented in [10–12] for constructing cluster
structures on algebraic varieties.

Recall that given a smooth complex algebraic Poisson variety (M, {·, ·}), a
compatible cluster structure CM on M is a collection of coordinate charts (called
clusters) comprised of regular functions with simple birational transition maps be-
tween charts (called cluster transformations, see [8]) such that the logarithms of
any two functions in the same chart have a constant Poisson bracket. Once found,
any such chart can be used as a starting point, and our construction allows us to
restore the whole CM, provided the arising birational maps preserve regularity. Al-
gebraic structures corresponding to CM (the cluster algebra and the upper cluster
algebra) are closely related to the ring O(M) of regular functions on M. In fact,
under certain rather mild conditions, O(M) can be obtained by tensoring the upper
cluster algebra with C, see [12].

This construction was applied in [12, Chapter 4.3] to double Bruhat cells in
semisimple Lie groups equipped with (the restriction of) the standard Poisson–Lie
structure. It was shown that the resulting cluster structure coincides with the one
built in [2]. The standard Poisson–Lie structure is a particular case of Poisson–Lie
structures corresponding to quasi-triangular Lie bialgebras. Such structures are as-
sociated with solutions to the classical Yang–Baxter equation. Their complete clas-
sification was obtained by Belavin and Drinfeld in [1]. Solutions are parametrized
by the data that consists of a continuous and a discrete component. The former
is governed by the latter, called the Belavin–Drinfeld triple. It is defined as an
isometry between two subsets of positive roots in the root system of the Lie algebra
of the corresponding semisimple Lie group. In [13] we conjectured that any such
solution gives rise to a compatible cluster structure on this Lie group. This con-
jecture was verified in [4] for SL5 and proved in [5,6] for all simplest non-trivial
Belavin–Drinfeld triples in SLn and in [15] for the Cremmer–Gervais case.

In this paper we extend these results to a wide class of Belavin–Drinfeld triples
in SLn. We define a subclass of oriented triples for which the corresponding isom-
etry preserves orientation of intervals in the Dynkin diagram, see Section 3.1, and
encode the corresponding information in a combinatorial object called a Belavin–
Drinfeld graph. Our main result claims that the conjecture of [13] holds true
whenever the corresponding Belavin–Drinfeld graph is acyclic. In this case the
structure of the Belavin–Drinfeld graph is mirrored in the explicit construction of
the initial cluster, see Section 3.2. In fact, we have proved a stronger result: given
two oriented Belavin–Drinfeld triples in SLn we define the graph of the pair, and if
this graph possesses a certain acyclicity property then the Poisson bracket defined

1
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2 1. INTRODUCTION

by the pair (note that it is not Poisson–Lie anymore) gives rise to a compatible
cluster structure on SLn. The construction we present in this paper can be ad-
justed to treat non-oriented triples, but the analysis is more involved and will be
described elsewhere.

If the Belavin–Drinfeld graph has cycles then the conjecture of [13] needs to
be modified: one has to consider generalized cluster structures instead of the or-
dinary ones. Unlike in the acyclic case, our construction of the basis presented
in Section 3.2 then necessitates consideration of infinite periodic staircase matri-
ces; consequently, defining the initial seed and generalized cluster transformations
require additional tools. These tools were developed in [17], where appropriate
identities for minors of such matrices were described, along with the application to
a construction of a generalized cluster structure in the smallest case when cycles
are present.

In [18], Goodearl and Yakimov developed a uniform approach for constructing
cluster algebra structures in symmetric Poisson nilpotent algebras using sequences
of Poisson-prime elements in chains of Poisson unique factorization domains. These
results apply to a large class of Poisson varieties, e.g., Schubert cells in Kac–Moody
groups viewed as Poisson subvarieties with respect to the standard Poisson-Lie
bracket. It is worth pointing out, however, that the approach of [18], in its current
form, does not seem to be applicable to the situation we consider here. This is
evident from the fact that for cluster structures constructed in [18], the cluster
algebra and the corresponding upper cluster algebra always coincide. In contrast,
as we have shown in [14], the simplest non-trivial Belavin–Drinfreld data in SL3

results in a strict inclusion of the cluster algebra into the upper cluster algebra.
The paper is organized as follows. Chapter 2 contains a concise description

of necessary definitions and results on cluster algebras and Poisson–Lie groups.
Chapter 3 presents main constructions and results. The Belavin–Drinfeld graph and
related combinatorial data are defined in Section 3.1. The same section contains
the formulations of the main Theorems 3.2 and 3.3. An explicit construction of
the initial cluster is contained in Section 3.2 and summarized in Theorem 3.4.
Chapter 4 is dedicated to the proof of this theorem. The quiver that together
with the initial cluster defines the compatible cluster structure is built in Section
3.3, see Theorem 3.9 whose proof is contained in Chapter 5. Section 3.4 outlines
the proof of the main Theorems 3.2 and 3.3. It contains, inter alia, Theorem 3.12
that enables us to implement the induction step in the proof of an isomorphism
between the constructed upper cluster algebra and the ring of regular functions on
Matn. A detailed constructive proof of this isomorphism is the subject of Chapter 7.
Chapter 6 is devoted to showing that cluster structures we constructed are regular
and admit a global toric action.
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CHAPTER 2

Preliminaries

2.1. Skew-symmetric cluster structures of geometric type and
compatible Poisson brackets

Let F be the field of rational functions in N +M independent variables with
rational coefficients. There are M distinguished variables; they are denoted xN+1,
. . . , xN+M and called frozen, or stable. The (N + M)-tuple x = (x1, . . . , xN+M )
is called a cluster, and its elements x1, . . . , xN are called cluster variables. The
quiver Q is a directed multigraph with no cycles of lengths 1 and 2 on the vertices
1, . . . , N +M corresponding to all variables; the vertices corresponding to frozen
variables are called frozen. An arrow going from a vertex i to a vertex j is denoted
i → j. The pair Σ = (x, Q) is called a seed.

Given a seed as above, the adjacent cluster in direction k, 1 ≤ k ≤ N , is defined
by x′ = (x\{xk})∪{x′

k}, where the new cluster variable x′
k is given by the exchange

relation
xkx

′
k =
∏
k→i

xi +
∏
i→k

xi.

The quiver mutation of Q in direction k is given by the following three steps:
(i) for every two-arrow path i → k → j in Q, an arrow i → j is added; (ii) pairs
of opposite arrows i → j and j → i (if they exist) annihilate consequtively; (iii) all
arrows i → k and all arrows k → i are reversed. The resulting quiver is denoted
Q′ = μk(Q). It is sometimes convenient to represent the quiver by an N × (N +M)
integer matrix B = B(Q) called the exchange matrix, where bij is the number of
arrows i → j in Q. Note that the principal part of B is skew-symmetric (recall that
the principal part of a rectangular matrix is its maximal leading square submatrix).

Given a seed Σ = (x, Q), we say that a seed Σ′ = (x′, Q′) is adjacent to Σ (in
direction k) if x′ is adjacent to x in direction k and Q′ = μk(Q). Two seeds are
mutation equivalent if they can be connected by a sequence of pairwise adjacent
seeds. The set of all seeds mutation equivalent to Σ is called the cluster structure
(of geometric type) in F associated with Σ and denoted by C(Σ); in what follows,
we usually write just C instead.

Let A be a ground ring satisfying the condition

Z[xN+1, . . . , xN+M ] ⊆ A ⊆ Z[x±1
N+1, . . . , x

±1
N+M ]

(we write x±1 instead of x, x−1). Following [2,8], we associate with C two algebras
of rank N over A: the cluster algebra A = A(C), which is the A-subalgebra of F
generated by all cluster variables in all seeds in C, and the upper cluster algebra
A = A(C), which is the intersection of the rings of Laurent polynomials over A

in cluster variables taken over all seeds in C. The famous Laurent phenomenon
[9] claims the inclusion A(C) ⊆ A(C). Note that originally upper cluster algebras
were defined over the ring of Laurent polynomials in frozen variables. In [16] we

5
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proved that upper cluster algebras over subrings of this ring retain all properties
of usual upper cluster algebras. In what follows we assume that the ground ring is
the polynomial ring in frozen variables, unless explicitly stated otherwise.

Let V be a quasi-affine variety over C, C(V ) be the field of rational functions on
V , and O(V ) be the ring of regular functions on V . Let C be a cluster structure in
F as above. Assume that {f1, . . . , fN+M} is a transcendence basis of C(V ). Then
the map ϕ : xi �→ fi, 1 ≤ i ≤ N + M ], can be extended to a field isomorphism
ϕ : FC → C(V ), where FC = F⊗C is obtained from F by extension of scalars. The
pair (C, ϕ) is called a cluster structure in C(V ) (or just a cluster structure on V ),
{f1, . . . , fN+M} is called a cluster in (C, ϕ). Occasionally, we omit direct indication
of ϕ and say that C is a cluster structure on V . A cluster structure (C, ϕ) is called
regular if ϕ(x) is a regular function for any cluster variable x. The two algebras
defined above have their counterparts in FC obtained by extension of scalars; they
are denoted AC and AC. If, moreover, the field isomorphism ϕ can be restricted
to an isomorphism of AC (or AC) and O(V ), we say that AC (or AC) is naturally
isomorphic to O(V ).

Let {·, ·} be a Poisson bracket on the ambient field F , and C be a cluster
structure in F . We say that the bracket and the cluster structure are compatible if,
for any cluster x = (x1, . . . , xN+M ), one has {xi, xj} = ωijxixj , where ωij ∈ Q are
constants for all 1 ≤ i, j ≤ N +M . The matrix Ωx = (ωij) is called the coefficient
matrix of {·, ·} (in the basis x); clearly, Ωx is skew-symmetric. The notion of
compatibility extends to Poisson brackets on FC without any changes.

Fix an arbitrary cluster x = (x1, . . . , xN+M ) and define a local toric action of
rank s at x as a map

(2.1) x �→
(
xi

s∏
α=1

qwiα
α

)N+M

i=1

, q = (q1, . . . , qs) ∈ (C∗)s,

where W = (wiα) is an integer (N +M)× s weight matrix of full rank. Let x′ be
another cluster in C, then the corresponding local toric action defined by the weight
matrix W ′ is compatible with the local toric action (2.1) if it commutes with the
sequence of cluster transformations that takes x to x′. If local toric actions for all
clusters are compatible, they define a global toric action on C called the C-extension
of the local toric action (2.1).

2.2. Poisson–Lie groups

A reductive complex Lie group G equipped with a Poisson bracket {·, ·} is called
a Poisson–Lie group if the multiplication map G×G 
 (X,Y ) �→ XY ∈ G is Poisson.
Perhaps, the most important class of Poisson–Lie groups is the one associated with
quasitriangular Lie bialgebras defined in terms of classical R-matrices (see, e. g.,
[3, Chapter 1], [19] and [20] for a detailed exposition of these structures).

Let g be the Lie algebra corresponding to G, 〈·, ·〉 be an invariant nondegenerate
form on g, and let t ∈ g⊗g be the corresponding Casimir element. For an arbitrary
element r =

∑
i ai ⊗ bi ∈ g⊗ g denote

[[r, r]] =
∑
i,j

[ai, aj ]⊗ bi ⊗ bj +
∑
i,j

ai ⊗ [bi, aj ]⊗ bj +
∑
i,j

ai ⊗ aj ⊗ [bi, bj ]

and r21 =
∑

i bi ⊗ ai. A classical R-matrix is an element r ∈ g ⊗ g that satisfies
the classical Yang-Baxter equation (CYBE) [[r, r]] = 0 together with the condition



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2.2. POISSON–LIE GROUPS 7

r + r21 = t. The Poisson–Lie bracket on G that corresponds to r can be written as

(2.2)
{f1, f2}r = 〈R+(∇Lf1),∇Lf2〉 − 〈R+(∇Rf1),∇Rf2〉

= 〈R−(∇Lf1),∇Lf2〉 − 〈R−(∇Rf1),∇Rf2〉,

where R+, R− ∈ End g are given by 〈R+η, ζ〉 = 〈r, η ⊗ ζ〉, −〈R−ζ, η〉 = 〈r, η ⊗ ζ〉
for any η, ζ ∈ g and ∇L, ∇R are the right and the left gradients of functions on G
with respect to 〈·, ·〉 defined by〈

∇Lf(X), ξ
〉
=

d

dt

∣∣∣∣
t=0

f(Xetξ),
〈
∇Rf(X), ξ

〉
=

d

dt

∣∣∣∣
t=0

f(etξX)

for any ξ ∈ g, X ∈ G.
Following [19], let us recall the construction of the Drinfeld double. First, note

that CYBE implies that

(2.3) g+ = Im(R+), g− = Im(R−)

are subalgebras in g. The double of g is D(g) = g ⊕ g equipped with an invariant
nondegenerate bilinear form

〈〈(ξ, η), (ξ′, η′)〉〉 = 〈ξ, ξ′〉 − 〈η, η′〉.
Define subalgebras d± of D(g) by

(2.4) d+ = {(ξ, ξ): ξ ∈ g}, d− = {(R+(ξ), R−(ξ)): ξ ∈ g},
then d± are isotropic subalgebras of D(g) and D(g) = d++̇d−. In other words,
(D(g), d+, d−) is a Manin triple. Then the operator RD = πd+

− πd− can be used
to define a Poisson–Lie structure on D(G) = G × G, the double of the group G, via

(2.5) {f1, f2}Dr =
1

2

(
〈〈RD(�Lf1),�Lf2〉〉 − 〈〈RD(�Rf1),�Rf2〉〉

)
,

where �R and �L are right and left gradients with respect to 〈〈·, ·〉〉. Restriction of
this bracket to G identified with the diagonal subgroup of D(G) (whose Lie algebra
is d+) coincides with the Poisson–Lie bracket {·, ·}r on G. Let D− be the subgroup
of D(G) that corresponds to d− Double cosets of D− in D(G) play an important
role in the description of symplectic leaves in Poisson–Lie groups G and D(G), see
[20].

The classification of classical R-matrices for simple complex Lie groups was
given by Belavin and Drinfeld in [1]. Let G be a simple complex Lie group, Φ
be the root system associated with its Lie algebra g, Φ+ be the set of positive
roots, and Π ⊂ Φ+ be the set of positive simple roots. A Belavin–Drinfeld triple
Γ = (Γ1,Γ2, γ) (in what follows, a BD triple) consists of two subsets Γ1,Γ2 of Π
and an isometry γ: Γ1 → Γ2 nilpotent in the following sense: for every α ∈ Γ1 there
exists m ∈ N such that γj(α) ∈ Γ1 for j ∈ [0,m− 1], but γm(α) /∈ Γ1.

The isometry γ yields an isomorphism, also denoted by γ, between the Lie
subalgebras gΓ1

and gΓ2
that correspond to Γ1 and Γ2. It is uniquely defined by the

property γeα = eγ(α) for α ∈ Γ1, where eα is the Chevalley generator corresponding
to the root α. The isomorphism γ∗: gΓ2

→ gΓ1
is defined as the adjoint to γ with

respect to the form 〈·, ·〉. It is given by γ∗eγ(α) = eα for γ(α) ∈ Γ2. Both γ and γ∗

can be extended to maps of g to itself by applying first the orthogonal projection on
gΓ1

(respectively, on gΓ2
) with respect to 〈·, ·〉; clearly, the extended maps remain

adjoint to each other. Note that the restrictions of γ and γ∗ to the positive and
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the negative nilpotent subalgebras n+ and n− of g are Lie algebra homomorphisms
of n+ and n− to themselves, and γ(e±α) = 0 for all α ∈ Π \ Γ1.

By the classification theorem, each classical R-matrix is equivalent to an R-
matrix from the Belavin–Drinfeld class defined by a BD triple Γ. Following [7], we
write down an expression for the members of this class:

(2.6) r =
1

2
Ωh + s+

∑
α

e−α ⊗ eα +
∑
α

e−α ∧ γ

1− γ
eα;

here the summation is over the set of all positive roots, Ωh ∈ h ⊗ h is given by

Ωh =
∑

hα⊗ ĥα where {hα} is the standard basis of the Cartan subalgebra h, {ĥα}
is the dual basis with respect to the restriction of 〈·, ·〉 to h, and s ∈ h ∧ h satisfies

(2.7) ((1− γ)α⊗ 1) (2s) = ((1 + γ)α⊗ 1) Ωh

for any α ∈ Γ1. Solutions to (2.7) form a linear space of dimension kΓ(kΓ−1)
2 with

kΓ = |Π \ Γ1|. More precisely, define

(2.8) hΓ = {h ∈ h : α(h) = β(h) if γj(α) = β for some j},
then dim hΓ = kΓ, and if s′ is a fixed solution of (2.7), then every other solution
has a form s = s′+ s0, where s0 is an arbitrary element of hΓ ∧hΓ. The subalgebra
hΓ defines a torus HΓ = exp hΓ in G.

Let π>, π< be projections of g onto n+ and n−, πh be the projection onto h.
It follows from (2.6) that R+ in (2.2) is given by

(2.9) R+ =
1

1− γ
π> − γ∗

1− γ∗π< +

(
1

2
+ S

)
πh,

where S ∈ End h is skew-symmetric with respect to the restriction of 〈·, ·〉 to h and
satisfies 〈Sh, h′〉 = 〈s, h⊗ h′〉 for any h, h′ ∈ h and conditions

(2.10) S(1− γ)hα =
1

2
(1 + γ)hα

for any α ∈ Γ1, translated from (2.7).
For an R-matrix given by (2.6), subalgebras g± from (2.3) are contained in

parabolic subalgebras p± of g determined by the BD triple: p+ contains b+ and
all the negative root spaces in gΓ1

, while p− contains b− and all the positive root
spaces in gΓ2

. Then one has

(2.11) p+ = g+ ⊕ h+, p− = g− ⊕ h−

with h± ⊂ h. An explicit description of subalgebras h± can be found, e.g., in
[20, Section 3.1]. Let l± denote the Levi component of p±. Then l+ = gΓ1

, l− = gΓ2
,

and the Lie algebra isomorphism γ described above restricts to l+ ∩ g+ → l− ∩ g−.
This allows to describe the subalgebra d− as

(2.12) d− = {(ξ+, ξ−)): ξ± ∈ g±, γ(πl+∩g+
ξ+) = πl−∩g−ξ−}

⊂ {(ξ+, ξ−)): ξ± ∈ p±, γ(πl+ξ+) = πl−ξ−},
where π· are the projections to the corresponding subalgebras.

In what follows we will use a Poisson bracket on G that is a generalization
of the bracket (2.2). Let r, r′ be two classical R-matrices, and R+, R

′
+ be the

corresponding operators, then we write

(2.13) {f1, f2}r′,r = 〈R+(∇Lf1),∇Lf2〉 − 〈R′
+(∇Rf1),∇Rf2〉.
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By [19, Proposition 12.11], the above expression defines a Poisson bracket, which
is not Poisson–Lie unless r = r′, in which case {f1, f2}r,r evidently coincides with
{f1, f2}r. The bracket (2.13) defines a Poisson homogeneous structure on G with
respect to the left and right multiplication by Poisson–Lie groups (G, {·, ·}r) and
(G, {·, ·}r′), respectively. The bracket on the Drinfeld double that corresponds to
{f1, f2}r′,r is defined similarly to (2.5) via

(2.14) {f1, f2}Dr′,r =
1

2

(
〈〈RD(�Lf1),�Lf2〉〉 − 〈〈R′

D(�Rf1),�Rf2〉〉
)
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAPTER 3

Main results and the outline of the proof

3.1. Combinatorial data and main results

In this paper, we only deal with g = sln, and hence Γ1 and Γ2 can be identified
with subsets of [1, n − 1]. Note that the isometry condition on γ implies that if
i, i + 1 ∈ Γ1 then γ(i + 1) = γ(i) ± 1. We say that Γ is oriented if i, i + 1 ∈ Γ1

yields γ(i+1) = γ(i)+1. In other words, the orientation of every subset of Γ1 that
consists of consecutive roots is preserved by γ.

For any i ∈ [1, n] put

i+ = min{j ∈ [1, n] \ Γ1: j ≥ i}, i− = max{j ∈ [0, n] \ Γ1: j < i}.

The interval Δ(i) = [i−+1, i+] is called the X-run of i. Clearly, all distinct X-runs
form a partition of [1, n]. The X-runs are numbered consecutively from left to right.
For example, let n = 7 and Γ1 = {1, 2, 4}, then there are four X-runs: Δ1 = [1, 3],
Δ2 = [4, 5], Δ3 = [6, 6] and Δ4 = [7, 7]. Clearly, Δ(2) = Δ1, Δ(4) = Δ2, etc.

In a similar way, Γ2 defines another partition of [1, n] into Y -runs Δ̄(i). For
example, let in the above example Γ2 = {1, 3, 4}, then Δ̄1 = [1, 2], Δ̄2 = [3, 5],
Δ̄3 = [6, 6] and Δ̄4 = [7, 7].

Runs of length one are called trivial. The map γ induces a bijection on the
sets of nontrivial X-runs and Y -runs: we say that Δ̄i = γ(Δj) if there exists
k ∈ Δj such that Δ̄(γ(k)) = Δ̄i. The inverse of the bijection γ is denoted γ∗

(the reasons for this notation will become clear later). Let in the previous example
γ(1) = 3, γ(2) = 4, γ(4) = 1, then Δ̄1 = γ(Δ2) and Δ̄2 = γ(Δ1).

The BD graph GΓ is defined as follows. The vertices of GΓ are two copies of
the set of positive simple roots identified with [1, n−1]. One of the sets is called the
upper part of the graph, and the other is called the lower part. A vertex i ∈ Γ1 is
connected with an inclined edge to the vertex γ(i) ∈ Γ2. Finally, vertices i and n−i
in the same part are connected with a horizontal edge. If n = 2k and i = n− i = k,
the corresponding horizontal edge is a loop. The BD graph for the above example
is shown in Figure 3.1 on the left. In the same figure on the right one finds the BD
graph for the case of SL6 with Γ1 = {1, 3, 4}, Γ2 = {2, 4, 5} and γ: i �→ i+ 1.

Clearly, there are four possible types of connected components in GΓ: a path,
a path with a loop, a path with two loops, and a cycle. We say that a BD triple
Γ is aperiodic if each component in GΓ is either a path or a path with a loop, and
periodic otherwise. In what follows we assume that Γ is aperiodic. The case of
periodic BD triples will be addressed in a separate paper.

Remark 3.1. Let w0 be the longest permutation in Sn. Observe that horizontal
edges in both rows of the BD graph can be seen as a depiction of the action of
(−w0) on the set of positive simple roots of SLn. Thus the BD graph can be used
to analyze the properties of the map w0γw0γ

−1. A map of this kind, with the

11
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1 2 3 4 5 6 2 3 4 51

61 2 3 54 51 2 3 4

Figure 3.1. BD graphs for aperiodic BD triples

pair (w0, w0) replaced by a pair of elements of the Weyl group satisfying certain
properties dictated by the BD triple in an arbitrary reductive Lie group, was defined
in [20, Section 5.1.1] and utilized in the description of symplectic leaves of the
corresponding Poisson–Lie structure.

The main result of this paper states that the conjecture formulated in [13]
holds for oriented aperiodic BD triples in SLn. Namely,

Theorem 3.2. For any oriented aperiodic Belavin–Drinfeld triple Γ =
(Γ1,Γ2, γ) there exists a cluster structure CΓ on SLn such that

(i) the number of frozen variables is 2kΓ, and the corresponding exchange
matrix has a full rank;

(ii) CΓ is regular, and the corresponding upper cluster algebra AC(CΓ) is nat-
urally isomorphic to O(SLn);

(iii) the global toric action of (C∗)2kΓ on CΓ is generated by the action of
HΓ ×HΓ on SLn given by (H1, H2)(X) = H1XH2;

(iv) for any solution of CYBE that belongs to the Belavin–Drinfeld class spec-
ified by Γ, the corresponding Sklyanin bracket is compatible with CΓ;

(v) a Poisson–Lie bracket on SLn is compatible with CΓ only if it is a scalar
multiple of the Sklyanin bracket associated with a solution of CYBE that
belongs to the Belavin–Drinfeld class specified by Γ.

This result was established previously for the Cremmer–Gervais case (given by
γ : i �→ i+ 1 for 1 ≤ i ≤ n− 2) in [15] and for all cases when kΓ = n− 2 in [5,6].

In fact, the construction above is a particular case of a more general construc-
tion. Let rr and rc be two classical R-matrices that correspond to BD triples
Γr = (Γr

1,Γ
r
2, γ

r) and Γc = (Γc
1,Γ

c
2, γ

c), which we call the row and the column BD
triples, respectively.

Assume that both Γr and Γc are oriented. Similarly to the BD graph GΓ for
Γ, one can define a graph GΓr,Γc for the pair (Γr,Γc) as follows. Take GΓr with all
inclined edges directed downwards and GΓc in which all inclined edges are directed
upwards. Superimpose these graphs by identifying the corresponding vertices. In
the resulting graph, for every pair of vertices i, n − i in either top or bottom row
there are two edges joining them. We give these edges opposite orientations. If n is
even, then we retain only one loop at each of the two vertices labeled n

2 . The result
is a directed graph GΓr,Γc on 2(n − 1) vertices. For example, consider the case of
GL5 with Γr = ({1, 2}, {2, 3}, 1 �→ 2, 2 �→ 3) and Γc = ({1, 2}, {3, 4}, 1 �→ 3, 2 �→ 4).
The corresponding graph GΓr,Γc is shown on the left in Figure 3.2. For horizontal
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edges, no direction is indicated, which means that they can be traversed in both
directions. The graph shown on in Figure 3.2 on the right corresponds to the case of
GL8 with Γr = ({2, 6}, {3, 7}, 2 �→ 3, 6 �→ 7) and Γc = ({2, 6}, {1, 5}, 6 �→ 1, 2 �→ 5).

A directed path in GΓr,Γc is called alternating if horizontal and inclined edges
in the path alternate. In particular, an edge is a (trivial) alternating path. An
alternating path with coinciding endpoints and an even number of edges is called an
alternating cycle. Similarly to the decomposition of GΓ into connected components,
we can decompose the edge set of GΓr,Γc into a disjoint union of maximal alternating
paths and alternating cycles. If the resulting collection contains no alternating
cycles, we call the pair (Γr,Γc) aperiodic; clearly, (Γ,Γ) is aperiodic if and only if
Γ is aperiodic. For the graph on the left in Figure 3.2, the corresponding maximal
paths are 412̄3̄14, 323̄2̄, 1̄4̄23, and 4̄1̄ (here vertices in the lower part are marked
with a dash for better visualization). None of them is an alternating cycle, so the
corresponding pair is aperiodic. For the graph on the right in Figure 3.2, the path
623̄5̄267̄1̄6 is an alternating cycle; the edges 1̄7̄ and 5̄3̄ are trivial alternating paths.

1 2 3 4 1 2 3 4 5 6 7

5 6 71 2 3 4 1 2 3 4

Figure 3.2. Alternating paths and cycles in GΓr,Γc

The following result generalizes the first four claims of Theorem 3.2

Theorem 3.3. For any aperiodic pair of oriented Belavin–Drinfeld triples
(Γr,Γc) there exists a cluster structure CΓr,Γc on SLn such that

(i) the number of frozen variables is kΓr+kΓc , and the corresponding exchange
matrix has a full rank;

(ii) CΓr,Γc is regular, and the corresponding upper cluster algebra AC(CΓr,Γc)
is naturally isomorphic to O(SLn).

(iii) the global toric action of (C∗)k
r
Γ+kc

Γ on CΓr,Γc is generated by the action
of HΓr ×HΓc on SLn given by (H1, H2)(X) = H1XH2.

(iv) for any pair of solutions of CYBE that belong to the Belavin–Drinfeld
classes specified by Γr and Γc, the corresponding bracket (2.13) is com-
patible with CΓr,Γc .

Following the approach suggested in [15], we will construct a cluster structure
on the space Matn of n × n matrices and derive the required properties of CΓr,Γc

from similar features of the latter cluster structure. Note that in the case of GLn

we also obtain a regular cluster structure with the same properties, however, in
this case the ring of regular functions on GLn is isomorphic to the localization of
the upper cluster algebra with respect to detX, which is equivalent to replacing
the ground ring by the corresponding localization of the polynomial ring in frozen
variables. In what follows we use the same notation CΓr,Γc for all three cluster
structures and indicate explicitly which one is meant when needed.
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3.2. The basis

Consider connected components of GΓ for an aperiodic Γ. The choice of the
endpoint of a component induces directions of its edges: the first edge is directed
from the endpoint, the second one from the head of the first one, and so on. Note
that for a path with a loop, each edge except for the loop gets two opposite di-
rections. Consequently, the choice of an endpoint of a component defines a matrix
built of blocks curved out from two n × n matrices of indeterminates X = (xij)
and Y = (yij). Each block is defined by a horizontal directed edge, that is, an edge
whose head and tail belong to the same part of the graph. The block corresponding
to a horizontal edge i → (n− i) in the upper part, called an X-block, is the subma-
trix XJ

I with I = [α, n] and J = [1, β], where α = (n− i + 1)− + 1 is the leftmost
point of the X-run containing n − i + 1, and β = i+ is the rightmost point of the
X-run containing i. The entry (n− i+1, 1) is called the exit point of the X-block.
Similarly, the block corresponding to a horizontal edge i → (n−i) in the lower part,

called a Y -block, is the submatrix Y J̄
Ī

with Ī = [1, ᾱ] and J̄ = [β̄, n], where ᾱ = i+
is the rightmost point of the Y -run containing i and β̄ = (n − i + 1)− + 1 is the
leftmost point of the Y -run containing n−i+1. The entry (1, n−i+1) is called the
exit point of the Y -block. In the example shown in Figure 3.1 on the left, the edge

5 → 2 in the upper part defines the X-block X
[1,5]
[1,7] with the exit point (3, 1), the

edge 4 → 3 in the lower part defines the Y -block Y
[3,7]
[1,5] with the exit point (1, 4),

and the edge 1 → 6 in the upper part defines the X-block X
[1,3]
[7,7] with the exit point

(7, 1), see the left part of Figure 3.3 where the exit points of the blocks are circled.

11 12 15
21
31

71 75

X

17

57

1413
23

53

Y

71 73X

17

57

1413
23

53

Y

71 73X

11 12 15
21
31

71 75

X

0

0

Figure 3.3. Blocks and their gluing

The number of directed edges is odd and the blocks of different types alternate;
therefore, if this number equals 4b−1, then there are b blocks of each type. If there
are 4b−3 directed edges, there are b blocks of one type and b−1 blocks of the other
type. By adding at most two dummy blocks with empty sets of rows or columns at
the beginning and at the end of the sequence, we may assume that the number of
blocks of each type is equal, and that the first block is of X-type.

The blocks are glued together with the help of inclined edges whose head and
tail belong to different parts of the graph. An inclined edge i → j directed down-
wards stipulates placing the entry (j, n) of the Y -block defined by j → (n − j)
immediately to the left of the entry (i, 1) of the X-block defined by (n− i) → i. In
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other words, the two blocks are glued in such a way that Δ(α) and Δ̄(ᾱ) = γ(Δ(α))
coincide. Similarly, an inclined edge i → j directed upwards stipulates placing the
entry (n, j) of the X-block defined by j → (n − j) immediately above the entry
(1, i) of the Y -block defined by (n − i) → i. In other words, the two blocks are
glued in such a way that Δ̄(β̄) and Δ(β) = γ∗(Δ̄(β̄)) coincide. Clearly, the exit
points of all blocks lie on the main diagonal of the resulting matrix. For example,
the directed path 5 → 2 → 4 → 3 → 1 → 6 in the BD graph shown in Figure 3.1 on
the left defines the gluing shown in Figure 3.3 on the right. The runs along which
the blocks are glued are shown in bold. The same path traversed in the opposite

direction defines a matrix glued from the blocks X
[1,6]
[1,7] , Y

[3,7]
[1,5] and X

[1,3]
[6,7] .

Given an aperiodic pair (Γr,Γc) and the decomposition of GΓr,Γc into maximal
alternating paths, the blocks are defined in a similar way. To each edge i → (n− i)
in the upper part of GΓr,Γc , assign the block XJ

I with I = [α, n] and J = [1, β],
where α = (n − i + 1)−(Γ

r) + 1 and β = i+(Γ
c) are defined by X-runs exactly as

before except with respect to different BD triples Γr and Γc. Similarly, the block
corresponding to a horizontal edge i → (n − i) in the lower part is the submatrix

Y J̄
Ī

with Ī = [1, ᾱ] and J̄ = [β̄, n], where ᾱ = i+(Γ
r) and β̄ = (n− i+ 1)−(Γ

c) + 1
are defined by Y -runs. These blocks are glued together in the same fashion as
before, except that gluing of a Y -block to an X-block on the left (respectively, at
the bottom) is governed by the row triple Γr (respectively, the column triple Γc).
In what follows, we will call X− and Y−runs corresponding to Γr (respectively, to
Γc) row (respectively, column) runs.

Let L = L(X,Y ) denote the matrix glued from X- and Y -blocks as explained
above. It follows immediately from the construction that if L is defined by an
alternating path i1 → i2 → · · · → i2k then it is a square N(L)×N(L) matrix with

N(L) =
k∑

j=1

i2j−1.

The matrices L defined by all maximal alternating paths in GΓr,Γc form a collection
denoted L = LΓr,Γc (or LΓ if Γr = Γc = Γ). Thus,

(i) each L ∈ L is a square N(L)×N(L) matrix,
(ii) for any 1 ≤ i < j ≤ n, there is a unique pair (L ∈ L, s ∈ [1, N(L)]) such

that Lss = yij , and
(iii) for any 1 ≤ j < i ≤ n, there exists and a unique pair (L ∈ L, s ∈ [1, N(L)])

such that Lss = xij .

We thus have a bijection J = JΓr,Γc between [1, n] × [1, n] \ ∪n
i=1(i, i) and

the set of pairs {(L, s) : L ∈ L, s ∈ [1, N(L)]} that takes a pair (i, j), i �= j, to
(L(i, j), s(i, j)). We then define

(3.1) fij(X,Y ) = detL(i, j)[s(i,j),N(L(i,j))]
[s(i,j),N(L(i,j))], i �= j.

The block of L(i, j) that contains the entry (s(i, j), s(i, j)) is called the leading block
of fij .

Additionally, we define

(3.2) f<ii(X,Y ) = detX
[i,n]
[i,n] , f>ii(X,Y ) = detY

[i,n]
[i,n] .
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The leading block of f<ii is X, and the leading block of f>ii is Y . Note that (3.2)
means that s is extended to the diagonal via s(i, i) = i, while L(i, i) is not defined
uniquely: it might denote either X or Y .

Finally, we put fij(X) = fij(X,X) for i �= j and fii(X) = f<ii(X,X) =
f>ii(X,X), and define

F = FΓr,Γc = {fij(X) : i, j ∈ [1, n]}.

Theorem 3.4. Let (Γr,Γc) be an oriented aperiodic pair of BD triples, then the
family FΓr,Γc forms a log-canonical coordinate system with respect to the Poisson
bracket (2.13) on Matn with r = rr and r′ = rc given by (2.6).

Remark 3.5. A log-canonical coordinate system on SLn with respect to the
same bracket is formed by FΓr,Γc \ {detX}.

Although the construction of the family of functions FΓr,Γc is admittedly ad
hoc, the intuition behind it is given by the collection L = LΓr,Γc that does have an
intrinsic meaning. Recall the observation we previously utilized in [15]: a function
serving as a frozen variable in a cluster structure on a Poisson variety has a property
that it is log-canonical with every cluster variable in every cluster. The vanishing
locus of such a function foliates into a union of non-generic symplectic leaves. On the
other hand, in many examples of Poisson varieties supporting a cluster structure,
the union of generic symplectic leaves forms an open orbit of a certain natural
group action. Thus, it makes sense to select semi-invariants of this group action as
frozen variables. Furthermore, a global toric action on the cluster structure arising
this way can be described in two equivalent ways: it is generated by an action of
a commutative subgroup of the group acting on the underlying Poisson variety or,
alternatively, by Hamiltonian flows generated by the frozen variables.

In our current situation, the group action is determined by the BD data Γr,
Γc. Let dr− and dc− be subalgebras defined in (2.4) that correspond to Γr and
Γc, respectively, and let Dr

− = exp(dr−) and Dc
− = exp(dc−) be the corresponding

subgroups of the double. Consider the action of Dr
− × Dc

− on the double D(GLn)
with Dr

− acting on the left and Dc
− acting on the right.

Proposition 3.6. Let L(X,Y ) ∈ LΓr,Γc . Then

(i) detL(X,Y ) is a semi-invariant of the action of Dr
−×Dc

− described above;
(ii) detL(X,X) is log-canonical with all matrix entries xij with respect to the

Poisson bracket (2.13).

Consequently, we select the subcollection

{detL(X,X) : L ∈ LΓr,Γc} ∪ {detX} ⊂ FΓr,Γc

as the set of frozen variables.

Remark 3.7. The construction of the initial basis of functions outlined above
can be extended to accommodate both non-oriented BD data and a presence of
cycles in the BD graph. To deal with the former, block matrices that constitute
the collection L have to include, in addition to blocks from X and Y , appropriate

blocks from X†, Y † where † denotes the involution X† = w0J
(
XT
)−1

Jw0 with

J = diag((−1)i)ni=1. On the other hand, cycles in the BD graph result in some of
the matrices in L becoming infinite periodic, which makes impossible the use of
trailing principal minors as described above. Necessary adjustments in this case
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are outlined in [17] as an application of a more general construction of generalized
cluster transformations associated with periodic staircase matrices. With this ad-
justments, an appropriately updated version of Theorem 3.3 remains valid for any
BD data. However, the proofs presented below become considerably more involved.
We will present them in separate publications.

3.3. The quiver

Let us choose the family FΓr,Γc as the initial cluster for our cluster structure.
We now define the quiver QΓr,Γc that corresponds to this cluster.

The quiver has n2 vertices labeled (i, j). The function attached to a vertex
(i, j) is fij . Any vertex except for (n, n) is frozen if and only if its degree is at
most three. The vertex (n, n) is never frozen. We will show below that frozen
vertices correspond bijectively to the determinants of the matrices L ∈ L∪{X}, as
suggested by Proposition 3.6.

i,j( )

(i+ ,j1 ) (i+ ,j+1 1)

(i,j+1)

(i− ,j−1 1) (i− ,j1 )

(i,j−1)

Figure 3.4. The neighborhood of a vertex (i, j), 1 < i, j < n

A vertex (i, j) for 1 < i < n, 1 < j < n has degree six, and its neighborhood
looks as shown in Figure 3.4. Here and in what follows, mutable vertices are
depicted by circles, frozen vertices by squares, and vertices of unspecified nature by
ellipsa.

A vertex (1, j) for 1 < j < n can have degree two, three, five, or six. If Γc

stipulates both inclined edges (j − 1) → (k − 1) and j → k in the graph GΓr,Γc

for some k, that is, if γc(k − 1) = j − 1 and γc(k) = j, then the degree of (1, j) in
QΓr,Γc equals six, and its neighborhood looks as shown in Figure 3.5(a).
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If Γc stipulates only the edge (j− 1) → (k− 1) as above but not the other one,
that is, if γc(k − 1) = j − 1 and j /∈ Γc

2, the degree of (1, j) in QΓr,Γc equals five,
and its neighborhood looks as shown in Figure 3.5(b).

If Γc stipulates only the edge j → k as above but not the other one, that is,
if j − 1 /∈ Γc

2 and γc(k) = j, the degree of (1, j) in QΓr,Γc equals three, and its
neighborhood looks as shown in Figure 3.5(c).

Finally, if Γc does not stipulate any one of the above two inclined edges in
GΓr,Γc , that is, if j − 1, j /∈ Γc

2, the degree of (1, j) in QΓr,Γc equals two, and its
neighborhood looks as shown in Figure 3.5(d).

(1 ,j−1)

 ,j+1)2( ,j2( )

(1 ,j−1) (1 1) ,j+

 ,j+1)2( ,j2( )

(1 1) ,j+

 ,j+1)2( ,j2( )

(1 ),j

(c)

 ,j+1)2( ,j2( )

1)

(1 ),j

n,k( )  n,k−(

(b)

1)

(1 ),j

n,k( )  n,k−(

(a)

(1 ),j

(d)

Figure 3.5. Possible neighborhoods of a vertex (1, j), 1 < j < n

Similarly, a vertex (i, 1) for 1 < i < n can have degree two, three, five, or six.
If Γr stipulates both inclined edges (i− 1) → (k− 1) and i → k in the graph GΓr,Γc

for some k, that is, if γr(i − 1) = k − 1 and γr(i) = k, then the degree of (i, 1) in
QΓr,Γc equals six, and its neighborhood looks as shown in Figure 3.6(a).

If Γr stipulates only the edge (i− 1) → (k− 1) as above but not the other one,
that is, if γr(i− 1) = k− 1 and i /∈ Γr

1, the degree of (i, 1) in QΓr,Γc equals five, and
its neighborhood looks as shown in Figure 3.6(b).

If Γr stipulates only the edge i → k as above but not the other one, that is,
if i − 1 /∈ Γr

1 and γr(i) = k, the degree of (i, 1) in QΓr,Γc equals three, and its
neighborhood looks as shown in Figure 3.6(c).

Finally, if Γr does not stipulate any one of the above two inclined edges in
GΓr,Γc , that is, if i − 1, i /∈ Γr

1, the degree of (i, 1) in QΓr,Γc equals two, and its
neighborhood looks as shown in Figure 3.6(d).

A vertex (n, j) for 1 < j < n can have degree four, five, or six. If Γc stipulates
both inclined edges (k − 1) → (j − 1) and k → j in the graph GΓr,Γc for some k,
that is, if γc(j−1) = k−1 and γc(j) = k, then the degree of (n, j) in QΓr,Γc equals
six, and its neighborhood looks as shown in Figure 3.7(a).
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Figure 3.6. Possible neighborhoods of a vertex (i, 1), 1 < i < n

If Γc stipulates only the edge (k− 1) → (j− 1) as above but not the other one,
that is, if γc(j − 1) = k − 1 and j /∈ Γc

1, the degree of (n, j) in QΓr,Γc equals five,
and its neighborhood looks as shown in Figure 3.7(b).

If Γc stipulates only the edge k → j as above but not the other one, that is, if
j − 1 /∈ Γc

1 and γc(j) = k, the degree of (n, j) in QΓr,Γc equals five as well, and its
neighborhood looks as shown in Figure 3.7(c).

Finally, if Γc does not stipulate any one of the above two inclined edges in
GΓr,Γc , that is, if j − 1, j /∈ Γc

1, the degree of (n, j) in QΓr,Γc equals four, and its
neighborhood looks as shown in Figure 3.7(d).

Similarly, a vertex (i, n) for 1 < i < n can have degree four, five, or six. If Γr

stipulates both inclined edges (k − 1) → (i− 1) and k → i in the graph GΓr,Γc for
some k, that is, if γr(k−1) = i−1 and γr(k) = i, then the degree of (i, n) in QΓr,Γc

equals six, and its neighborhood looks as shown in Figure 3.8(a).
If Γr stipulates only the edge (k− 1) → (i− 1) as above but not the other one,

that is, if γr(k − 1) = i − 1 and i /∈ Γr
2, the degree of (i, n) in QΓr,Γc equals five,

and its neighborhood looks as shown in Figure 3.8(b).
If Γr stipulates only the edge k → i as above but not the other one, that is, if

i − 1 /∈ Γr
2 and γr(k) = i, the degree of (i, n) in QΓr,Γc equals five as well, and its

neighborhood looks as shown in Figure 3.8(c).
Finally, if Γr does not stipulate any one of the above two inclined edges in

GΓr,Γc , that is, if i − 1, i /∈ Γr
2, the degree of (i, n) in QΓr,Γc equals four, and its

neighborhood looks as shown in Figure 3.8(d).
The vertex (1, n) can have degree one, two, four, or five. If Γc stipulates an

inclined edge (n− 1) → j for some j, and Γr stipulates an inclined edge i → 1 for
some i, that is, if γc(j) = n − 1 and γr(i) = 1, then the degree of (1, n) in QΓr,Γc

equals five, and its neighborhood looks as shown in Figure 3.9(a).
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Figure 3.7. Possible neighborhoods of a vertex (n, j), 1 < j < n
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Figure 3.8. Possible neighborhoods of a vertex (i, n), 1 < i < n
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If only the first of the above two edges is stipulated, that is, if γc(j) = n − 1
and 1 /∈ Γr

2, the degree of (1, n) in QΓr,Γc equals four, and its neighborhood looks
as shown in Figure 3.9(b).

If only the second of the above two edges is stipulated, that is, if γr(i) = 1 and
n− 1 /∈ Γc

2, the degree of (1, n) in QΓr,Γc equals two, and its neighborhood looks as
shown in Figure 3.9(c).

Finally, if none of the above two edges is stipulated, that is, if 1 /∈ Γr
2 and

n− 1 /∈ Γc
2, the degree of (1, n) in QΓr,Γc equals one, and its neighborhood looks as

shown in Figure 3.9(d).

) ,n1(

(n,j )(n,j )

) ,n1(

(a)

) ,n2( 1,1)i+(

) ,n1(

) ,n2(

) ,n1(

) ,n2( 1,1)i+(

(c)

(b)

1)

) ,n2(

(1, n−

( 1)j+n,

1)(1, n−

( 1)j+n,

(d)

Figure 3.9. Possible neighborhoods of the vertex (1, n)

Similarly, the vertex (n, 1) can have degree one, two, four, or five. If Γr stip-
ulates an inclined edge (n− 1) → j for some j, and Γc stipulates an inclined edge
i → 1 for some i, that is, if γr(n − 1) = j and γc(1) = i, then the degree of (n, 1)
in QΓr,Γc equals five, and its neighborhood looks as shown in Figure 3.10(a).

If only the first of the above two edges is stipulated, that is, if γr(n − 1) = j
and 1 /∈ Γc

1, the degree of (n, 1) in QΓr,Γc equals four, and its neighborhood looks
as shown in Figure 3.10(b).

If only the second of the above two edges is stipulated, that is, if γc(1) = i and
n− 1 /∈ Γr

1, the degree of (n, 1) in QΓr,Γc equals two, and its neighborhood looks as
shown in Figure 3.10(c).

Finally, if none of the above two edges is stipulated, that is, if 1 /∈ Γc
1 and

n− 1 /∈ Γr
1, the degree of (n, 1) in QΓr,Γc equals one, and its neighborhood looks as

shown in Figure 3.10(d).
The vertex (n, n) can have degree three, four, or five. If Γr stipulates an inclined

edge i → (n−1) for some i, and Γc stipulates an inclined edge j → (n−1) for some
j, that is, if γr(i) = n − 1 and γc(n − 1) = j, then the degree of (n, n) in QΓr,Γc

equals five, and its neighborhood looks as shown in Figure 3.11(a).
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Figure 3.10. Possible neighborhoods of the vertex (n, 1)

If only one of the above two edges is stipulated, that is, if either γr(i) = n− 1
and n − 1 /∈ Γc

1, or γc(n − 1) = j and n − 1 /∈ Γr
2, the degree of (n, n) in QΓr,Γc

equals four, and its neighborhood looks as shown in Figure 3.11(b,c).
Finally, if none of the above two edges is stipulated, that is, if n− 1 /∈ Γc

1 and
n− 1 /∈ Γr

2, the degree of (n, n) in QΓr,Γc equals three, and its neighborhood looks
as shown in Figure 3.11(d).

Finally, the vertex (1, 1) can have degree one, two, or three. If Γr stipulates an
inclined edge 1 → i for some i, and Γc stipulates an inclined edge 1 → j for some j,
that is, if γr(1) = i and γc(j) = 1, then the degree of (1, 1) in QΓr,Γc equals three,
and its neighborhood looks as shown in Figure 3.12(a).

If only one of the above two edges is stipulated, that is, if either γr(1) = i and
1 /∈ Γc

2, or γ
c(j) = 1 and 1 /∈ Γr

1, the degree of (1, 1) in QΓr,Γc equals two, and its
neighborhood looks as shown in Figure 3.12(b,c).

If none of the above two edges is stipulated, that is, if 1 /∈ Γc
2 and 1 /∈ Γr

1,
the degree of (1, 1) in QΓr,Γc equals one, and its neighborhood looks as shown in
Figure 3.12(d).

We can now prove the characterization of frozen vertices mentioned at the
beginning of the section.

Proposition 3.8. A vertex (i, j) is frozen in QΓr,Γc if and only if i = j = 1
and f11 = detX or fij is the restriction to the diagonal X = Y of detL for some
L ∈ LΓr,Γc .

Proof. It follows from the description of the quiver that there are two types
of frozen vertices distinct from (1, 1): vertices (1, j) such that j − 1 /∈ Γc

2, see
Figure 3.5(c),(d) and Figure 3.9(c),(d), and vertices (i, 1) such that i− 1 /∈ Γr

1, see
Figure 3.6(c),(d) and Figure 3.10(c),(d).
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In the first case, the horizontal edge (n − j + 1) → (j − 1) in the lower part
of GΓr,Γc is the last edge of a maximal alternating path. Therefore, the Y -block
defined by this edge is the uppermost block of the matrix L corresponding to this
path. Consequently, β̄ = j−(Γ

c
2) + 1 = j, and hence (1, j) is indeed the upper left

entry of L.
The second case is handled in a similar manner. �

The quiver QΓr,Γc shown in Figure 3.13 corresponds to the BD data Γr =
({1, 2}, {2, 3}, 1 �→ 2, 2 �→ 3) and Γc = ({1, 2}, {3, 4}, 1 �→ 3, 2 �→ 4) in GL5. The
corresponding graph GΓr,Γc is shown on the left in Figure 3.2. For example, consider
the vertex (1, 4) and note that GΓr,Γc contains both edges 4̄ → 2 and 3̄ → 1.
Consequently, the first of the above conditions for the vertices of type (1, j) holds
with k = 2, and hence (1, 4) has outgoing edges (1, 4) → (5, 2), (1, 4) → (2, 5), and
(1, 4) → (1, 3), and ingoing edges (5, 1) → (1, 4), (1, 5) → (1, 4), and (2, 4) → (1, 4).
Alternatively, consider the vertex (4, 5) and note that GΓr,Γc contains the edge 2 →
3̄, while 4 /∈ Γr

2. Consequently, the second of the above conditions for the vertices of
type (j, n) holds with k = 3, and hence (4, 5) has outgoing edges (4, 5) → (4, 4) and
(4, 5) → (3, 5) and ingoing edges (3, 4) → (4, 5), (3, 1) → (4, 5), and (5, 5) → (4, 5).

Figure 3.13. An example of the quiver QΓr,Γc

Theorem 3.9. Let (Γr,Γc) be an oriented aperiodic pair of BD triples, then
the quiver QΓr,Γc defines a cluster structure compatible with the Poisson bracket
(2.13) on Matn with r = rr and r′ = rc given by (2.6).

Remark 3.10.

(i) The quiver that defines a cluster structure compatible with the same
bracket on SLn is obtained from QΓr,Γc by deleting the vertex (1, 1).
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(ii) It follows immediately from the description above that the quiver QΓr,Γc

defined by an oriented aperiodic pair of BD triples (Γr,Γc) can be em-
bedded into an orientable surface. This is not true for non-oriented BD
triples. The simplest example is given by the BD data

Γ = ({1, 2}, {3, 4}, 1 �→ 4, 2 �→ 3) in GL5.

In this case the corresponding quiver can be embedded into the projective
plane, see [4] for details.

3.4. Outline of the proof

The proof of Theorem 3.4 is based on lengthy and rather involved calculations.
Following the strategy introduced in [15], we consider the bracket (2.14) on the
Drinfeld double of SLn and lift it to a bracket on Matn ×Matn. The family FΓr,Γc

is obtained as the restriction onto the diagonal X = Y of the family FΓr,Γc of
functions defined on Matn ×Matn via

f = fΓr,Γc = {fij(X,Y ) : i, j ∈ [1, n], i �= j} ∪ {f<ii(X,Y ), f>ii(X,Y ) : i ∈ [1, n]},
see (3.1), (3.2). The bracket of a pair of functions f, g ∈ FΓr,Γc is decomposed
into a large number of contributions that either vanish, or are proportional to the
product fg. In the process we repeatedly use invariance properties of functions in
FΓr,Γc with respect to the right and left action of certain subgroups of the double.

The proof of Theorem 3.9 is based on the standard characterization of Poisson
structures compatible with a given cluster structure, see e.g., [12, Chapter 4]. Note
that the number of frozen variables in QΓr,Γc equals 1 + kΓr + kΓc , and that detX
is frozen. As an immediate consequence we get Theorem 3.3(i), which for Γr = Γc

turns into Theorem 3.2(i).
The proof of Theorem 3.3(iii) is based on the claim that right hand sides of

all exchange relations in one cluster are semi-invariants of the left-right action of
HΓr × HΓc , see Lemma 6.2. It also involves the regularity check for all clusters
adjacent to the initial one, see Theorem 6.1. Theorem 3.2(iii) follows when Γr =
Γc. After this is done, Theorem 3.2(iv) and (v) follow from Theorem 3.9 via
[13, Theorem 4.1]. To get Theorem 3.3(iv) we need a generalization of the latter
result to the case of two different tori, which is straightforward.

The central part of the paper is the proof of Theorem 3.3(ii) (Theorem 3.2(ii)
then follows in the case Γr = Γc). It relies on [15, Proposition 2.1], which is
reproduced below for readers’ convenience.

Proposition 3.11. Let V be a Zariski open subset in Cn+m and C be a cluster
structure in C(V ) with n cluster and m frozen variables such that

(i) there exists a cluster (f1, . . . , fn+m) in C such that fi is regular on V for
i ∈ [1, n+m];

(ii) any cluster variable f ′
k adjacent to fk, k ∈ [1, n], is regular on V ;

(iii) any frozen variable fn+i, i ∈ [1,m], vanishes at some point of V ;
(iv) each regular function on V belongs to AC(C).

Then C is a regular cluster structure and AC(C) is naturally isomorphic to O(V ).

Conditions (i) and (iii) are established via direct observation, and condition
(ii) was already discussed above. Therefore, the main task is to check condition
(iv). Note that Theorem 3.3(i) and [16, Theorem 3.11] imply that it is enough to
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check that every matrix entry can be written as a Laurent polynomial in the initial
cluster and in any cluster adjacent to the initial one. In [15] this goal was achieved
by constructing two distinguished sequences of mutations. Here we suggest a new
approach: induction on the total size |Γr

1|+ |Γc
1|. Let Γ̃ be the BD triple obtained

from Γ by removing a certain root α from Γ1 and the corresponding root γ(α) from
Γ2. Given an oriented aperiodic pair (Γr,Γc) with |Γr

1| > 0, we choose α to be
the rightmost root in an arbitrary nontrivial row X-run Δr and define an oriented
aperiodic pair (Γ̃r,Γc). Since the total size of this pair is smaller, we assume that

C̃ = CΓ̃r,Γc possesses the above mentioned Laurent property. Recall that both C and

C̃ are cluster structures on the space of regular functions on Matn. To distinguish
between them, the matrix entries in the latter are denoted zij ; they form an n× n
matrix Z = (zij).

Let F = {fij(X): i, j ∈ [1, n]} and F̃ = {f̃ij(Z): i, j ∈ [1, n]} be initial clusters

for C and C̃, respectively, and Q and Q̃ be the corresponding quivers. It is easy to
see that all maximal alternating paths in GΓr,Γc are preserved in GΓ̃r,Γc except for

the path that goes through the directed inclined edge α → γr(α). The latter one
is split into two: the initial segment up to the vertex α and the closing segment
starting with the vertex γr(α). Consequently, the only difference between Q and

Q̃ is that the vertex v = (α + 1, 1) that corresponds to the endpoint of the initial

segment is mutable in Q and frozen in Q̃, and that certain three edges incident to
v in Q do not exist in Q̃.

Let us consider four fields of rational functions in n2 independent variables:

X = C(x11, . . . , xnn),Z = C(z11, . . . , znn),

F = C(ϕ11, . . . , ϕnn), and F̃ = C(ϕ̃11, . . . , ϕ̃nn).

Polynomial maps f : F → X and f̃ : F̃ → Z are given by ϕij �→ fij(X) and

ϕ̃ij �→ f̃ij(Z). By the induction hypothesis, there exists a map P̃ : Z → F̃
that takes zij to a Laurent polynomial in variables ϕ̃αβ such that f̃ ◦ P̃ = Id.

Note that the polynomials f̃ij(Z) are algebraically independent, and hence f̃ is an

isomorphism. Consequently, P̃ ◦ f̃ = Id as well. Our first goal is to build a map
P : X → F that takes xij to a Laurent polynomial in variables ϕαβ and satisfies
condition f ◦ P = Id.

We start from the following result.

Theorem 3.12. There exist a field isomorphism U : X → Z and an invertible
polynomial map T : F → F̃ satisfying the following conditions:

(a) f̃ ◦ T = U ◦ f ;
(b) the denominator of any U(xij) is a power of f̃v(Z);
(c) the inverse of T is a monomial transformation.

Put P = T−1 ◦ P̃ ◦ U ; it is a map X → F , and by a) and the induction
hypothesis,

P ◦ f = T−1 ◦ P̃ ◦ U ◦ f = T−1 ◦ P̃ ◦ f̃ ◦ T = T−1 ◦ T = Id.

For the same reason as above this yields f ◦ P = Id. Let us check that P takes xij

to a Laurent polynomial in variables ϕαβ . Indeed, by b), U takes xij into a rational

expression whose denominator is a power of f̃v(Z). Consequently, by the induction

hypothesis, P̃ takes the numerator of this expression to a Laurent polynomial in
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ϕ̃αβ, and the denominator to a power of ϕ̃v. As a result, P̃ ◦ U takes xij to a
Laurent polynomial in ϕ̃αβ. Finally, by c), T−1 takes this Laurent polynomial to a
Laurent polynomial in ϕαβ, and hence P as above satisfies the required conditions.

The next goal is to implement a similar construction at all adjacent clus-
ters. Fix an arbitrary mutable vertex u �= v in Q; as it was explained above,
u remains mutable in Q̃ as well. Let μu(F ) and μu(F̃ ) be the clusters obtained

from F and F̃ , respectively, via the mutation in direction u, and let f ′
u(X) and

f̃ ′
u(Z) be cluster variables that replace fu(X) and f̃u(Z) in μu(F ) and μu(F̃ ).
Replace variables ϕu and ϕ̃u by new variables ϕ′

u and ϕ̃′
u and define two addi-

tional fields of rational functions in n2 variables: F ′ = C(ϕ11, . . . , ϕ
′
u, . . . , ϕnn) and

F̃ ′ = C(ϕ̃11, . . . , ϕ̃
′
u, . . . , ϕ̃nn). Similarly to the situation discussed above, there

are polynomial isomorphisms f ′ : F ′ → X and f̃ ′ : F̃ ′ → Z and a Laurent map
P̃ ′ : Z → F̃ ′ such that f̃ ′ ◦ P̃ ′ = Id (the latter exists by the induction hypothesis).

We define a map T ′ : F ′ → F̃ ′ via T ′(ϕij) = T (ϕij) for (i, j) �= u and T ′(ϕ′
u) =

ϕ̃′
uϕ̃

λu
v for some integer λu and prove that maps U and T ′ satisfy the analogs of

conditions a)–c) above. Consequently, the map P ′ = (T ′)−1 ◦ P̃ ′ ◦U takes each xij

to a Laurent polynomial in ϕ11, . . . , ϕ
′
u, . . . , ϕnn and satisfies condition P ′◦f ′ = Id.

Thus, we proved that every matrix entry can be written as a Laurent polynomial
in the initial cluster F of CΓr,Γc and in any cluster μu(F ) adjacent to it, except
for the cluster μv(F ). To handle this remaining cluster, we pick a different α:
the rightmost root in another nontrivial row X-run (if there are other nontrivial
row X-runs), or the leftmost root of the same row X-run (if it differs from the
rightmost root), or the rightmost root of an arbitrary nontrivial column X-run and

an aperiodic pair (Γr, Γ̃c) (if |Γc
1| > 0), and proceed in the same way as above.

Namely, we prove the existence of the analogs of the maps U and T satisfying
conditions a)–c) above with a different distinguished vertex v. Consequently, μv(F )
is now covered by the above reasoning about adjacent clusters.

Similarly, if the initial pair (Γr,Γc) satisfies |Γc
1| > 0, we apply the same strategy

starting with column X-runs. It follows from the above description that the only
case that cannot be treated in this way is |Γr

1| + |Γc
1| = 1. It is considered as the

base of induction and treated via direct calculations.
We thus obtain an analog of Theorem 3.3(ii) for the cluster structure CΓr,Γc on

Matn. The sought-for statement for the cluster structure on SLn follows from the
fact that both AC(CΓr,Γc) and O(SLn) are obtained from their Matn counterparts
via the restriction to detX = 1.
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CHAPTER 4

Initial basis

The goal of this chapter is the proof of Theorem 3.4. In [15], where the corre-
sponding statement was proved for the case of the Cremmer–Gervais Poisson–Lie
bracket, we were able to rely on the fact that all functions in the initial basis were
realized as minors of the same block matrix. Thus, the proof of log-canonicity, while
still rather cumbersome, was essentially reduced to a direct calculation. In the case
of BD data of arbitrary complexity, such approach becomes untenable. Therefore,
the proof below hinges on a number of observations exploiting the combinatorics
of matrices in the family L and, most importantly, the invariance properties of
functions of the initial basis (cf. (4.11) and (4.12)).

4.1. The bracket

In this paper, we only deal with g = sln, and hence gΓ1
and gΓ2

are subalgebras
of block-diagonal matrices with nontrivial traceless blocks determined by nontrivial
runs of Γ1 and Γ2, respectively, and zeros everywhere else. Each diagonal compo-
nent is isomorphic to slk, where k is the size of the corresponding run. Formula
(2.13), where R+ = Rc

+ and R′
+ = Rr

+ are given by (2.9) with S skew-symmetric
and subject to conditions (2.10), defines a Poisson bracket on G = SLn. It will be
convenient to write down an extension of the bracket (2.14) to the double D(GLn)
such that its restriction to the diagonal X = Y is an extension of (2.13) to GLn

(for brevity, in what follows we write {·, ·}D instead of {·, ·}Dr,r′).
To provide an explicit expression for such an extension, we extend the maps

γ and γ∗ to the whole gln. Namely, γ is re-defined as the projection from gln

onto the union of diagonal blocks specified by Γ1, which are then moved by the
Lie algebra isomorphism between gΓ1

and gΓ2
to corresponding diagonal blocks

specified by Γ2. Similarly, the adjoint map γ∗ acts as the projection to gΓ2
followed

by the Lie algebra isomorphism that moves each diagonal block of gΓ2
back to the

corresponding diagonal block of gΓ1
. Consequently,

(4.1)
γ∗γ = ΠΓ1

, γγ∗ = ΠΓ2
,

γγ∗γ = γ, γ∗γγ∗ = γ∗,

where ΠΓ1
is the projection to gΓ1

and ΠΓ2
is the projection to gΓ2

. Note that the
restriction of γ to gΓ1

is nilpotent, and hence 1− γ is invertible on the whole gln.
We now view π>, π< and π0 as projections to the upper triangular, lower

triangular and diagonal matrices, respectively. Additionally, define π≥ = π> + π0,
π≤ = π< + π0 and for any square matrix A write A>, A<, A0, A≥, A≤ instead of
π>A, π<A, π0A, π≥A, π≤A, respectively. Finally, define operators ∇X and ∇Y via

∇Xf =

(
∂f

∂xji

)n

i,j=1

, ∇Y f =

(
∂f

∂yji

)n

i,j=1

,

29
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and operators

EL = ∇XX +∇Y Y, ER = X∇X + Y∇Y ,

ξL = γc(∇XX) +∇Y Y, ξR = X∇X + γr∗(Y∇Y ),

ηL = ∇XX + γc∗(∇Y Y ), ηR = γr(X∇X) + Y∇Y

via ELf = ∇Xf ·X +∇Y f · Y , ERf = X∇Xf + Y∇Y f , and so on. The following
simple relations will be used repeatedly in what follows:

(4.2)

1

1− γc
EL = ∇XX +

1

1− γc
ξL,

1

1− γr
ER = X∇X +

1

1− γr
ηR,

1

1− γc∗EL = ∇Y Y +
1

1− γc∗ ηL,
1

1− γr∗ER = Y∇Y +
1

1− γr∗ ξR,

ηL = γc∗(ξL) + ΠΓ̂c
1
(∇XX), ηR = γr(ξR) + ΠΓ̂r

2
(Y∇Y ),

where ΠΓ̂l
j
is the orthogonal projection complementary to ΠΓl

j
for j = 1, 2, l = r, c.

The statement below is a generalization of [15, Lemma 4.1].

Theorem 4.1. The bracket (2.14) on the double D(GLn) is given by

(4.3) {f1, f2}D(X,Y ) =
〈
Rc

+(ELf
1), ELf

2
〉
−
〈
Rr

+(ERf
1), ERf

2
〉

+
〈
X∇Xf1, Y∇Y f

2
〉
−
〈
∇Xf1 ·X,∇Y f

2 · Y
〉
,

where

(4.4) Rl
+(ζ) =

1

1− γl
ζ≥ − γl∗

1− γl∗ ζ<

− 1

2

(
γl

1− γl
+

1

1− γl∗

)
ζ0 −

1

n

(
Tr(ζ)Sl − Tr

(
ζSl
)
1
)

with

Sl =
1

2

(
1

1− γl
− 1

1− γl∗

)
1

for l = r, c.

Proof. We need to “tweak” R+ to extend the bracket (2.13) to GLn in such
a way that the function det is a Casimir function. This is guaranteed by requiring
that R+ is extended to an operator on gln which coincides with the one given by
(2.9) on sln and for which 1 ∈ gln is an eigenvector. The latter goal can be achieved
by replacing (2.9) with

(4.5) R+ =
1

1− γ
π> − γ∗

1− γ∗ π< +
1

2
π0 + π∗Sππ0,

where π is the projection to the space of traceless diagonal matrices given by π(ζ) =
ζ− 1

n Tr(ζ)1, π∗ is the adjoint to π with respect to the restriction of the trace form
to the space of diagonal matrices in gln, and S is an operator on this space which
is skew-symmetric with respect to the restriction of the trace form and satisfies
(2.10).

The operator S in (4.5) can be selected as follows.

Lemma 4.2. The operator

(4.6) S =
1

2

(
1

1− γ
− 1

1− γ∗

)
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with γ, γ∗ understood as acting on the space of diagonal matrices in gln is skew-
symmetric with respect to the restriction of the trace form to this space and satisfies
(2.10).

Proof. Rewrite (4.6) as

S =
1

2

1 + γ

1− γ
− 1

2

(
γ

1− γ
+

1

1− γ∗

)
.

The first term above clearly satisfies (2.10). The second term, multiplied by (1−γ)
on the right, becomes

−1

2

(
γ +

1

1− γ∗ (1− γ)

)
= −1

2

1

1− γ∗ (1− γ∗γ)

and vanishes on hΓ1
⊂ h spanned by hα, α ∈ Γ1. �

We can now compute

π∗Sπ(ζ0) = S(ζ0)−
1

n
(Tr(ζ)S(1) + Tr(S(ζ0))1)

= S(ζ0)−
1

n
(Tr(ζ)S(1)− Tr(ζS(1))1)

and plug into (4.5) taking into account (4.6), which gives (4.4). Expression (4.3) is
obtained from (2.5) in the same way as [15, formula (4.2)]. �

4.2. Handling functions in F

It will be convenient to carry out all computations in the double with functions
in fΓr,Γc , and to retrieve the statements for FΓr,Γc via the restriction to the diagonal.

Recall that matrices L used for the definition of the collection fΓr,Γc are built
from X- and Y -blocks, see Section 3.2. We will frequently use the following com-
parison statement, which is an easy consequence of the definitions, see Figure 4.1.

Proposition 4.3. Let XJ
I , X

J′

I′ be two X-blocks and Y J̄
Ī
, Y J̄′

Ī′ be two Y -blocks.

(i) If β′ < β (respectively, α′ > α) then XJ′

I′ fits completely inside XJ
I ; in

particular, α′ ≥ α (respectively, β′ ≤ β).

(ii) If β̄′ > β̄ (respectively, ᾱ′ < ᾱ) then Y J̄′

Ī′ fits completely inside Y J̄
Ī
; in

particular, ᾱ′ ≤ ᾱ (respectively, β̄′ ≥ β̄).

α

β

α

β

β

α

β

X

Y

α

Figure 4.1. Fitting of X- and Y -blocks
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Consider a matrix L defined by a maximal alternating path in GΓr,Γc . Let
us number the X-blocks along the path consecutively, so that the tth X-block is
denoted XJt

It
. In a similar way we number the Y -blocks, so that the tth Y -block is

denoted Y J̄t

Īt
. The glued blocks form a matrix L so that LLt

Kt
= XJt

It
and LL̄t

K̄t
= Y J̄t

Īt
,

which we write as

(4.7) L =
s∑

t=1

XJt→Lt

It→Kt
+

s∑
t=1

Y J̄t→L̄t

Īt→K̄t
.

According to the agreement above, if the tth X-block is non-dummy, then the
tth Y -block lies immediately to the left of it, and if the tth Y -block is non-dummy,
then the (t + 1)-th X-block lies immediately above it. In more detail, all Kt’s
are disjoint, and the same holds for all K̄t’s; moreover, Kt ∩ K̄t−1 = ∅. If both
tth blocks are not dummy, put Φt = Kt ∩ K̄t. Then Φt �= ∅ corresponds to the
nontrivial row runs Δ(αt) and Δ̄(ᾱt) = γr(Δ(αt)) along which the two blocks
are glued. Consequently, Φt is the uppermost segment in Kt and the lowermost
segment in K̄t. If the first block is a dummy X-block and Δ̄(ᾱ1) is a nontrivial
row Y -run, define Φ1 as the set of rows corresponding to Δ̄(ᾱ1); if this Y -run is
trivial, put Φ1 = ∅. Similarly, if the last block is a dummy Y -block and Δ(αs) is a
nontrivial row X-run, define Φs as the set of rows corresponding to Δ(αs) and put
Īs = γr(Δ(αs)); if this X-run is trivial, put Φs = ∅. We put K1 = Φ1 for a dummy
first X-block and K̄s = Φs for a dummy last Y -block to keep relation Φt = Kt∩ K̄t

valid for dummy blocks as well.

Ψt

tK −1

tΦ
tK Lt

Lt−1

Lt
tK

X

Y

Y

Figure 4.2. The structure of L

Further, all Lt are disjoint, and the same holds for all L̄t’s; moreover, Lt∩ L̄t =
∅. For 2 ≤ t ≤ s, put Ψt = Lt ∩ L̄t−1, then Ψt �= ∅ corresponds to the nontrivial
column runs Δ̄(β̄t−1) and Δ(βt) = γc∗(Δ̄(β̄t−1)). Consequently, Ψt is the rightmost
segment in Lt and the leftmost segment in L̄t−1. If the first block is a non-dummy
X-block and Δ(β1) is a nontrivial column X-run, define Ψ1 as the set of columns
corresponding to Δ(β1); if this X-run is trivial, or the block is dummy, define
Ψ1 = ∅. Similarly, if the last block is a non-dummy Y -block and Δ̄(β̄s) is a
nontrivial column Y -run, define Ψs+1 as the set of columns corresponding to Δ̄(β̄s)
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and put Js+1 = γc∗(Δ̄(β̄s)) (note that Js+1 does not correspond to any X-block
of L); if this Y -run is trivial, or the block is dummy, define Ψs+1 = ∅. We put
L̄0 = Ψ1 and Ls+1 = Ψs+1 to keep relation Ψt = Lt ∩ L̄t−1 valid for 1 ≤ t ≤ s+ 1.
The structure of the obtained matrix L is shown in Figure 4.2.

It follows from (4.7) that the gradients ∇Xg and ∇Y g of a function g = g(L)
can be written as

(4.8) ∇Xg =
s∑

t=1

(∇Lg)
Kt→It
Lt→Jt

, ∇Y g =
s∑

t=1

(∇Lg)
K̄t→Īt
L̄t→J̄t

.

Note that unlike (4.7), the blocks in (4.8) may overlap.
Direct computation shows that for I = [α, n], J = [1, β], Ī = [1, ᾱ], J̄ = [β̄, n]

one has

(4.9) X(∇Lg)
K→I
L→J =

[
0 ∗
0 XJ

I (∇Lg)
K
L

]
, Y (∇Lg)

K̄→Ī
L̄→J̄ =

[
Y J̄
Ī
(∇Lg)

K̄
L̄

0
∗ 0

]
.

Here and in what follows we denote by an asterisk parts of matrices that are not
relevant for further considerations. Note that the square block XJ

I (∇Lg)
K
L is the

diagonal block defined by the index set I, whereas the square block Y J̄
Ī
(∇Lg)

K̄
L̄

is

the diagonal block defined by the index set Ī.
Similarly, for I, J , Ī, J̄ as above,

(4.10)

(∇Lg)
K→I
L→J ·X =

[
(∇Lg)

K
L ·XJ

I ∗
0 0

]
, (∇Lg)

K̄→Ī
L̄→J̄ · Y =

[
0 0

∗ (∇Lg)
K̄
L̄
· Y J̄

Ī

]
,

and the corresponding square blocks are diagonal blocks defined by the index sets
J and J̄ , respectively.

Let N+, N− ∈ GLn be arbitrary unipotent upper- and lower-triangular ele-
ments and T1, T2 ∈ H be arbitrary diagonal elements. It is easy to see that the
structure of X- and Y -blocks as defined in Section 3.2 and the way they are glued
together, as shown in Figure 4.2, imply that for any f ∈ FΓr,Γc one has

(4.11) f (N+X, exp(γr)(N+)Y ) = f (X exp(γc∗)(N−), Y N−) = f(X,Y )

and

(4.12) f ((T1X exp(γc∗)(T2), exp(γ
r)(T1)Y T2) = ac(T1)a

r(T2)f(X,Y ),

where ac(T1) and ar(T2) are constants depending only on T1 and T2, respectively.
It will be more convenient to work with the logarithms of the functions f ∈

FΓr,Γc , instead of the functions f themselves. The corresponding infinitesimal form
of the invariance properties (4.11) and (4.12) reads: for any f ∈ FΓr,Γc ,

(4.13) 〈ξRg, n+〉 = 〈ξLg, n−〉 = 0

and

(4.14) (ξLg)0 = const, (ξRg)0 = const

with g = log f. Additional invariance properties of the functions in FΓr,Γc are given
by the following statement.

Lemma 4.4. For any f ∈ FΓr,Γc , any X-run Δ and any Y -run Δ̄,

Tr(∇Xg ·X)ΔΔ = const, Tr(X∇Xg)ΔΔ = const,

Tr(∇Y g · Y )Δ̄Δ̄ = const, Tr(Y∇Y g)
Δ̄
Δ̄ = const
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with g = log f.

Proof. Consider for example the second equality above. Let 1Δ denote the
diagonal n×nmatrix whose entry (j, j) equals 1 if j ∈ Δ and 0 otherwise. Condition
Tr(X∇Xg)ΔΔ = aΔ for an integer constant aΔ is the infinitesimal version of the
equality

(4.15) f((1n + (z − 1)1Δ)X,Y ) = zaΔf(X,Y ).

To establish the latter, recall that f(X,Y ) is a principal minor of a matrix
L ∈ L. Clearly, f((1n+(z−1)1Δ)X,Y ) represents the same principal minor in the

matrix L(z) obtained from L via multiplying by z every submatrix LLt

Rt
such that the

row set Rt corresponds to the X-run Δ. There are two types of such submatrices:
those for which Rt lies strictly below Φt and those for which Rt coincides with Φt

(the latter might happen only when the run X is nontrivial). To perform the above
operation on each submatrix of the first type it suffices to multiply L on the left
by the diagonal matrix having z in all positions corresponding to Rt and 1 in all
other positions. To handle a submatrix of the second type, we multiply by z all
rows of L starting from the first one and ending at the lowest row in K̄t, and divide
by z all columns starting from the first one and ending at the rightmost column in
L̄t, see Figure 4.2. Clearly, this is equivalent to the left multiplication of L by a
diagonal matrix whose entries are either z or 1 and the right multiplication of L by
a diagonal matrix whose entries are either z−1 or 1. Consequently, every principal
minor of L(z) is an integer power of z times the corresponding minor of L, and
(4.15) follows.

A similar reasoning shows that the remaining three equalities in the statement
of the lemma hold as well. �

Furthermore, the following statement holds true.

Lemma 4.5. For any f ∈ FΓr,Γc ,

(4.16)
ΠΓ̂l

1
(∇Xg ·X)0 = const, ΠΓ̂l

1
(X∇Xg)0 = const,

ΠΓ̂l
2
(∇Y g · Y )0 = const, ΠΓ̂l

2
(Y∇Y g)0 = const

with g = log f and l = c, r.

Proof. Same as in the proof of Lemma 4.4, we will only focus on the second
equality in (4.16), since the other three can be treated in a similar way.

For any diagonal matrix ζ we have

(4.17) ΠΓ̂l
1
(ζ) =

∑
Δ

1

|Δ| Tr(ζ
Δ
Δ )1Δ,

where the sum is taken over all X-runs. Let ζ = (X∇Xg)0, then by Lemma 4.4 all
terms in the sum above are constant. �

Corollary 4.6.

(i) For any f ∈ FΓr,Γc ,

(4.18)
Tr(∇Xg ·X) = const, Tr(X∇Xg) = const,

Tr(∇Y g · Y ) = const, Tr(Y∇Y g) = const

with g = log f.
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(ii) For any f ∈ FΓr,Γc ,

(4.19) (ηLg)0 = const, (ηRg)0 = const

with g = log f.

Proof.

(i) Follows immediately form Lemma 4.5 and equality Tr ζ = TrΠΓ̂l
1
(ζ) =

TrΠΓ̂l
2
(ζ) for any ζ and l = c, r.

(ii) Follows immediately form Lemma 4.5 and (4.14) via the last two relations
in (4.2).

�

4.3. Proof of Theorem 3.4: First steps

Theorem 3.4 is an immediate corollary of the following result.

Theorem 4.7. For any f1, f2 ∈ FΓr,Γc , the bracket {log f1, log f2}D is constant.

The proof of the theorem is given in this and the following sections. It comprises
a number of explicit formulas for the objects involved.

4.3.1. Explicit expression for the bracket. Let us derive an explicit ex-
pression for {log f1, log f2}D. To indicate that an operator is applied to a function
log fi, i = 1, 2, we add i as an upper index of the corresponding operator, so that

∇1
XX = ∇X log f1 ·X, E2

L = EL log f2,

etc.
Let

(4.20) R0(ζ) = −1

2

(
γ

1− γ
+

1

1− γ∗

)
ζ0 −

1

n
(Tr(ζ)S− Tr (ζS)1) ,

for ζ ∈ gln, cf. (4.4); clearly, R0(ζ) is a diagonal matrix.

Proposition 4.8. For any f1, f2 ∈ FΓr,Γc ,

{log f1, log f2}D(4.21)

=
〈
Rc

0(E
1
L), E

2
L

〉
−
〈
Rr

0(E
1
R), E

2
R

〉
+

〈
(ξ1L)0,

1

1− γc∗ (η
2
L)0

〉
−
〈
(η1R)0,

1

1− γr∗ (ξ
2
R)0

〉
+
〈
ΠΓ̂c

2
(ξ1L)0,ΠΓ̂c

2
(∇2

Y Y )0

〉
−
〈
(η1L)<, (η

2
L)>
〉
−
〈
(η1R)≥, (η

2
R)≤
〉

+
〈
γc∗(ξ1L)≤, γ

c∗(∇2
Y Y )
〉
+
〈
γr(ξ1R)≥, γ

r(X∇2
X)
〉
.

Proof. First, it follows from Theorem 4.1 that

(4.22) {log f1, log f2}D =
〈
Rc

+(E
1
L)−∇1

XX,E2
L

〉
−
〈
Rr

+(E
1
R)−X∇1

X , E2
R

〉
.

By (4.2) and (4.20),

Rc
+(E

1
L)−∇1

XX = Rc
0(E

1
L) +

1

1− γc
(ξ1L)≥ − 1

1− γc∗ (η
1
L)<

= Rc
0(E

1
L) +

1

1− γc
(ξ1L)0 −

1

1− γc∗ (η
1
L)<;



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

36 4. INITIAL BASIS

the second equality holds since ξ1L ∈ b− by (4.13). Similarly,

(4.23)

Rr
+(E

1
R)−X∇1

X = Rr
0(E

1
R) +

1

1− γr
(η1R)≥ − 1

1− γr∗ (ξ
1
R)<

= Rr
0(E

1
R) +

1

1− γr
(η1R)≥;

the second equality holds since ξ1R ∈ b+ by (4.13).
Consequently, the first term in (4.22) is equal to

(4.24)
〈
Rc

0(E
1
L), E

2
L

〉
+

〈
1

1− γc
(ξ1L)0, E

2
L

〉
−
〈

1

1− γc∗ (η
1
L)<, E

2
L

〉
.

The second term in (4.24) can be re-written via (4.2) as〈
1

1− γc
(ξ1L)0, E

2
L

〉
=

〈
(ξ1L)0,∇2

Y Y +
1

1− γc∗ η
2
L

〉
=

〈
(ξ1L)0,

1

1− γc∗ η
2
L

〉
+
〈
ΠΓ̂c

2
(ξ1L)0,ΠΓ̂c

2
(∇2

Y Y )
〉

+
〈
ΠΓc

2
(ξ1L)0,ΠΓc

2
(∇2

Y Y )
〉

=

〈
(ξ1L)0,

1

1− γc∗ (η
2
L)0

〉
+
〈
ΠΓ̂c

2
(ξ1L)0,ΠΓ̂c

2
(∇2

Y Y )0

〉
+
〈
γc∗(ξ1L)0, γ

c∗(∇2
Y Y )
〉
,

where the last equality follows from (4.1).
We re-write the third term in (4.24) as〈

(η1L)<,
1

1− γc
E2

L

〉
=

〈
(η1L)<,∇2

XX +
1

1− γc
ξ2L

〉
=
〈
(η1L)<,∇2

XX)
〉

=
〈
(η1L)<, η

2
L

〉
−
〈
(η1L)<, γ

c∗(∇2
Y Y )
〉

=
〈
(η1L)<, η

2
L

〉
−
〈
γc∗(ξ1L)<, γ

c∗(∇2
Y Y )
〉
,

where the second equality follows from (4.13), and the last equality, from (4.2) and〈
ΠΓ̂c

1
(A), γc∗(B)

〉
= 0 for any A,B.

Similarly, the second term in in (4.22) is equal to

〈
Rr

0(E
1
R), E

2
R

〉
+

〈
1

1− γr
(η1R)≥, E

2
R

〉
=
〈
Rr

0(E
1
R), E

2
R

〉
+
〈
(η1R)≥, Y∇2

Y

〉(4.25)

+

〈
(η1R)0,

1

1− γr∗ (ξ
2
R)0

〉
=
〈
Rr

0(E
1
R), E

2
R

〉
+

〈
(η1R)0,

1

1− γr∗ (ξ
2
R)0

〉
+
〈
(η1R)≥, η

2
R

〉
−
〈
γr(ξ1R)≥, γ

r(X∇2
X)
〉
.

Combining (4.24), (4.25) and plugging the result into (4.22), we obtain (4.21)
as required. �
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4.3.2. Diagonal contributions. Note that the third, the fourth and the fifth
terms in (4.21) are constant due to (4.14) and (4.16). The first two terms are
handled by the following statement.

Lemma 4.9. The quantities
〈
R0(E

1
L), E

2
L

〉
and
〈
R0(E

1
R), E

2
R

〉
are constant for

any f1, f2 ∈ FΓr,Γc .

Proof. Let us start with

(4.26)
〈
R0(E

1
L), E

2
L

〉
= −1

2

〈(
γ

1− γ
+

1

1− γ∗

)
(E1

L)0, E
2
L

〉
− 1

n

(
Tr(E1

L) Tr(E
2
LS)− Tr(E1

LS) Tr(E
2
L)
)
,

where γ = γc. First, note that

(4.27) Tr(Ei
LS) =

〈
Ei

L,

(
1

1− γ
− 1

1− γ∗

)
1

〉
= Tr

((
1

1− γ∗ − 1

1− γ

)
Ei

L

)
= Tr

(
1

1− γ∗ η
i
L − 1

1− γ
ξiL +∇i

Y Y −∇i
XX

)
= const

for i = 1, 2 by (4.2), (4.14), (4.18) and (4.19). Thus, the terms in the second line
in (4.26) are constant.

Next, by (4.2),

(4.28)

(
γ

1− γ
+

1

1− γ∗

)
EL =

1

1− γ
ξL +

1

1− γ∗ ηL,〈
1

1− γ
ξ1L, E

2
L

〉
=

〈
ξ1L,∇2

Y Y +
1

1− γ∗ η
2
L

〉
,〈

1

1− γ∗ η
1
L, E

2
L

〉
=

〈
η1L,∇2

XX +
1

1− γ
ξ2L

〉
,

and hence 〈(
γ

1− γ
+

1

1− γ∗

)
(E1

L)0, E
2
L

〉
(4.29)

=

〈
(ξ1L)0,∇2

Y Y +
1

1− γ∗ η
2
L

〉
+

〈
(η1L)0,∇2

XX +
1

1− γ
ξ2L

〉
=

〈
(ξ1L)0,

1

1− γ∗ (η
2
L)0

〉
+

〈
(η1L)0,

1

1− γ
(ξ2L)0

〉
+
〈
(ξ1L)0, (ξ

2
L)0
〉

+
〈
(η1L)0,∇2

XX
〉
−
〈
(ξ1L)0, γ(∇2

XX)
〉
.

Each of the three first terms in (4.29) is constant by (4.14) and (4.19). Note that
by (4.1),〈

(ξ1L)0, γ(∇2
XX)
〉
=
〈
γ∗γ(∇1

XX)0 + γ∗(∇1
Y Y )0,∇2

XX
〉
=
〈
ΠΓ1

(η1L)0,∇2
XX
〉

with Γ1 = Γc
1, and so the last two terms in (4.29) combine into〈

ΠΓ̂1
(η1L)0,ΠΓ̂1

(∇2
XX)0

〉
,

which is constant by (4.16).
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Similarly,

(4.30)
〈
R0(E

1
R), E

2
R

〉
= −1

2

〈(
γ

1− γ
+

1

1− γ∗

)
(E1

R)0, E
2
R

〉
− 1

n

(
Tr(E1

R) Tr(E
2
RS)− Tr(E1

RS) Tr(E
2
R)
)

with γ = γr. As before,

Tr(Ei
RS) =

〈
Ei

R,

(
1

1− γ
− 1

1− γ∗

)
1

〉
= Tr

(
1

1− γ∗ ξ
i
R − 1

1− γ
ηiR + Y∇i

Y −X∇i
X

)
= const

for i = 1, 2, and〈(
γ

1− γ
+

1

1− γ∗

)
(E1

R)0, E
2
R

〉
=

〈
(η1R)0, Y∇2

Y +
1

1− γ∗ ξ
2
R

〉
+

〈
(ξ1R)0, X∇2

X +
1

1− γ
η2R

〉
=

〈
(η1R)0,

1

1− γ∗ (ξ
2
R)0

〉
+

〈
(ξ1R)0,

1

1− γ
(η2R)0

〉
+
〈
(ξ1R)0, (ξ

2
R)0
〉

+
〈
(η1R)0, Y∇2

Y

〉
−
〈
(ξ1R)0, γ

∗(Y∇2
Y )
〉
.

Each of the three first terms above is constant by (4.14) and (4.19), while〈
(η1R)0, Y∇2

Y

〉
−
〈
(ξ1R)0, γ

∗(Y∇2
Y )
〉
=
〈
ΠΓ̂2

(η1R)0,ΠΓ̂2
(Y∇2

Y )0

〉
= const

with Γ2 = Γr
2. Thus, the right hand side of (4.30) is constant as well, and we are

done. �

4.3.3. Simplified version of the maps γ and γ∗. To proceed further, we
define more “accessible” versions of the maps γ and γ∗. Recall that gΓ1

and gΓ2

defined above are subalgebras of block-diagonal matrices with nontrivial traceless
blocks determined by nontrivial runs of Γ1 and Γ2, respectively, and zeros every-
where else. Each diagonal component is isomorphic to slk, where k is the size of
the corresponding run. To modify the definition of γ, we first modify each nontriv-
ial diagonal block in gΓ1

and gΓ2
from slk to Matk by dropping the tracelessness

condition. Next, γ̊ is defined as the projection from Matn onto the union of di-
agonal blocks specified by Γ1, which are then moved to corresponding diagonal
blocks specified by Γ2. Similarly, the adjoint map γ̊∗ acts as the projection to
MatΓ2

followed by a map that moves each diagonal block of MatΓ2
back to the

corresponding diagonal block of MatΓ1
. Consequently, ringed analogs of relations

(4.1) remain valid with Π̊Γ1
understood as the orthogonal projection to MatΓ1

and

Π̊Γ2
as the orthogonal projection to MatΓ2

. Further, we define ξ̊L, ξ̊R, η̊L and η̊R
with γ̊r and γ̊c replacing γr and γc and note that the ringed versions of the last
two relations in (4.2) remain valid with Π̊Γ̂1

and Π̊Γ̂2
being orthogonal projections

complementary to Π̊Γ1
and Π̊Γ2

, respectively. Observe that the ringed versions of
the other four relations in (4.2) are no longer true, since 1− γ̊ and 1− γ̊∗ might be
noninvertible.

It is easy to see that γ̊ and γ̊∗ differ from γ and γ∗, respectively, only on
the diagonal. Consequently, invariance properties (4.11) and (4.13) remain valid
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in ringed versions. Further, the ringed version of the invariance property (4.12)
remains valid as well, albeit with different constants ac(T1) and ar(T2), which yields
the ringed version of (4.14). Ringed relations (4.16) also hold true: indeed, the sum
in (4.17) is now taken only over trivial X-runs. As a corollary, we restore ringed
versions of relations (4.19).

Recall that to complete the proof of Theorem 4.7, it remains to consider the
four last terms in (4.21). The following observation plays a crucial role in handling
these terms.

Lemma 4.10. For each one of the last four terms in (4.21), the difference
between the initial and the ringed version is constant.

Proof. The equality
〈
(η1L)<, (η

2
L)>
〉
=
〈
(η̊1L)<, (η̊

2
L)>
〉
is trivial, since γ∗ and

γ̊∗ coincide on n+ and n−.
For the second of the four terms, we have to consider the difference〈
(η̊1R)0, (η̊

2
R)0
〉
−
〈
(η1R)0, (η

2
R)0
〉

=
〈̊
γr(X∇1

X)0 − γr(X∇1
X)0, (Y∇2

Y )0
〉
+
〈
(Y∇1

Y )0, γ̊
r(X∇2

X)0 − γr(X∇2
X)0
〉

+
〈
(̊γr − γr)(X∇1

X)0, γ̊
r(X∇2

X)0
〉
+
〈
γr(X∇1

X)0, (̊γ
r − γr)(X∇2

X)0
〉
.

The first summand in the right hand side above equals∑
Δ

1

|Δ| Tr(X∇1
X)ΔΔTr(Y∇2

Y )
γr(Δ)
γr(Δ),

where the sum is taken over all nontrivial row X-runs. By Lemma 4.4, each factor
in this expression is constant, and hence the same holds true for the whole sum.
The remaining three summands can be treated in a similar way.

The remaining two terms in (4.21) are treated in the same way as the second
term. �

Based on Lemma 4.10, from now on we proceed with the ringed versions of the
last four terms in (4.21).

4.3.4. Explicit expression for
〈
(η̊1L)<, (η̊

2
L)>
〉
. Let fi be the li × li trailing

minor of Li, then

(4.31) Li∇i
L =

[
0 ∗
0 1li

]
, ∇i

LLi =

[
0 0
∗ 1li

]
.

Denote l̂i = N(Li)− li +1. From now on we assume without loss of generality
that

(4.32) l̂1 ∈ L1
p ∪ L̄1

p−1.

Consider the fixed block X
J1
p

I1
p

in L1 and an arbitrary block X
J2
t

I2
t

in L2. If

β1
p > β2

t then, by Proposition 4.3(i) the second block fits completely inside the first

one. This defines an injection ρ of the subsets K2
t and L2

t of rows and columns of
the matrix L2 into the subsets K1

p and L1
p of rows and columns of the matrix L1.
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Put

BI
t = −

〈(
L1∇1

L
)ρ(Φ2

t )

ρ(Φ2
t )
(L2)

L̄2
t

Φ2
t

(
∇2

L
)Φ2

t

L̄2
t

〉
,(4.33)

BII
t =
〈(

∇1
LL1
)ρ(Ψ2

t )

ρ(Ψ2
t )

(
∇2

L
)K̄2

t−1

Ψ2
t

(L2)
Ψ2

t

K̄2
t−1

〉
,(4.34)

BIII
t =

〈(
∇1

LL1
)L1

p\Ψ
1
p

Ψ1
p

(
∇2

L
)K2

t

L2
t\Ψ2

t
(L2)

Ψ2
t

K2
t

〉
.(4.35)

Lemma 4.11.

(i) The expression for
〈
(η̊1L)<, (η̊

2
L)>
〉
is given by

(4.36)
〈
(η̊1L)<, (η̊

2
L)>
〉
=
∑

β2
t<β1

p

(
BI

t +BII
t

)
+
∑

β2
t=β1

p

BIII
t

+
∑

β2
t<β1

p

(〈(
L1∇1

L
)ρ(K2

t )

ρ(K2
t )

(
L2∇2

L
)K2

t

K2
t

〉
−
〈(

∇1
LL1
)ρ(L2

t )

ρ(L2
t )

(
∇2

LL2
)L2

t

L2
t

〉)
if l̂1 ∈ L1

p, and vanishes otherwise.
(ii) Both summands in the last sum in (4.36) are constant.

Remark 4.12. Since
〈
A1A2 . . . , A

1A2 . . .
〉
= Tr(A1A2 . . . A

1A2 . . . ), here and

in what follows we omit the comma and write just
〈
A1A2 . . . A

1A2 . . .
〉
whenever

A1, A2, . . . and A1, A2, . . . are matrices given by explicit expressions.

Proof. First of all, write
(4.37)〈

(η̊1L)<, (η̊
2
L)>
〉
=
〈
Π̊Γ1

(
(η̊1L)<

)
, Π̊Γ1

(
(η̊2L)>

)〉
+
〈
Π̊Γ̂1

(
(η̊1L)<

)
, Π̊Γ̂1

(
(η̊2L)>

)〉
with Γ1 = Γc

1.
It follows from the ringed version of (4.1) that for i = 1, 2,

(4.38) Π̊Γ1
(η̊iL) = γ̊∗(ξ̊iL)

with γ̊ = γ̊c. Consequently,〈
Π̊Γ1

(
(η̊1L)<

)
, Π̊Γ1

(
(η̊2L)>

)〉
=
〈
Π̊Γ1

(
(η̊1L)<

)
, γ̊∗
(
(ξ̊2L)>

)〉
= 0

via the ringed version of (4.13).

Note that Π̊Γ̂1

(̊
γ∗(∇i

Y Y )
)
= 0 by the definition of γ̊∗, therefore Π̊Γ̂1

(η̊iL) =

Π̊Γ̂1
(∇i

XX).

Let us compute ∇i
XX. Taking into account (4.8) and (4.10), we get

∇i
XX =

si∑
t=1

[
(∇i

L)
Ki

t

Li
t
X

Ji
t

Ii
t

(∇i
L)

Ki
t

Li
t
X

Ĵi
t

Ii
t

0 0

]

=
si∑
t=1

[
(∇i

LLi)
Li

t\Ψi
t

Li
t

(∇i
L)

Ki
t

Li
t
LΨi

t

Ki
t

(∇i
L)

Ki
t

Li
t
X

Ĵi
t

Ii
t

0 0 0

]
,

where Ĵ i
t = [1, n] \ J i

t . The latter equality follows from the fact that in columns

Li
t \ Ψi

t all nonzero entries of Li belong to the block (Li)
Li

t

Ki
t
= X

Ji
t

Ii
t
, whereas in
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columns Ψi
t nonzero entries of Li belong also to the block (Li)

L̄i
t−1

K̄i
t−1

= Y
J̄i
t−1

Īi
t−1

, see

Figure 4.2. In more detail,

(4.39) ∇i
XX =

si∑
t=1

⎡⎢⎢⎣(∇
i
LLi)

Li
t\Ψi

t

Li
t\Ψi

t
(∇i

L)
Ki

t

Li
t\Ψi

t
(Li)

Ψi
t

Ki
t

(∇i
L)

Ki
t

Li
t\Ψi

t
X

Ĵi
t

Ii
t

(∇i
LLi)

Li
t\Ψi

t

Ψi
t

(∇i
L)

Ki
t

Ψi
t
(Li)

Ψi
t

Ki
t

(∇i
L)

Ki
t

Ψi
t
X

Ĵi
t

Ii
t

0 0 0

⎤⎥⎥⎦ .
Note that the upper left block in (4.39) is lower triangular by (4.31). Besides,

the projection of the middle block onto Γ̂1 vanishes, since it corresponds to the
diagonal block defined by the nontrivial X-run Δ(βi

t) (or is void if t = 1 and
Ψi

1 = ∅).
It follows from the explanations above and (4.31) that the contribution of the

tth summand in (4.39) to Π̊Γ̂1

(
(η̊1L)<

)
vanishes, unless t = p. Moreover, if l̂1 ∈

L̄1
p−1 \Ψ1

p, it vanishes for t = p as well. So, in what follows we assume that l̂1 ∈ L1
p.

In this case (4.39) yields

(4.40) Π̊Γ̂1

(
(η̊1L)<

)
= Π̊Γ̂1

⎡⎣
(
(∇1

LL1)
L1

p

L1
p

)
<

0

0 0

⎤⎦ .
On the other hand,

(4.41) Π̊Γ̂1

(
(η̊2L)>

)
=

s2∑
t=1

⎡⎢⎢⎣0 (∇2
L)

K2
t

L2
t\Ψ2

t
(L2)

Ψ2
t

K2
t

(∇2
L)

K2
t

L2
t\Ψ2

t
X

Ĵ2
t

I2
t

0 0 (∇2
L)

K2
t

Ψ2
t
X

Ĵ2
t

I2
t

0 0 0

⎤⎥⎥⎦ ,
where the tth summand corresponds to the tth X-block of L2.

If β1
p < β2

t , then the contribution of the tth summand in (4.41) to the second

term in (4.37) vanishes by (4.40), since in this case J1
p ⊆ J2

t \Δ(β2
t ), which means

that the upper left block in (4.40) fits completely within the zero upper left block
in (4.41).

Assume that β1
p > β2

t . Then, to the contrary, J2
t ⊆ J1

p \ Δ(β1
p), and hence

ρ(L2
t ) ⊆ L1

p \ Ψ1
p. Note that by (4.40), to compute the second term in (4.37) one

can replace Ĵ2
t in (4.41) by J1

p \J2
t . So, using the above injection ρ, one can rewrite

the two upper blocks at the tth summand of Π̊Γ̂1

(
(η̊2L)>

)
in (4.41) as one block(

∇2
L
)K2

t

L2
t\Ψ2

t
(L1)

L1
p\ρ(L2

t\Ψ2
t )

ρ(K2
t )

,

and the remaining nonzero block in the same summand as(
∇2

L
)K2

t

Ψ2
t
(L1)

L1
p\ρ(L2

t )

ρ(K2
t )

.

The corresponding blocks of Π̊Γ̂1

(
(η̊1L)<

)
in (4.40) are(

∇1
LL1
)ρ(L2

t\Ψ2
t )

L1
p\ρ(L2

t\Ψ2
t )

=
(
∇1

L
)K1

p

L1
p\ρ(L2

t\Ψ2
t )
(L1)

ρ(L2
t\Ψ2

t )

K1
p

and (
∇1

LL1
)ρ(Ψ2

t )

L1
p\ρ(L2

t )
=
(
∇1

L
)K1

p

L1
p\ρ(L2

t )
(L1)

ρ(Ψ2
t )

K1
p

.

The equalities follow from the fact that all nonzero entries in the columns ρ(L2
t ) of

L1 belong to the X-block, see Figure 4.2.
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The contribution of the first blocks in each pair can be rewritten as

(4.42)

〈
(L1)

L1
p\ρ(L2

t\Ψ2
t )

ρ(K2
t )

(
∇1

L
)K1

p

L1
p\ρ(L2

t\Ψ2
t )
(L1)

ρ(L2
t\Ψ

2
t )

K1
p

(
∇2

L
)K2

t

L2
t\Ψ2

t

〉
.

Recall that ρ(K2
t ) ⊆ K1

p . If the inclusion is strict, then immediately

(L1)
L1

p\ρ(L2
t\Ψ2

t )

ρ(K2
t )

(
∇1

L
)K1

p

L1
p\ρ(L2

t\Ψ2
t )

(4.43)

=
(
L1∇1

L
)K1

p

ρ(K2
t )

− (L1)
ρ(L2

t\Ψ2
t)

ρ(K2
t )

(
∇1

L
)K1

p

ρ(L2
t\Ψ2

t )

=
(
L1∇1

L
)K1

p

ρ(K2
t )

− (L2)
L2

t\Ψ2
t

K2
t

(
∇1

L
)K1

p

ρ(L2
t\Ψ2

t )
.

Otherwise there is an additional term

−(L1)
L̄1

p

K1
p

(
∇1

L
)K1

p

L̄1
p

in the right hand side of (4.43). However, for the same reason as above,(
∇1

L
)K1

p

L̄1
p
(L1)

ρ(L2
t\Ψ2

t )

K1
p

=
(
∇1

LL1
)ρ(L2

t\Ψ2
t )

L̄1
p

.

Note that ρ(L2
t \ Ψ2

t ) ⊂ L1
p, and L̄1

p lies strictly to the left of L1
p, see Figure 4.2.

Consequently, by (4.31), the latter submatrix vanishes. Therefore, the additional
term does not contribute to (4.42).

To find the contribution of the second term in (4.43) to (4.42), note that

(4.44)
(
∇1

L
)K1

p

ρ(L2
t\Ψ2

t )
(L1)

ρ(L2
t\Ψ2

t )

K1
p

=
(
∇1

LL1
)ρ(L2

t\Ψ2
t )

ρ(L2
t\Ψ2

t )

and (
∇2

L
)K2

t

L2
t\Ψ2

t
(L2)

L2
t\Ψ

2
t

K2
t

=
(
∇2

LL2
)L2

t\Ψ
2
t

L2
t\Ψ2

t

for the same reason as above, and hence the contribution in question equals

−
〈(

∇2
LL2
)L2

t\Ψ2
t

L2
t\Ψ2

t

(
∇1

LL1
)ρ(L2

t\Ψ2
t )

ρ(L2
t\Ψ2

t )

〉
= const

by (4.31).
Similarly to (4.42), (4.43), the contribution of the second blocks in each pair

can be rewritten as

(4.45)

〈(
L1∇1

L
)K1

p

ρ(K2
t )

− (L1)
ρ(L2

t )

ρ(K2
t )

(
∇1

L
)K1

p

ρ(L2
t )
, (L1)

ρ(Ψ2
t )

K1
p

(
∇2

L
)K2

t

Ψ2
t

〉
.

As in the previous case, an additional term arises if ρ(K2
t ) = K1

p , and its contribu-
tion to (4.45) vanishes.

Note that by (4.31), one has(
L1∇1

L
)K1

p

ρ(K2
t )
(L1)

ρ(L2
t\Ψ

2
t )

K1
p

=
(
L1∇1

L
)ρ(K2

t )

ρ(K2
t )
(L1)

ρ(L2
t\Ψ

2
t )

ρ(K2
t )

and (
L1∇1

L
)K1

p

ρ(K2
t )
(L1)

ρ(Ψ2
t )

K1
p

=
(
L1∇1

L
)ρ(K2

t )

ρ(K2
t )
(L1)

ρ(Ψ2
t )

ρ(K2
t )
,
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hence the total contribution of the first terms in (4.43) and (4.45) equals〈(
L1∇1

L
)ρ(K2

t )

ρ(K2
t )
, (L1)

ρ(L2
t\Ψ

2
t )

ρ(K2
t )

(
∇2

L
)K2

t

L2
t\Ψ2

t
+ (L1)

ρ(Ψ2
t )

ρ(K2
t )

(
∇2

L
)K2

t

Ψ2
t

〉
(4.46)

=
〈(

L1∇1
L
)ρ(K2

t )

ρ(K2
t )
, (L2)

L2
t\Ψ2

t

K2
t

(
∇2

L
)K2

t

L2
t\Ψ2

t
+ (L2)

Ψ2
t

K2
t

(
∇2

L
)K2

t

Ψ2
t

〉
=
〈(

L1∇1
L
)ρ(K2

t )

ρ(K2
t )
,
(
L2∇2

L
)K2

t

K2
t
− Ut

(
∇2

L
)K2

t

L̄2
t

〉
,

where

Ut =

[
(L2)

L̄2
t

Φ2
t

0

]
.

Note that 〈(
L1∇1

L
)ρ(K2

t )

ρ(K2
t )

(
L2∇2

L
)K2

t

K2
t

〉
= const

by (4.31), which gives the first summand in the last sum in (4.36). The remaining
term equals

−
〈(

L1∇1
L
)ρ(K2

t )

ρ(K2
t )
Ut

(
∇2

L
)K2

t

L̄2
t

〉
= −
〈(

L1∇1
L
)ρ(Φ2

t )

ρ(K2
t )
(L2)

L̄2
t

Φ2
t

(
∇2

L
)K2

t

L̄2
t

〉
= −
〈(

L1∇1
L
)ρ(Φ2

t )

ρ(Φ2
t )
(L2)

L̄2
t

Φ2
t

(
∇2

L
)Φ2

t

L̄2
t

〉
,

which coincides with the expression for BI
t in (4.33); the last equality above follows

from (4.31).
It remains to compute the contribution of the second term in (4.45). Similarly

to (4.44), we have (
∇1

L
)K1

p

ρ(L2
t )
(L1)

ρ(Ψ2
t )

K1
p

=
(
∇1

LL1
)ρ(Ψ2

t )

ρ(L2
t )
.

On the other hand, similarly to (4.46), we have(
∇2

L
)K2

t

Ψ2
t
(L2)

L2
t

K2
t
=
(
∇2

LL2
)L2

t

Ψ2
t
−
(
∇2

L
)K̄2

t−1

Ψ2
t

Vt,

where

Vt =
[
0 (L2)

Ψ2
t

K̄2
t−1

]
.

As before, we use (4.31) to get

−
〈(

∇1
LL1
)ρ(Ψ2

t )

ρ(L2
t )

(
∇2

LL2
)L2

t

Ψ2
t

〉
= −
〈(

∇1
LL1
)ρ(Ψ2

t )

ρ(Ψ2
t )

(
∇2

LL2
)Ψ2

t

Ψ2
t

〉
= const,

which together with the contribution of the second term in (4.43) computed above
yields the second summand in the last sum in (4.36). The remaining term is given
by 〈(

∇1
LL1
)ρ(Ψ2

t )

ρ(L2
t )

(
∇2

L
)K̄2

t−1

Ψ2
t

Vt

〉
=
〈(

∇1
LL1
)ρ(Ψ2

t )

ρ(Ψ2
t )

(
∇2

L
)K̄2

t−1

Ψ2
t

(L2)
Ψ2

t

K̄2
t−1

〉
,

which coincides with the expression for BII
t in (4.34).

Assume now that β1
p = β2

t and hence J1
p = J2

t . In this case the blocks X
J2
t

I2
t
and

X
J1
p

I1
p

have the same width, and one of them lies inside the other, but the direction

of the inclusion may vary, and hence ρ is not defined.
Note that by (4.40), to compute the second term in (4.37) in this case, one can

omit the columns Ĵ2
t in (4.41), and hence the contribution in question equals〈(

∇1
LL1
)L1

p\Ψ
1
p

Ψ1
p

(
∇2

L
)K2

t

L2
t\Ψ2

t
(L2)

Ψ2
t

K2
t

〉
,
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which coincides with the expression for BIII
t in (4.35). �

4.3.5. Explicit expression for
〈
(η̊1R)≥, (η̊

2
R)≤
〉
. Recall that l̂1 ∈ L1

p ∪ L̄1
p−1

by (4.32). Consequently, l̂1 ∈ K1
p ∪ K̄1

p−1; more exactly, either l̂1 ∈ K1
p \ Φ1

p, or

(4.47) l̂1 ∈ K̄1
q with q = p or q = p− 1,

see Figure 4.2. Consider a fixed block Y
J̄1
q

Ī1
q

in L1 and an arbitrary block Y
J̄2
t

Ī2
t

in L2.

If ᾱ1
q > ᾱ2

t then, by Proposition 4.3(ii) the second block fits completely inside the

first one. This defines an injection σ of the subsets K̄2
t and L̄2

t of rows and columns
of the matrix L2 into the subsets K̄1

q and L̄1
q of rows and columns of the matrix L1.

Put

B̄I
t = −

〈(
∇1

LL1
)σ(Ψ2

t+1)

σ(Ψ2
t+1)

(
∇2

L
)K2

t+1

Ψ2
t+1

(L2)
Ψ2

t+1

K2
t+1

〉
,(4.48)

B̄II
t =
〈(

L1∇1
L
)σ(Φ2

t )

σ(Φ2
t )
(L2)

L2
t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
,(4.49)

B̄III
t =

〈(
L1∇1

L
)Φ1

q

K̄1
q\Φ1

q
(L2)

L̄2
t

Φ2
t

(
∇2

L
)K̄2

t \Φ2
t

L̄2
t

〉
.(4.50)

Lemma 4.13.

(i) The expression for
〈
(η̊1R)≥, (η̊

2
R)≤
〉
is given by

(4.51)
〈
(η̊1R)≥, (η̊

2
R)≤
〉
=
〈
(η̊1R)0, (η̊

2
R)0
〉
+
∑

ᾱ2
t<ᾱ1

q

(
B̄I

t + B̄II
t

)
+
∑

ᾱ2
t=ᾱ1

q

B̄III
t

+
∑

ᾱ2
t<ᾱ1

q

(〈(
∇1

LL1
)σ(L̄2

t )

σ(L̄2
t )

(
∇2

LL2
)L̄2

t

L̄2
t

〉
−
〈(

L1∇1
L
)σ(K̄2

t )

σ(K̄2
t )

(
L2∇2

L
)K̄2

t

K̄2
t

〉)
if l̂1 ∈ K̄1

q , and equals
〈
(η̊1R)0, (η̊

2
R)0
〉
otherwise.

(ii) The first term and both summands in the last sum in the right hand side
of (4.51) are constant.

Proof. Clearly,
〈
(η̊1R)≥, (η̊

2
R)≤
〉
=
〈
(η̊1R)0, (η̊

2
R)0
〉
+
〈
(η̊1R)>, (η̊

2
R)<
〉
. The first

term on the right is constant by the ringed version of (4.19), so in what follows we
only look at the second term. Similarly to (4.37), we have
(4.52)〈

(η̊1R)>, (η̊
2
R)<
〉
=
〈
Π̊Γ2

(
(η̊1R)>

)
, Π̊Γ2

(
(η̊2R)<

)〉
+
〈
Π̊Γ̂2

(
(η̊1R)>

)
, Π̊Γ̂2

(
(η̊2R)<

)〉
with Γ2 = Γr

2.
It follows from the ringed version of (4.1) that for i = 1, 2,

(4.53) Π̊Γ2
(η̊iR) = γ̊(ξ̊iR)

with γ̊ = γ̊r. Consequently,〈
Π̊Γ2

(
(η̊1R)>

)
, Π̊Γ2

(
(η̊2R)<

)〉
=
〈
Π̊Γ2

(
(η̊1R)>

)
, γ̊
(
(ξ̊2R)<

)〉
= 0

via the ringed version of (4.13).

Note that Π̊Γ̂2

(̊
γ(X∇i

X)
)
= 0 by the definition of γ̊, therefore Π̊Γ̂2

(η̊iR) =

Π̊Γ̂2
(Y∇i

Y ).
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Let us compute Y∇i
Y . Taking into account (4.8) and (4.9), we get

Y∇i
Y =

si∑
t=1

⎡⎣Y J̄i
t

Īi
t
(∇i

L)
K̄i

t

L̄i
t

0

Y
J̄i
t

ˆ̄Ii
t

(∇i
L)

K̄i
t

L̄i
t

0

⎤⎦ =
si∑
t=1

⎡⎢⎢⎢⎣
(L∇i

L)
K̄i

t

K̄i
t\Φi

t
0

(Li)
L̄i

t

Φi
t
(∇i

L)
K̄i

t

L̄i
t

0

Y
J̄i
t

ˆ̄Ii
t

(∇i
L)

K̄i
t

L̄i
t

0

⎤⎥⎥⎥⎦ ,
where ˆ̄Iit = [1, n] \ Īit ; the latter equality follows from the fact that in rows K̄i

t \ Φi
t

all nonzero entries of Li belong to the block (Li)
L̄i

t

K̄i
t
= Y

J̄i
t

Īi
t
, whereas in rows Φi

t

nonzero entries of Li belong also to the block (Li)
Li

t

Ki
t
= X

Ji
t

Ii
t
, see Figure 4.2. In

more detail,

(4.54) Y∇i
Y =

si∑
t=1

⎡⎢⎢⎢⎣
(Li∇i

L)
K̄i

t\Φi
t

K̄i
t\Φi

t
(Li∇i

L)
Φi

t

K̄i
t\Φi

t
0

(Li)
L̄i

t

Φi
t
(∇i

L)
K̄i

t\Φi
t

L̄i
t

(Li)
L̄i

t

Φi
t
(∇i

L)
Φi

t

L̄i
t

0

Y
J̄i
t

ˆ̄Ii
t

(∇i
L)

K̄i
t\Φi

t

L̄i
t

Y
J̄i
t

ˆ̄Ii
t

(∇i
L)

Φi
t

L̄i
t

0

⎤⎥⎥⎥⎦ .
Note that the upper left block in (4.54) is upper triangular by (4.31). Besides,

the projection of the middle block onto Γ̂2 vanishes, since for Φi
t �= ∅, the middle

block corresponds to the diagonal block defined by the nontrivial Y -run Δ̄(ᾱi
t).

Recall that l̂1 ∈ K1
p ∪ K̄1

p−1, therefore by (4.31), the contribution of the tth

summand in (4.54) to Π̊Γ̂2

(
(η̊1R)>

)
vanishes, unless t �= q, where q is either p or

p − 1. Moreover, if l̂1 ∈ K1
p \ Φ1

p, this contribution vanishes for t = q as well, see

Figure 4.2. So, in what follows l̂1 ∈ K̄1
q , in which case

(4.55) Π̊Γ̂2

(
(η̊1R)>

)
= Π̊Γ̂2

⎡⎣
(
(L1∇1

L)
K̄1

q

K̄1
q

)
>

0

0 0

⎤⎦ .
On the other hand,

(4.56) Π̊Γ̂2

(
(η̊2R)<

)
=

s2∑
t=1

⎡⎢⎢⎣
0 0 0

(L2)
L̄2

t

Φ2
t
(∇2

L)
K̄2

t \Φ2
t

L̄2
t

0 0

Y
J̄2
t

ˆ̄I2
t

(∇2
L)

K̄2
t \Φ2

t

L̄2
t

Y
J̄2
t

ˆ̄I2
t

(∇2
L)

Φ2
t

L̄2
t

0

⎤⎥⎥⎦ ,
where the tth summand corresponds to the tth Y -block in L2.

If ᾱ1
q < ᾱ2

t , then the contribution of the tth summand in (4.56) to the second

term in (4.52) vanishes by (4.55), since in this case Ī1q ⊆ Ī2t \ Δ̄(ᾱ2
t ).

Assume that ᾱ1
q > ᾱ2

t . Then, to the contrary, Ī2t ⊆ Ī1q \ Δ̄(ᾱ1
q), and hence

σ(K̄2
t ) ⊆ K̄1

q \ Φ1
q. Note that by (4.55), to compute the second term in (4.52), one

can replace ˆ̄I2t in (4.56) by Ī1q \ Ī2t . So, using the above injection σ, one can rewrite

the two upper blocks at the tth summand of Π̊Γ̂2

(
(η̊2R)<

)
in (4.56) as one block

(L1)
σ(L̄2

t )

K̄1
q\σ(K̄2

t \Φ2
t )

(
∇2

L
)K̄2

t \Φ2
t

L̄2
t

,

and the remaining nonzero block in the same summand as

(L1)
σ(L̄2

t )

K̄1
q\σ(K̄2

t )

(
∇2

L
)Φ2

t

L̄2
t
.
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The corresponding blocks of Π̊Γ̂2

(
(η̊1R)>

)
in (4.55) are(

L1∇1
L
)K̄1

q\σ(K̄
2
t \Φ

2
t )

σ(K̄2
t \Φ2

t )
= (L1)

L̄1
q

σ(K̄2
t \Φ2

t )

(
∇1

L
)K̄1

q\σ(K̄
2
t \Φ

2
t )

L̄1
q

and (
L1∇1

L
)K̄1

q\σ(K̄2
t )

σ(Φ2
t )

= (L1)
L̄1

q

σ(Φ2
t )

(
∇1

L
)K̄1

q\σ(K̄2
t )

L̄1
q

.

The equalities follow from the fact that all nonzero entries in the rows σ(K̄2
t ) of L1

belong to the Y -block, see Figure 4.2.
The contribution of the first blocks in each pair can be rewritten as

(4.57)

〈(
∇1

L
)K̄1

q\σ(K̄2
t \Φ2

t )

L̄1
q

(L1)
σ(L̄2

t )

K̄1
q\σ(K̄2

t \Φ2
t )

(
∇2

L
)K̄2

t \Φ2
t

L̄2
t

(L1)
L̄1

q

σ(K̄2
t \Φ2

t )

〉
.

Recall that σ(L̄2
t ) ⊆ L̄1

q. If the inclusion is strict, then immediately(
∇1

L
)K̄1

q\σ(K̄2
t \Φ2

t )

L̄1
q

(L1)
σ(L̄2

t )

K̄1
q\σ(K̄2

t \Φ2
t )

(4.58)

=
(
∇1

LL1
)σ(L̄2

t )

L̄1
q

−
(
∇1

L
)σ(K̄2

t \Φ2
t)

L̄1
q

(L1)
σ(L̄2

t )

σ(K̄2
t \Φ2

t)

=
(
∇1

LL1
)σ(L̄2

t )

L̄1
q

−
(
∇1

L
)σ(K̄2

t \Φ2
t)

L̄1
q

(L2)
L̄2

t

K̄2
t \Φ2

t
.

Otherwise there is an additional term

−
(
∇1

L
)K1

q

L̄1
q
(L1)

L̄1
q

K1
q

in the right hand of (4.58). However, for the same reason as those discussed during
the treatment of (4.42),

(L1)
L̄1

q

σ(K̄2
t \Φ2

t )

(
∇1

L
)K1

q

L̄1
q
=
(
L1∇1

L
)K1

q

σ(K̄2
t \Φ2

t )
.

Note that σ(K̄2
t \Φ2

t ) ⊆ K̄1
q \Φ1

q and K1
q lies strictly below K̄1

q \Φ1
q, see Figure 4.2.

Hence by (4.31) the above submatrix vanishes, and the additional term does not
contribute to (4.57).

To find the contribution of the second term in (4.58) to (4.57), note that

(4.59) (L1)
L̄1

q

σ(K̄2
t \Φ2

t )

(
∇1

L
)σ(K̄2

t \Φ2
t)

L̄1
q

=
(
L1∇1

L
)σ(K̄2

t \Φ
2
t )

σ(K̄2
t \Φ2

t )

and

(L2)
L̄2

t

K̄2
t \Φ2

t

(
∇2

L
)K̄2

t \Φ2
t

L̄2
t

=
(
L2∇2

L
)K̄2

t \Φ2
t

K̄2
t \Φ2

t
,

and hence the contribution in question equals

−
〈(

L2∇2
L
)K̄2

t \Φ2
t

K̄2
t \Φ2

t

(
L1∇1

L
)σ(K̄2

t \Φ2
t )

σ(K̄2
t \Φ2

t )

〉
= const

by (4.31).
Similarly to (4.45), the contribution of the second blocks in each pair above

can be rewritten as

(4.60)

〈(
∇1

LL1
)σ(L̄2

t )

L̄1
q

−
(
∇1

L
)σ(K̄2

t )

L̄1
q

(L1)
σ(L̄2

t )

σ(K̄2
t )
,
(
∇2

L
)Φ2

t

L̄2
t
(L1)

L̄1
q

σ(Φ2
t )

〉
.

As in the previous case, an additional term arises if σ(L̄2
t ) = L̄1

q, and its contribution
to (4.60) vanishes.
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To find the total contribution of the first terms in (4.58) and (4.60), note that
by (4.31), in this computation one can replace the row set L̄1

q of L1∇L1 with σ(L̄2
t ).

Therefore, the contribution in question equals〈(
∇1

LL1
)σ(L̄2

t )

σ(L̄2
t )
,
(
∇2

L
)K̄2

t \Φ2
t

L̄2
t

(L1)
σ(L̄2

t )

σ(K̄2
t \Φ2

t )
+
(
∇2

L
)Φ2

t

L̄2
t
(L1)

σ(L̄2
t )

σ(Φ2
t )

〉
(4.61)

=
〈(

∇1
LL1
)σ(L̄2

t )

σ(L̄2
t )
,
(
∇2

L
)K̄2

t \Φ2
t

L̄2
t

(L2)
L̄2

t

K̄2
t \Φ2

t
+
(
∇2

L
)Φ2

t

L̄2
t
(L2)

L̄2
t

Φ2
t

〉
=

〈(
∇1

LL1
)σ(L̄2

t )

σ(L̄2
t )
,
(
∇2

LL2
)L̄2

t

L̄2
t
−
(
∇2

L
)K2

t+1

L̄2
t

Wt

〉
,

where

Wt =
[
(L2)

Ψ2
t+1

K2
t+1

0
]
.

Note that 〈(
∇1

LL1
)σ(L̄2

t )

σ(L̄2
t )

(
∇2

LL2
)L̄2

t

L̄2
t

〉
= const

by (4.31), which gives the first summand in the last sum in (4.51). The remaining
term is given by

−
〈(

∇1
LL1
)σ(L̄2

t )

σ(L̄2
t )

(
∇2

L
)K2

t+1

L̄2
t

Wt

〉
= −
〈(

∇1
LL1
)σ(Ψ2

t+1)

σ(Ψ2
t+1)

(
∇2

L
)K2

t+1

Ψ2
t+1

(L2)
Ψ2

t+1

K2
t+1

〉
,

which coincides with the expression for B̄I
t in (4.48).

It remains to compute the contribution of the second term in (4.60). Similarly
to (4.59), we have

(L1)
L̄1

q

σ(Φ2
t )

(
∇1

L
)σ(K̄2

t )
L̄1

q
=
(
L1∇1

L
)σ(K̄2

t )

σ(Φ2
t )
.

On the other hand, similarly to (4.61), we have

(L2)
L̄2

t

K̄2
t

(
∇2

L
)Φ2

t

L̄2
t
=
(
L2∇2

L
)Φ2

t

K̄2
t
− Zt

(
∇2

L
)Φ2

t

L2
t
,

where

Zt =

[
0

(L2)
L2

t

Φ2
t

]
.

Using (4.31) once again, we get

−
〈(

L1∇1
L
)σ(K̄2

t )

σ(Φ2
t )

(
L2∇2

L
)Φ2

t

K̄2
t

〉
= −
〈(

L1∇1
L
)σ(Φ2

t )

σ(Φ2
t )

(
L2∇2

L
)Φ2

t

Φ2
t

〉
= const,

which together with the contribution of the second term in (4.58) computed above
yields the second summand in the last sum in (4.51). The remaining term is given
by 〈(

L1∇1
L
)σ(K̄2

t )

σ(Φ2
t )
Zt

(
∇2

L
)Φ2

t

L2
t

〉
=
〈(

L1∇1
L
)σ(Φ2

t )

σ(Φ2
t )
(L2)

L2
t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
,

which coincides with the expression for B̄II
t in (4.49).

Assume now that ᾱ2
t = ᾱ1

q and hence Ī2t = Ī1q . In this case the blocks Y
J̄2
t

Ī2
t

and

Y
J̄1
q

Ī1
q

have the same height, and one of them lies inside the other, but the direction

of the inclusion may vary, and hence σ is not defined.
Note that by (4.55), to compute the second term in (4.52) in this case, one can

omit the rows ˆ̄I2t in (4.56), and hence the contribution in question equals〈(
L1∇1

L
)Φ1

q

K̄1
q\Φ1

q
(L2)

L̄2
t

Φ2
t

(
∇2

L
)K̄2

t \Φ
2
t

L̄2
t

〉
,
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which coincides with the expression for B̄III
t in (4.50). �

4.3.6. Explicit expression for
〈
γ̊c∗(ξ̊1L)≤, γ̊

c∗(∇2
Y Y )
〉
. Assume that p is

defined by (4.32). For any fixed q′ with β̄2
t < β̄1

q′ we define the injection σ of K̄2
t

and L̄2
t into K̄1

q′ and L̄1
q′ , respectively, similarly to the one defined at the beginning

of Section 4.3.5, and put

(4.62) B̄IV
t =

〈(
∇1

LL1
)σ(Ψ2

t+1)

σ(Ψ2
t+1)

(
∇2

L
)K̄2

t

Ψ2
t+1

(L2)
Ψ2

t+1

K̄2
t

〉
.

In what follows specific values of q′ are indicated in the summation index. Note
that q′ may not coincide with q defined by (4.47).

Lemma 4.14.

(i) The expression for
〈
γ̊c∗(ξ̊1L)≤, γ̊

c∗(∇2
Y Y )
〉
is given by

〈
γ̊c∗(ξ̊1L)≤, γ̊

c∗(∇2
Y Y )
〉
=
∑

β2
t≤β1

p

BII
t +

∑
β̄2
t>β̄1

p−1

B̄IV
t

(4.63)

+

p∑
u=1

s2∑
t=1

〈
(∇1

LL1)
L1

u→J1
u

L1
u→J1

u
, γ̊c∗(∇2

LL2)
L̄2

t\Ψ2
t+1→J̄2

t \Δ̄(β̄2
t )

L̄2
t\Ψ2

t+1→J̄2
t \Δ̄(β̄2

t )

〉

+

p−1∑
u=1

s2∑
t=1

〈
(∇1

LL1)
L̄1

u\Ψ
1
u+1→J̄1

u\Δ̄(β̄1
u)

L̄1
u\Ψ1

u+1→J̄1
u\Δ̄(β̄1

u)
, Π̊Γc

2
(∇2

LL2)
L̄2

t\Ψ
2
t+1→J̄2

t \Δ̄(β̄2
t )

L̄2
t\Ψ2

t+1→J̄2
t \Δ̄(β̄2

t )

〉

+
s2∑
t=1

(
|{u < p : β1

u ≥ β2
t+1}|+ |{u < p : β̄1

u−1 < β̄2
t }|
)〈(

∇2
L
)K̄2

t

Ψ2
t+1

(L2)
Ψ2

t+1

K̄2
t

〉
,

where BII
t is given by (4.34) with ρ(Φ2

t ) replaced by Φ1
p for β1

p = β2
t , and

B̄IV
t is given by (4.62).

(ii) Each summand in the last three sums in (4.63) is constant.

Proof. Recall that by (4.38), this term can be rewritten as〈
Π̊Γ1

(η̊1L)≤, γ̊
∗(∇2

Y Y )
〉

with Γ1 = Γc
1 and γ̊ = γ̊c.

Note that ∇i
XX has been already computed in (4.39). Let us compute

γ̊∗(∇i
Y Y ). Taking into account (4.8) and (4.10), we get

γ̊∗(∇i
Y Y ) =

si+1∑
t=2

γ̊∗

[
0 0

∗ (∇i
L)

K̄i
t−1

L̄i
t−1

Y
J̄i
t−1

Īi
t−1

]
=

si+1∑
t=2

γ̊∗

⎡⎢⎢⎣
0 0

∗ (∇i
L)

K̄i
t−1

Ψi
t

(Li)
L̄i

t−1

K̄i
t−1

∗ (∇i
LLi)

L̄i
t−1

L̄i
t−1\Ψi

t

⎤⎥⎥⎦ ;
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the latter equality is similar to the one used in the derivation of the expression for
∇i

XX in the proof of Lemma 4.11. In more detail,

(4.64) γ̊∗(∇i
Y Y ) =

si+1∑
t=2

γ̊∗

⎡⎢⎣0 0 0

0 (∇i
L)

K̄i
t−1

Ψi
t

(Li)
Ψi

t

K̄i
t−1

0

0 0 0

⎤⎥⎦+ si+1∑
t=2

γ̊∗

[
0 0

0 (∇i
LLi)

L̄i
t−1\Ψ

i
t

L̄i
t−1\Ψi

t

]
.

Note that the diagonal block in the first term in (4.64) corresponds to the
nontrivial column Y -run Δ̄(β̄i

t−1), unless t = si + 1 and Ψi
si+1 = ∅. Therefore, γ̊∗

moves it to the diagonal block corresponding to the nontrivial column X-run Δ(βi
t)

occupied by (∇i
L)

Ki
t

Ψi
t
(Li)

Ψi
t

Ki
t
in (4.39). Consequently, the resulting diagonal block in

η̊iL is equal to

(4.65) (∇i
L)

Ki
t

Ψi
t
(Li)

Ψi
t

Ki
t
+ (∇i

L)
K̄i

t−1

Ψi
t

(Li)
Ψi

t

K̄i
t−1

= (∇i
LLi)

Ψi
t

Ψi
t

for 1 ≤ t ≤ si + 1; note that the first term in the left hand side of (4.65) vanishes
for t = si + 1, and the second term vanishes for t = 1.

Further, the projection Π̊Γ1
of the second block in the first row of (4.39) van-

ishes. Summing up and applying (4.31), we get

(4.66) Π̊Γ1
(η̊1L)≤ =

s1∑
u=1

Π̊Γ1

[
(∇1

LL1)
L1

u

L1
u

0

0 0

]
+ Π̊Γ1

⎡⎢⎣0 0 0

0 (∇1
LL1)

L1
s1+1

L1
s1+1

0

0 0 0

⎤⎥⎦
+

s1+1∑
u=2

γ̊∗

[
0 0

0 (∇1
LL1)

L̄1
u−1\Ψ1

u

L̄1
u−1\Ψ1

u

]
,

where the nonzero block in the second term occupies rows and columns Js1+1, see
Section 4.2 after (4.7).

Recall that l̂1 ∈ L1
p∪L̄1

p−1 by (4.32). Therefore, for any u > p all three terms in
(4.66) vanish. Consequently, by the ringed version of (4.1), the contribution of the
second term in expression (4.64) for the second function to the final result equals

p∑
u=1

s2∑
t=1

〈
(∇1

LL1)
L1

u→J1
u

L1
u→J1

u
, γ̊∗(∇2

LL2)
L̄2

t\Ψ
2
t+1→J̄2

t \Δ̄(β̄2
t )

L̄2
t\Ψ2

t+1→J̄2
t \Δ̄(β̄2

t )

〉

+

p−1∑
u=1

s2∑
t=1

〈
(∇1

LL1)
L̄1

u\Ψ1
u+1→J̄1

u\Δ̄(β̄1
u)

L̄1
u\Ψ1

u+1→J̄1
u\Δ̄(β̄1

u)
, Π̊Γ2

(∇2
LL2)

L̄2
t\Ψ2

t+1→J̄2
t \Δ̄(β̄2

t )

L̄2
t\Ψ2

t+1→J̄2
t \Δ̄(β̄2

t )

〉
,

which yields the third and the fourth sums in (4.63). Note that each summand in
both sums is constant by (4.31).

Further, for any u < p, the nonzero blocks in all terms in (4.66) are just
identity matrices by (4.31). Hence, the corresponding contribution of the first term
in expression (4.64) for the second function to the final result equals

(4.67)

s2∑
t=1

(
|{u < p : β1

u ≥ β2
t+1}|+ |{u < p : β̄1

u−1 < β̄2
t }|
)〈(

∇2
L
)K̄2

t

Ψ2
t+1

(L2)
Ψ2

t+1

K̄2
t

〉
,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

50 4. INITIAL BASIS

which yields the fifth sum in (4.63). It follows immediately from the proof of Lemma

4.4 that the trace
〈
(∇L)

K̄t

Ψt+1
LΨt+1

K̄t

〉
is a constant.

Finally, let u = p. Let us find the contribution of the first two terms in (4.66).
From now on we are looking at the tth summand in the first term of (4.64) for the
second function. If β1

p < β2
t then the contribution of this summand vanishes for the

same size considerations as in the proof of Lemma 4.11.
If β1

p > β2
t then the contribution in question equals

〈(
∇1

LL1
)ρ(Ψ2

t )

ρ(Ψ2
t )

(
∇2

L
)K̄2

t−1

Ψ2
t

(L2)
Ψ2

t

K̄2
t−1

〉
,

which coincides with BII
t given by (4.34) and yields the first sum in (4.63).

If β1
p = β2

t then the contribution in question remains the same as in the previous

case with ρ(Ψ2
t ) replaced by Ψ1

p.
Let us find the contribution of the third term in (4.66). Note that γ̊∗ enters

both the third term in (4.66) and the first term in (4.64), consequently, we can drop

it in the former and replace by Π̊Γ2
in the latter, which effectively means that γ̊∗

is simultaneously dropped in both terms.
From now on we are looking at the tth summand in the first term of (4.64).

However, since we have dropped γ̊∗, this means that we are comparing the (t− 1)-
st Y -block in L2 with the (p − 1)-st Y -block in L1. If β̄1

p−1 ≥ β̄2
t−1 then the

contribution of this summand vanishes for the same size considerations as before.
If β̄1

p−1 < β̄2
t−1, then the contribution in question equals

〈(
∇1

LL1
)σ(Ψ2

t )

σ(Ψ2
t )

(
∇2

L
)K̄2

t−1

Ψ2
t

(L2)
Ψ2

t

K̄2
t−1

〉
,

which coincides with B̄IV
t−1 given by (4.62), and hence yields the second sum in

(4.63). �

4.3.7. Explicit expression for
〈
γ̊r(ξ̊1R)≥, γ̊

r(X∇2
X)
〉
. Assume that p and q

are defined by (4.32) and (4.47), respectively, q′ and σ are the same as in Section
4.3.6, and let ρ be the injection of K2

t and L2
t into K1

p and L1
p, respectively, defined

at the beginning of Section 4.3.4. Put

(4.68) BIV
t =

〈(
L1∇1

L
)ρ(Φ2

t )

ρ(Φ2
t )
(L2)

L2
t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
.
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Lemma 4.15.

(i) The expression for
〈
γ̊r(ξ̊1R)≥, γ̊

r(X∇2
X)
〉
is given by

〈
γ̊r(ξ̊1R)≥, γ̊

r(X∇2
X)
〉
=
∑

ᾱ2
t≤ᾱ1

p−1

B̄II
t +

∑
ᾱ2

t≤ᾱ1
p

B̄II
t +

∑
α2

t>α1
p

BIV
t

(4.69)

+

p∑
u=1

s2∑
t=1

〈
(L1∇1

L)
K̄1

u→Ī1
u

K̄1
u→Ī1

u
, γ̊r(L2∇2

L)
K2

t \Φ2
t→I2

t \Δ(α2
t )

K2
t \Φ2

t→I2
t \Δ(α2

t )

〉

+

p∑
u=1

s2∑
t=1

〈
(L1∇1

L)
K1

u\Φ1
u→I1

u\Δ(α1
u)

K1
u\Φ1

u→I1
u\Δ(α1

u)
, Π̊Γr

1
(L2∇2

L)
K2

t \Φ2
t→I2

t \Δ(α2
t )

K2
t \Φ2

t→I2
t \Δ(α2

t )

〉

+

s2∑
t=1

(
|{u < p− 1 : ᾱ1

u ≥ ᾱ2
t}|+ |{u < p : α1

u < α2
t }|
) 〈

(L2)
L2

t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
,

where B̄II
t is given by (4.49) with σ(Φ2

t ) replaced by Φ1
q for ᾱ1

q = ᾱ2
t , and

BIV
t is given by (4.68).

(ii) Each summand in the last three sums in (4.63) is constant.

Proof. Recall that by (4.53), this term can be rewritten as〈
Π̊Γ2

(η̊1R)≥, γ̊(X∇2
X)
〉

with Γ2 = Γr
2 and γ̊ = γ̊r. Note that Y∇i

Y has been already computed in (4.54).
Let us compute γ̊(X∇i

X). Taking into account (4.8) and (4.9), we get

(4.70) γ̊(X∇i
X) =

si∑
t=1

γ̊

⎡⎢⎣0 0 0

0 (Li)
Li

t

Φi
t
(∇i

L)
Φi

t

Li
t

0

0 0 0

⎤⎥⎦+ si∑
t=1

γ̊

[
0 0

0 (Li∇i
L)

Ki
t\Φi

t

Ki
t\Φi

t

]
,

similarly to (4.64).
Note first that the diagonal block in the first term in (4.70) corresponds to

the nontrivial row X-run Δ(βi
t), unless t = 1 and the first X-block is dummy, or

t = si and Φsi = ∅. Hence, γ̊ moves it to the diagonal block corresponding to the

nontrivial row Y -run Δ̄(β̄i
t) occupied by (Li)

L̄i
t

Φi
t
(∇i

L)
Φi

t

L̄i
t
in (4.54). Consequently, the

resulting diagonal block in η̊iR is equal to

(4.71) (Li)
L̄i

t

Φi
t
(∇i

L)
Φi

t

L̄i
t
+ (Li)

Li
t

Φi
t
(∇i

L)
Φi

t

Li
t
= (Li∇i

L)
Φi

t

Φi
t

(if the first X-block is dummy and Φi
1 �= ∅, the second term in the left hand side

vanishes; for Φi
t = ∅ relation (4.71) holds trivially with all three terms void).

Moreover, the projection Π̊Γ2
of the second block in the first column of (4.54)

vanishes. Summing up and applying (4.31), we get

(4.72) Π̊Γ2
(η̊1R)≥ =

s1∑
u=1

Π̊Γ2

[
(L1∇1

L)
K̄1

u

K̄1
u

0

0 0

]
+

s1∑
u=1

γ̊

[
0 0

0 (L1∇1
L)

K1
u\Φ1

u

K1
u\Φ1

u

]
;

note that if the last Y -block is dummy then the block (L1∇1
L)

K̄1
s1

K̄1
s1

is not leading

any more: it occupies rows and columns Īs1 , see Section 4.2 after (4.7).
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Recall that l̂1 ∈ Kp ∪ K̄p−1, see Section 4.3.5. Therefore, for any u > p both
terms in (4.72) vanish. Therefore, the contribution of the second term in (4.70) to
the final result equals

p∑
u=1

s2∑
t=1

〈
(L1∇1

L)
K̄1

u→Ī1
u

K̄1
u→Ī1

u
, γ̊(L2∇2

L)
K2

t \Φ2
t→I2

t \Δ(α2
t )

K2
t \Φ2

t→I2
t \Δ(α2

t )

〉

+

p∑
u=1

s2∑
t=1

〈
(L1∇1

L)
K1

u\Φ
1
u→I1

u\Δ(α1
u)

K1
u\Φ1

u→I1
u\Δ(α1

u)
, Π̊Γ1

(L2∇2
L)

K2
t \Φ

2
t→I2

t \Δ(α2
t )

K2
t \Φ2

t→I2
t \Δ(α2

t )

〉
,

which yields the fourth and the fifth sums in (4.69). Note that each summand in
both sums is constant by (4.31).

For any u < p− 1, the nonzero blocks in both terms in (4.72) are just identity
matrices by (4.31). Therefore, the corresponding contribution of the first term of
(4.70) for the second function to the final result equals

s2∑
t=1

(
|{u < p− 1 : ᾱ1

u ≥ ᾱ2
t}|+ |{u < p− 1 : α1

u < α2
t}|
) 〈

(L2)
L2

t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
,

which is similar to (4.67) and is constant for the same reason.
Further, let u = p − 1. Then the nonzero block in the second term in(4.72) is

again an identity matrix, and hence the inequality u < p − 1 in the second term
above is replaced by u < p, which yields the last sum in (4.69).

Let us find the contribution of the first term in (4.72). From now on we are
looking at the summation index t in (4.70) for the second function; recall that
it corresponds to the tth Y -block. If ᾱ1

p−1 < ᾱ2
t then the contribution of this

summand vanishes for the size considerations, similarly to the proof of Lemma
4.14. If ᾱ1

p−1 > ᾱ2
t , then the contribution in question equals〈(

L1∇1
L
)σ(Φ2

t )

σ(Φ2
t )
(L2)

L2
t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
,

which coincides with B̄II
t given by (4.49). If ᾱ1

p−1 = ᾱ2
t then the contribution in

question remains the same as in the previous case with σ(Φ2
t ) replaced by Φ1

p−1.
Consequently, we get the first sum in (4.69).

Finally, let u = p. Then the first term in (4.72) is treated exactly as in the case
u = p− 1, which gives the second sum in (4.69).

Let us find the contribution of the second term in (4.72). Note that γ̊ enters
both the second term in (4.72) and the first term in (4.70), consequently, we can

drop it in the former and replace by Π̊Γ1
in the latter, which effectively means that

γ̊ is simultaneously dropped in both terms.
From now on we are looking at the summation index t in (4.70) for the second

function. However, since we have dropped γ̊, this means that we are comparing the
tth X-block in L2 with the p-th X-block in L1. If α1

p ≥ α2
t then the contribution

of the tth term in (4.70) vanishes for the size considerations.
If α1

p < α2
t then the contribution in question equals〈(

L1∇1
L
)ρ(Φ2

t )

ρ(Φ2
t )
(L2)

L2
t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
,

which coincides with the expression (4.68) for BIV
t and yields the third sum in

(4.69). �
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4.4. Proof of Theorem 3.4: Final steps

Let us find the total contribution of all B-terms in the right hand side of

(4.36), (4.51), (4.63) and (4.69). Recall that l̂1 lies in rows K1
p ∪ K̄1

p−1 and columns

L1
p ∪ L̄1

p−1. We consider the following two cases.

4.4.1. Case 1: l̂1 lies in rows K1
p and columns L1

p. Note that under these

conditions, the matrix
(
∇1

LL1
)σ(Ψ2

t+1)

σ(Ψ2
t+1)

in the expression (4.48) for B̄I
t in (4.51)

vanishes, since rows and columns σ(Ψ2
t+1) lie strictly above and to the left of l̂1.

Besides, the matrix
(
L1∇1

L
)Φ1

p

K̄1
p\Φ1

p
in the expression (4.50) for B̄III

t in (4.51) vanishes

as well. Indeed, the column (L1)
j
K̄1

p\Φ1
p
vanishes if j lies to the right of L̄p. On the

other hand, the ith row of ∇1
L vanishes if i lies above the intersection of the main

diagonal with the vertical line corresponding to the right endpoint of L̄p.
Finally, for any t such that β1

p > β2
t , the contributions of the term BII

t given by

(4.34) in (4.36) and (4.63) cancel each other. Similarly, for any t such that ᾱ1
p > ᾱ2

t ,

the contributions of the term B̄II
t given by (4.49) in (4.51) and (4.69) cancel each

other as well. Taking into account that ᾱ1
p = ᾱ2

t is equivalent to α1
p = α2

t , we can
rewrite the remaining terms as∑

{BIV
t −BI

t : β1
p > β2

t , α
1
p < α2

t}(4.73)

+
∑

{B̄II
t −BI

t : β1
p > β2

t , α
1
p = α2

t}

+
∑

{B̄II
t : β1

p < β2
t , α

1
p = α2

t}

+
∑

{BII
t −BIII

t : β1
p = β2

t , α
1
p > α2

t }

+
∑

{BII
t −BIII

t +BIV
t : β1

p = β2
t , α

1
p < α2

t}

+
∑

{BII
t −BIII

t + B̄II
t : β1

p = β2
t , α

1
p = α2

t }

+
∑

{B̄IV
t : β̄1

p−1 < β̄2
t }+

∑
{B̄II

t : ᾱ1
p−1 ≥ ᾱ2

t },

where BI
t , B

III
t , BIV

t , and B̄IV
t are given by (4.33), (4.35), (4.68), and (4.62), re-

spectively.

Lemma 4.16.

(i) Expression (4.73) is given by∑
β2
t <β1

p

α2
t>α1

p

〈(
L1∇1

L
)ρ(Φ2

t )

ρ(Φ2
t )

(
L2∇2

L
)Φ2

t

Φ2
t

〉
+
∑

β2
t �=β1

p

α2
t=α1

p

〈(
L1∇1

L
)Φ1

p

Φ1
p

(
L2∇2

L
)Φ2

t

Φ2
t

〉

+
∑

β2
t =β1

p

α2
t<α1

p

〈
(L2)

L2
t

K̄2
t−1

(
∇2

L
)K̄2

t−1

L2
t

〉
+
∑

β2
t =β1

p

α2
t≥α1

p

〈(
∇1

LL1
)L1

p

L1
p

(
∇2

LL2
)L2

t

L2
t

〉

−
∑

β2
t =β1

p

α2
t≥α1

p

〈(
L1∇1

L
)ρ(K2

t \Φ2
t )

ρ(K2
t \Φ2

t )

(
L2∇2

L
)K2

t \Φ2
t

K2
t \Φ2

t

〉
+
∑

β2
t =β1

p

α2
t=α1

p

a 〈
(L2)

Ψ2
t

K̄2
t−1

(
∇2

L
)K̄2

t−1

Ψ2
t

〉
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+
∑

β2
t =β1

p

α2
t=α1

p

a 〈(
L1∇1

L
)K1

p

K1
p

(
L2∇2

L
)K2

t

K2
t

〉
−
∑

β2
t =β1

p

α2
t=α1

p

a 〈(
∇1

LL1
)L1

p

L1
p

(
∇2

LL2
)L2

t

L2
t

〉

+
∑

β̄2
t>β̄1

p−1

〈
(L2)

Ψ2
t+1

K̄2
t

(
∇2

L
)K̄2

t

Ψ2
t+1

〉
+
∑

ᾱ2
t≤ᾱ1

p−1

〈
(L2)

L2
t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
,

where
∑a is taken over the cases when the exit point of X

J2
t

I2
t

lies above

the exit point of X
J1
p

I1
p
.

(ii) Each summand in the expression above is a constant.

Proof. To find the first term in (4.73) note that for any fixed t satisfying the
corresponding conditions one has

BIV
t −BI

t =
〈(

L1∇1
L
)ρ(Φ2

t )

ρ(Φ2
t )
(L2)

L2
t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
+
〈(

L1∇1
L
)ρ(Φ2

t )

ρ(Φ2
t )
(L2)

L̄2
t

Φ2
t

(
∇2

L
)Φ2

t

L̄2
t

〉(4.74)

=
〈(

L1∇1
L
)ρ(Φ2

t )

ρ(Φ2
t )

(
L2∇2

L
)Φ2

t

Φ2
t

〉
= const

via (4.71) and (4.31), which yields the first term in the statement of the lemma.
Similarly, to treat the second term in (4.73) we note that under the correspond-

ing conditions

B̄II
t −BI

t =
〈(

L1∇1
L
)Φ1

p

Φ1
p
(L2)

L2
t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
+
〈(

L1∇1
L
)Φ1

p

Φ1
p
(L2)

L̄2
t

Φ2
t

(
∇2

L
)Φ2

t

L̄2
t

〉
(4.75)

=
〈(

L1∇1
L
)Φ1

p

Φ1
p

(
L2∇2

L
)Φ2

t

Φ2
t

〉
= const

via (4.71) and (4.31).
To find the contribution of the third term in (4.73), rewrite it as〈(

L1∇1
L
)Φ1

p

Φ1
p

(
L2∇2

L
)Φ2

t

Φ2
t

〉
−
〈(

L1∇1
L
)Φ1

p

Φ1
p
(L2)

L̄2
t

Φ2
t

(
∇2

L
)Φ2

t

L̄2
t

〉
and note that the second term equals

(4.76) −
〈
(L1)

L1
p

Φ1
p

(
∇1

L
)Φ1

p

L1
p
(L2)

L̄2
t

Φ2
t

(
∇2

L
)Φ2

t

L̄2
t

〉
,

since
(
∇1

L
)Φ1

p

L̄1
p
vanishes. Further, the block X

J1
p

I1
p

is contained completely inside the

block X
J2
t

I2
t
. We denote by ρ the corresponding injection, so (L1)

L1
p

Φ1
p
= (L2)

ρ(L1
p)

Φ2
t

.

Therefore, (4.76) can be written as〈(
∇1

L
)Φ1

p

L1
p
(L2)

L̄2
t

Φ2
t

(
∇2

L
)K2

t \Φ2
t

L̄2
t

(L2)
ρ(L1

p)

K2
t \Φ2

t

〉
,

where we used the fact that(
∇2

L
)Φ2

t

L̄2
t
(L2)

ρ(L1
p)

Φ2
t

+
(
∇2

L
)K2

t \Φ2
t

L̄2
t

(L2)
ρ(L1

p)

K2
t \Φ2

t
=
(
∇2

LL2
)ρ(L1

p)

L̄2
t

= 0.

Finally, (L2)
ρ(L1

p)

K2
t \Φ2

t
= (L1)

L1
p

K1
p\Φ1

p
, and

(L1)
L1

p

K1
p\Φ1

p

(
∇1

L
)Φ1

p

L1
p
=
(
L1∇1

L
)Φ1

p

K1
p\Φ1

p
= 0,
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hence (4.76) vanishes, and the contribution in question is given by the same expres-
sion as in (4.75), and thus yields the second term in the statement of the lemma.

To find the fourth term in (4.73) note that for any fixed t satisfying the corre-
sponding conditions we get

(4.77) BII
t −BIII

t

=
〈(

∇1
LL1
)Ψ1

p

Ψ1
p

(
∇2

L
)K̄2

t−1

Ψ2
t

(L2)
Ψ2

t

K̄2
t−1

〉
−
〈(

∇1
LL1
)L1

p\Ψ
1
p

Ψ1
p

(
∇2

L
)K2

t

L2
t\Ψ2

t
(L2)

Ψ2
t

K2
t

〉
.

Applying (4.65) to the first expression and using the equality(
∇1

LL1
)L1

p\Ψ1
p

Ψ1
p

(
∇2

L
)K2

t

L2
t\Ψ2

t
+
(
∇1

LL1
)Ψ1

p

Ψ1
p

(
∇2

L
)K2

t

Ψ2
t
=
(
∇1

LL1
)L1

p

Ψ1
p

(
∇2

L
)K2

t

L2
t

we get

(4.78) BII
t − BIII

t =
〈(

∇1
LL1
)Ψ1

p

Ψ1
p

(
∇2

LL2
)Ψ2

t

Ψ2
t

〉
−
〈(

∇1
LL1
)L1

p

Ψ1
p

(
∇2

L
)K2

t

L2
t
(L2)

Ψ2
t

K2
t

〉
.

Clearly, the first term above is a constant.

Note that α1
p > α2

t , and hence the block X
J1
p

I1
p

is contained completely inside

the block X
J2
t

I2
t
, which means, in particular, that p > 1. Consider two sequences of

blocks

(4.79) {Y J̄1
p−1

Ī1
p−1

, X
J1
p−1

I1
p−1

, Y
J̄1
p−2

Ī1
p−2

, . . . } and {Y J̄2
t−1

Ī2
t−1

, X
J2
t−1

I2
t−1

, Y
J̄2
t−2

Ī2
t−2

, . . . }.

There are four possibilities:

(i) there exists a pair of blocks Y
J̄1
p−m

Ī1
p−m

and Y
J̄2
t−m

Ī2
t−m

such that J̄1
p−m = J̄2

t−m,

Ī1p−m �= Ī2t−m, and the subsequences of blocks to the left of Y
J̄1
p−m

Ī1
p−m

and

Y
J̄2
t−m

Ī2
t−m

coincide;

(ii) there exists a pair of blocks X
J1
p−m

I1
p−m

and X
J2
t−m

I2
t−m

such that I1p−m = I2t−m,

J1
p−m �= J2

t−m, and the subsequences of blocks to the left of X
J1
p−m

I1
p−m

and

X
J2
t−m

I2
t−m

coincide;

(iii) the first sequence is a proper subsequence of the second one;
(iv) the second sequence is a proper subsequence of the first one, or is empty.

Case (i). Clearly, this can be possible only if Ī2t−m ⊂ Ī1p−m, see Figure 4.3

where blocks X
Ji
k

Ii
k

and Y
J̄i
k

Īi
k

are for brevity denoted Xi
k and Y i

k , respectively.

Denote

(4.80) Θi
r =

m−1⋃
j=1

(K̄i
r−j ∪Ki

r−j) ∪ K̄i
r−m, Ξi

r =

m−1⋃
j=1

(L̄i
r−j ∪ Li

r−j) ∪ L̄i
r−m.

Note that the matrix (L2)
Ξ2

t

Θ2
t
coincides with a proper submatrix of (L1)

Ξ1
p

Θ1
p
; we denote

the corresponding injection σ (it can be considered as an analog of the injection σ
defined in Section 4.3.5). Clearly,

(4.81)
(
∇2

L
)K2

t

L2
t
(L2)

Ψ2
t

K2
t
=
(
∇2

LL2
)Ψ2

t

L2
t
−
(
∇2

L
)Θ2

t

L2
t
(L2)

Ψ2
t

Θ2
t
.
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Θ1

p

=Ξ p
1 Ξ t

2

Θ2

t

X t
2

Y p−
1

1 Y t−
2

1

pX
1

=

Y p−m
1

Y t−m
2

Figure 4.3. Case (i)

The contribution of the first term in (4.81) to the second term in (4.78) equals

−
〈(

∇1
LL1
)L1

p

Ψ1
p

(
∇2

LL2
)Ψ2

t

L2
t

〉
= −
〈(

∇1
LL1
)Ψ1

p

Ψ1
p

(
∇2

LL2
)Ψ2

t

Ψ2
t

〉
and cancels the contribution of the first term in (4.78) computed above.

To find the contribution of the second term in (4.81) to the second term in
(4.78) note that

(4.82)
(
∇1

LL1
)L1

p

Ψ1
p
=
(
∇1

L
)K1

p∪Θ1
p

Ψ1
p

(L1)
L1

p

K1
p∪Θ1

p
,

so the contribution in question equals

(4.83)

〈(
∇2

L
)Θ2

t

L2
t
(L2)

Ψ2
t

Θ2
t

(
∇1

L
)K1

p∪Θ1
p

Ψ1
p

(L1)
L1

p

K1
p∪Θ1

p

〉
.

Taking into account that (L2)
Ψ2

t

Θ2
t
= (L1)

Ψ1
p

σ(Θ2
t )
, (L2)

Ξ2
t\Ψ2

t

Θ2
t

= (L1)
Ξ1

p\Ψ
1
p

σ(Θ2
t )

and that

(4.84) (L1)
Ψ1

p

σ(Θ2
t )

(
∇1

L
)K1

p∪Θ1
p

Ψ1
p

=
(
L1∇1

L
)K1

p∪Θ1
p

σ(Θ2
t )

− (L1)
Ξ1

p\Ψ1
p

σ(Θ2
t )

(
∇1

L
)K1

p∪Θ1
p

Ξ1
p\Ψ1

p
,

this contribution can be rewritten as〈(
∇2

L
)Θ2

t

L2
t

(
L1∇1

L
)K1

p∪Θ1
p

σ(Θ2
t )

(L1)
L1

p

K1
p∪Θ1

p

〉
−
〈(
∇2

L
)Θ2

t

L2
t
(L2)

Ξ2
t\Ψ2

t

Θ2
t

(
∇1

L
)K1

p∪Θ1
p

Ξ1
p\Ψ1

p
(L1)

L1
p

K1
p∪Θ1

p

〉
.

Next, by(4.31), (
∇2

L
)Θ2

t

L2
t
(L2)

Ξ2
t\Ψ2

t

Θ2
t

=
(
∇2

LL2
)Ξ2

t\Ψ2
t

L2
t

= 0,

since the columns L2
t lie to the left of Ξ2

t \Ψ2
t .

Finally, by (4.31), (
L1∇1

L
)K1

p∪Θ1
p

σ(Θ2
t )

=
[
0 1 0

]
,
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where the unit block occupies the rows and the columns σ(Θ2
t ). Therefore, the

remaining contribution equals〈(
∇2

L
)Θ2

t

L2
t
(L1)

L1
p

σ(Θ2
t )

〉
=
〈
(L2)

L2
t

Θ2
t

(
∇2

L
)Θ2

t

L2
t

〉
=
〈
(L2)

L2
t

K̄2
t−1

(
∇2

L
)K̄2

t−1

L2
t

〉
,

which is a constant via Lemma 4.4 and yields the third term in the statement of
the lemma.

Case (ii). Clearly, this can be possible only if J1
p−m ⊂ J2

t−m, see Figure 4.4
where we use the same convention as in Figure 4.3.

X t
2

Y p−
1

1 Y t−
2

1

Y p−m
1

Y t−m
2

L p−m
1

L t−m
2

pX
1

=

=

X p−m
1

X t−m
2

Θ2

t
1Θ p ,

Ξ p
1 Ξ t

2
,

,Kp−m
1

Kt−m
2

Figure 4.4. Case (ii)

Let Θi
r and Ξi

r be defined by (4.80). Note that the matrix (L1)
L1

p−m

Θ1
p∪K1

p−m

coincides with a proper submatrix of (L2)
L2

t−m

Θ2
t∪K2

t−m
; we denote the correspond-

ing injection ρ (in a sense, it can be considered as an analog of the injection
ρ defined in Section 4.3.4; however, it acts in the opposite direction). Clearly,
ρ(Θ1

p ∪K1
p−m) = Θ2

t ∪K2
t−m. Similarly to (4.84), we have

(L1)
Ψ1

p

Θ1
p

(
∇1

L
)K1

p∪Θ1
p

Ψ1
p

=
(
L1∇1

L
)K1

p∪Θ1
p

Θ1
p

− (L1)
Ξ1

p\Ψ1
p

Θ1
p

(
∇1

L
)K1

p∪Θ1
p

Ξ1
p\Ψ1

p
− (L1)

L1
p−m

Θ1
p

(
∇1

L
)K1

p∪Θ1
p

L1
p−m

.

The first two terms in the right hand side of this equation are treated exactly as in
Case (i) and yield the same contribution. The third term yields

−
〈(

∇2
L
)Θ2

t

L2
t
(L2)

ρ(L1
p−m)

Θ2
t

(
∇1

L
)K1

p∪Θ1
p

L1
p−m

(L1)
L1

p

K1
p∪Θ1

p

〉
since (L1)

L1
p−m

Θ1
p

= (L2)
ρ(L1

p−m)

Θ2
t

. To proceed further, note that(
∇2

L
)Θ2

t

L2
t
(L2)

ρ(L1
p−m)

Θ2
t

=
(
∇2

LL2
)ρ(L1

p−m)

L2
t

−
(
∇2

L
)K2

t−m\Φ2
t−m

L2
t

(L2)
ρ(L1

p−m)

K2
t−m\Φ2

t−m
.
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The first term on the right hand side vanishes, since ∇LL is lower triangular, and
columns L2

t lie to the left of ρ(L1
p−m). The second yields

〈(
∇2

L
)K2

t−m\Φ2
t−m

L2
t

(L1)
L1

p−m

K1
p−m\Φ1

p−m

(
∇1

L
)K1

p∪Θ1
p

L1
p−m

(L1)
L1

p

K1
p∪Θ1

p

〉
=

〈(
∇2

L
)K2

t−m\Φ2
t−m

L2
t

(
L1∇1

L
)K1

p∪Θ1
p

K1
p−m\Φ1

p−m
(L1)

L1
p

K1
p∪Θ1

p

〉

via (L2)
ρ(L1

p−m)

K2
t−m\Φ2

t−m
= (L1)

L1
p−m

K1
p∪Θ1

p
. Finally,

(
L1∇1

L
)K1

p∪Θ1
p

K1
p−m\Φ1

p−m
vanishes, since L∇L

is upper triangular, and rows K1
p−m \ Φ1

p−m lie below K1
p ∪Θ1

p.

Case (iii). This case is only possible if the last block in the first sequence is of

type Y , see Figure 4.5 on the left. Assuming that this block is Y
J̄1
p−m

Ī1
p−m

, we proceed

exactly as in Case (ii) with L1
p−m = ∅ and get the same contribution.

X t
2

Y p−
1

1 Y t−
2

1

L t−m
2

Y p−m
1

Y t−m
2=

Kt−m
2

Ξ p
1 Ξ t

2
,

1Θ p ,

pX
1

=

X t−m
2

Θ2

t

Θ1

p

Θ2

t

X t
2

Y p−
1

1 Y t−
2

1

Ξ t
2

pX
1

=

Y p−m
1

Ξ p
1

Figure 4.5. Cases (iii) and (iv)

Case (iv). This case is only possible if the last block in the second sequence

is of type X, see Figure 4.5 on the right. Assuming that this block is X
J2
t−m+1

I2
t−m+1

, we

proceed exactly as in Case (i) with K̄2
t−m = ∅ and get the same contribution.

To treat the fifth sum in (4.73), note that α1
p < α2

t implies that the block

X
J2
t

I2
t

is contained completely inside the block X
J1
p

I1
p
. Therefore, injection ρ can be

defined as in Section 4.3.4; moreover, ρ(Ψ2
t ) = Ψ1

p and ρ(L2
t ) = L1

p, since β1
p = β2

t .

Consequently, the block Y
J̄1
p−1

Ī1
p−1

is contained completely inside the block Y
J̄2
t−1

Ī2
t−1

, and

injection σ can be defined as in Section 4.3.5.
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We proceed similarly to the previous case and arrive at

(4.85) BII
t −BIII

t +BIV
t =

〈(
∇1

LL1
)Ψ1

p

Ψ1
p

(
∇2

LL2
)Ψ2

t

Ψ2
t

〉
−
〈(

∇1
LL1
)L1

p

Ψ1
p

(
∇2

L
)K2

t

L2
t
(L2)

Ψ2
t

K2
t

〉
+
〈(

L1∇1
L
)ρ(Φ2

t )

ρ(Φ2
t )
(L2)

L2
t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
.

Clearly,
(
∇1

LL1
)L1

p

Ψ1
p
=
(
∇1

L
)K1

p∪K̄1
p−1

Ψ1
p

(L1)
L1

p

K1
p∪K̄1

p−1
, so the second term in (4.85)

equals

(4.86) −
〈
(L1)

L1
p

K1
p∪K̄1

p−1

(
∇2

L
)K2

t

L2
t
(L1)

Ψ1
p

ρ(K2
t )

(
∇1

L
)K1

p∪K̄1
p−1

Ψ1
p

〉
=

〈
(L1)

L1
p

K1
p∪K̄1

p−1

(
∇2

L
)K2

t

L2
t
(L1)

L1
p\Ψ

1
p

ρ(K2
t )

(
∇1

L
)K1

p∪K̄1
p−1

L1
p\Ψ1

p

〉
−
〈
(L1)

L1
p

K1
p∪K̄1

p−1

(
∇2

L
)K2

t

L2
t

(
L1∇1

L
)K1

p∪K̄1
p−1

ρ(K2
t )

〉
.

The first term in (4.86) equals〈
(L1)

L1
p

K1
p∪K̄1

p−1

(
∇2

L
)K2

t

L2
t
(L2)

L2
t\Ψ2

t

K2
t

(
∇1

L
)K1

p∪K̄1
p−1

L1
p\Ψ1

p

〉
=
〈(

∇2
LL2
)L2

t\Ψ
2
t

L2
t

(
∇1

LL1
)L1

p

L1
p\Ψ1

p

〉
=
〈(

∇2
LL2
)L2

t\Ψ
2
t

L2
t\Ψ2

t

(
∇1

LL1
)L1

p\Ψ
1
p

L1
p\Ψ1

p

〉
= const,

which together with the contribution of the first term in (4.85) yields the fourth
term in the statement of the lemma for α2

t > α1
p.

By (4.31), the matrix
(
L1∇1

L
)K1

p\ρ(K
2
t )

ρ(K2
t )

vanishes. Next, we use injection σ

mentioned above to write (L1)
L1

p

ρ(K2
t )∪K̄1

p−1

= (L2)
L2

t

K2
t ∪σ(K̄1

p−1)
, and hence the second

term in (4.86) can be written as

−
〈(

L1∇1
L
)ρ(K2

t )∪K̄1
p−1

ρ(K2
t )

(L2)
L2

t

K2
t ∪σ(K̄1

p−1)

(
∇2

L
)K2

t

L2
t

〉
(4.87)

= −
〈(

L1∇1
L
)ρ(K2

t )∪K̄1
p−1

ρ(K2
t )

(
L2∇2

L
)K2

t

K2
t ∪σ(K̄1

p−1)

〉
+

〈(
L1∇1

L
)ρ(K2

t )∪K̄1
p−1

ρ(K2
t )

(L2)
L̄2

t

K2
t ∪σ(K̄1

p−1)

(
∇2

L
)K2

t

L̄2
t

〉
+

〈(
L1∇1

L
)ρ(K2

t )∪K̄1
p−1

ρ(K2
t )

(L2)
L̄2

t−1\Ψ2
t

K2
t ∪σ(K̄1

p−1)

(
∇2

L
)K2

t

L̄2
t−1\Ψ2

t

〉
.

By (4.31), the first term in (4.87) equals

(4.88) −
〈(

L1∇1
L
)ρ(K2

t )

ρ(K2
t )

(
L2∇2

L
)K2

t

K2
t

〉
= const.

Recall that the matrix (L2)
L̄2

t

(K2
t \Φ2

t )∪σ(K̄1
p−1)

vanishes, and so the second term

in (4.87) can be rewritten as〈(
L1∇1

L
)ρ(Φ2

t )

ρ(K2
t )
(L2)

L̄2
t

Φ2
t

(
∇2

L
)K2

t

L̄2
t

〉
=
〈(

L1∇1
L
)ρ(Φ2

t )

ρ(Φ2
t )
(L2)

L̄2
t

Φ2
t

(
∇2

L
)Φ2

t

L̄2
t

〉
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by (4.31). Taking into account the third term in (4.85), we get exactly the same
contribution as in (4.74), which together with (4.88) yields the fifth term in the
statement of the lemma for α2

t > α1
p.

To treat the third term in (4.87) note that(
L1∇1

L
)ρ(K2

t )∪K̄1
p−1

ρ(K2
t )

= (L1)
L1

p

ρ(K2
t )

(
∇1

L
)ρ(K2

t )∪K̄1
p−1

L1
p

and that the matrix (L2)
L̄2

t−1\Ψ2
t

K2
t

vanishes. Consequently, the term in question

equals〈
(L1)

L1
p

ρ(K2
t )

(
∇1

L
)ρ(K2

t )∪K̄1
p−1

L1
p

(L2)
L̄2

t−1\Ψ
2
t

K2
t ∪σ(K̄1

p−1)

(
∇2

L
)K2

t

L̄2
t−1\Ψ2

t

〉
=

〈
(L1)

L1
p

ρ(K2
t )

(
∇1

L
)K̄1

p−1

L1
p

(L1)
L̄2

p−1\Ψ1
p

K̄1
p−1

(
∇2

L
)K2

t

L̄2
t−1\Ψ2

t

〉
,

since (L2)
L̄2

t−1\Ψ
2
t

σ(K̄1
p−1)

= (L1)
L̄2

p−1\Ψ1
p

K̄1
p−1

. The obtained expression vanishes since

(
∇1

L
)K̄1

p−1

L1
p

(L1)
L̄2

p−1\Ψ1
p

K̄1
p−1

=
(
∇1

LL1
)L̄2

p−1\Ψ1
p

L1
p

vanishes by (4.31).
Further, consider the sixth term in (4.73). Using (4.78) we arrive at

(4.89) BII
t −BIII

t + B̄II
t =
〈(

∇1
LL1
)Ψ1

p

Ψ1
p

(
∇2

LL2
)Ψ2

t

Ψ2
t

〉
−
〈(

∇1
LL1
)L1

p

Ψ1
p

(
∇2

L
)K2

t

L2
t
(L2)

Ψ2
t

K2
t

〉
+
〈(

L1∇1
L
)Φ1

p

Φ1
p
(L2)

L2
t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
.

Clearly, the first term in (4.89) is a constant.

Note that the blocks X
J1
p

I1
p

and X
J2
t

I2
t

coincide. Similarly to the analysis above,

we consider two nonempty sequences of blocks (4.79) (the cases p = 1 or t = 1 are
trivial). We have the same four possibilities as before, and, additionally,

(v) the sequences coincide.

Each one of the possibilities (i)–(iv) is further split into two cases:

(a) the exit point of X
J2
t

I2
t
lies below the exit point of X

J1
p

I1
p
;

(b) the exit point of X
J2
t

I2
t
lies above the exit point of X

J1
p

I1
p
.

Case (ia). Clearly, this can be possible only if Ī1p−m ⊂ Ī2t−m, see Figure 4.6.

Define Θi
r and Ξi

r in the same way as in (4.80). Using equalities (4.82) and

(L2)
Ψ2

t

K2
t
= (L1)

Ψ1
p

K1
p
, we rewrite the second term in (4.89) as

−
〈(

∇2
L
)K2

t

L2
t

(
L1∇1

L
)K1

p∪Θ1
p

K1
p

(L1)
L1

p

K1
p∪Θ1

p

〉
+

〈(
∇2

L
)K2

t

L2
t
(L1)

L1
p\Ψ1

p

K1
p

(
∇1

L
)K1

p∪Θ1
p

L1
p\Ψ1

p
(L1)

L1
p

K1
p∪Θ1

p

〉
+

〈(
∇2

L
)K2

t

L2
t
(L1)

L̄1
p

K1
p

(
∇1

L
)K1

p∪Θ1
p

L̄1
p

(L1)
L1

p

K1
p∪Θ1

p

〉
.
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Y p−
1

1 Y t−
2

1

Y t−m
2

Y p−m
1

Θ1

p

Θ2

t

=

pX
1

X t
2=

Ξ p
1 Ξ t

2
,

Figure 4.6. Case (ia)

Note that (L1)
L1

p\Ψ
1
p

K1
p

= (L2)
L2

t\Ψ2
t

K2
t

and(
∇1

L
)K1

p∪Θ1
p

L1
p\Ψ1

p
(L1)

L1
p

K1
p∪Θ1

p
=
(
∇1

LL1
)L1

p

L1
p\Ψ1

p
,(

∇2
L
)K2

t

L2
t
(L2)

L2
t\Ψ2

t

K2
t

=
(
∇2

LL2
)L2

t\Ψ2
t

L2
t

,

hence the second term in the expression above equals〈(
∇1

LL1
)L1

p

L1
p\Ψ1

p

(
∇2

LL2
)L2

t\Ψ2
t

L2
t

〉
=
〈(

∇1
LL1
)L1

p\Ψ1
p

L1
p\Ψ1

p

(
∇2

LL2
)L2

t\Ψ2
t

L2
t\Ψ2

t

〉
= const,

which together with the first term in (4.89) yields the eighth term in the statement
of the lemma, as well as the fourth term for α2

t = α1
p.

Finally,
(
∇1

L
)K1

p∪Θ1
p

L̄1
p

vanishes since the columns L̄1
p are strictly to the left of

K1
p ∪Θ1

p, so the third term in the expression above vanishes.
Note that(
L1∇1

L
)K1

p∪Θ1
p

K1
p

(L1)
L1

p

K1
p∪Θ1

p

=
(
L1∇1

L
)Φ1

p

K1
p
(L1)

L1
p

Φ1
p
+
(
L1∇1

L
)K1

p\Φ
1
p

K1
p

(L1)
L1

p

K1
p\Φ1

p
+
(
L1∇1

L
)Θ1

p

K1
p
(L1)

L1
p

Θ1
p
.

By (4.31),
(
L1∇1

L
)Φ1

p

K1
p\Φ1

p
vanishes; besides, (L2)

L2
t

Φ2
t
= (L1)

L1
p

Φ1
p
. Hence

−
〈(

L1∇1
L
)Φ1

p

K1
p
(L1)

L1
p

Φ1
p

(
∇2

L
)K2

t

L2
t

〉
= −
〈(

L1∇1
L
)Φ1

p

Φ1
p
(L2)

L2
t

Φ2
t

(
∇2

L
)Φ2

t

L2
t

〉
,

that is, the first term in the equation above cancels the third term in (4.89). Further,

(L1)
L1

p

K1
p\Φ1

p
= (L2)

L2
t

K2
t \Φ2

t
and

(L2)
L2

t

K2
t \Φ2

t

(
∇2

L
)K2

t

L2
t
=
(
L2∇2

L
)K2

t

K2
t \Φ2

t
,
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and hence

−
〈(

L1∇1
L
)K1

p\Φ
1
p

K1
p

(L1)
L1

p

K1
p\Φ1

p

(
∇2

L
)K2

t

L2
t

〉
= −
〈(

L1∇1
L
)K1

p\Φ
1
p

K1
p

(
L2∇2

L
)K2

t

K2
t \Φ2

t

〉
(4.90)

= −
〈(

L1∇1
L
)K1

p\Φ
1
p

K1
p\Φ1

p

(
L2∇2

L
)K2

t \Φ
2
t

K2
t \Φ2

t

〉
= const.

The remaining contribution of (4.89) equals

(4.91) −
〈(

L1∇1
L
)Θ1

p

K1
p
(L1)

L1
p

Θ1
p

(
∇2

L
)K2

t

L2
t

〉
= −
〈(

L1∇1
L
)Θ1

p

Φ1
p
(L1)

Ψ1
p

Θ1
p

(
∇2

L
)Φ2

t

Ψ2
t

〉
,

since the deleted columns and rows of L1∇1
L and L1 vanish.

Next we use the injection σ (similar to the one used in Case (i) above but acting

in the opposite direction) to rewrite (L1)
Ψ1

p

Θ1
p
= (L2)

Ψ2
t

σ(Θ1
p)
, and to write

(L2)
Ψ2

t

σ(Θ1
p)

(
∇2

L
)Φ2

t

Ψ2
t
=
(
L2∇2

L
)Φ2

t

σ(Θ1
p)

− (L2)
Ξ2

t\Ψ2
t

σ(Θ1
p)

(
∇2

L
)Φ2

t

Ξ2
t\Ψ2

t
,

which transforms the above contribution into

−
〈(

L1∇1
L
)Θ1

p

Φ1
p

(
L2∇2

L
)Φ2

t

σ(Θ1
p)

〉
+
〈(

L1∇1
L
)Θ1

p

Φ1
p
(L2)

Ξ2
t\Ψ2

t

σ(Θ1
p)

(
∇2

L
)Φ2

t

Ξ2
t\Ψ2

t

〉
.

Clearly, the first term above vanishes since
(
L2∇2

L
)Φ2

t

σ(Θ1
p)

= 0. The second one

vanishes since

(4.92)
(
L1∇1

L
)Θ1

p

Φ1
p
= (L1)

L1
p∪L̄1

p

Φ1
p

(
∇1

L
)Θ1

p

L1
p∪L̄1

p
,

(L2)
Ξ2

t\Ψ2
t

σ(Θ1
p)

= (L1)
Ξ1

p\Ψ1
p

Θ1
p

and(
∇1

L
)Θ1

p

L1
p∪L̄1

p
(L1)

Ξ1
p\Ψ1

p

Θ1
p

=
(
∇1

LL1
)Ξ1

p\Ψ1
p

L1
p∪L̄1

p
= 0.

Case (ib). Clearly, this can be possible only if Ī2t−m ⊂ Ī1p−m, cf. Figure 4.3.
We proceed exactly as in Case (ia), retaining the definitions of Θr and Ξr, and
arrive at (4.91). As a result, we obtain two contributions similar to those obtained
in Case (ia): one is similar to the eighth term in the statement of the lemma and
is given by

(4.93)
∑

β1
p=β2

t

α1
p=α2

t

a 〈(
∇1

LL1
)L1

p

L1
p

(
∇2

LL2
)L2

t

L2
t

〉
,

while the other together with (4.90) yields the fifth term in the statement of the
lemma for α2

t = α1
p.

Next, we note that
(
L1∇1

L
)Θ1

p

Φ1
p
= (L1)

L1
p

Φ1
p

(
∇1

L
)Θ1

p

L1
p
, since

(
∇1

L
)Θ1

p

L̄1
p
= 0. Applying

(L1)
L1

p

Φ1
p
= (L2)

L2
t

Φ2
t
, we arrive at

−
〈(

∇1
L
)Θ1

p

L1
p
(L1)

Ψ1
p

Θ1
p

(
∇2

L
)Φ2

t

Ψ2
t
(L2)

L2
t

Φ2
t

〉
.

Note that

(4.94)
(
∇2

L
)Φ2

t

Ψ2
t
(L2)

L2
t

Φ2
t
=
(
∇2

LL2
)L2

t

Ψ2
t
−
(
∇2

L
)K2

t \Φ2
t

Ψ2
t

(L2)
L2

t

K2
t \Φ2

t
−
(
∇2

L
)Θ2

t

Ψ2
t
(L2)

L2
t

Θ2
t
.
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To treat the first term in (4.94), we use an analog of (4.65) and get

−
〈(

∇1
LL1
)Ψ1

p

L1
p

(
∇2

LL2
)L2

t

Ψ2
t

〉
+

〈(
∇1

L
)K1

p

L1
p
(L1)

Ψ1
p

K1
p

(
∇2

LL2
)L2

t

Ψ2
t

〉
.

Clearly, the first term above equals

(4.95) −
〈(

∇1
LL1
)Ψ1

p

Ψ1
p

(
∇2

LL2
)Ψ2

t

Ψ2
t

〉
= const.

The second term above can be rewritten as〈(
∇1

L
)K1

p

L1
p
(L2)

Ψ2
t

K2
t

(
∇2

L
)K2

t ∪Θ2
t

Ψ2
t

(L2)
L2

t

K2
t ∪Θ2

t

〉
.

Next, we write
(4.96)

(L2)
Ψ2

t

K2
t

(
∇2

L
)K2

t ∪Θ2
t

Ψ2
t

=
(
L2∇2

L
)K2

t ∪Θ2
t

K2
t

− (L2)
L2

t\Ψ2
t

K2
t

(
∇2

L
)K2

t ∪Θ2
t

L2
t\Ψ2

t
− (L2)

L̄2
t

K2
t

(
∇2

L
)K2

t ∪Θ2
t

L̄2
t

.

The contribution of the first term in (4.96) can be written as〈(
L2∇2

L
)K2

t ∪Θ2
t

K2
t

(L1)
L1

p

K1
p∪σ(Θ2

t )

(
∇1

L
)K1

p

L1
p

〉
= −
〈(

L2∇2
L
)K2

t ∪Θ2
t

K2
t

(L1)
Ξ1

p\Ψ1
p

K1
p∪σ(Θ2

t )

(
∇1

L
)K1

p

Ξ1
p\Ψ1

p

〉
+

〈(
L2∇2

L
)K2

t ∪Θ2
t

K2
t

(
L1∇1

L
)K1

p

K1
p∪σ(Θ2

t )

〉
,

where injection σ is defined as in Case (i) above. The second term above equals〈(
L2∇2

L
)K2

t

K2
t

(
L1∇1

L
)K1

p

K1
p

〉
= const,

and yields the seventh term in the statement of the lemma, while the first term
equals

−
〈
(L2)

L2
t∪L̄2

t

K2
t

(
∇2

L
)K2

t ∪Θ2
t

L2
t∪L̄2

t
(L2)

Ξ2
t\Ψ

2
t

K2
t ∪Θ2

t

(
∇1

L
)K1

p

Ξ1
p\Ψ1

p

〉
and vanishes, since (

∇2
L
)K2

t ∪Θ2
t

L2
t∪L̄2

t
(L2)

Ξ2
t\Ψ2

t

K2
t ∪Θ2

t
=
(
∇2

LL2
)Ξ2

t\Ψ2
t

L2
t∪L̄2

t
= 0

by (4.31).
The contribution of the second term in (4.96) equals

−
〈(

∇1
L
)K1

p

L1
p
(L1)

L1
p\Ψ1

p

K1
p

(
∇2

L
)K2

t ∪Θ2
t

L2
t\Ψ2

t
(L2)

L2
t

K2
t ∪Θ2

t

〉
= −
〈(

∇1
LL1
)L1

p\Ψ
1
p

L1
p

(
∇2

LL2
)L2

t

L2
t\Ψ2

t

〉
= −
〈(

∇1
LL1
)L1

p\Ψ1
p

L1
p\Ψ1

p

(
∇2

LL2
)L2

t\Ψ2
t

L2
t\Ψ2

t

〉
= const

and together with (4.95) cancels the contribution of (4.93).
The contribution of the third term in (4.96) equals

−
〈(

∇1
L
)K1

p

L1
p
(L2)

L̄2
t

K2
t

(
∇2

L
)K2

t ∪Θ2
t

L̄2
t

(L2)
L2

t

K2
t ∪Θ2

t

〉
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and vanishes, since (
∇2

L
)K2

t ∪Θ2
t

L̄2
t

(L2)
L2

t

K2
t ∪Θ2

t
=
(
∇2

LL2
)L2

t

L̄2
t
= 0

by (4.31).
The contribution of the second term in (4.94) equals〈

(L1)
L1

p

K1
p\Φ1

p

(
∇1

L
)Θ1

p

L1
p
(L1)

Ψ1
p

Θ1
p

(
∇2

L
)K2

t \Φ2
t

Ψ2
t

〉
and vanishes, since

(L1)
L1

p

K1
p\Φ1

p

(
∇1

L
)Θ1

p

L1
p
=
(
L1∇1

L
)Θ1

p

K1
p\Φ1

p
= 0;

the latter equality follows from the fact
(
L1∇1

L
)(K1

p\Φ1
p)∪Θ1

p

(K1
p\Φ1

p)∪Θ1
p
= 1.

The contribution of the third term in (4.94) equals〈
(L1)

L1
p

σ(Θ2
t )

(
∇1

L
)Θ1

p

L1
p
(L1)

Ψ1
p

Θ1
p

(
∇2

L
)Θ2

t

Ψ2
t

〉
via (L2)

L2
t

Θ2
t
= (L1)

L1
p

σ(Θ2
t )
. Note that

(L1)
L1

p

σ(Θ2
t )

(
∇1

L
)Θ1

p

L1
p
=
(
L1∇1

L
)Θ1

p

σ(Θ2
t )

=
[
1 0
]
,

and hence (L1)
L1

p

σ(Θ2
t )

(
∇1

L
)Θ1

p

L1
p
(L1)

Ψ1
p

Θ1
p
= (L2)

Ψ2
t

Θ2
t
. Consequently, the contribution in

question equals

−
〈
(L2)

Ψ2
t

Θ2
t

(
∇2

L
)Θ2

t

Ψ2
t

〉
= −
〈
(L2)

Ψ2
t

K̄2
t−1

(
∇2

L
)K̄2

t−1

Ψ2
t

〉
,

which is a constant by Lemma 4.4 yielding the sixth term in the statement of the
lemma.

Case (iia). Clearly, this can be possible only if J2
t−m ⊂ J1

p−m, see Figure 4.7.

We proceed exactly as in Case (ia), retaining the definitions of Θi
r and Ξi

r, and

arrive at (4.91). Next, we apply (L1)
Ψ1

p

Θ1
p
= (L2)

Ψ2
t

Θ2
t
, and note that

(L2)
Ψ2

t

Θ2
t

(
∇2

L
)Φ2

t

Ψ2
t
=
(
L2∇2

L
)Φ2

t

Θ2
t
− (L2)

Ξ2
t\Ψ2

t

Θ2
t

(
∇2

L
)Φ2

t

Ξ2
t\Ψ2

t
− (L2)

L2
t−m

Θ2
t

(
∇2

L
)Φ2

t

L2
t−m

.

Consequently, (4.91) can be written as a sum of three terms. The first two are
treated exactly as in Case (ia) and yield the same contribution. With the help of
(4.92), the third term can be rewritten as〈

(L1)
L1

p∪L̄1
p

Φ1
p

(
∇1

L
)Θ1

p

L1
p∪L̄1

p
(L2)

L2
t−m

Θ2
t

(
∇2

L
)Φ2

t

L2
t−m

〉
.

Next, we use the injection ρ (similar to the one defined in Section 4.3.4) to write

(L2)
L2

t−m

Θ2
t

= (L1)
ρ(L2

t−m)

Θ1
p

, which together with(
∇1

L
)Θ1

p

L1
p∪L̄1

p
(L1)

ρ(L2
t−m)

Θ1
p

+
(
∇1

L
)K1

p−m\Φ1
p−m

L1
p∪L̄1

p
(L1)

ρ(L2
t−m)

K1
p−m\Φ1

p−m
=
(
∇1

LL1
)ρ(L2

t−m)

L1
p∪L̄1

p
= 0

transforms the third term into

−
〈
(L1)

L1
p∪L̄1

p

Φ1
p

(
∇1

L
)K1

p−m\Φ1
p−m

L1
p∪L̄1

p
(L1)

ρ(L2
t−m)

K1
p−m\Φ1

p−m

(
∇2

L
)Φ2

t

L2
t−m

〉
.
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Y p−
1

1 Y t−
2

1

Y p−m
1

Y t−m
2

L t−m
2

L p−m
1

X t−m
2 X p−m

1

=

=

Θ2

t
1Θ p ,

Ξ p
1 Ξ t

2
,

,Kp−m
1

Kt−m
2

pX
1

X t
2=

Figure 4.7. Case (iia)

Finally, we use (L1)
ρ(L2

t−m)

K1
p−m\Φ1

p−m
= (L2)

L2
t−m

K2
t−m\Φ2

t−m
and

(L2)
L2

t−m

K2
t−m\Φ2

t−m

(
∇2

L
)Φ2

t

L2
t−m

=
(
L2∇2

L
)Φ2

t

K2
t−m\Φ2

t−m

= 0

to make sure that the contribution of this term vanishes.

Case (iib). Clearly, this can be possible only if J1
p−m ⊂ J2

t−m, cf. Figure 4.4.
We proceed exactly as in Case (ib), with the only difference: the contribution of
the first term in (4.96) contains an additional term〈

(L2)
L2

t∪L̄2
t

K2
t

(
∇2

L
)K2

t ∪Θ2
t

L2
t∪L̄2

t
(L1)

L1
p−m

K1
p∪Θ1

p

(
∇1

L
)K1

p

L1
p−m

〉
,

which vanishes since (L1)
L1

p−m

K1
p∪Θ1

p
= (L2)

ρ(L1
p−m)

K2
t ∪Θ2

t
and(

∇2
L
)K2

t ∪Θ2
t

L2
t∪L̄2

t
(L2)

ρ(L1
p−m)

K2
t ∪Θ2

t
=
(
∇2

LL2
)ρ(L1

p−m)

L2
t∪L̄2

t
= 0.

Case (iiia). This case is only possible if the last block in the first sequence is

of type X, see Figure 4.8 on the right. Assuming that this block is X
J1
p−m+1

I1
p−m+1

, we

proceed exactly as in Case (ia) with K̄1
p−m = ∅ and get the same contribution.

Case (iiib). This case is only possible if the last block in the first sequence is

of type Y , cf. Figure 4.5. Assuming that this block is Y
J̄1
p−m

Ī1
p−m

, we proceed exactly

as in Case (iib) with L1
p−m = ∅ and get the same contribution.

Case (iva). This case is only possible if the last block in the second sequence

is of type Y , see Figure 4.8 on the left. Assuming that this block is Y
J̄2
t−m

Ī2
t−m

, we

proceed exactly as in Case (iia) with L2
t−m = ∅ and get the same contribution.
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Y p−
1

1 Y t−
2

1

Y p−m
1

Y t−m
2=

Ξ p
1 Ξ t

2
,

1Θ p ,

Θ1

p

Θ2

t

Y p−
1

1 Y t−
2

1

X t
2

pX
1 =X t

2
pX
1 =

Ξ t
2

Ξ p
1

=

X p−m
1

Θ2

t

=

Y t−m
2Kp−m

1

L p−m
1

Figure 4.8. Cases (iiia) and (iva)

Case (ivb). This case is only possible if the last block in the second sequence is

of type X, cf. Figure 4.5. Assuming that this block is X
J2
t−m+1

I2
t−m+1

, we proceed exactly

as in Case (ib) with K̄2
t−m = ∅ and get the same contribution.

Case (v). This case is only possible if the exit points of X
J2
t

I2
t
and X

J1
p

I1
p
coincide.

The last block in both sequences is either of type Y or of type X. In the former
case we proceed as in Case (iva), and in the latter case, as in Case (iiia).

The last two terms in the statement of the lemma are obtained from the last two

terms in (4.73) by taking into account that
(
L1∇1

L
)σ(Φ2

t )

σ(Φ2
t )

in the expression (4.49) for

B̄II
t and

(
∇1

LL1
)σ(Ψ2

t+1)

σ(Ψ2
t+1)

in the expression (4.62) for B̄IV
t are unit matrices, since in

both cases σ is an injection into the block Y
J1
p−1

I1
p−1

. The remaining traces are treated

in the same way as in (4.67). �

4.4.2. Case 2: l̂1 lies in rows K̄1
p−1 and columns L̄1

p−1. Similarly to the
previous case, (

L1∇1
L
)ρ(Φ2

t )

ρ(Φ2
t )

in the expression (4.33) for BI
t in (4.36) and in the expression (4.68) for BIV

t in
(4.69), (

L1∇1
L
)σ(Φ2

t )

σ(Φ2
t )

in the expression (4.49) for B̄II
t in the fifth term in (4.69), as well as(

∇1
LL1
)L1

p\Ψ1
p

Ψ1
p

in the expression (4.35) for BIII
t in (4.36) vanish. Further, the contributions of BII

t

to (4.36) and to (4.63) cancel each other for any t such that β1
p > β2

t , while the
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contributions of B̄II
t to (4.51) and to (4.69) cancel each other for any t such that

ᾱ1
p−1 > ᾱ2

t . Consequently, we arrive at

∑
{B̄IV

t − B̄I
t : ᾱ1

p−1 > ᾱ2
t , β̄

1
p−1 < β̄2

t }+
∑

{BII
t+1 − B̄I

t : ᾱ1
p−1 > ᾱ2

t , β̄
1
p−1= β̄2

t }
(4.97)

+
∑

{BII
t+1 : ᾱ1

p−1 < ᾱ2
t , β̄

1
p−1 = β̄2

t }+
∑

{B̄II
t − B̄III

t : ᾱ1
p−1 = ᾱ2

t , β̄
1
p−1>β̄2

t }

+
∑

{B̄II
t + B̄IV

t − B̄III
t : ᾱ1

p−1 = ᾱ2
t , β̄

1
p−1 < β̄2

t }

+
∑

{B̄II
t +BII

t+1 − B̄III
t : ᾱ1

p−1 = ᾱ2
t , β̄

1
p−1 = β̄2

t }.

A direct comparison shows that (4.97) can be obtained directly from the first six
terms of (4.73) via switching the roles of B∗

t and B̄∗
t , replacing β∗

t with ᾱ∗
t and α∗

t

with β̄∗
t , and shifting indices when necessary.

Lemma 4.17.

(i) Expression (4.97) is given by∑
ᾱ2
t−1

<ᾱ1
p−1

β̄2
t−1

>β̄1
p−1

〈(
∇1

LL1
)σ(Ψ2

t )

σ(Ψ2
t )

(
∇2

LL2
)Ψ2

t

Ψ2
t

〉
+

∑
ᾱ2
t−1

�=ᾱ1
p−1

β̄2
t−1

=β̄1
p−1

〈(
∇1

LL1
)Ψ1

p

Ψ1
p

(
∇2

LL2
)Ψ2

t

Ψ2
t

〉

+
∑

ᾱ2
t−1

=ᾱ1
p−1

β̄2
t−1

<β̄1
p−1

〈
(L2)

L2
t−1

K̄2
t−1

(
∇2

L
)K̄2

t−1

L2
t−1

〉
+

∑
ᾱ2
t−1

=ᾱ1
p−1

β̄2
t−1

≥β̄1
p−1

〈(
L1∇1

L
)K̄1

p−1

K̄1
p−1

(
L2∇2

L
)K̄2

t−1

K̄2
t−1

〉

−
∑

ᾱ2
t−1

=ᾱ1
p−1

β̄2
t−1

≥β̄1
p−1

〈(
∇1

LL1
)σ(L̄2

t−1\Ψ2
t )

σ(L̄2
t−1\Ψ2

t )

(
∇2

LL2
)L̄2

t−1\Ψ2
t

L̄2
t−1\Ψ2

t

〉
+
∑

ᾱ2
t−1

=ᾱ1
p−1

β̄2
t−1

=β̄1
p−1

l

〈
(L2)

L2
t−1

Φ2
t−1

(
∇2

L
)Φ2

t−1

L2
t−1

〉

+
∑

ᾱ2
t−1

=ᾱ1
p−1

β̄2
t−1

=β̄1
p−1

l
〈(

∇1
LL1
)L̄1

p−1

L̄1
p−1

(
∇2

LL2
)L̄2

t−1

L̄2
t−1

〉
−

∑
ᾱ2
t−1

=ᾱ1
p−1

β̄2
t−1

=β̄1
p−1

l
〈(

L1∇1
L
)K̄1

p−1

K̄1
p−1

(
L2∇2

L
)K̄2

t−1

K̄2
t−1

〉
,

where
∑l

is taken over the cases when the exit point of Y
J2
t−1

I2
t−1

lies to the

left of the exit point of Y
J1
p−1

I1
p−1

.

(ii) Each summand in the expression above is a constant.

Proof. The contributions of the terms in (4.97) can be obtained from the
computation of the contributions of the corresponding terms in (4.73) via a formal
process, which replaces K∗, L∗, K̄∗, L̄∗, Φ∗, Ψ∗, α∗, β∗, ᾱ∗, β̄∗ and

∑a
by L̄∗−1,

K̄∗−1, L∗, K∗, Ψ∗, Φ∗−1, β̄∗−1, ᾱ∗−1, β∗, α∗ and
∑l, respectively, and interchanges

ρ and σ. Besides, matrix multiplication from the right should be replaced by the
multiplication from the left, and the upper and lower indices should be interchanged.

As an example of this formal process, let us consider the computation of the
contribution of the fourth term in (4.97). First observe, that the expression for
BII

t −BIII
t in (4.77) is transformed to〈

(L2)
L2

t−1

Φ2
t−1

(
∇2

L
)Φ2

t−1

L2
t−1

(
L1∇1

L
)Φ1

p−1

Φ1
p−1

〉
−
〈
(L2)

L̄2
t−1

Φ2
t−1

(
∇2

L
)K̄2

t−1\Φ
2
t−1

L̄2
t−1

(
L1∇1

L
)Φ1

p−1

K̄1
p−1\Φ1

p−1

〉
,
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which is exactly the expression for B̄II
t−1 − B̄III

t−1 (note that the summation index in
the statement of the lemma is shifted by one with respect to the summation index
in (4.97)).

Next, we apply the transformed version of (4.65) (which is identical to (4.71)
with shifted indices) to the first expression above and use the transformed equality(
∇2

L
)K̄2

t−1\Φ2
t−1

L̄2
t−1

(
L1∇1

L
)Φ1

p−1

K̄1
p−1\Φ1

p−1
+
(
∇2

L
)Φ2

t−1

L̄2
t−1

(
L1∇1

L
)Φ1

p−1

Φ1
p−1

=
(
∇2

L
)K̄2

t−1

L̄2
t−1

(
L1∇1

L
)Φ1

p−1

K̄1
p−1

to get
(4.98)

B̄II
t−1 − B̄III

t−1 =

〈(
L2∇2

L
)Φ2

t−1

Φ2
t−1

(
L1∇1

L
)Φ1

p−1

Φ1
p−1

〉
−
〈
(L2)

L̄2
t−1

Φ2
t−1

(
∇2

L
)K̄2

t−1

L̄2
t−1

(
∇1

LL1
)Φ1

p−1

K̄1
p−1

〉
,

which is the transformed version of (4.78). Clearly, the first term above is a con-
stant.

Note that β̄1
p−1 > β̄2

t−1, which is the transformed version of α1
p > α2

t and means

that the block Y
J2
p−1

I2
p−1

is contained completely inside the block Y
J1
t−1

I1
t−1

. Similarly to

Section 4.4.1, we consider two sequences of blocks

{XJ1
p−1

I1
p−1

, Y
J̄1
p−2

Ī1
p−2

, X
J1
p−2

I1
p−2

, . . . } and {XJ2
t−1

I2
t−1

, Y
J̄2
t−2

Ī2
t−2

, X
J2
t−2

I2
t−2

, . . . }

and study the same four cases. Let us consider Case (i) in detail. The analogs of
Θr and Ξr are

Θ̄r−1 = Kr−1 ∪
m⋃
i=2

(K̄r−i ∪Kr−i), Ξ̄r−1 = Lr−1 ∪
m⋃
i=2

(L̄r−i ∪ Lr−i).

We add the correspondence Θ∗ �→ Ξ̄∗−1 and Ξ∗ �→ Θ̄∗−1, which turns the above
relations into the transformed version of (4.80).

Note that the matrix (L2)
Ξ̄2

t−1

Θ̄2
t−1

coincides with a proper submatrix of (L1)
Ξ̄1

p−1

Θ̄1
p−1

;

we denote the corresponding injection ρ. Clearly,

(4.99) (L2)
L̄2

t−1

Φ2
t−1

(
∇2

L
)K̄2

t−1

L̄2
t−1

=
(
L2∇2

L
)K̄2

t−1

Φ2
t−1

− (L2)
Ξ̄2

t−1

Φ2
t−1

(
∇2

L
)K̄2

t−1

Ξ̄2
t−1

,

which is the transformed version of (4.81).
The contribution of the first term in (4.99) to the second term in (4.98) equals

−
〈(

L1∇1
L
)Φ1

p−1

K̄1
p−1

(
L2∇2

L
)K̄2

t−1

Φ2
t−1

〉
= −
〈(

L1∇1
L
)Φ1

p−1

Φ1
p−1

(
L2∇2

L
)Φ2

t−1

Φ2
t−1

〉
and cancels the contribution of the first term in (4.98) computed above.

To find the contribution of the second term in (4.99) to the second term in
(4.98) note that (

L1∇1
L
)Φ1

p−1

K̄1
p−1

= (L1)
L̄1

p−1∪Ξ̄1
p−1

K̄1
p−1

(
∇1

L
)Φ1

p−1

L̄1
p−1∪Ξ̄1

p−1

,

which is the transformed version of (4.82), so the contribution in question equals〈
(L2)

Ξ̄2
t−1

Φ2
t−1

(
∇2

L
)K̄2

t−1

Ξ̄2
t−1

(L1)
L̄1

p−1∪Ξ̄1
p−1

K̄1
p−1

(
∇1

L
)Φ1

p−1

L̄1
p−1∪Ξ̄1

p−1

〉
;
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the latter expression is the transformed version of (4.83). Taking into account that

(L2)
Ξ̄2

t−1

Φ2
t−1

= (L1)
ρ(Ξ̄2

t−1)

Φ1
p−1

, (L2)
Ξ̄2

t−1

Θ̄2
t−1\Φ2

t−1

= (L1)
ρ(Ξ̄2

t−1)

Θ̄1
p−1\Φ1

p−1

and that(
∇1

L
)Φ1

p−1

L̄1
p−1∪Ξ̄1

p−1

(L1)
ρ(Ξ̄2

t−1)

Φ1
p−1

=
(
∇1

LL1
)ρ(Ξ̄2

t−1)

L̄1
p−1∪Ξ̄1

p−1

−
(
∇1

L
)Θ̄1

p−1\Φ1
p−1

L̄1
p−1∪Ξ̄1

p−1

(L1)
ρ(Ξ̄2

t−1)

Θ̄1
p−1\Φ1

p−1

,

which is the transformed version of (4.84), this contribution can be rewritten as〈
(L1)

L̄1
p−1∪Ξ̄1

p−1

K̄1
p−1

(
∇1

LL1
)ρ(Ξ̄2

t−1)

L̄1
p−1∪Ξ̄1

p−1

(
∇2

L
)K̄2

t−1

Ξ̄2
t−1

〉
−
〈
(L2)

Ξ̄2
t−1

Θ̄2
t−1\Φ2

t−1

(
∇2

L
)K̄2

t−1

Ξ̄2
t−1

(L1)
L̄1

p−1∪Ξ̄1
p−1

K̄1
p−1

(
∇1

L
)Θ̄1

p−1\Φ
1
p−1

L̄1
p−1∪Ξ̄1

p−1

〉
.

Next, by(4.31),

(L2)
Ξ̄2

t−1

Θ̄2
t−1\Φ2

t−1

(
∇2

L
)K̄2

t−1

Ξ̄2
t−1

=
(
L2∇2

L
)K̄2

t−1

Θ̄2
t−1\Φ2

t−1

= 0,

since the rows K̄2
t−1 lie above Θ̄2

t−1 \ Φ2
t−1.

Finally, by (4.31), (
∇1

LL1
)ρ(Ξ̄2

t−1)

L̄1
p−1∪Ξ̄1

p−1
=

⎡⎣01
0

⎤⎦ ,
where the unit block occupies the rows and the columns ρ(Ξ̄2

t−1). Therefore, the
remaining contribution equals〈

(L1)
ρ(Ξ̄2

t−1)

K̄1
p−1

(
∇2

L
)K̄2

t−1

Ξ̄2
t−1

〉
=

〈
(L2)

K̄2
t−1

Ξ̄2
t−1

(
∇2

L
)Ξ̄2

t−1

K̄2
t−1

〉
=

〈
(L2)

K̄2
t−1

L2
t−1

(
∇2

L
)L2

t−1

K̄2
t−1

〉
,

which is a constant via Lemma 4.4 and yields the third term in the statement of
the lemma. �
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CHAPTER 5

The quiver

The goal of this chapter is the proof of Theorem 3.9.

5.1. Preliminary considerations

Consider an arbitrary ordering on the set of vertices of the quiver QΓr,Γc in
which all mutable vertices precede all frozen vertices. Let BΓr,Γc be the exchange
matrix that encodes QΓr,Γc under this ordering, and let ΩΓr,Γc be the (skew-
symmetric) matrix of the constants {log f1, log f2}, f1, f2 ∈ FΓr,Γc , provided FΓr,Γc

has the same ordering. Then by [12, Theorem 4.5], to prove Theorem 3.9 it suffices
to check that

BΓr,ΓcΩΓr,Γc =
[
λ1 0

]
for some λ �= 0. In more detail, denote ωı̂ĵ

rs = {log frs, log fı̂ĵ}, then the above
equation can be rewritten as

(5.1)
∑

(i,j)→(r,s)

ωı̂ĵ
rs −

∑
(r,s)→(i,j)

ωı̂ĵ
rs =

{
λ for (ı̂, ĵ) = (i, j),

0 otherwise

for all pairs (i, j), (ı̂, ĵ) such that fij is not frozen. By the definition of the quiver
QΓr,Γc (see Section 3.3), a nonfrozen vertex can have degree six, five, four, or three.
Consider first the case of degree six. All possible neighborhoods of a vertex in
this case are shown in Figure 3.4, Figure 3.5(a), Figure 3.6(a), Figure 3.7(a), and
Figure 3.8(a).

Consequently, the left hand side of (5.1) for 1 < i, j < n can be rewritten as

(5.2) (ωı̂ĵ
i−1,j − ωı̂ĵ

i,j+1)− (ωı̂ĵ
i−1,j−1 − ωı̂ĵ

i,j)− (ωı̂ĵ
i,j − ωı̂ĵ

i+1,j+1) + (ωı̂ĵ
i,j−1 − ωı̂ĵ

i+1,j)

= δ1ij − δ2ij − δ3ij + δ4ij ,

see Figure 3.4. In other words, the neighborhood of (i, j) is covered by the union
of four pairs of vertices, and the contribution δkij of each pair is the difference of
the corresponding values of ω. More exactly, the first pair consists of the vertices
to the north and to the east of (i, j), the second pair consists of the vertex to the
north-west of (i, j) and of (i, j) itself, the third pair consists of (i, j) itself and of
the vertex to the south-east of (i, j), and the fourth pair consists of the vertices to
the west and to the south of (i, j).

It is easy to see that in all other cases of degree six, the left hand side of (5.1)
can be rewritten in a similar way. For example, for i = 1, an analog of (5.2) holds

with δ11j = ωı̂ĵ
n,γc∗(j−1)+1 − ωı̂ĵ

1,j+1 and δ21j = ωı̂ĵ
n,γc∗(j−1) − ωı̂ĵ

1j , see Figure 3.5(a).

Further, consider the case of degree five. All possible neighborhoods of a ver-
tex in this case are shown in Figure 3.5(b), Figure 3.6(b), Figure 3.7(b,c), Fig-
ure 3.8(b,c), Figure 3.9(a), Figure 3.10(a), and Figure 3.11(a). Direct inspection of
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all these cases shows that the lower vertex is missing either in the first pair (Fig-
ure 3.5(b), Figure 3.8(c), and Figure 3.9(a)), or in the third pair (Figure 3.7(b),
Figure 3.8(b), and Figure 3.11(a)), or in the fourth pair Figure 3.6(b), Figure 3.7(c),
and Figure 3.10(a)). In all these cases the remaining function in a deficient pair is a
minor of size one, and hence all the above relations will remain valid if the missing
function in the deficient pair is replaced by f = 1 (understood as a minor of size
zero).

Similarly, in the case of degree four there are two deficient pairs (any two of
the pairs 1, 3, and 4), and in the case of degree three, all three pairs are deficient.
However, adding at most three dummy functions f = 1 as explained above, we can
always rewrite (5.1) as

(5.3) Δij = δ1ij − δ2ij − δ3ij + δ4ij =

{
λ for (ı̂, ĵ) = (i, j)

0 otherwise.

Equation (5.3) can be obtained as the restriction to the diagonal X = Y of
a similar equation in the double. Namely, assume that ı̂ �= ĵ, r �= s, and put
wı̂ĵrs = {log frs, log fı̂ĵ}D. If additionally 1 < i, j < n and i �= j, j ± 1, we define

d1ij = w
ı̂ĵ
i−1,j − w

ı̂ĵ
i,j+1, d2ij = w

ı̂ĵ
i−1,j−1 − w

ı̂ĵ
i,j ,

d3ij = w
ı̂ĵ
i,j − w

ı̂ĵ
i+1,j+1, d4ij = w

ı̂ĵ
i,j−1 − w

ı̂ĵ
i+1,j .

If i or j equals 1 or n, the above definition of dkij should be modified similarly to

the modification of δkij explained above. It follows immediately from (3.1), (3.2)

that each dkij is a difference {log fikjk , log fı̂ĵ}D − {log f̃ikjk , log fı̂ĵ}D, where fikjk

and f̃ikjk are two trailing minors of the same matrix that differ in size by one. For
example, for i = 1 we get fi1j1 = fn,γc∗(j−1)+1, fi2j2 = fn,γc∗(j−1), fi3j3 = f1j ,

and fi4j4 = f1,j−1. We say that dkij is of X-type if the leading block of fikjk is an
X-block, and of Y -type otherwise.

If i = j+1 then we set fi1j1 = f<i−1,j . Consequently, in this case all four dkij are

of X-type. Similarly, if i = j − 1 then we set fi4j4 = f>i,j−1. Consequently, in this

case all four dkij are of Y -type. In what follows we will use the above conventions
without indicating that explicitly.

For i �= j equation (5.3) is the restriction to the diagonal X = Y of the equation

(5.4) Dij = d1ij − d2ij − d3ij + d4ij =

{
λ for (ı̂, ĵ) = (i, j),

0 otherwise

in the Drinfeld double. Note that all the quantities involved in the above equation
are defined unambiguously.

The case i = j requires a more delicate treatment. It is impossible to fix a
choice of fi2j2 and fi3j3 in such a way that (5.4) is satisfied. Consequently, to
get (5.3), we treat each contribution to Dij computed in Section 4 separately, and
restrict it to the diagonal X = Y . The obtained restrictions are combined in a
proper way to get Δij and to prove (5.3) directly. In more detail, we either set
fi2j2 = f<i−1,j−1 and fi3j3 = f>ij , or fi2j2 = f>i−1,j−1 and fi3j3 = f<ij . In the former

case d2ij and d4ij are of X-type and d1ij and d3ij are of Y -type, while in the latter

case d3ij and d4ij are of X-type and d1ij and d2ij are of Y -type. Note that in both
cases the restriction to the diagonal yields the same pair of functions.
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Similarly, in the case ı̂ = ĵ we set either f2 = f<ı̂ĵ or f
2 = f>ı̂ĵ , depending on the

choice of the corresponding f1, so that f1 and f2 have the same type.

5.2. Diagonal contributions

Recall that the bracket in the double is computed via equation (4.21). In this
section we find the contribution of the first five terms in (4.21) to Dij .

Proposition 5.1. The contribution of the first term in (4.21) to Dij vanishes.

Proof. Similarly to operators EL and ER defined in Section 4.1, define oper-
ators ĒL and ĒR via ĒL = ∇XX −∇Y Y and ĒR = X∇X − Y∇Y .

Note that by (4.26), (4.29), the first term in (4.21) can be rewritten as

(5.5)
〈
Rc

0(E
1
L), E

2
L

〉
=
〈(
ξ1L
)
0
, A2

L

〉
+
〈(
η1L
)
0
, B2

L

〉
+Tr(E1

L) · p2L

+Tr

(
1

1− γc∗ η
1
L

)
· q2L − Tr

(
1

1− γc
ξ1L

)
· q2L − Tr(Ē1

L) · q2L,

where A2
L and B2

L are matrices depending only on f2 and p2L and q2L are functions
depending only on f2.

Lemma 5.2. The contribution of the third term in (5.5) to any one of dkij,

1 ≤ k ≤ 4, equals p2L.

Proof. For any f,

Tr(EL log f) =
1

f

n∑
i,j=1

(
∂f

∂xij
xij +

∂f

∂yij
yij

)
=

d

dt

∣∣∣∣
t=1

log f(tX, tY ).

If f is a homogeneous polynomial, then the above expression equals its total degree.
Recall that fikjk satisfies this condition, and that degfikjk − degf̃ikjk = 1. �

Lemma 5.3. The contribution of the sixth term in (5.5) to any one of dkij,

1 ≤ k ≤ 4, equals q2L if dkij is of X-type and −q2L otherwise.

Proof. For any f,

Tr(ĒL log f) =
1

f

n∑
i,j=1

(
∂f

∂xij
xij −

∂f

∂yij
yij

)
=

d

dt

∣∣∣∣
t=1

log f(tX, t−1Y ).

If f is a homogeneous polynomial both in x-variables and in y-variables, then the
above expression equals degxf − degyf. Recall that fikjk satisfies this condition

and that degxfikjk −degxf̃ikjk equals 1 if fikjk is of X-type and 0 if it is of Y -type,

while degyfikjk −degyf̃ikjk equals 0 if fikjk is of X-type and 1 if it is of Y -type. �

Recall that every point of a nontrivial X-run except for the last point belongs
to Γ1. We denote by Γ̊1 the union of all nontrivial X-runs, and by γ̊ the extension
of γ that takes the last point of a nontrivial X-run Δ to the last point of γ(Δ). In

a similar way we define Γ̊2 and γ̊∗.

Lemma 5.4.

(i) The contribution of the first term in (5.5) to d3ij equals (A2
L)jj if d3ij is of

Y -type, (A2
L)̊γc(j)̊γc(j) − |Δ(j)|−1

∑
k∈Δ(j)(A

2
L)kk if d3ij is of X-type and

j ∈ Γ̊c
1, and 0 otherwise.
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(ii) The contribution of the second term in (5.5) to d3ij equals (B2
L)jj if d3ij is

of X-type, (B2
L)̊γc∗(j)̊γc∗(j) − |Δ̄(j)|−1

∑
k∈Δ̄(j)(B

2
L)kk if d3ij is of Y -type

and j ∈ Γ̊c
2, and 0 otherwise.

Proof.

(i) Define an n×n matrix Jm(t) as the identity matrix with the entry (m,m)
replaced by t, and set Xm(t) = XJm(t), Ym(t) = Y Jm(t). By the defini-

tion of ξ̊L, for any f one has

(ξ̊L log f)ll =
1

f

n∑
i=1

∂f

∂xi̊γc∗(l)
xi̊γc∗(l) +

1

f

n∑
i=1

∂f

∂yil
yil

=
d

dt

∣∣∣∣
t=1

log f(Xγ̊c∗(l)(t), Yl(t)).

If f is a minor of a matrix L ∈ L ∪ {X,Y }, then the above expression
equals the total number of columns l in all column Y -blocks involved
in this minor plus the total number of columns γ̊c∗(l) in all column X-
blocks involved in this minor (note that l �= γ̊c∗(l), and hence all such
columns are different). Recall that the minors fi3j3 = fij and f̃i3j3 differ
in size by one, and that the column missing in the latter minor is j.

Consequently, if d3ij is of Y -type, (ξ̊L log fi3j3)ll − (ξ̊L log f̃i3j3)ll equals 1

if l = j, which yields (A2
L)jj , and vanishes otherwise. Similarly, if d3ij

is of X-type, this difference equals 1 if j ∈ Γ̊c
1 and l = γ̊c(j), which

yields (A2
L)̊γc(j)̊γc(j), and vanishes otherwise. Finally, the additional term

−|Δ(j)|−1
∑

k∈Δ(j)(A
2
L)kk stems from the difference between (ξL log f)0

and (ξ̊L log f)0, see Section 4.3.3.
(ii) The proof is similar to the proof of (i). �

To prove Proposition 5.1, consider the contributions of the terms in the right
hand side of (5.5) to Dij .

Let us prove that the contributions of the first term to d1ij and d3ij cancel each

other, as well as the contributions to d2ij and d4ij . Assume first that 1 < i < j ≤ n.

Clearly, in this case all dkij are of Y -type, and

(5.6) d1ij = d3i−1,j , d2ij = d3i−1,j−1, d4ij = d3i,j−1.

Hence by Lemma 5.4(i), the sought for cancellations hold true, consequently, the
contribution of the first term in (5.5) to Dij vanishes.

Assume next that 1 < j < i ≤ n. In this case all dkij are of X-type, and (5.6)
holds. Hence by Lemma 5.4(i), the contribution of the first term in (5.5) to Dij
vanishes, similarly to the previous case.

The next case is 1 < i = j ≤ n. In this case we choose fi2j2 and fi3j3 in such a
way that d1ij and d3ij are of Y -type and d2ij and d4ij are of X-type, and (5.6) holds,
so the contribution of the first term in (5.5) to Dij vanishes once again.

Assume now that 1 = i < j ≤ n. In this case d11j and d21j are of X-type and

d31j and d41j are of Y -type. Relations (5.6) are replaced by

d11j = d3nl, d21j = d3n,l−1, d41j = d31,j−1,
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where γc(l−1) = j−1, see Section 3.3, and in particular, Figure 3.5. Consequently,
γ̊c(l − 1) = j − 1 and γ̊c(l) = j, and hence by Lemma 5.4(i), the sought for
cancellations hold true.

Finally, assume that 1 = j < i ≤ n. In this case d1i1 and d3i1 are of X-type and
d2i1 and d4i1 are of Y -type. Relations (5.6) are replaced by

d1i1 = d3i−1,1, d2i1 = d3l−1,n, d4i1 = d3ln,

where γr(i−1) = l−1, see Section 3.3, and in particular, Figure 3.6. Consequently,
by Lemma 5.4(i), the sought for cancellations hold true.

To treat the second term in (5.5) we reason exactly in the same way and use
Lemma 5.4(ii) instead.

The third term in (5.5) is treated trivially with the help of Lemma 5.2.
Cancellations for the fourth term follow from the cancellations for the second

term established above and the fact that 1
1−γc∗ is a linear operator. Similarly,

cancellations for the fifths term follow from the cancellations for the first term
established above and the fact that 1

1−γc is a linear operator.

Finally, the sixth term is treated similarly to the first one based on Lemma
5.3. �

Proposition 5.5. The contribution of the second term in (4.21) to Dij van-
ishes.

Proof. The proof of this proposition is similar to the proof of Proposition 5.1
and is based on analogs of Lemmas 5.2–5.4. Note that the analog of Lemma 5.4
claims that contributions of (ξ1R)0 and (η1R)0 to Dij depend on i, γ̊r(i), and γ̊r∗(i).
In the treatment of the case 1 < i = j ≤ n we choose fi2j2 and fi3j3 in such a way
that d1ij and d2ij are of Y -type and d3ij and d4ij are of X-type. �

Proposition 5.6. The contributions of the third, fourth, and fifth term in
(4.21) to Dij vanish.

Proof. The claim for the third term essentially coincides with the similar
claim for the first term in (5.5), the claim for the fourth term essentially coincides
with the similar claim for the second term in (5.5), and the claim for the fifth term
uses additionally the fact that ΠΓ̂c

1
is a linear operator. �

5.3. Nondiagonal contributions

In this section we find the contributions of the four remaining terms in (4.21)
to Dij . More exactly, we will be dealing with the contributions of the corresponding
ringed versions. The contribution of the difference between the ordinary and the
ringed version to Dij vanishes similarly to the contributions treated in the previous
section.

5.3.1. Case 1 < j < i < n. In this case all seven functions fikjk , f̃ikjk

satisfy the conditions of Case 1 in Section 4.4.1. Consequently, the leading block
of fi1j1 = fi−1,j and f̃i1j1 = fi,j+1 is XJ

I , the leading block of fi2j2 = fi−1,j−1,

f̃i2j2 = fi3j3 = fij , and f̃i3j3 = fi+1,j+1 is XJ′

I′ , and the leading block of fi4j4 =

fi,j−1 and f̃i4j4 = fi+1,j is XJ′′

I′′ .
We have to compute the contributions of (4.36), (4.51), (4.63), and (4.69).

Note that the first term in (4.51) looks exactly the same as terms already treated
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in Section 5.2, and hence its contribution to Dij vanishes. The fourth term in (4.51)

vanishes under the conditions of Case 1, since both
(
∇1

LL1
)σ(L̄2

t )

σ(L̄2
t )

and
(
L1∇1

L
)σ(K̄2

t )

σ(K̄2
t )

vanish. Next, the contribution of the last term in (4.63) to any one of dkij vanishes,

since the leading blocks of fikjk and f̃ikjk coincide. The same holds true for the

last term in (4.69). Further, the contributions of the third term in (4.63) to d1ij
and to d3ij coincide, as well as the contributions of this term to d2ij and to d4ij , since

they depend only on jk, and j1 = j3 = j, j2 = j4 = j − 1. The same holds true for
the foutrh term in (4.63). Similarly, the contributions of the fourth term in (4.69)
to d1ij and to d2ij coincide, as well as the contributions of this term to d3ij and to

d4ij , since they depend only on ik, and i1 = i2 = i− 1, i3 = i4 = i. The same holds
true for the fifth term in (4.69).

The total contribution of all B-terms involved in the above formulas is given in
Lemma 4.16. Note that the contributions of the third, sixth, ninth and tenth terms
in Lemma 4.16 to any one of dkij vanish, since the dependence of all these terms

on f1 is only over which blocks the summation goes. The latter fact, in turn, is
completely defined by the leading block of f1, and the leading blocks of fikjk and

f̃ikjk coincide.

To proceed further assume first that XJ
I = XJ′

I′ = XJ′′

I′′ . Consider the first sum
in the third term in (4.36). Each block involved in this sum contributes an equal
amount to d1ij and d2ij , as well as to d3ij and d4ij , so the total contribution of the
block vanishes. Similarly, for the second sum in the third term in (4.36), each block
involved contributes an equal amount to d1ij and d3ij , as well as to d2ij and d4ij , so
the total contribution of the block vanishes as well.

The first, the second, and the fifth term in Lemma 4.16 are treated exactly as
the first sum in the third term in (4.36), and the fourth term, exactly as the the
second sum in the third term in (4.36). Consequently, all these contributions vanish.
We thus see that Dij = Dij [7]− Dij [8], where Dij [7] and Dij [8] are the contributions
of the seventh and the eights terms in Lemma 4.16 to Dij .

To treat Dij [7], recall that the sum in the seventh term is taken over the cases

when the exit point of X
J2
t

I2
t

lies above the exit point of X
J1
p

I1
p
. Consequently, the

treatment in the cases when the exit point of f2 lies above the exit point of fi1j1
is again exactly the same as for the first sum in the third term in (4.36), and the
corresponding contribution vanishes. If the exit point of f2 coincides with the exit
point of fi1j1 , that is, if ı̂− ĵ = i− j − 1, one has

(5.7) Dij [7] = −d2ij [7]− d3ij [7] + d4ij [7] =

{
−#1 − 1 for ı̂ < i,

−#1 for ı̂ ≥ i,

where #1 is the number of nonleading blocks of f2 satisfying the corresponding
conditions. If the exit point of f2 coincides with the exit point of fi2j2 , that is, if
ı̂− ĵ = i− j, one has

Dij [7] = d4ij [7] =

{
#2 + 1 for ı̂ ≤ i,

#2 for ı̂ > i,

where #2 is the number of nonleading blocks of f2 satisfying the corresponding
conditions. The cases when the exit point of f2 lies below the exit point of fi2j2 do
not contribute to Dij [7].
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Similarly, the treatment of Dij [8] in the cases when the exit point of f2 lies
above the exit point of fi1j1 is exactly the same as for the second sum in the third
term in (4.36), and the corresponding contribution vanishes. If the exit point of f2

coincides with the exit point of fi1j1 , one has

(5.8) Dij [8] = −d2ij [8]− d3ij [8] + d4ij [8] =

{
−#1 − 1 for ĵ ≤ j,

−#1 for ĵ > j,

where #1 is the same as above. If the exit point of f2 coincides with the exit point
of fi2j2 , one has

Dij [8] = d4ij [8] =

{
#2 + 1 for ĵ < j,

#2 for ĵ ≥ j,

where #2 is the same as above. The cases when the exit point of f2 lies below the
exit point of fi2j2 do not contribute to Dij [8].

It follows from the above discussion that for ı̂− ĵ = i− j − 1

Dij [7]− Dij [8] =

⎧⎪⎨⎪⎩
1 for ı̂ ≥ i, ĵ ≤ j,

−1 for ı̂ < i, ĵ > j,

0 otherwise.

Consequently, Dij vanishes everywhere on the line ı̂ − ĵ = i − j − 1. Further, for
ı̂− ĵ = i− j one has

Dij [7]− Dij [8] =

⎧⎪⎨⎪⎩
1 for ı̂ ≤ i, ĵ ≥ j,

−1 for ı̂ > i, ĵ < j,

0 otherwise.

Consequently, Dij vanishes everywhere on the line ı̂− ĵ = i− j except for the point

(ı̂, ĵ) = (i, j), where it equals one. Therefore, for XJ
I = XJ′

I′ = XJ′′

I′′ relation (5.4)
holds with λ = 1.

There are three more possibilities for relations between the blocks XJ
I , X

J′

I′ ,

XJ′′

I′′ :

(a) XJ
I �= XJ′

I′ = XJ′′

I′′ ;

(b) XJ
I = XJ′

I′ �= XJ′′

I′′ ;

(c) XJ
I �= XJ′

I′ �= XJ′′

I′′ .

To treat each of these three one has to consider correction terms with respect
to the basic case XJ

I = XJ′

I′ = XJ′′

I′′ . We illustrate this treatment for the first of
the above possibilities.

By Lemma 4.3, case (a) can be further subdivided into three subcases:

(a)(1) I ′ = I, J ′ � J ;
(a)(2) I ′ � I, J ′ = J ;
(a)(3) I ′ � I, J ′ � J .

In case (a)(1) we have the following correction terms. For the third term in

(4.36), there are blocks XJ′

Ĩ
that satisfy the summation condition β2

t < β1
p for the

pair fi1j1 , f̃i1j1 but violate it for the other three pairs. By Lemma 4.3, such blocks

are characterized by conditions Ĩ ⊆ I, J̃ = J ′. Consequently, these blocks produce
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the correction term

−
∑
J̃=J′

〈(
L1∇1

L
)ρ(K2

t )

ρ(K2
t )

(
L2∇2

L
)K2

t

K2
t

〉
+
∑
J̃=J′

〈(
∇1

LL1
)ρ(L2

t )

ρ(L2
t )

(
∇2

LL2
)L2

t

L2
t

〉
to d1ij .

For the first term in Lemma 4.16, the correction terms are defined by the same
blocks as above except for the block XJ′

I′ itself (because of the additional summation
condition α2

t > α1
p). Consequently, these blocks produce the correction term∑

J̃=J′

〈(
L1∇1

L
)ρ(Φ2

t )

ρ(Φ2
t )

(
L2∇2

L
)Φ2

t

Φ2
t

〉
−
∑
J̃=J′
Ĩ=I′

〈(
L1∇1

L
)ρ(Φ′)

ρ(Φ′)

(
L2∇2

L
)Φ′

Φ′

〉

to d1ij , where Φ′ corresponds to the block XJ′

I′ .

For the second term in Lemma 4.16, the block XJ
I violates the summation

condition β2
t �= β1

p , α
2
t = α1

p for the pair fi1j1 , f̃i1j1 but satisfies it for the other

three pairs. Besides, the block XJ′

I′ satisfies this condition for the pair fi1j1 , f̃i1j1
but violates it for the other three pairs Consequently, these two blocks produce
correction terms∑

J̃=J′
Ĩ=I′

〈(
L1∇1

L
)ρ(Φ′)

ρ(Φ′)

(
L2∇2

L
)Φ′

Φ′

〉
−
∑
J̃=J
Ĩ=I

〈(
L1∇1

L
)Φ
Φ

(
L2∇2

L
)Φ
Φ

〉

to d1ij , where Φ corresponds to the block XJ
I .

For the fourth term in Lemma 4.16, the blocks XJ′

Ĩ
violate the summation

condition β2
t = β1

p , α
2
t ≥ α1

p for the pair fi1j1 , f̃i1j1 but satisfy it for the other three

pairs. Besides, the block XJ
I satisfies this condition for the pair fi1j1 , f̃i1j1 but

violates it for the other three pairs. Consequently, these blocks produce correction
terms

−
∑
J̃=J′

〈(
∇1

LL1
)ρ(L2

t )

ρ(L2
t )

(
∇2

LL2
)L2

t

L2
t

〉
+
∑
J̃=J
Ĩ=I

〈(
∇1

LL1
)L
L

(
∇2

LL2
)L
L

〉
to d1ij , where L corresponds to the block XJ

I .
Summation conditions in the fifth term in Lemma 4.16 are exactly the same as

in the fourth term. Consequently, one gets correction terms∑
J̃=J′

〈(
L1∇1

L
)ρ(K2

t \Φ2
t )

ρ(K2
t \Φ2

t )

(
L2∇2

L
)K2

t \Φ2
t

K2
t \Φ2

t

〉
−
∑
J̃=J
Ĩ=I

〈(
L1∇1

L
)K\Φ
K\Φ
(
L2∇2

L
)K\Φ
K\Φ

〉

to d1ij , where K corresponds to the block XJ
I .

For the seventh term in Lemma 4.16, the block XJ
I satisfies the summation

condition β2
t = β1

p , α
2
t = α1

p for the pair fi1j1 , f̃i1j1 but violates it for the other three
pairs. Besides, the additional condition on the exit points excludes the diagonal
ı̂− ĵ = i− j − 1. Consequently, this block produces correction terms∑

J̃=J
Ĩ=I

〈(
L1∇1

L
)Φ
Φ

(
L2∇2

L
)Φ
Φ

〉
+ Dij [7]

to d1ij , where Dij [7] is given by (5.7).
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For the eights term in Lemma 4.16, the situation is exactly the same as for the
seventh term. Consequently, one gets correction terms

−
∑
J̃=J
Ĩ=I

〈(
∇1

LL1
)L
L

(
∇2

LL2
)L
L

〉
− Dij [8]

to d1ij , where Dij [8] is given by (5.8).
It is easy to note that the correction terms listed above cancel one another

(recall that vanishing of Dij [7] − Dij [8] for ı̂ − ĵ = i − j − 1 was already proved
above), and hence relation (5.4) is established in the case (a)(1). Cases (a)(2),
(a)(3), (b), and (c) are treated in a similar manner.

5.3.2. Other cases. The case 1 < i < j < n is treated in a similar way with
(4.36) replaced by (4.51) and Lemma 4.16 replaced by Lemma 4.17.

Consider the case 1 < i = j < n. The treatment of the first term in (4.51), the
last terms in (4.63) and (4.69), the third, sixth, ninth and tenth terms in Lemma
4.16, and the third and the sixth terms in Lemma 4.17 is exactly the same as
in the previous section. The third and the fourth terms in (4.63), as well as the
fourth and the fifth terms in (4.69), are treated almost in the same way as in the
previous section; the only difference is an appropriate choice of the functions on the
diagonal, which ensures required cancellations. To treat all the other contributions,
recall that by the definition, the leading block of f<ii is X, and the leading block of

f>ii is Y . Denote by XJ
I the leading block of fi,i−1, and by Y J̄

Ī
the leading block of

fi−1,i. Similarly to Section 5.3.1, there are four possible cases: XJ
I = X, Y J̄

Ī
= Y ;

XJ
I �= X, Y J̄

Ī
= Y ; XJ

I = X, Y J̄
Ī

�= Y ; XJ
I �= X, Y J̄

Ī
�= Y .

Let us consider the first of the above four cases. Contributions of all terms
except for the seventh and the eights terms in Lemmas 4.16 and 4.17 are treated
in the same way as the third and the fourth terms in (4.63) above. For example,
to treat the first sum in the third term in (4.36) we choose fi2j2 = f<i−1,j−1 and

fi3j3 = f>ij , so that this sum contributes only to δ2ij and δ4ij , and the contributions
cancel each other. For the remaining four terms, there is a subtlety in the case
ı̂ = ĵ. We write fı̂ı̂ = 1

2f
<
ı̂ı̂

∣∣
X=Y

+ 1
2f

>
ı̂ı̂

∣∣
X=Y

and note that X is the only block

for f<ı̂ı̂ and Y is the only block for f>ı̂ı̂ . Consequently, for f2 = 1
2f

<
ı̂ı̂ , the terms

involved in Lemma 4.16 contribute zero for ı̂ �= i and 1/2 for ı̂ = i, while the terms
involved in Lemma 4.17 contribute zero for any ı̂. Similarly, for f2 = 1

2f
>
ı̂ı̂ , the

terms involved in Lemma 4.16 contribute zero for any ı̂, while the terms involved
in Lemma 4.17 contribute zero for ı̂ �= i and 1/2 for ı̂ = i. Therefore, we get
contribution 1 for (i, j) = (ı̂, ĵ), as required. In the remaining three cases one has
to consider correction terms, similarly to Section 5.3.1.

It remains to consider the cases when i or j are equal to 1 or n. For example,
let 1 < j < i = n and assume that the degree of the vertex (n, j) in QΓr,Γc equals 6,
see Figure 3.7(a). It follows from the description of the quiver in Section 3.3 that
(n, j − 1) is a mutable vertex. In this case the functions f̃i3j3 and f̃i4j4 satisfy
conditions of Case 2 in Section 4.4.2, and all other functions satisfy conditions
of Case 1 in Section 4.4.1. Consequently, the leading block of fi1j1 = fn−1,j and

f̃i1j1 = fn,j+1 is XJ
I , the leading block of fi2j2 = fn−1,j−1 and f̃i2j2 = fi3j3 = fij is

XJ′

I′ , the leading block of fi4j4 = fn,j−1 is XJ′′

I′′ , the leading block of f̃i3j3 = f1,k+1

with k = γc(j) is Y J̄
Ī
, and the leading block of f̃i4j4 = f1k is Y J̄′

Ī′ .
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The treatment of the last three terms in (4.63) and the last three terms in
(4.69) remains the same as in Section 5.3.1. To proceed further, assume that

XJ
I = XJ′

I′ = XJ′′

I′′ and Y J̄
Ī

= Y J̄′

Ī′ . In this case it is more convenient to replace (5.4)

with Dij = d1ij − d2ij + d43ij − d̃43ij , where d43ij = fn,j−1 − fij and d̃43ij = f1k − f1,k+1,
so that the first three terms in Dij are subject to the rules of Case 1, and the last
term to the rules of Case 2.

The contributions of the third, ninth and tenth terms in Lemma 4.16 to any
one of d1ij , d

2
ij and d43ij vanish for the same reason as in Section 5.3.1. The same

holds true for the contribution of the third term in Lemma 4.17 to d̃43ij .

The first sum in the third term in (4.36) contributes the same amount to d1ij
and d2ij , and zero to d43ij . The same holds true for the first, second and the fifth
terms in Lemma 4.16. The second sum in the third term in (4.36) vanishes since
ρ(L2

t ) for every X-block of f2 such that β2
t < β1

p lies strictly to the left of the
column j − 1.

Further,
(
L1∇1

L
)σ(K̄2

t )

σ(K̄2
t )

in the second sum in the fourth term of (4.51) is an

identity matrix, and hence the contribution of this sum to d̃43ij vanishes, since both

sides in this difference depend only on f2. The same reasoning works as well for
the first, the fourth and the fifth terms in Lemma 4.17, and for the first sum in
the fourth term of (4.51) in the case β̄2

t−1 > β̄1
p−1. The contribution of this sum to

d̃43ij for the case β̄2
t−1 = β̄1

p−1 cancels the contribution of the second term in Lemma

4.17 for the case ᾱ2
t−1 < ᾱ1

p−1.
Let us consider now the contribution of the fourth term in Lemma 4.16. Assume

that a tthX-block of f2 satisfies conditions α2
t > α1

p and β2
t = β1

p . Consequently, the

(t−1)-th Y -block of f2 satisfies conditions ᾱ2
t−1 ≥ ᾱ1

p−1 and β̄2
t−1 = β̄1

p−1. Consider
first the case when the inequality above is strict. If the Y -block in question is not
the leading block of f2, then the contributions of the X-block to d1ij [4] and d2ij [4]

cancel each other, whereas the contribution of the X-block to d43ij [4] cancels the

contribution of the Y -block to d̃43ij [2]. The same holds true if the Y -block is the

leading block of f2 and ĵ < γc(j). If ĵ = γc(j) then the contributions of the X-block
to d2ij [4] and d43ij [4] vanish, whereas the contribution of the X-block to d1ij [4] cancels

the contribution of the Y -block to d̃43ij [2]. Finally, if ĵ > γc(j) then all the above
contributions vanish.

Otherwise, if ᾱ2
t−1 = ᾱ1

p−1, the sixth, the seventh and the eights terms in

Lemma 4.17 contribute to both sides of d̃43ij , since in both cases the exit point for

f2 lies to the left of the exit point for f1. Consequently, the contributions of the
sixth and the eight terms vanish, while the contribution of the Y -block to d̃43ij [7]

equals the total contribution of the X-block to d1ij [4], d
2
ij [4] and d43ij [4], similarly to

the previous case.
Assume now that a tth X-block of f2 satisfies conditions α2

t = α1
p and β2

t = β1
p .

We distinguish the following five cases.

A. ı̂− ĵ > n− j + 1; consequently, the sixth, the seventh and the eights terms
in Lemma 4.16 do not contribute to Dij , since in all cases involved the exit point
for f2 lies below the exit point for f1. Besides, ᾱ2

t−1 ≥ ᾱ1
p−1 and β̄2

t−1 = β̄1
p−1. The

treatment of this case is exactly the same as the treatment of the case α2
t > α1

p and

β2
t = β1

p above.
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B. ı̂ − ĵ = n − j + 1; consequently, ᾱ2
t−1 = ᾱ1

p−1 and β̄2
t−1 = β̄1

p−1. Similarly
to the case A, the sixth, the seventh and the eights terms in Lemma 4.16 do not
contribute to Dij , since in all cases involved the exit point for f2 lies below or
coincides with the exit point for f1. On the other hand, the sixth, the seventh
and the eights terms in Lemma 4.17 contribute only to the subtrahend of d̃43ij ,

but not to the minuend. If the Y -block in question is not the leading block of f2

then the contributions of the X-block to d1ij [4] and d2ij [4] cancel each other, the

contribution of the X-block to d43ij [4] equals one, while the contributions of the Y -

block to d̃43ij [6], d̃
43
ij [7] and d̃43ij [8] are equal to n+1−ᾱ2

t−1−γc(j), γc(j)−n and ᾱ2
t−1,

respectively. Consequently, the total contribution to Dij vanishes. If the Y -block is
the leading block of f2 then the contributions of the X-block to d2ij [4] and d43ij [4]

vanish. Further, if ı̂ > 1 then the contribution of the X-block to d1ij [4] vanishes as

well, whereas the contributions of the Y -block to d̃43ij [6], d̃
43
ij [7] and d̃43ij [8] are equal

to n+ ı̂− ᾱ2
t−1 − ĵ, ĵ−n− 1 and ᾱ2

t−1 +1− ı̂, respectively. Consequently, the total
contribution to Dij vanishes. Finally, if ı̂ = 1 then the contribution of the X-block
to d1ij [4] equals one, whereas the contributions of the Y -block to d̃43ij [6], d̃

43
ij [7] and

d̃43ij [8] are equal to n+1− ᾱ2
t−1− γc(j), γc(j)−n and ᾱ2

t−1, respectively, and again
the total contribution to Dij vanishes.

C. ı̂− ĵ = n− j; consequently, ᾱ2
t−1 = ᾱ1

p−1 and β̄2
t−1 = β̄1

p−1. Here the sixth,

the seventh and the eights terms in Lemma 4.17 do not contribute to d̃43ij , since

in both cases involved the exit point for f2 lies to the right or coincides with the
exit point for f1. On the other hand, the sixth, the seventh and the eighth terms
in Lemma 4.16 do not contribute to d1ij , d

2
ij and to the subtrahend of d43ij , but

contribute to its minuend. If the X-block in question is not the leading block of
f2 then its contributions to d1ij [4] and d2ij [4] cancel each other, and its contribution

to d43ij [4] equals one. The contributions of this block to d43ij [6], d
43
ij [7] and d43ij [8] are

equal to α2
t − j, 1 and j−2−α2

t , respectively. Consequently, the total contribution
to Dij vanishes. The same holds true if this X-block is the leading block of f2 and
ı̂ < n. If ı̂ = n, and hence ĵ = j, then its contribution to d2ij [4] and d43ij [4] vanish,

and the contribution to d1ij [4] equals one. The contributions of this block to d43ij [6],

d43ij [7] and d43ij [8] are equal to α2
t−j, 1 and j−1−α2

t , respectively. Consequently, the
total contribution to Dij equals one. If the Y -block in question is the leading block
of f2 then the contributions of the X-block to d1ij [4], d

2
ij [4] and d43ij [4] vanish, as

well as the contribution of the Y -block to d43ij [7], and the contributions of Y -block

to d43ij [6] and d43ij [8] cancel each other. Consequently, the total contribution to Dij
vanishes.

D. ı̂ − ĵ = n − j − 1; consequently, ᾱ2
t−1 ≤ ᾱ1

p−1 and β̄2
t−1 = β̄1

p−1. Here the

sixth, the seventh and the eighth terms in Lemma 4.16 do not contribute to d1ij ,

but contribute to d2ij and d43ij . Assume first that ᾱ2
t−1 = ᾱ1

p−1, then the sixth, the

seventh and the eights terms in Lemma 4.17 do not contribute to d̃43ij similarly to

case C. If theX-block in question is not the leading block of f2 then its contributions
to d1ij [4] and d2ij [4] cancel each other, and its contribution to d43ij [4] equals one.

Further, its contributions to d2ij [6] and d43ij [6] vanish, and contributions to d2ij [8] and

d43ij [8] cancel each other. Finally, its contribution to d2ij [7] cancels the contribution

to d43ij [4], and hence the total contribution to Dij vanishes. The same holds true if

the X-block is the leading block of f2 and ı̂ > n−1. If ı̂ = n−1 the contributions to
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d2ij [4] and d43ij [4] vanish and the contributions to d1ij [4] and d2ij [7] cancel each other.

If ı̂ = n, or if the Y -block in question is the leading block of f2 then all the above
mentioned contributions vanish. The case ᾱ2

t−1 < ᾱ1
p−1 is similar; additionally to

the above, the contribution of the Y -block to d̃43ij vanishes.

E. ı̂ − ĵ < n − j − 1; consequently, ᾱ2
t−1 ≤ ᾱ1

p−1 and β̄2
t−1 = β̄1

p−1. This case
is similar to the previous one, with the additional cancellation of the contributions
to d1ij [7] and d1ij [8].

Therefore, the total contribution to Dij vanishes in all cases except for the case

(ı̂, ĵ) = (n, j) when it is equal one, hence under the assumptions XJ
I = XJ′

I′ = XJ′′

I′′

and Y J̄
Ī

= Y J̄′

Ī′ relation (5.4) holds with λ = 1. If these assumptions are violated,
one has to consider correction terms similarly to Section 5.3.1.
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CHAPTER 6

Regularity check and the toric action

The goal of this chapter is threefold:

(i) to check condition (ii) in Proposition 3.11 for the family FΓr,Γc ,
(ii) to prove Theorem 3.3(iii), and
(iii) to prove Proposition 3.6.

6.1. Regularity check

We have to prove the following statement.

Theorem 6.1. For any mutable cluster variable fij ∈ FΓr,Γc , the adjacent
variable f ′

ij is a regular function on Matn.

Proof. The main technical tool in the proof is the version of the Desnanot–
Jacobi identity for minors of a rectangular matrix that we have used previously for
the regularity check in [15]. Let A be an (m − 1) ×m matrix, and α < β < γ be
column indices, then

(6.1) detAα̂ detAβ̂γ̂

δ̂
+ detAγ̂ detAα̂β̂

δ̂
= detAβ̂ detAα̂γ̂

δ̂
,

where “hatted” subscripts and superscripts indicate deleted rows and columns,
respectively.

Let us assume first that the degree of (i, j) equals six. Following the notation

introduced in the previous section, denote by fi1j1 and f̃i1j1 the functions at the

vertices to the north and to the east of (i, j), respectively, by fi2j2 and f̃i3j3 the
functions at the vertices to the north-west and to the south-east of (i, j), respec-

tively, and by fi4j4 and f̃i4j4 the functions at the vertices to the west and to the

south of (i, j), respectively. Let L be the matrix used to define fi2j2 , fij and f̃i3j3 ,

L+ be the matrix used to define fi1j1 and f̃i1j1 , and L− be the matrix used to

define fi4j4 and f̃i4j4 .
Assume first that degfij < degfi1j1 . Define a degfi1j1 × (degfi1j1 + 1) ma-

trix A as follows: if s(i1, j1) > 1 then A = (L+)
[s(i1,j1)−1,N(L+)]
[s(i1,j1),N(L+)] , otherwise A

is obtained via adding the first column of L[s(i,j)−1,N(L)]
[s(i,j)−1,N(L)] on the left to the ma-

trix (L+)
[s(i1,j1),N(L+)]
[s(i1,j1),N(L+)]. Then it is easy to see that L[s(i,j)−1,N(L)]

[s(i,j)−1,N(L)] = A
[1,degfij+1]

[1,degfij+1],

and moreover, that A
[1,degfij+1]

[1,degfij+1] is a block in the block upper triangular matrix

A
[1,degfi1j1 ]

[1,degfi1j1 ]
. Consequently,

fi1j1 = detA1̂, f̃i1j1 = detA1̂2̂
1̂
, fi2j2 · detB = detAm̂, fij · detB = detA1̂m̂

1̂

83



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

84 6. REGULARITY CHECK AND THE TORIC ACTION

with B = A
[degfij+2,degfi1j1 ]

[degfij+2,degfi1j1 ]
and m = degfi1j1 + 1. Applying (6.1) with α = 1,

β = 2, γ = m, δ = 1, one gets

fi1j1 · detA2̂m̂
1̂

+ fi2j2 · detB · f̃i1j1 = detA2̂ · fij · detB.

Note that detA2̂m̂
1̂

= det Ā2̂
1̂
detB with Ā = A

[1,degfij+1]

[1,degfij+1], and hence

(6.2) fi1j1 det Ā
2̂
1̂
+ fi2j2 f̃i1j1 = fij detA

2̂.

Let now degfij ≥ degfi1j1 . Define a (degfij + 1) × (degfij + 2) matrix A

via adding the column (0, . . . , 0, 1)T on the right to the matrix L[s(i,j)−1,N(L)]
[s(i,j)−1,N(L)].

Then it is easy to see that (L+)
[s(i1,j1),N(L+)]
[s(i1,j1),N(L+)] = A

[2,degfi1j1+1]

[1,degfi1j1 ]
, and moreover, that

A
[2,degfi1j1+1]

[1,degfi1j1 ]
is a block in the block lower triangular matrix A

[2,degfij+2]

[1,degfij+1]. Conse-

quently,

fi1j1 · detB = detA1̂, f̃i1j1 · detB = detA1̂2̂
1̂
, fi2j2 = detAm̂, fij = detA1̂m̂

1̂

with B = A
[degfi1j1+2,degfij+2]

[degfi1j1+1,degfij+1] and m = degfij + 2. Applying (6.1) with α = 1,

β = 2, γ = m, δ = 1, one gets

fi1j1 · detB det Ā2̂
1̂
+ fi2j2 · f̃i1j1 · detB = detA2̂ · fij ,

where Ā = A
[1,degfij+1]

[1,degfij+1] is the same as in the previous case. Note that detA2̂ =

det Ã2̂ detB, where Ã = A
[1,degfi1j1+1]

[1,degfi1j1 ]
is given by the same expression as the whole

matrix A in the previous case. Consequently, relation (6.2) remains valid in this
case as well.

To proceed further, we compare degfij with degfi4,j4 and consider two cases
similar to the two cases above. Reasoning along the same lines, we arrive to the
relation

(6.3) fij detC
2̂
1̂
+ f̃i3j3fi4j4 = f̃i4j4 det Ā

2̂
1̂

with C = (L−)
[s(i4,j4),N(L−)]
[s(i4,j4),N(L−)] and Ā the same as in (6.2). The linear combination

of (6.2) and (6.3) with coefficients f̃i4j4 and fi1j1 , respectively, yields

(6.4) fij(f̃i4j4 detA
2̂ − fi1j1 detC

2̂
1̂
) = fi2j2 f̃i1j1 f̃i4j4 + fi1j1 f̃i3j3fi4j4 .

Combining this with Theorem 3.9 we see that f ′
ij = f̃i4j4 detA

2̂ − fi1j1 detC
2̂
1̂
is a

regular function on Matn.
For vertices of degree less than six, the claim follows from the corresponding

degenerate version of (6.4). For example, for vertices of degree five there are three
possible degenerations:

(i) degfi1j1 = 1, and hence f̃i1j1 = 1, which corresponds to the cases shown
in Figure 3.5(b), Figure 3.8(c) and Figure 3.9(a);

(ii) degfi4j4 = 1, and hence f̃i4j4 = 1, which corresponds to the cases shown
in Figure 3.6(b), Figure 3.7(c) and Figure 3.10(a);

(iii) degfij = 1, and hence f̃i3j3 = 1, which corresponds to the cases shown in
Figure 3.7(b), Figure 3.8(b) and Figure 3.11(a).

Vertices of degrees four and three are handled via combining the above degen-
erations. �
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6.2. Toric action

To prove Theorem 3.3(iii) we show first that the action of HΓr × HΓc on
SLn given by the formula (H1, H2)X = H1XH2 defines a global toric action of
(C∗)kΓr+kΓc on CΓr,Γc . In order to show this we first check that the right hand
sides of all exchange relations in one cluster are semi-invariants of this action. This
statement can be expressed as follows.

Lemma 6.2. Let fij(X)f ′
ij(X) = M(X) be an exchange relation in the initial

cluster, then M(H1XH2) = χM
L (H1)M(X)χM

R (H2), where χM
L and χM

R are left and
right multiplicative characters of HΓr ×HΓc depending on M .

Proof. Notice first that all cluster variables in the initial cluster are semi-
invariants of the action of HΓr ×HΓc . Indeed, recall that by (3.1), (3.2) any cluster
variable fij in the initial cluster is a minor of a matrix L of size N = N(L). Clearly,
minors are semi-invariant of the left-right action of the torus DiagN ×DiagN on
MatN , where DiagN is the group of invertible diagonal N ×N matrices. We con-
struct now two injective homomorphisms r : HΓr → DiagN ×DiagN and c : HΓc →
DiagN ×DiagN such that the homomorphism (r, c) : HΓr ×HΓc → DiagN ×DiagN
given by (r, c)(H1, H2) = r(H1) · c(H2) extends the left-right action of HΓr ×HΓc

on SLn to an action on MatN . Note that DiagN ×DiagN is a commutative group,
so (r, c) is well defined.

We describe first the construction of the homomorphism r. Let Δ be a non-
trivial row X-run, and Δ̄ = γr(Δ) be the corresponding row Y -run. Recall that
HΓr = exp hΓr . Consequently, it follows from (2.8) that for any fixed T ∈ HΓr there
exists a constant grΔ(T ) ∈ C∗ such that for any pair of corresponding indices i ∈ Δ
and j ∈ Δ̄ one has Tjj = grΔ(T ) · Tii. Clearly, grΔ is a multiplicative character of
HΓr .

Fix a pair of blocks XJt

It
and Y J̄t

Īt
in L. Let Δt be the row X-run corresponding

to Φt, then we put grt = grΔt
and define a matrix Ar

t(T ) ∈ DiagN such that its entry

(j, j) equals grt(T ) for j ∈ ∪t−1
i=1(Ki ∪ K̄i)∪ (Kt \Φt) and 1 otherwise, and a matrix

Br
t(T ) ∈ DiagN such that its entry (j, j) equals (grt(T ))

−1 for j ∈ ∪t−1
i=1(Li∪ L̄i)∪Lt

and 1 otherwise, see Figure 4.2.
Put Ar(T ) =

∏s
t=1 A

r
t(T ) and Br(T ) =

∏s
t=1 B

r
t(T ). Finally, for any j ∈

[1, N ] define ζr(j) as the image of j under the identification of K̄t and Īt if j ∈
K̄t and as the image of j under the identification of Kt and It if j ∈ Kt \ Φt,
and put Cr(T ) = diag(Tζr(j),ζr(j))

N
j=1. Then, similarly to the proof of Lemma

4.4, one obtains L(TX, TY ) = Ar(T )Cr(T )L(X,Y )Br(T ), and hence r : T �→
(Ar(T )Cr(T ), Br(T )) is the desired homomorphism.

The construction of the homomorphism c is similar, with gct defined by the
column X-run corresponding to Ψt, Ac

t(T ) having gct (T ) as the entry (j, j) for
j ∈ ∪t−1

i=1(Li ∪ L̄i) \ Ψt and 1 otherwise, Bc
t (T ) having (gct (T ))

−1 as the entry
(j, j) for j ∈ ∪t

i=1(Ki ∪ K̄i) and 1 otherwise, Ac(T ) =
∏s

t=1 A
c
t(T ), Bc(T ) =∏s

t=1 B
c
t (T ), and Cc(T ) = diag(Tζc(j),ζc(j))

N
j=1, where ζ

c(j) is the image of j under
the identification of Lt and Jt if j ∈ Lt, and the image of j under the identification
of L̄t and J̄t if j ∈ L̄t \Ψt+1. Consequently, the desired homomorphism is given by
C : T �→ (Ac(T ), Bc(T )Cc(T )).

We thus see that any minor P of L is a semi-invariant of the left-right action
of HΓr × HΓc on SLn, and we can define multiplicative characters χP

L and χP
R as
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the products of the corresponding minors of Ar, Ac and Cr, or Br, Bc and Cc,
respectively.

To prove the lemma, we consider first the most general case when the degree
of the vertex (i, j) is 6. Then, borrowing notation from the proof of Theorem 6.1,

M(X) = f̃i1j1(X)fi2j2(X)f̃i4j4(X) + fi1j1(X)f̃i3j3(X)fi4j4(X).

It follows from (6.2) that χf̃i1j1 + χf̃i2j2 = χfi1j1 + χdet(Ā2̂
1̂
), where χ means χL or

χR. Similarly, it follows from (6.3) that χf̃i4j4 + χdet(Ā2̂
1̂
) = χfi4j4 + χf̃i3j3 . Adding

to both sides of the first equality χf̃i4j4 , to the both sides of the second equality
χfi1j1 and adding these two equations together we obtain

χf̃i1j1 + χf̃i2j2 + χf̃i4j4 = χfi1j1 + χf̃i3j3 + χfi4j4 = χM ,

which proves the assertion of the lemma.
Other cases are obtained from the general case by the same specializations

(setting one or more functions above to be 1) that were used in the proof of Theorem
6.1 above. This concludes the proof of the lemma. �

To complete the proof we have to show that any toric action on CΓr,Γc can be
obtained in this way. To prove this claim, we first note that the dimension of HΓr

equals kΓr , and the dimension of HΓc equals kΓc . Consequently, the construction
of Lemma 6.2 produces kΓr + kΓc weight vectors that lie in the kernel of the ex-
change matrix corresponding to QΓr,Γc , see [12, Lemma 5.3]. Assume that there
exists a vanishing nontrivial linear combination of these weight vectors; this would
mean that all cluster variables remain invariant under the toric action induced by
a nontrivial right-left action of HΓr ×HΓc on SLn. However, by Theorem 7.1 be-
low, every matrix entry of the initial matrix in SLn can be written as a Laurent
polynomial in the cluster variables of the initial cluster. Hence, a generic matrix
remains invariant under this nontrivial right-left action on SLn, a contradiction.
Note that the proof of Theorem 7.1 does not use the results of Section 6.2.

6.3. Proof of Proposition 3.6

(i) We will focus on the behavior of detL(X,Y ) under the right action of
D− = Dc

−. The left action of Dr
− can be treated in a similar way. In

fact, we will show that detL(X,Y ) is a semi-invariant of the right action
of a larger subgroup of D(GLn). Let P± be the parabolic subgroups in

SLn that correspond to parabolic subalgebras (2.11), and let P̂± be the

corresponding parabolic subgroups in GLn. Elements of P̂+ (respectively,

P̂−) are block upper (respectively, lower) invertible triangular matrices
whose square diagonal blocks correspond to column X-runs (respectively,
column Y -runs).

It follows from (2.12) that D− is contained in a subgroup D̃− of P̂+×
P̂− defined by the property that every square diagonal block in the first
component determined by a nontrivial column X-run Δ coincides with
the square diagonal block in the second component determined by the
corresponding nontrivial column Y -run. For g = (g1, g2) ∈ D̃−, consider
the transformation of L(X,Y ) under the action (X,Y ) �→ (X,Y ) · g, in
particular the transformation of the block column Lt∪ L̄t−1 as depicted in
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Figure 4.2. In dealing with the block column we only need to remember
that (g1, g2) can be written as

(g1, g2) =

⎛⎝⎡⎣A11 A12 A13

0 C A23

0 0 A33

⎤⎦ ,
⎡⎣B11 0 0
B21 C 0
B31 B32 B33

⎤⎦⎞⎠ ,

where A11, A33, B11, B33 and C are invertible and C occupies rows and
columns labeled by Δ(βt) in g1 and rows and columns labeled by Δ̄(β̄t−1)
in g2 (recall that both these runs correspond to Ψt). Then the effect of
the transformation (X,Y ) �→ (X,Y ) · g on the block column is that it is
multiplied on the right by an invertible matrix⎡⎣A11 A12 0

0 C 0
0 B32 B33

⎤⎦ .
The cumulative effect on L(X,Y ) is that it is transformed via a multipli-
cation on the right by an invertible block diagonal matrix with blocks as
above, and therefore detL(X,Y ) is transformed via a multiplication by
the determinant of this matrix. The latter, being a product of powers of
determinants of diagonal blocks of g1 and g2, is a character of D̃−, which
proves the statement.

(ii) The claim follows from a more general statement: detL(X,Y ) is log-
canonical with all matrix entries xij , yij with respect to the Poisson
bracket (2.14) which, in our situation, takes the form (4.3). Semi-
invariance of detL(X,Y ) described in part (i) above, together with the
fact that subalgebras d− = dr− and d′− = dc− are isotropic with respect to
the bilinear form 〈〈 , 〉〉 implies

�Lf ∈ d−+̇ (d+ ∩ h⊕ h) , �Rf ∈ d′−+̇ (d+ ∩ h⊕ h)

for f = log detL(X,Y ). This means that in (2.14)

RD(�Lf) = −�Lf + πd+

(�Lf
)
0
, R′

D(�Rf) = −�Rf + π′
d+

(�Rf
)
0
,

where ( )0 denotes the natural projection to D(h) = h ⊕ h and πd+
, π′

d+

are projections to d+ along d−, d
′
− respectively. Due to the invariance of

〈〈 , 〉〉, (2.14) then reduces to

{f, ϕ}Dr,r′ =
1

2

(
〈〈πd+

(�Lf)0,
(�Lϕ

)
0
〉〉 − 〈〈π′

d+
(�Rf)0,

(�Rϕ
)
0
〉〉
)

for any ϕ = ϕ(X,Y ).
Let now ϕ(X,Y ) = log xij . Then

(�Lϕ
)
0

= (ejj , 0),
(�Rϕ

)
0

=

(eii, 0). Thus, to prove the desired claim we need to show that πd+
(�Lf)0

and π′
d+

(�Rf)0 do not depend on X,Y . To this end, we first recall an
explicit formula for πd+

:

πd+
(ξ, η) = (ξ −R+(ξ − η), ξ −R+(ξ − η)) ,

which can be easily derived using the property R+ −R− = Id satisfied by
R-matrices (2.6). Since in our situation the left gradient �Lf computed
with respect to 〈〈 , 〉〉 is equal to (∇Xf ·X,−∇Y f · Y ), we conclude that
components of πd+

(�Lf)0 are equal to (∇Xf ·X −R+ (ELf))0, where
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( )0 now means the projection to the diagonal in gln. By (4.23), (4.28),
(4.20),

(∇Xf ·X −R+ (ELf))0 =
1

2

(
− 1

1− γ
(ξLf)0 +

1

1− γ∗ (ηLf)0

)
+

1

n
(Tr(ELf)S− Tr ((ELf)S)1) .

By (4.14), Corollary 4.18 and (4.27), the right hand side above is constant.
The constancy of π′

d+
(�Rf)0 and the case of ϕ(X,Y ) = log yij can be

treated similarly. This completes the proof.
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CHAPTER 7

Proof of Theorem 3.3(ii)

As it was explained in Section 3.4, we have to prove the following statement.

Theorem 7.1. Every matrix entry can be written as a Laurent polynomial in
the initial cluster FΓr,Γc and in any cluster adjacent to it.

Below we implement the strategy of the proof outlined in Section 3.4.

7.1. Proof of Theorem 3.12 and its analogs

Given an aperiodic pair (Γr,Γc) and a non-trivial row X-run Δr, we want to

explore the relation between cluster structures C = CΓr,Γc and C̃ = CΓ̃r,Γc , where

Γ̃r = Γ̃r(
−→
Δr) is obtained by deletion of the rightmost root in Δr and its image in

γ(Δr). Note that the pair (Γ̃r(
−→
Δr),Γc) remains aperiodic.

Assume that Δr is [p + 1, p + k], and the corresponding row Y -run γ(Δr) is

[q + 1, q + k]. Then, in considering (Γ̃r(
−→
Δr),Γc), we replace the former one with

[p + 1, p + k − 1], and the latter one with [q + 1, q + k − 1]. Besides, a trivial row
X-run [p+k, p+k] and a trivial row Y -run [q+k, q+k] are added. The rest of row
X- and Y -runs as well as all column X- and Y -runs remain unchanged. In what
follows, parameters p, q and k are assumed to be fixed.

We say that a matrix L ∈ L is r-piercing for an r ∈ [2, k] if J (p+r, 1) = (L, sr)
for some sr ∈ [1, N(L)]. Note that two distinct matrices cannot be simultaneously
r-piercing. On the other hand, a matrix can be r-piercing simultaneously for several
distinct values of r; the set of all such values is called the piercing set of L. If a
piercing set consists of r1, . . . , rl, we will assume that sr1 > · · · > srl . The subset
of all matrices in L that are not r-piercing for any r ∈ [2, k] is denoted L∅.

Let L̃ = L
Γ̃r(

−→
Δr),Γc , J̃ = J

Γ̃r(
−→
Δr),Γc , and let the functions f̃ij(X,Y ) and f̃ij(X)

be defined via the same expressions as fij(X,Y ) and fij(X) with L and J replaced

by L̃ and J̃ . It is convenient to restate Theorem 3.12 in more detail as follows.

Theorem 7.2. Let Z = (zij) be an n×n matrix. Then there exists a unipotent
upper triangular n×n matrix U(Z) whose entries are rational functions in zij with

denominators equal to powers of f̃p+k,1(Z) such that for X = U(Z)Z and for any
i, j ∈ [1, n],

fij(X) =

{
f̃ij(Z)f̃p+k,1(Z) if J (i, j) = (L∗, s) and s < sk,

f̃ij(Z) otherwise,

where L∗ is the k-piercing matrix in L.

Proof. In what follows we assume that i �= j, since for i = j the claim of the
theorem is trivial.

89
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For any L(X,Y ) ∈ L define L̃(X,Y ) obtained from L(X,Y ) by removing the

last row from every building block of the form Y J̄
[1,q+k]. In particular, if L(X,Y )

does not have building blocks like that then L̃(X,Y ) = L(X,Y ).

Note that all matrices L̃ defined above are irreducible except for the one ob-
tained from the k-piercing matrix L∗. The corresponding matrix L̃∗ has two ir-
reducible diagonal blocks L̃∗

1, L̃∗
2 of sizes sk − 1 and N(L∗) − sk + 1, respectively.

As was already noted in Section 3.4, all maximal alternating paths in GΓr,Γc are
preserved in G

Γ̃r(
−→
Δr),Γc except for the path that goes through the directed inclined

edge (p+ k− 1) → (q+ k− 1). The latter one is split into two: the initial segment
up to the vertex p+k−1 and the closing segment starting with the vertex q+k−1.
Consequently, L̃ = {L̃: L ∈ L,L �= L∗} ∪ {L̃∗

1, L̃∗
2}.

Further, if J (i, j) = (L, s) and L �= L∗ then J̃ (i, j) = (L̃, s). Furthermore, if
L ∈ L∅ then additionally fij(X,Y ) and f̃ij(X,Y ) coincide. However, if J (i, j) =
(L∗, s) then

J̃ (i, j) =

{
(L̃∗

1, s) for s = s(i, j) < sk,

(L̃∗
2, s− sk + 1) for s = s(i, j) ≥ sk.

It follows from the above discussion that the claim of the theorem is an imme-
diate corollary of the equalities

(7.1) detL(X,X)
[s,N(L)]
[s,N(L)] = det L̃(Z,Z)

[s,N(L)]
[s,N(L)]

for any L ∈ L and s ∈ [1, N(L)].
To prove (7.1), we select a particular “shape” for U(Z). Let

(7.2) U0 = U0(Z) = 1n +
k−1∑
κ=1

ακ(Z)eq+κ,q+k,

where ακ(Z) are coefficients to be determined, and

(7.3) U = U(Z) =
←∏

i≥0
exp(iγr)(U0(Z)).

Due to the nilpotency of γr on n+, the product above is finite. Clearly, if ακ(Z)

are polynomials in zij divided by a power of f̃p+k,1 then the same is true for the
entries of U(Z).

The invariance property (4.11) implies that for every (i, j),

fij(UZ,UZ) = fij(Z, exp(γ
r)(U−1)UZ) = fij(Z,U0Z);

here the second equality follows from (7.3). Thus, to prove (7.1) for X = UZ it is
sufficient to select parameters ακ(Z) in (7.2) in such a way that

(7.4) detL(Z,U0Z)
[s,N(L)]
[s,N(L)] = det L̃(Z,Z)

[s,N(L)]
[s,N(L)]

for all L ∈ L and s ∈ [1, N(L)].
Observe, that the equation above is satisfied for any choice of ακ if L ∈ L∅,

that is, if L(X,Y ) = L̃(X,Y ). Indeed, in this case any Y -block in L either does not
contain any of the rows q+1, . . . , q+k, or contains all of them but without an overlap
with the X-block to the right. If the former is true, the block rows corresponding to
this Y -block in L(Z,U0Z) and L(Z,Z) coincide, while if the latter is true, then the
block of k rows under consideration in L(Z,U0Z) is obtained from the corresponding
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block row of L(Z,Z) via left multiplication by a k × k unipotent upper triangular

matrix 1k +
∑k−1

κ=1 ακ(Z)eκk, which does not affect trailing principal minors.
Let us now turn to matrices L ∈ L \ L∅. In fact, the same reasoning as

above shows that for any such matrix, the functions in the left hand side of (7.4)

do not change if L(Z,U0Z) is replaced by L̂(Z,U0Z) obtained from L(Z,Z) via

replacing every Y -block Z J̄
[1,q+k] by (U0Z)J̄[1,q+k] and retaining all other Y -blocks

Z J̄
Ī
. Therefore, in what follows we aim at proving

(7.5) det L̂(Z,U0Z)
[s,N(L)]
[s,N(L)] = det L̃(Z,Z)

[s,N(L)]
[s,N(L)]

for all L ∈ L \ L∅ and s ∈ [1, N(L)].
Assume that L = L(X,Y ) is r-piercing, and so there exists sr ∈ [1, N(L)]

such that L(X,Y )srsr = xp+r,1; the X-block of L(X,Y ) that contains the diagonal

entry (sr, sr) is denoted XJr

[p+1,n]. We can decompose L̂ = L̂(Z,U0Z) into blocks as

follows:

(7.6) L̂(Z,U0Z) =

⎡⎣Âr
1 0

Âr
2 B̂r

1

0 B̂r
2

⎤⎦ ,
where the sizes of block rows are sr − r, k and N(L)− sr − k + r, and the sizes of
block columns are sr − 1 and N(L)− sr + 1. Note that the blocks are given by

Âr
1 =

[∗ ∗
0 (U0Z)J̄

r

[1,q]

]
, Âr

2 =
[
0 (U0Z)J̄

r

[q+1,q+k]

]
and

B̂r
1 =
[
ZJr

[p+1,p+k] 0
]
, B̂r

2 =

[
ZJr

[p+k+1,n] 0

∗ ∗

]
.

It will be convenient to combine Âr
1 and Âr

2 into one (sr+k−r)×(sr−1) block

Âr, and B̂r
1 and B̂r

2 into one θr × (θr − r + 1) block B̂r with θr = N(L)− sr + r.

A similar decomposition into blocks of the same size for L̃ = L̃(Z,Z) contains

blocks Ãr
1, Ã

r
2, B̃

r
1 and B̃r

2 that may be combined into Ãr and B̃r, respectively;

consequently, the last row of Ãr
2 (and hence of Ãr) is zero. Note that since exactly

one matrix in L \ L∅ is r-piercing for any fixed r, notation Âr, B̂r, and Ãr, B̃r is
unambiguous.

Denote the column set of the second block column in (7.6) by Mr. Let

(7.7) ακ(Z) =
det(L̃∗)Mk

(Mk\{sk})∪{sk+κ−k}

det(L̃∗)Mk

Mk

, κ = 1, . . . , k;

note that αk = 1. We claim that U0(Z) given by (7.2) and (7.7) satisfies condi-

tions (7.5). Note that the denominator in (7.7) equals f̃p+k,1(Z), and hence the

denominators of the entries of L defined by (7.3) are powers of f̃p+k,1(Z).
Assume that the piercing set of L is {r1, . . . , rl}; additionally, set srl+1

= 1.

Recall that Y -blocks of the form Z J̄
[1,q+k] do not appear in the columns Mr1 in L̂,

and hence (7.5) is trivially satisfied for s ≥ sr1 .
For sr2 ≤ s ≤ sr1 − 1, we are in the situation covered by Lemma 7.7 (see

Section 7.4) with M = L̂Mr2

Mr2
, M̃ = L̃Mr2

Mr2
, N = θr2 − r2 + 1, N2 = θr1 − r1 + 1,

and k1 = r1 − 1. Condition (iii) in the lemma is satisfied trivially, since in this
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case B = B̃. Consequently, (7.5) is satisfied if the parameters ακ = ακ(Z) satisfy
equations

(7.8)
∑
κ∈S

(−1)εκSακ det(B̃r1)(S\{κ})∪[k+1,θr1 ]
= 0

for any (k − r1 + 2)-element subset S in [1, k] such that k ∈ S, where

εκS = #{i ∈ S : i > κ}.

If l = 1, there are no other conditions on the parameters ακ, since sr2 = 1.
Otherwise, let sr3 ≤ s ≤ sr2 − 1 and consider the block decomposition (7.6) for

r = r2. We claim that the situation is now covered by Lemma 7.7 with M = L̂Mr3

Mr3
,

M̃ = L̃Mr3

Mr3
, N = θr3 −r3+1, N2 = θr2 −r2+1, and k1 = r2−1. To check condition

(iii) in the lemma, we pick an arbitrary subset T ⊂ [sr2 − r2 + 1, sr2 − r2 + k] of

size k − r2 + 1 and apply Lemma 7.7 to matrices M = L̂T∪Mr2
\[sr2 ,sr2−r2+k]

Mr2
and

M̃ = L̃T∪Mr2
\[sr2 ,sr2−r2+k]

Mr2
with parameters N = θr2 − r2 + 1, N2 = θr1 − r1 + 1,

and k1 = r1−1. It follows that the condition in question is guaranteed by the same
equations (7.8). Consequently, by Lemma 7.7, equations (7.5) for sr3 ≤ s ≤ sr2 − 1
are guaranteed by equations (7.8) with r1 replaced by r2.

Continuing in the same fashion, we conclude that if conditions

(7.9)
∑
κ∈S

(−1)εκSακ det(B̃r)(S\{κ})∪[k+1,θr ] = 0

are satisfied for any r ∈ {r1, . . . , rl} and any (k − r + 2)-element subset S in [1, k]
containing k, then (7.5) holds for any s ∈ [1, N(L)]. It remains to show that (7.9)
are valid with ακ defined in (7.7).

Rewrite (7.7) as

(7.10) ακ(Z) =
det(B̃k){κ}∪[k+1,θk]

det(B̃k)[k,θk]
, κ = 1, . . . , k.

If r = k, and hence L = L∗, then every S in (7.9) is a two element set {κ, k} with
κ ∈ [1, k − 1], εκS = 1, εkS = 0. Plugging (7.10) into the left hand side of (7.9)
and clearing denominators we obtain two terms that differ only by sign and thus
the claim follows.

For r < k, we need to evaluate

(7.11)
∑
κ∈S

(−1)εκS det(B̃k){κ}∪[k+1,θk] det(B̃
r)(S\{κ})∪[k+1,θr].

Note that the blocks ZJk

[p+1,n] and ZJr

[p+1,n] have the same row set, and the exit point

of the former lies below the exit point of the latter. Consequently, Jk ⊆ Jr, and
the first of the blocks is a submatrix of the second one. Therefore, we find ourselves
in a situation similar to the one discussed in Section 4.4.1 above while analyzing
sequences (4.79) of blocks. Reasoning along the same lines, we either arrive at the
cases (ii) and (iii) in Section 4.4.1, and then

(7.12) B̃k =

[
U1 U2 0
0 V1 V2

]
, B̃r =

[
U1 U2 U3 U4 0
0 0 0 W1 W3

]
,
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where odd block columns and the second block row of B̃k and B̃r might be empty,
or at the cases (i) and (iv) in Section 4.4.1, and then

(7.13) B̃k =

⎡⎢⎢⎢⎢⎣
U1 0
U2 0
U3 0
U4 V1

0 V2

⎤⎥⎥⎥⎥⎦ , B̃r =

⎡⎣U1 0
U2 W1

0 W2

⎤⎦ ,
where odd block rows and the second block column of B̃k and B̃r might be empty.
In particular, if B̃k is a submatrix of B̃r (cf. case (iv) in Section 4.4.1) then (7.12)
applies with an empty second block row and third block column in the expression for
B̃k. Similarly, if B̃r is a submatrix of B̃k (cf. case (iii) in Section 4.4.1) then (7.13)
applies with an empty second block column and third block row in the expression
for B̃r.

Suppose (7.12) is the case. Define τ4 > τ3 ≥ τ2 > τ1 ≥ τ0 = 0 and σ > 0
so that the size of the block Ui equals σ × (τi − τi−1) for 1 ≤ i ≤ 4. Note that
σ ≥ n − p ≥ k and σ > τ3. We will use the Laplace expansion of the minors in
(7.11) with respect to the first block row:
(7.14)

det(B̃k){κ}∪[k+1,θk] =
∑
Θ

(−1)εΘ det(B̃k)
[1,τ1]∪Θ
{κ}∪[k+1,σ] det(B̃

k)
Θ̄∪[τ2+1,θk−k+1]
[σ+1,θk]

,

det(B̃r)(S\{κ})∪[k+1,θr ] =
∑
Ξ

(−1)εΞ det(B̃r)
[1,τ3]∪Ξ
(S\{κ})∪[k+1,σ] det(B̃

r)
Ξ̄∪[τ4+1,θr−r+1]
[σ+1,θr ]

.

Here the first sum runs over all Θ ⊂ [τ1 +1, τ2] such that |Θ| = σ− τ1 − k+1, and
Θ̄ is the complement of Θ in [τ1+1, τ2]; the second sum runs over all Ξ ⊂ [τ3+1, τ4]
such that |Ξ| = σ− τ3 − r+1, and Ξ̄ is the complement of Ξ in [τ3 + 1, τ4]; εΘ and
εΞ depend only on Θ and Ξ, respectively, and [k + 1, σ] is empty if σ = k. Plug
(7.14) into (7.11) and note that for any fixed pair Θ, Ξ, the coefficient at

det(B̃k)
Θ̄∪[τ2+1,θk−k+1]
[σ+1,θk]

det(B̃r)
Ξ̄∪[τ4+1,θr−r+1]
[σ+1,θr ]

is equal to

(7.15) (−1)εΘ+εΞ
∑
κ∈S

(−1)εκS det(B̃r)
[1,τ1]∪Θ
{κ}∪[k+1,σ] det(B̃

r)
[1,τ3]∪Ξ
(S\{κ})∪[k+1,σ],

since the upper left σ× τ2 blocks of B̃r and B̃k coincide. Observe that [1, τ1]∪Θ ⊂
[1, τ3], and hence (7.15) is equal to the left-hand side of the Plücker relation (7.37)

with A = B̃r, I = S, J = [k + 1, σ], L = [1, τ1] ∪ Θ and M = ([1, τ3] ∪ Ξ) \
([1, τ1] ∪Θ). Thus (7.15) vanishes for any Θ, Ξ, and so (7.11) is zero in the case
(7.12). The case (7.13) can be treated similarly: using the Laplace expansion with
respect to the first block column, one concludes that (7.11) is zero. This proves
that with ακ defined by (7.7), all conditions (7.9) are satisfied, and therefore (7.5)
is valid, which completes the proof of the theorem.

�

As it was explained in Section 3.4, we also need a version of Theorem 3.12

relating C = CΓr,Γc and C̃ = CΓ̃r,Γc , where Γ̃r = Γ̃r(
←−
Δr) is obtained by the deletion

of the leftmost root in Δr. The treatment of this case follows the same strategy as
above. Once again, we assume that the non-trivial row X-run that corresponds to
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Δr ⊂ Γr
1 is [p + 1, p + k], and the corresponding row Y -run is [q + 1, q + k]. This

time, in considering (Γ̃r,Γc), we replace the former one with [p+ 2, p+ k], and the
latter one with [q+2, q+ k], and add a trivial row X-run [p+1, p+1] and a trivial
row Y -run [q + 1, q + 1]. The rest of nontrivial row X- and Y -runs as well as all
column X- and Y -runs remain unchanged. In what follows, parameters p, q and k
are assumed to be fixed.

Let L̃ = L
Γ̃r(

←−
Δr),Γc , J̃ = J

Γ̃r(
←−
Δr),Γc , and let the functions f̃ij(X,Y ) and f̃ij(X)

be defined via the same expressions as fij(X,Y ) and fij(X) with L and J replaced

by L̃ and J̃ . A suitable version of Theorem 3.12 can be stated as follows.

Theorem 7.3. Let Z = (zij) be an n×n matrix. Then there exists a unipotent
upper triangular n×n matrix U(Z) whose entries are rational functions in zij with

denominators equal to powers of f̃p+2,1(Z) such that for X = U(Z)Z and for any
i, j ∈ [1, n],

fij(X) =

{
f̃ij(Z)f̃p+2,1(Z) if J (i, j) = (L∗, s) and s < s2,

f̃ij(Z) otherwise,

where L∗ ∈ L is the 2-piercing matrix in L.

Proof. Our approach is similar to that in the proof of Theorem 7.2.
For any L(X,Y ) ∈ L define L̃(X,Y ) obtained from L(X,Y ) by removing the

first row from every building block of the form XJ
[p+1,N ]. In particular, if L(X,Y )

does not have building blocks like that then L̃(X,Y ) = L(X,Y ).

Similarly to the previous case, all matrices L̃ defined above are irreducible
except for the one obtained from the 2-piercing matrix L∗. The corresponding
matrix L̃∗ has two irreducible diagonal blocks L̃∗

1, L̃∗
2 of sizes s2 − 1 and N(L∗)−

s2 + 1, respectively. As was already noted in Section 3.4, all maximal alternating
paths in GΓr,Γc are preserved in G

Γ̃r(
←−
Δr),Γc except for the path that goes through

the directed inclined edge (p + 1) → (q + 1). The latter one is split into two: the
initial segment up to the vertex p + 1 and the closing segment starting with the
vertex q + 1. Consequently, L̃ = {L̃: L ∈ L,L �= L∗} ∪ {L̃∗

1, L̃∗
2}.

As before, if J (i, j) = (L, s) and L �= L∗ then J̃ (i, j) = (L̃, s). Furthermore, if
L ∈ L∅ then additionally fij(X,Y ) and f̃ij(X,Y ) coincide. However, if J (i, j) =
(L∗, s) then

J̃ (i, j) =

{
(L̃∗

1, s) for s = s(i, j) < s2,

(L̃∗
2, s− s2 + 1) for s = s(i, j) ≥ s2.

It follows from the above discussion that the claim of the theorem is an imme-
diate corollary of the equalities (7.1) for any L ∈ L and s ∈ [1, N(L)].

Let

(7.16) U0(Z) = 1n +

k∑
κ=2

ακeq+1,q+κ

and

U(Z) =
←∏

t≥0
γt(U0(Z)).
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As before, the invariance property (4.11) allows to reduce the problem to selecting
parameters ακ = ακ(Z) such that the analog of (7.4) with U0(Z) given by (7.16)
is satisfied for all L ∈ L and s ∈ [1, N(L)].

Once again, this relation is satisfied for any choice of ακ if L ∈ L∅, that is, if

L(X,Y ) = L̃(X,Y ), while for matrices L ∈ L \ L∅ one has to replace L(Z,U0Z)

by the matrix L̂(Z,U0Z) similar to the one defined in the proof of Theorem 7.2.
Therefore, in what follows we aim at proving the analog of (7.5) for all L ∈ L \L∅

and s ∈ [1, N(L)].
We can again use decomposition (7.6) for L̂ and L̃, except that now B̃r

1 is

obtained from B̂r
1 by replacing the first row with zeros, whereas the last row of Ãr

2

remains as is, unlike the previous case. Consequently, for s ≥ sr1 the analog of
(7.5) is satisfied trivially.

For sr2 ≤ s ≤ sr1 − 1, we are in the situation covered by Lemma 7.8 with M =

L̂Mr2

Mr2
, M̃ = L̃Mr2

Mr2
, N = θr2−r2+1, N2 = θr1−r1+1, and k1 = r1−1. Condition (iv)

in the lemma is satisfied trivially, since in this case B[N1−k1+2,N ] = B̃[N1−k1+2,N ].
Consequently, the analog of (7.5) holds true if the parameters ακ = ακ(Z) satisfy
equations

(7.17)
∑

κ∈[1,k]\S
(−1)εκSακ det(B̂r1)S∪{κ}∪[k+1,θr1 ]

= 0

for any (k − r1)-element subset S in [2, k].
Continuing in the same way as in the proof of Theorem 7.2 and using Lemma 7.8

instead of Lemma 7.7, we conclude that if conditions

(7.18)
∑

κ∈[1,k]\S
(−1)εκSακ det(B̂r)S∪{κ}∪[k+1,θr ] = 0

are satisfied for any r ∈ {r1, . . . , rl} and any (k− r)-element subset S in [2, k], then
the analog of (7.4) holds for any s ∈ [1, N(L)].

In particular, when r = 2, and hence L = L∗, every S in (7.18) is obtained by
removing a single index κ from [2, k]. Therefore, the sum in the left hand side of
(7.18) is taken over a two-element set {1,κ} with κ ∈ [2, k]. Since ε1S = k− 2 and
εκS = k − κ, ακ is determined uniquely as

(7.19) ακ(Z) = (−1)κ−1 det(B̂
2)[1,θ2]\{κ}

det(B̂2)[2,θ2]
, κ = 1, . . . , k.

Therefore (7.18) is equivalent to vanishing of

(7.20)
∑

κ∈[1,k]\S
(−1)εκS+κ det(B̂2)[1,θ2]\{κ} det(B̂

r)S∪{κ}∪[k+1,θr ] = 0.

Denote S̄ = [1, k]\S, then εκS+εκS̄ = k−κ, and hence (7.20) can be re-written
as

(−1)k
∑
κ∈S̄

(−1)εκS̄ det(B̂2)(S̄\{κ})∪S∪[k+1,θ2] det(B̂
r){κ}∪S∪[k+1,θr ] = 0.

The latter equation is similar to (7.11) in the proof of Theorem 7.2, and the cur-
rent proof can be completed in exactly the same way taking into account that the
denominator in (7.19) equals f̃p+2,1(Z). �
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There are two more versions of Theorem 3.12 relating the cluster structures

CΓr,Γc and CΓr,Γ̃c , where Γ̃c = Γ̃c(
−→
Δc) or Γ̃c = Γ̃c(

←−
Δc) for a nontrivial column

X-run Δc. They are obtained easily from Theorems 7.2 and 7.3 via the involution

LΓr,Γc 
 L(X,Y ) �→ L(Y T , XT )T ∈ LΓc
opp,Γ

r
opp

,

where Γopp = (Γ2,Γ1, γ
−1 : Γ2 → Γ1) is the opposite BD triple to Γ = (Γ1,Γ2, γ :

Γ1 → Γ2). Consequently, X is obtained from Z via multiplication by a lower

triangular matrix, and the distinguished function f̃v(Z) equals f̃1,q+k(Z) for Γ̃c =

Γ̃c(
−→
Δc) and equals f̃1,q+2(Z) for Γ̃c = Γ̃c(

←−
Δc).

7.2. Handling adjacent clusters

Let us continue the comparison of cluster structures C = CΓr,Γc and C̃ = CΓ̃r,Γc ,

where Γ̃r = Γ̃r(
−→
Δr). Recall that the corresponding initial quivers Q and Q̃ differ

as follows. The vertex v = (p + k, 1) is frozen in Q̃, but not in Q. Three of
the edges incident to the vertex (p + k, 1) in Q—the one connecting it to the
vertex (p + k − 1, 1) and the two connecting it to the vertices (γr(p + k − 1), n)

and (γr(p + k − 1) + 1, n)—are absent in Q̃ (in more detail, the neighborhood of
v in Q looks as shown in Figure 3.6(b), Figure 3.10(a), or Figure 3.10(b), while

the neighborhood of v in Q̃ looks as shown in Figure 3.6(d), Figure 3.10(c), or
Figure 3.10(d), respectively).

As it was explained in Section 3.4, we have to establish an analog of Theo-
rem 3.12 for the fields F ′=C(ϕ11, . . . , ϕ

′
u, . . . , ϕnn) and F̃ ′=C(ϕ̃11, . . . , ϕ̃

′
u, . . . ϕ̃nn)

and the map T ′ : F ′ → F̃ ′ given by

(7.21) T ′(ϕij) =

{
T (ϕij) for (i, j) �= u,

ϕ̃′
uϕ̃

λu
v for (i, j) = u

for some integer λu, where T : F → F̃ is the map constructed in Theorem 7.2.
The map U : X → Z is also borrowed from Theorem 7.2, so condition (b) in
Theorem 3.12 holds true. Condition (c) follows immediately from (7.21). Condition

(a) reads f̃ ′ ◦ T ′ = U ◦ f ′.
Recall that cluster mutation formulas provide isomorphisms μ : F ′ → F and

μ̃ : F̃ ′ → F̃ such that f ′ = f ◦ μ and f̃ ′ = f̃ ◦ μ̃. Consequently, condition (a) above
would follow from μ̃ ◦ T ′ = T ◦ μ. The latter statement can be reformulated as
follows.

Proposition 7.4. Let ψ̃ be the cluster variable in C(Q̃, ϕ̃) obtained via a se-

quence of mutations at vertices (i1, j1), . . . , (iN , jN ) in Q̃ avoiding v, and let ψ
be a cluster variable in C(Q,ϕ) obtained via the same sequence of mutations in Q.

Then ψ = ψ̃ϕ̃λu
v for some integer λu.

Proof. Define a quiver Qv by freezing the vertex v in Q and retaining all
the edges from v to nonfrozen vertices. Then any sequence of mutations in Q
avoiding v translates into the sequence of mutations in Qv, and all the resulting
cluster variables in C(Q,ϕ) and C(Qv, ϕ) coincide. We will use the statement that
describes the relation between cluster variables in two cluster structures whose
initial quivers are “almost the same”. That is, there is a bijection between vertices
of these quivers that restricts to the bijection of subsets of frozen vertices and under
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this bijection the two quivers differ only in terms of edges incident to one specified
frozen vertex.

Lemma 7.5 ([15, Lemma 8.4]). Let B̃ and B be integer n × (n+m) matrices
that differ in the last column only. Assume that there exist w̃, w ∈ Rn+m such

that B̃w̃ = Bw = 0 and w̃n+m = wn+m = 1. Then for any cluster (x′
1, . . . , x

′
n+m)

in C(B̃) there exists a collection of numbers λ′
i, i ∈ [1, n + m], such that x′

ix
λ′
i

n+m

satisfy exchange relations of the cluster structure C(B). In particular, for the initial
cluster λi = wi − w̃i, i ∈ [1, n+m].

In our current situation, B̃ and B are adjacency matrices of quivers Q̃ and Qv,

respectively. The last columns of B̃ and B correspond to the frozen vertex (p+k, 1).
To establish the claim of Proposition 7.4, we just need to define appropriate weights
w̃ and w and to show that for any nonfrozen vertex (i, j), λij = wij − w̃ij coincides

with the exponent of f̃p+k,1(Z) in the right hand side of the expression for fij(X)
in Theorem 7.2.

Put d̃ij = degf̃ij(Z) and dij = degfij(X). A direct check proves that the

vectors d̃ = (d̃ij) and d = (dij) satisfy relations B̃d̃ = Bd = 0. Besides, d̃v = dv = δ,

and hence vectors w̃ = 1
δ d̃ and w = 1

δd satisfy the conditions of Lemma 7.5.

Moreover, d̃ij and dij coincide for any fij that is a minor of L �= L∗, or a minor of

L∗ with s(i, j) ≥ sk. If fij is a minor of L∗ with s(i, j) > sk then dij − d̃ij = δ.
Consequently λij satisfies the required condition. �

7.3. Base of induction: The case |Γr
1|+ |Γc

1| = 1

It suffices to consider the case |Γr
1| = 1, |Γc

1| = 0, the other case can then be
treated via taking the opposite BD triple. In this case all the reasoning exhibited
in Sections 7.1 and 7.2 is still valid, so to complete the proof we only need to check
that every matrix element xαβ can be expressed as a Laurent polynomial in terms
of cluster variables in the cluster μv(F ). We will do this directly.

Let Γr = ({p}, {q}, p �→ q) with q �= p and Γc = ∅. The functions forming the

initial cluster FΓr,∅ are fij(X) = detX
[j,n−i+j]
[i,n] for i ≥ j, fij(X) = detX

[j,n]
[i,n−j+i]

for i < j, j−i �= n−q, and fi,n−q+i(X) = detL[i,N ]
[i,N ] for i ∈ [1, q], whereN = n−p+q

and the N ×N matrix L is given by

(7.22) L =

⎡⎢⎢⎣
X

[n−q+1,n]
[1,q−1] 0

X
[n−q+1,n]
[q,q+1] X

[1,n−p]
[p,p+1]

0 X
[1,n−p]
[p+2,n]

⎤⎥⎥⎦ .
These last q functions distinguish FΓr,∅ from F∅,∅ that forms an initial cluster for

the standard cluster structure on GLn. Also, the function fp+1,1(X) = detX
[1,n−p]
[p+1,n]

is a frozen variable in C∅,∅, but is mutable in CΓr,∅. The mutation at v = (p+1, 1)
transforms fp+1,1(X) into

(7.23)

f ′
p+1,1(X) =

fp1(X)fp+2,2(X)fq+1,n(X) + fp+1,2(X)fqn(X)

fp+1,1(X)

= det

[
X

[n]
[q,q+1] X

[2,n−p+1]
[p,p+1]

0 X
[2,n−p+1]
[p+2,n]

]
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with fp+2,2(X) = 1 in case p = n − 1, see Figure 3.6(b) and 3.10(b). The last
equality follows from the short Plücker relation based on columns 1, 2, 3, n− p+ 3
applied to the (n− p+ 1)× (n− p+ 3) matrix⎡⎣ 1

0
X

[n]
[q,q+1] X

[1,n−p+1]
[p,p+1]

0 0 X
[1,n−p+1]
[p+2,n]

⎤⎦ .
Observe that {fij(X) = fij

(
X

[1,n]
[q+1,n]

)
: i ∈ [q + 1, n], j ∈ [1, n]} together with

the restriction of Q∅,∅ to its lower n− q rows and freezing row q+1 form an initial
cluster for the standard cluster structure Cq on (n − q) × n matrices. It follows
immediately from [12, Proposition 4.15] that every minor of X with the row set in
[q+1, n] is a cluster variable in Cq, and hence can be written as a Laurent polynomial
in any cluster of Cq. Note that for p > q − 2 the variable fp+1,1(X) is frozen in
Cq, therefore, by [12, Proposition 3.20], it does not enter the denominator of this
Laurent polynomial; for p ≤ q − 2 this variable does not exist in Cq. Consequently,
all such minors remain Laurent polynomials in the cluster adjacent to the initial
one in CΓr,∅ after the mutation at (p + 1, 1). In particular, for any i ∈ [q + 1, n],
j ∈ [1, n], xij can be written as a Laurent polynomial in this cluster.

For s ≤ q − 1, consider the sequence of consecutive mutations at (s + 1, n),
. . . , (s+ 1, s), (s+ 1, s+ 1), . . . , (s+ 1, 2) starting with the initial cluster in CΓr,∅

and denote the obtained cluster variables f ′
s+1,n−t+1(X), t ∈ [1, n − 1]. The same

sequence of mutations in C∅,∅ produces cluster variables

(7.24)
f̃ ′
s+1,n−t+1(Z) = detZ

[n−t,n]
{s}∪[s+2,s+t+1], t ∈ [1, n− s− 1],

f̃ ′
s+1,n−t+1(Z) = detZ

[n−t,2n−t−s−1]
{s}∪[s+2,n] , t ∈ [n− s, n− 1].

Indeed, every mutation in the sequence is applied to a four-valent vertex, and we
obtain consecutively

f̃ ′
s+1,n(Z) =

f̃s,n−1(Z)f̃s+2,n(Z) + f̃s+1,n−1(Z)f̃sn(Z)

f̃s+1,n(Z)

and

f̃ ′
s+1,n−t(Z) =

f̃s,n−t−1(Z)f̃s+2,n−t(Z) + f̃s+1,n−t−1(Z)f̃ ′
s+1,n−t+1(Z)

f̃s+1,n−t(Z)

for t ∈ [1, n − 2]. Explicit formulas (7.24) now follow by applying an appropriate
version of the short Plücker relation.

Recall that by Theorem 7.2, X and Z differ only in the q-th row. Moreover,
every minor ofX whose row set either does not contain q or contains both q and q+1
is equal to the corresponding minor of Z. Let ψ̃(Z) be such a minor; invoking once
again [12, Prop. 4.15], one can obtain it by a sequence of mutations in C∅,∅. Let
ψ(X) be the cluster variable obtained by applying the same sequence of mutations

to the initial seed of CΓr,∅. By Proposition 7.4, ψ(X) = ψ̃(Z) (fp+1,1(Z))
λ

=

ψ̃(X) (fp+1,1(X))
λ
for some integer λ. Clearly, minors in (7.24) satisfy the above

condition unless s+ t+ 1 = q, and hence

f ′
s+1,n−t+1(X) = f̃ ′

s+1,n−t+1(X) (fp+1,1(X))λs+1,n−t+1
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for t �= q− s− 1. However, the exponents λs+1,n−t+1 are easily computed to be all
zero. Thus, we conclude that

(7.25) detX
[n−t,n]
{s}∪[s+2,s+t+1] = f ′

s+1,n−t+1(X), t ∈ [1, n− s− 1] \ {q − s− 1},

and

(7.26) detX
[n−t,2n−t−s−1]
{s}∪[s+2,n] = f ′

s+1,n−t+1(X), t ∈ [n− s, n− 1],

are cluster variables in CΓr,∅.
Now we are ready to deal with the entries in the q-th row X. First, expand

f ′
p+1,1(X) in (7.23) by the first column as

f ′
p+1,1(X) = xqnfp+1,2(X) + xq+1,n detX

[2,n−p+1]
{p}∪[p+2,n].

For p > q, the row set of detX
[2,n−p+1]
{p}∪[p+2,n] lies completely within the last n − q

rows of X, and hence, as explained above, it is a Laurent polynomial in the cluster
we are interested in. For p < q, this determinant is a cluster variable in CΓr,∅

by (7.26) with t = n − 2, and hence it is a Laurent polynomial in any cluster in
CΓr,∅. Consequently, in both cases xqn is a Laurent polynomial in the cluster we are
interested in. Further, this claim can be established inductively for xq,n−1, xq,n−2,

. . . , xq1 by expanding first the minors fq,n−t(X) = detX
[n−t,n]
[q,q+t] , t ∈ [1, n− q], and

then the minors fq,n−t(X) = detX
[n−t,2n−t−q]
[q,n] , t ∈ [n − q + 1, n − 1], by the first

row as fq,n−t(X) = xq,n−tfq+1,n−t+1(X) +P (xq,n−t+1, . . . , xqn, xij : i > q), where
P is a polynomial.

Finally, for s < q, xsn is a cluster variable in CΓr,∅, and hence is a Lau-
rent polynomial in any cluster. For t = 1, . . . , q − s − 1, Laurent polynomial
expressions for xs,n−t can obtained recursively using expansions of the cluster vari-

able fs,n−t(X) = detX
[n−t,n]
[s,s+t] by the first row exactly as above. For t = q − s,

. . . , n − s − 1, such expressions are obtained recursively by expanding the clus-
ter variable f ′

s+1,n−t+1(X) given by (7.25) by the first row as f ′
s+1,n−t+1(X) =

xs,n−tfs+2,n−t+1(X)+P ′(xs,n−t+1, . . . , xsn, xij : i > s), where P ′ is a polynomial.
For t = n − s, . . . , n − 1 we use the same expansion for f ′

s+1,n−t+1(X) given by
(7.26). This completes the proof.

Remark 7.6. In fact, one can show that every minor of X whose row set either
does not contain q or contains both q and q + 1 is a cluster variable in CΓr,∅.

7.4. Auxiliary statements

In this section we collected several technical statements that were used before.

Lemma 7.7. Let N = N1 + N2, k = k1 + k2, and let M, M̃ be two N × N
matrices

(7.27) M =

⎡⎣A1 0
A2 B1

0 B2

⎤⎦ , M̃ =

⎡⎣Ã1 0

Ã2 B̃1

0 B̃2

⎤⎦ ,
with block rows of sizes N1 − k1, k and N2 − k2 and block columns of sizes N1 and
N2. Assume that

(i) A1 = Ã1;
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(ii) there exists A′
2 such that A2 =

(
1k +

∑k−1
i=1 αieik

)
A′

2 and Ã2 is obtained

from A′
2 by replacing the last row with zeros;

(iii) every maximal minor of B =

[
B1

B2

]
that contains the last N2 − k2 rows

coincides with the corresponding minor of B̃ =

[
B̃1

B̃2

]
.

Then conditions

(7.28)
∑
κ∈S

(−1)εκSακ detBS\{κ}∪[k+1,N2+k1] = 0

for any S ⊂ [1, k] such that |S| = k2 + 1 and k ∈ S guarantee that

(7.29) detM[s,N ]
[s,N ] = detM̃[s,N ]

[s,N ]

for all s ∈ [1, N ]; here εκS = #{i ∈ S : i > κ} and αk = 1.

Proof. Denote

ξs = detM[s,N ]
[s,N ], ξ̃s = detM̃[s,N ]

[s,N ].

By condition (iii), we only need to consider s ≤ N1. First, fix s ∈ [N1− k1+1, N1],
which means that Mss is in the block A2. We use the Laplace expansion of ξs and
ξ̃s with respect to the second block column. Define t = s−N1 + k1, then

(7.30)

ξs =
∑
T

(−1)εT det(A2)
Θ
T detBT̄∪[k+1,N2+k1],

ξ̃s =
∑
T

(−1)εT det(Ã2)
Θ
T det B̃T̄∪[k+1,N2+k1],

where the sum is taken over all (N1−s+1)-element subsets T in [t, k], T̄ = [t, k]\T ,
Θ = [s,N1] and εT =

∑
i∈T i+ εs with εs depending only on s.

By condition (ii),

(7.31) det(A2)
Θ
T =

⎧⎨⎩det(A
′
2)

Θ
T if k ∈ T,

det(A′
2)

Θ
T +
∑
κ∈T

(−1)εκTακ det(A′
2)

Θ
(T\{κ})∪{k} if k /∈ T,

and

(7.32) det(Ã2)
Θ
T =

{
0 if k ∈ T,

det(A′
2)

Θ
T if k /∈ T.

Besides, detBT̄∪[k+1,N2+k1] = det B̃T̄∪[k+1,N2+k1] by condition (iii). Therefore, the

difference ξs − ξ̃s can be written as a linear combination of det(A′
2)

Θ
T such that

k ∈ T . Let T = T ′ ∪ {k}; define S = T̄ ′ = T̄ ∪ {k}, then |S| = k2 + 1 and k ∈ S.
The coefficient at det(A′

2)
Θ
T equals, up to a sign,

(7.33)
∑

κ∈[t,k]\T ′

(−1)εκ,T ′∪{k}+κακ detB(S\{κ})∪[k+1,N2+k1]

= (−1)k
∑
κ∈S

(−1)εκSακ detB(S\{κ})∪[k+1,N2+k1],

since εκ,T ′∪{k} + εκS = k−κ. Thus for (7.29) to be valid for s ∈ [N1 − k1 +1, N1]
it is sufficient that (7.28) be satisfied for any S ⊂ [t, k], |S| = k2+1, k ∈ S. In fact,
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since (7.31) and (7.32) remain valid for any set Θ ⊂ [1, N1] of size |Θ| = N1− s+1,
similar considerations show that (7.28) implies

(7.34) detMΘ∪[N1+1,N ]
[s,N ] = detM̃Θ∪[N1+1,N ]

[s,N ]

for any such Θ and s ∈ [N1−k1+1, N1]. This, in turn, results in (7.29) being valid
for all s ∈ [1, N1 − k1]. To see this, one has to use the Laplace expansion of ξs and

ξ̃s with respect to the block row [s,N1 − k1]:

ξs =
∑
Θ

(−1)εΘ̄ det(A1)
Θ̄
[s,N1−k1]

detMΘ∪[N1+1,N ]
[N1−k1+1,N ],

ξ̃s =
∑
Θ

(−1)εΘ̄ det(Ã1)
Θ̄
[s,N1−k1]

detM̃Θ∪[N1+1,N ]
[N1−k1+1,N ],

where Θ̄ = [s,N1] \ Θ, and the sums are taken over all subsets Θ in [s,N1] of size

|Θ| = k1. It remains to note that det(A1)
Θ̄
[s,N1−k1]

= det(Ã1)
Θ̄
[s,N1−k1]

by condition

(i), and detMΘ∪[N1+1,N ]
[N1−k1+1,N ] = detM̃Θ∪[N1+1,N ]

[N1−k1+1,N ] is a particular case of (7.34) for

s = N1 − k1 + 1. �

Lemma 7.8. Let M and M̃ be two N × N matrices given by (7.27) with the
same sizes of block rows and block columns. Assume that

(i) A1 = Ã1;

(ii) A2 =
(
1k +

∑k
i=2 αie1i

)
Ã2;

(iii) B̃1 is obtained from B1 by replacing the first row with zeros;

(iv) every maximal minor of B =

[
B1

B2

]
that contains the last N2 − k2 rows

and does not contain the first row coincides with the corresponding minor

of B̃ =

[
B̃1

B̃2

]
.

Then conditions

(7.35)
∑

κ∈[1,k]\S
(−1)εκSακ detBS∪{κ}∪[k+1,N2+k1] = 0

for any S ⊂ [2, k] such that |S| = k2 − 1 guarantee that

(7.36) detM[s,N ]
[s,N ] = detM̃[s,N ]

[s,N ]

for all s ∈ [1, N ]; here α1 = 1.

Proof. The proof is a straightforward modification of the proof of Lemma 7.7.
For s ∈ [N1−k1+2, N1], Laplace expansions of ξs and ξ̃s with respect to the second

block column are given by (7.30). By condition (ii), det(A2)
Θ
T = det(Ã2)

Θ
T , while

by condition (iv), detBT̄∪[k+1,N2+k1] = det B̃T̄∪[k+1,N2+k1]. Consequently, ξs − ξ̃s
vanishes, and hence (7.36) holds true.

For s ∈ [1, N1 − k1 + 1], the corresponding Laplace expansions are given by

ξs =
∑
T

(−1)εT detA
[s,N1]
[s,N1−k1]∪T detB←−

T ∪[k+1,N2+k1]
,

ξ̃s =
∑
T

(−1)εT det Ã
[s,N1]
[s,N1−k1]∪T det B̃←−

T ∪[k+1,N2+k1]
,
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where T runs over all k1-element subsets in [N1 − k1 + 1, N1 + k2] and
←−
T = {i −

N1 + k1: i ∈ T̄} for T̄ = [N1 − k1 + 1, N1 + k2] \ T .
Next, by conditions (i) and (ii),

detA
[s,N1]
Ξ∪T =

⎧⎨⎩det Ã
[s,N1]
Ξ∪T if t /∈ T,

det Ã
[s,N1]
Ξ∪T +

∑
χ/∈T

(−1)k1−1−εχTακ det Ã
[s,N1]
Ξ∪(T\{t})∪{χ} if t ∈ T,

where Ξ = [s,N1 − k1], t = N1 − k1 + 1 and κ = χ−N1 + k1 ∈ [1, k]. Further, by
conditions (iii) and (iv),

det B̃←−
T ∪[k+1,N2+k1]

=

{
0 if t /∈ T,

detB←−
T ∪[k+1,N2+k1]

if t ∈ T.

Therefore, the difference ξs− ξ̃s can be written as a linear combination of det Ã
[s,N1]
Ξ∪T

such that t /∈ T . Let T̄ = {t} ∪ T̄ ′; define S =
←−
T ′ =

←−
T \ {1}, then S ⊂ [2, k] and

|S| = k2 − 1. Consequently, the coefficient at det Ã
[s,N1]
Ξ∪T equals, up to a sign,∑

κ∈[1,k]\S
(−1)εκSακ detBS∪{κ}∪[k+1,N2+k1],

and the claim follows. �
Lemma 7.9. Let A be a rectangular matrix, I = (i1, . . . ik) and J be disjoint

row sets, L and M be disjoint column sets, and |L| = |J |+ 1, |M | = |I| − 2. Then

(7.37)
k∑

λ=1

(−1)λ detAL
{iλ}∪J detAL∪M

(I\{iλ})∪J = 0.

Proof. The formula can be obtained from standard Plücker relations via a
natural interpretation of minors of A as Plücker coordinates for [1 A]. �
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1476 Gaëtan Borot, Vincent Bouchard, Nitin K. Chidambaram, Thomas Creutzig,
and Dmitry Noshchenko, Higher Airy Structures, W Algebras and Topological
Recursion, 2024

1475 Sam Chow and Niclas Technau, Littlewood and Duffin–Schaeffer-Type Problems in
Diophantine Approximation, 2024

1474 Christian Blohmann and Alan Weinstein, Hamiltonian Lie Algebroids, 2024

1473 Dihua Jiang, Zhilin Luo, and Lei Zhang, Harmonic Analysis and Gamma Functions
on Symplectic Groups, 2024

1472 Thomas Creutzig, Shashank Kanade, and Robert McRae, Tensor Categories for
Vertex Operator Superalgebra Extensions, 2024

1471 Roberto Feola and Filippo Giuliani, Quasi-Periodic Traveling Waves on an Infinitely
Deep Perfect Fluid Under Gravity, 2024

1470 Maxwell Stolarski, Curvature Blow-up in Doubly-warped Product Metrics Evolving by
Ricci Flow, 2024

1469 Steve Boyer, Cameron McA. Gordon, and Xingru Zhang, Dehn Fillings of Knot
Manifolds Containing Essential Twice-Punctured Tori, 2024

1468 Alice Hedenlund and John Rognes, A Multiplicative Tate Spectral Sequence for
Compact Lie Group Actions, 2024
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