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PRESIDENT'S PAGE

Digital twins in the era

of generative Al

he industry is experiencing significant

changes due to artificial intelligence
(AI) and the challenges of the energy
transition. While some view these changes
as threats, recent advances in Al offer
unique opportunities, especially in the
context of “digital twins” for subsurface
monitoring and control. IBM defines a
digital twin as “a virtual representation of
an object or system that spans its lifecycle,
is updated from real-time data, and uses
simulation, machine learning and reasoning
to help decision-making.” In this column,
I will explore these concepts and their
significance in addressing the challenges
of underground monitoring and control,
which are vital for cost-effective risk man-
agement and optimized underground
resource production and storage.
Furthermore, I hope to illustrate how
digital twins serve as a platform to integrate
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the seemingly disparate and siloed fields
of geophysics and reservoir engineering.
Digital twins are commonly used in
manufacturing, healthcare, and environ-
mental monitoring, but their application
in subsurface resource management is still
developing. To achieve sustainability goals
in our industry, we must create digital twins
that can confidently make decisions based
on diverse monitoring data such as time-
lapse well and seismic data. Subsurface
complexities and reservoir heterogeneity
demand a systematic approach to quantify
uncertainty when using digital twins for
production optimization or storage risk
mitigation. This includes improved under-
standing of assurance of containment and
conformance of injected CO,, an important
topic of this issue’s special section on carbon
management. Meeting these challenges
requires digital twins to make statistical
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inferences from multimodal monitoring
data. Instead of treating subsurface CO,
saturation as deterministic, digital twins
should infer probability distributions for
the saturation conditioned on observed
data. Additionally, they should understand
how these distributions evolve as CO,
plumes develop and new monitoring data
become available.

Reservoir monitoring systems strug-
gle to capture uncertainty in a principled
way due to the large problem sizes, the
complexity of the nonlinear relationships
between reservoir properties, multiphase
flow, and the seismic response. However,
it can be argued that the root issue is that
our simulators are ill-suited for statistical
inference. To address this, digital twins
can benefit from recent breakthroughs in
generative Al and simulation-based infer-
ence (SBI). This raises the question of
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Figure 1. Digital twin for geologic carbon storage driven by CO, saturation and pressure at the well and by imaged seismic.
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how digital twins can utilize generative Al. Deep generative
networks, akin to advanced denoisers, can be trained to trans-
form Gaussian noise into realistic samples of a specific distribu-
tion, whether it’s images or CO, plumes. Moreover, this genera-
tive process can be conditioned on various data types, including
geophysical data. In a physics-based context, SBI enables

t=0 t=3

domain experts such as geophysicists and reservoir engineers
to conduct principled statistical inference on field data by
training deep networks on physics-based computer simulations.
These principles of SBI will be demonstrated in a prototype
digital twin for underground-storage monitoring, described
in the following.

t=3

“observed” time-lapse seismic
images

Figure 2. Ground-truth simulations for the C0, saturation and time-lapse seismic differences (hottom row) for a randomly sampled initial condition (plotted on the top left) and reservoir

properties with developing C0, plumes superimposed.
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These pairs train the digital twin’s
neural network to draw 256 new
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Figure 3. Example of inference by the first prototype of a digital twin for underground-storage monitoring. Top row: Ground-truth
(0, saturation, corresponding saturation/pressure at injection well, and migrated seismic time-lapse difference image from
noisy shot data (S/N 8 dB). Bottom rows: estimates for the state, the error between estimate and ground truth, and estimated
uncertainty. These inferences are done on well data alone, seismic data alone, and well plus seismic data.

To enable SBI for dynamic systems, a recursive scheme is
proposed (see Figure 1). In this scheme, digital twins are trained
on simulations representing their state, the CO, saturation in this
case, and observable data (well and/or seismic). Once training is
complete, the system’s state is inferred when time-lapse field data
become available. The recursive process involves drawing samples
for the state from a previous time step and using them as input
for a reservoir simulator to obtain samples for the current state.
These state samples are then “observed” at wells or imaged from
seismic data. During the training phase, the digital twin’s networks
are trained using paired samples of the state and multimodal
observations. After training, during the inference phase, the digital
twin’s networks generate state samples conditioned on new data
collected in the field. This process is repeated for all time steps to
cover the entire lifecycle of a CO, storage project.

To demonstrate the digital twin’s recursive neural training
in a saline aquifer, five synthetic time-lapse surveys are created
for a CO, injection project. These surveys span 2000 days with
an annual injection rate of 1.4 million tons of CO,. Each survey
involves eight shots recorded by 200 receivers. Noisy shot data
(signal-to-noise ratio [S/N] of 8 dB) undergo reverse time
migration, producing time-lapse difference images used as input
for the digital twin (see Figure 2). To prepare the digital twin
for inferences as ground-truth data become available, the recur-
sion begins by drawing 256 random samples for the initial state.
Computer simulations generate synthetic state samples and
observations for the first time step based on the previous state.
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samples for the state, conditioned on
the observed ground-truth data for
the first time step. This process repeats
five times, resulting in inferences from
the first digital twin prototype
included in Figure 3. Conclusions
from this prototype demonstrate its
ability to estimate plume CO, satura-
015 tions, remaining close to ground truth
0.10 due to conditioning with observed
0.05 data. The use of seismic data enhances
plume estimation compared to esti-
mates from well data alone, and
combining both data types yields the
best results, with minimal errors and
reduced state sample uncertainty.

While these results, obtained by
running for a day on an NVIDIA V100
GPU, are preliminary, some important
observations can be made. Most nota-
bly, the digital twin’s inference, based
solely on probabilistic initial conditions
and reservoir properties, produces
estimates close to the actual state when
conditioned on time-lapse data.
Additionally, a comparison between
the recursive training/inference scheme and IBM’s digital twin
definition reveals that this early prototype aligns with the concept
of a “virtual representation (by deep neural networks) of a system
spanning its lifecycle, updated from real-time data, and utilizing
simulation and machine learning.”

What'’s next? Besides extending to 3D and including geo-
chemistry and geomechanics in the dynamics, the current digital
twin for geologic storage monitoring lacks the ability “to reason
and make optimized decisions.” Ongoing research at the Center
for Machine Learning for Seismic Industry Partners Program
(MLA4Seismic) aims to equip the digital twin with reasoning
capabilities and the capacity to make optimized decisions. This
includes causal “what if” reasoning, production optimization such
as maximizing CO, injectivity while avoiding fracture pressure,
and implementing statistically robust methods for detecting
anomalous flow (e.g., leakage).

Our experience with this first digital twin prototype has
shown that it can be a collaborative platform for practitioners
from various fields to train the digital twin’s neural networks.
Generative ATs capability to comprehend natural language and
physics-based simulations offers new possibilities for creating
advanced digital twins to manage complex underground resource
production and storage. It is hoped that this column might
encourage the industry to explore digital twin development for
sustainable subsurface management, fostering interdisciplinary
collaborations similar to those described later in this issue’s
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