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Efficient Inference of Spatially-Varying Gaussian
Markov Random Fields With Applications in

Gene Regulatory Networks
Visweswaran Ravikumar , Tong Xu , Wajd N. Al-Holou , Salar Fattahi , and Arvind Rao

Abstract—In this paper, we study the problem of inferring
spatially-varying Gaussian Markov random fields (SV-GMRF)
where the goal is to learn a network of sparse, context-specific
GMRFs representing network relationships between genes. An im-
portant application of SV-GMRFs is in inference of gene regulatory
networks from spatially-resolved transcriptomics datasets. The
current work on inference of SV-GMRFs are based on the regular-
ized maximum likelihood estimation (MLE) and suffer from over-
whelmingly high computational cost due to their highly nonlinear
nature. To alleviate this challenge, we propose a simple and efficient
optimization problem in lieu of MLE that comes equipped with
strong statistical and computational guarantees. Our proposed
optimization problem is extremely efficient in practice: we can solve
instances of SV-GMRFs with more than 2 million variables in less
than 2 minutes. We apply the developed framework to study how
gene regulatory networks in Glioblastoma are spatially rewired
within tissue, and identify prominent activity of the transcription
factor HES4 and ribosomal proteins as characterizing the gene
expression network in the tumor peri-vascular niche that is known
to harbor treatment resistant stem cells.

Index Terms—Markov random fields, glioblastoma, spatial
transcriptomics.

I. INTRODUCTION

THE advent of high throughput sequencing technologies has
transformed our understanding of biological systems, and

catalyzed the adoption of a systems-level approach to studying
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biological processes. Networks have emerged as the intuitive
framework for reasoning about complex biological systems [1],
[2]. Nodes in the network represent individual components, and
edges represent direct interactions between them. For example,
gene regulatory networks (GRNs) represent the wiring diagram
of the cell’s information processing system, with network edges
identifying regulatory interactions between different genes. It
has become clear that complex diseases like cancer must be
understood at the level of this interactome, rather than the
classical reductionist approach of studying individual genes [3],
[4]. As another example, with billions of neurons and with
(imaging) data comprising hundreds of thousands of voxels,
the human brain represents one of the most complex phys-
iological networks, whose structure remains a long-standing
mystery [5], [6]; see also the survey [7]. The accurate inference
of the brain connectivity network will have a far-reaching im-
pact on understanding different neurological disorders [8], [9].
According to the NIH’s BRAIN Initiative, the development of
“faster, less expensive, and scalable” technologies is the corner-
stone for anatomic reconstruction of neural circuits at realistic
scales [10].

Spatially resolved transcriptomics have emerged as a transfor-
mative technology in the recent past with immense potential to
bolster our understanding of biology [11], [12]. The technology
is fast evolving, and allows transcriptome-scale profiling of gene
expression at near single-cell resolution in tissues [13]. In study-
ing complex processes such as tumor growth, viewing cancer as
a case of evolution within the tissue has provided the ground-
work for building a comprehensive theoretical framework to
understand tumor diversity [14]. Spatial gradients in exposure
to nutrients, oxygen, immune cells and environmental toxicity
enforce trade-offs between proliferation and survival strategies
in populations of tumor cells [15], [16]. Faced with multiple
survival constraints and the need to optimize evolutionary fit-
ness, cancer populations adopt a continuum of transcriptional
states adapted to their local tissue micro-environments [17]. This
results in significant spatial trends in the gene expression profiles
and the underlying regulatory networks of the tumor. Being
able to infer these dynamic regulatory networks would provide
us with a new lens for understanding tumor heterogeneity. It
can help generate hypotheses about context-specific molecular
mechanisms important to survival and growth of the tumor, and
expose previously unknown vulnerabilities that can be exploited
in treatment.
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One popular approach to model these problems is based
on spatially-varying Markov Random Fields (SV-MRFs) [18].
SV-MRFs are associated with a network of undirected Markov
graphs Gk(Vk, Ek), where Vk and Ek are the set of nodes and
edges in the graph at location k. The node set Vk represents the
random variables (e.g. genes) in the model, while the edge setEk

captures the conditional dependency between these variables at
location k. In the special case of Gaussian Markov Random
Fields (GMRFs), the edge set of the Markov graphs can be
fully characterized based on the inverse covariance matrix (also
known as the precision matrix). In particular, if the entry (i, j)
of the precision matrix Θk is zero, then the variables i and
j at location k are independent conditioned on the remaining
variables.

A widely-used method for the inference of SV-MRFs is based
on the so-called regularized maximum-likelihood estimation
(MLE). Intuitively, MLE seeks to find a graphical model based
on which the observed data is most likely to occur. However,
MLE-based methods suffer from major computational chal-
lenges that undermine their applicability in large-scale settings.
For example, in the Gaussian setting, the MLE requires optimiz-
ing over the so-called log-determinant of the inverse covariance
matrix, which are known to be intractable in large scales [19].
This drawback is further compounded in the spatially-varying
regime, where the precision matrix must be estimated at each
spatial location, leading to a dramatic increase in the size of the
problem.

A. Related Work

Recently, many approaches have been proposed for sparse
precision matrix estimation in high dimensions. This line of
work begins by the inference of a single precision matrix,
which can be achieved by �1-regularized MLE, also known as
Graphical Lasso (GL) [20].

Extending beyond single precision matrix inference, a recent
line of research has focused on estimating time-varying MRFs,
where the relation among variables may change over time [21].
A common approach for estimating time-varying MRFs is based
on kernel methods, where the sample covariance matrix at any
given time is a weighted average of the samples over time, and
the weights are collected from a predefined kernel [21], [22]. It
is recently shown that kernel averaging combined with a tailored
�0-norm minimization technique can infer time-varying MRF in
scales that are not possible via MLE-based approaches [19].

Despite the recent progress in the inference of time-varying
MRFs beyond MLE-based methods, the developed techniques
cannot be readily extended to spatially-varying instances. The
main challenge behind such extension is that interactions
among individual MRFs can be drastically more involved in
the spatially-varying setting than its time-varying counterpart.
Due to this difficulty, most existing results on spatially-varying
MRFs are limited to different variants of MLE-based meth-
ods such as Fused Graphical Lasso (FGL), Group Graphical
Lasso (GGL) [23], and co-hub node joint graphical lasso (CN-
JGL) [24] which suffer from expensive computational costs.
FGL penalizes the pairwise difference of the precision matrices
in �1-norm, while GGL regularizes the �2-norm of the (i, j)-th

element across all K precision matrices. Moreover, CNJGL
assumes that there are a few common nodes that serve as
hubs in different networks, and accordingly uses row- column
overlap norm penalty to identify these nodes. Guo et al. [25]
reparameterized each off-diagonal element as the product of a
common factor and difference, then applied separate �1 regular-
ization to these two parts. Saegusa and Shojaie [26] proposed to
regularize the MLE with a Laplacian-type penalty to exploit the
information among different distributions. However, all of the
aforementioned techniques are based on MLE, and consequently
suffer from a notoriously high computational cost.

To alleviate the computational cost of MLE-based techniques,
Lee and Liu [27] proposed to estimate the joint precision matri-
ces based on a constrained �1 minimization for inverse matrix
estimation (CLIME) technique [28]. Unlike GL, CLIME does
not optimize over the complex logdet function and has shown
more favorable theoretical properties than GL. Our method is
built upon the Elementary Estimator introduced by Yang et al.
[29], where the proposed estimator admits a closed-form solu-
tion based on soft-thresholding. This method was later extended
by Fattahi and Gomez [19] to time-varying setting, showing that
it can be solved in near-linear time and memory. Our proposed
estimator is also related to FASJEM estimator [30], which uses
a similar Elementary Estimator as ours. We will provide an
extensive comparison between our technique, FASJEM, and
FGL in Section VI.

B. Our Contributions

To address the aforementioned challenges, we propose a
simple estimation method for the inference of spatially-varying
GMRFs. Unlike MLE-based methods, our proposed approach
is based on a class of simple and computationally efficient
optimization methods that come equipped with strong statis-
tical guarantees and are implementable in realistic scales. Our
contributions are summarized as follows:

Computational Guarantee: Our proposed method reduces to a
series of decomposable convex quadratic optimization problems
that can be solved efficiently using any off-the-shelf solvers. In
addition, the decomposable nature of the proposed optimization
problem makes it amenable to parallel and distributed imple-
mentation.

Statistical Guarantees: In addition to the desirable com-
putational guarantees, we show the statistical consistency of
our proposed method—both theoretically and in practice. In
particular, we characterize the non-asymptotic consistency of
our proposed method, proving that it accurately recovers the un-
derlying graphical model, even in the high-dimensional settings
where number of available samples is significantly smaller than
the number of unknown parameters. Moreover, it can efficiently
reveal the correct sparsity information in the parameters and
their differences.

Application in Inferring Gene Regulatory Networks:
Glioblastoma (GB) is an incurable malignancy of the brain, with
a median survival time of only 12-18 months despite therapy
with surgical resection, chemotherapy and radiation [31]. De-
spite aggressive treatment, these tumors inevitably recur and this
recurrence is likely due to significant heterogeneity, which has
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been highlighted by single cell sequencing studies [32]. Het-
erogenous populations of treatment-resistant tumor cells with
stem cell-like properties have been identified in GB that have
been shown to drive treatment recurrence. Furthermore, these
resistant cells often reside within unique microenvironmental
niches [33], [34]. The consequence of spatial context in regu-
lating the tumor cell state, stemness properties, and treatment
resistance in these tumors is increasingly appreciated [35], [36].
We therefore use our developed statistical framework to under-
stand how the gene networks of GB are rewired as a function of
their spatial environment, and identify context-specific upstream
regulators of the heterogenous tumor cell states.

Organization: The rest of the paper is organized as follows.
In Section II, we formulate the inference of spatially-varying
GMRFs and discuss the shortcomings of the existing techniques.
Motivated by these shortcomings, we present a new formulation
of the problem in Section III. In Section IV, we delineate the
statistical guarantees of our proposed formulation, and how
to solve it efficiently. Finally, we showcase the performance
of our proposed method on synthetically generated as well as
the Glioblastoma spatial transcriptomics dataset in Section VI.
The proofs of our main theorems are provided in the appendix,
available online.

II. PROBLEM FORMULATION

In this section, we formally define the problem of inferring
SV-MRFs. To this goal, we first present some notations that will
be used throughout our paper.

Notations: The i-th element of a vector v or vt is denoted as
vi or vt;i. For a matrix M , the notations Mi: and M:j denote
the i-th row and j-th column, respectively. Moreover, for an
index set S and a matrix M , the notations MS: and M:S refer
to a submatrix of M with rows and columns indexed by S,
respectively. For a matrix M or a vector v, the notations ‖M‖�q
and ‖v‖q correspond to the element-wise �q-norm of M and
�q-norm of v, respectively. Moreover, ‖M‖q and ‖M‖max are
the induced q-norm and the element with the largest absolute
value of the matrix M , respectively. Moreover, ‖M‖0 denotes
the total number of nonzero elements in M . We use M � 0 to
show that M is positive definite. For a vector v and matrix M ,
the notations supp(v) and supp(M) are defined as the index sets
of their nonzero elements. Given two sequences f(n) and g(n)
indexed by n, the notation f(n) � g(n) implies f(n) ≤ Cg(n)
for some constant C < ∞. Moreover, the notation f(n) � g(n)
implies that f(n) � g(n) and g(n) � f(n). The sign function
sign(·) is defined as sign(x) = x/|x| if x �= 0 and sign(0) = 0.
Accordingly, when x is a vector, the function sign(x) is defined

as
[
sign(x1) sign(x2) . . . sign(xn)

]�
.

Consider data samples from K different Gaussian distribu-
tions with d× d covariance matrices Σ�

k ∈ S
d
+, k = 1, . . .,K

and sparse precision matrices Θ�
k = Σ�

k
−1, k = 1, . . .,K. Let

{xk
i }nk

i=1 be nk independent samples, each with dimension d,
drawn from the k-th distribution, i.e., xk

i ∼ N (0,Σ�
k), for every

i = 1, . . . , nk and k = 1, . . . ,K. The zero-mean assumption on
the distributions is without loss of generality and can be achieved

by normalizing the data. Our goal is to estimate the precision
matrices {Θ�

k}Kk=1 given the samples. The most commonly-used
method to perform this task is via maximum likelihood estima-
tion (MLE) with an �1 regularizer (also known as Graphical
Lasso [20]):

Θ̂k = arg min
Θk�0

Tr(ΘkΣ̂k)− log det(Θk) + λ‖Θk‖�1

where Tr(·) is the trace operator and Σ̂k := 1
nk

∑nk

i=1 x
k
i x

k�
i

is the sample covariance matrix for distribution k. A major
drawback of the above estimation method is that it ignores
any common structure among different distributions. To address
this issue, a common approach is to consider a joint estimation
method (also known as joint Graphical Lasso [23]):

{Θ̂k}=arg min
Θk�0

K∑
k=1

(
Tr(ΘkΣ̂k)−log det(Θk)+λ‖Θk‖�1

)
+ P

({Θk}Kk=1

)
(1)

where the term P ({Θk}Kk=1) is a penalty function that en-
courages similarity across different precision matrices. A ma-
jor difficulty in solving joint Graphical Lasso is its compu-
tational complexity: in order to obtain an ε-accurate solu-
tion, typical numerical solvers for (1) have complexity rang-
ing from O(Kd6 log(1/ε)) (via general interior-point meth-
ods) [24] to O(Kd3/ε) (via tailored first-order methods, such
as ADMM) [23], [37], [38]. Solvers with such computational
complexity fall short of any practical use in the large-scale set-
tings. Indeed, the prohibitive worst-case complexity of methods
based on Graphical Lasso is also exemplified in their practical
performance; see [19], [39], [40], [41], [42], [43] for different
examples.

III. PROPOSED METHOD

To address the aforementioned issues, we propose the fol-
lowing surrogate optimization problem for estimating sparse
precision matrices:

{Θ̂k}Kk=1 = arg min
{Θk}Kk=1

K∑
k=1

‖Θk − F̃ ∗(Σ̂k)‖2�2︸ ︷︷ ︸
backward mapping deviation

+ μ

K∑
k=1

‖Θk‖�1︸ ︷︷ ︸
absolute regularization

+ γ
∑
l>k

Wkl ‖Θk −Θl‖q�q︸ ︷︷ ︸
spatial regularization

(Elem − q)

In the above optimization, the backward mapping deviation
captures the distance between the estimated precision matrix and
the so-called approximate backward mapping which will be de-
scribed in Section III-A. Moreover, the absolute regularization
promotes sparsity in the estimated parameters, whereas spatial
regularization encourages common spatial similarities among
different parameters. For any given pair (k, l), the weight W−1

kl

can be interpreted as the “distance” between the k-th and l-th
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MRFs. Accordingly, a large value for Wkl encourages similarity
between Θk and Θl. Two common choices of spatial similarities
are sparsity and smoothness:
� Smoothly-changing GMRF: In smoothly-changing GM-

RFs, the adjacent precision matrices vary gradually. In
this setting, q = 2 can be used as the spatial regularizer
in Elem − q to promote the smoothness in the parameter
differences.

� Sparsely-changing GMRF: In sparsely-changing GMRFs,
the adjacent precision matrices differ only in a few entries.
In this setting, q = 1 is a natural choice for the spatial
regularizer in Elem − q since it promotes sparsity in the
parameter differences.

A. Approximate Backward Mapping

Our proposed optimization problem is contingent upon the
availability of an approximate backward mapping. For a GMRF,
the backward mapping is defined as the inverse of the true
covariance matrix, i.e., F ∗(Σ�

k) = Σ�
k
−1 = Θ�

k [44]. Based on
this definition, a natural surrogate for the backward mapping is
F ∗(Σ̂k) = Σ̂−1

k , where Σ̂k is the sample covariance matrix for
distribution k. However, in the high-dimensional settings, the
number of available samples is significantly smaller than the
dimension, and as a result the sample covariance matrix Σ̂k is
singular and non-invertible. To alleviate this issue, Yang et al.
[29] introduce an approximation of the backward mapping based
on soft-thresholding. Consider the operator STν(M) : Rd×d →
R

d×d, where STν(M)ij = Mij − sign(Mij)min{|Mij |, ν} if
i �= j, and STν(M)ij = Mij if i = j. Given this operator,
the approximate backward mapping is defined as F̃ ∗(Σ̂k) =

STν(Σ̂k)
−1, for every k = 1, . . . ,K. An important property of

this approximate backward mapping is that it is well-defined
even in the high-dimensional settingnk 
 dwith an appropriate
choice of the threshold ν [29]. Given this approximate backward
mapping, we will show that the estimated precision matrices
from Elem − q are close to their true counterparts with an
appropriate choice of parameters.

B. Decomposability

An important property of Elem − q is that it naturally decom-
poses over different coordinates of the precision matrices: for
every (i, j) with 1 ≤ i ≤ j ≤ d, the ij-th element of {Θk}Kk=1

can be obtained by solving the following subproblem:

{Θ̂k;ij}Kk=1 = arg min
{Θk;ij}Kk=1

K∑
k=1

(
Θk;ij − [F̃ ∗(Σ̂k)]ij

)2

+μ
K∑

k=1

|Θk;ij |+ γ
∑
l>k

Wkl |Θk;ij −Θl;ij |q ,

(Elem − (i, j, q))

Recall that the original problem Elem − q has Kd(d+ 1)/2
variables. The above decomposition implies that Elem − q can
be decomposed into d(d+ 1)/2 smaller subproblems, each with
only K variables that can be solved independently in parallel.

This is in stark contrast with the joint Graphical Lasso, which
requires a dense coupling among the elements of the precision
matrices through the non-decomposable logdet function. Later,
we will show how each subproblem can be solved efficiently for
different choices of q.

IV. STATISTICAL GUARANTEES

In this section, we elucidate the statistical properties
of Elem − q for SV-GMRFs with two widely-used spatial struc-
tures, namely smoothly-changing and sparsely-changing GM-
RFs. To this goal, we first need to make two important assump-
tions on the true precision matrices.

Assumption 1 (Bounded norm): There exist constant numbers
κ1 < ∞, κ2 > 0, and κ3 < ∞ such that

‖Θ�
k‖∞ ≤ κ1, inf

w:‖w‖∞=1
‖Σ�

kw‖∞ ≥ κ2, ‖Σ�
k‖max ≤ κ3

for every k = 1, . . . ,K.
Assumption 1 is fairly mild and implies that the true covari-

ance matrices and their inverses have bounded norms.
Assumption 2 (Weak sparsity): Each covariance matrix Σ�

k

satisfies maxi
∑d

j=1 |[Σ�
k]ij |p ≤ s(p), for some function s :

[0, 1) → R and scalar 0 ≤ p < 1.
Informally, we say “the true covariance matrices are weakly

sparse” if {Σ�
t }Tt=0 are s(p)-weakly sparse with s(p) 
 d for

some 0 ≤ p < 1. The notion of weak sparsity extends the clas-
sical notion of sparsity to dense matrices. Indeed, except for a
few special cases, a sparse matrix does not have a sparse inverse.
Consequently, a sparse precision matrix may not lead to a sparse
covariance matrix. However, a large class of sparse precision
matrices have weakly sparse inverses. For instance, if Θ�

k has a
banded structure with small bandwidth, then it is known that the
elements of Σ�

k = Θ�
k
−1 enjoy exponential decay away from the

main diagonal elements [45], [46]. Under such circumstances,
simple calculation implies that s(p) ≤ C

1−ρp for some constants
C > 0 and ρ < 1. More generally, a similar statement holds for a
class of inverse covariance matrices whose support graphs have
large average path length [47], [48]; a large class of inverse
covariance matrices with row- and column-sparse structures
satisfy this condition. As will be shown later, the weak sparsity
parameter s(p) directly controls the sample complexity of our
proposed estimator.

Next, we introduce some notations that simplify our sub-
sequent analysis. Let π : {1, 2, . . . ,K}2 → {1, 2, . . . ,K(K +
1)/2} be a fixed, predefined labeling function that assigns a
label to each pair (k, l) with l ≥ k. Let G be a diagonal ma-
trix whose k-th diagonal entry is defined as W

1/q
π−1(k). More-

over, let A ∈ R
K(K−1)/2×K be the adjacency matrix defined

as A(π(k, l), k) = 1 and A(π(k, l), l) = −1, for every l > k.
Finally, define Θij = [Θ1;ij Θ2;ij . . . ΘK;ij ]

� and F̃ ∗
ij =

[[F̃ ∗(Σ̂1)]ij [F̃ ∗(Σ̂2)]ij . . . [F̃ ∗(Σ̂K)]ij ], for every j ≥ i. It
is easy to see that ‖GAΘij‖qq =

∑
l>k Wkl|Θk;ij −Θl;ij |q for

every j ≥ i, and accordingly, Elem − (i, j, q) can be written
concisely as

Θ̂ij=argmin
Θij

∥∥∥Θij−F̃ ∗
ij

∥∥∥2
2
+μ‖Θij‖1 + γ ‖GAΘij‖qq . (2)
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Next, we provide sharp statistical guarantees for our proposed
method when the precision matrices {Θ�

k}Kk=1 change smoothly
or sparsely across different distributions.

A. Smoothly-Changing GMRF

We start with our main assumption on the smoothness of the
precision matrices.

Assumption 3 (Smoothly-changing SV-GMRFs): There exists
a constant D ≥ 0 such that

∑
l≥k(Θ

�
k;ij −Θ�

l;ij)
2 ≤ D2 for

every (i, j).
Informally, we say “SV-GMRF is smoothly-changing” if

Assumption 3 is satisfied with a small D. For a smoothly-
changing SV-GMRF, it is natural to choose q = 2 in Elem − q
to promote smoothness in the spatial difference of the precision
matrices. Our next theorem characterizes the sample complexity
of Elem − q with q = 2 for smoothly-changing SV-GMRF. Let
Θmin = min{|Θ�

k;ij | : Θ�
k;ij �= 0}.

Theorem 1 (Smoothly-changing SV-GMRF): Consider a
smoothly-changing SV-GMRF with parameter D, and weakly-
sparse covariance matrices with parameter s(p) for some 0 ≤
p < 1. Suppose that the number of samples satisfies

nk � L
log d

Θ2
min

,

where L = max

{(
s(p)

κ2

) 2
1−p

κ2
3,

(
κ1κ3

κ2
+D

)2
}
.

Define nmin = mink{nk}. Moreover, suppose that F̃ ∗(Σ̂k) =

[STνk
(Σ̂k)]

−1 with νk � κ3

√
log d/nk. Then, the solution ob-

tained from Elem − q with q = 2 and parameters

γ � 1

K ‖W‖max

√
log d

nmin
, μ � D

√
log d

nmin
,

satisfies the following statements with probability of 1−
Kd−10:
� Sparsistency: The solution is unique and satisfies
supp(Θ̂k) = supp(Θ�

k) for every k.
� Estimation error: The solution satisfies

‖Θ̂k −Θ�
k‖max �

(
κ1κ3

κ2
+D

)√
log d

nmin
, for every k.

For smoothly-changing SV-GMRF, the above theorem pro-
vides a non-asymptotic guarantee on the estimation error and
sparsistency of the estimated precision matrices via Elem − q
with q = 2, proving that the required number of samples must
scale only logarithmically with the dimension d. Moreover, both
the estimation error and the required number of samples decrease
with a smaller smoothness parameter D; this is expected since
a small value of D implies that the adjacent distributions share
more information, and hence, the SV-GMRF is easier to esti-
mate.

B. Sparsely-Changing GMRF

In sparsely-changing SV-GMRFs, the precision matrices are
assumed to change sparsely across different distributions; this
is formalized in our next assumption.

Assumption 4 (Sparsely-changing SV-GMRFs): There exists
a constant D0 ≥ 0 such that

∑
l≥k ‖(Θ�

k;ij −Θ�
l;ij)‖0 ≤ D0 for

every (i, j).
Similar to the smoothly-changing SV-GMRFs, we say “SV-

GMRFs is sparsely-changing” if it satisfies Assumption 4 with
a small D0. For a sparsely-changing SV-GMRFs, it is natural
to choose q = 1 in Elem − q to promote sparsity in the spatial
difference of the precision matrices. To analyze the statistical
property of this problem, we first consider (2) with q = 1 and
rewrite it as:

min ‖F̃ ∗
ij−Θij‖22+μ‖BΘij‖1, where B=

[
γ
μGA

I

]
. (3)

The above reformulation is a special case of the generalized
Lasso problem introduced by Lee et al. [49]. To show the
model selection consistency of the above formulation, we next
introduce the notion of irrepresentability.

For any fixed (i, j), let SB ⊂ {1, 2, . . .,K(K + 1)/2}
be the support of BΘ�

ij , i.e., [BΘ�
ij ]k �= 0 for every k ∈

SB . Moreover, let Sc
B = {1, 2, . . .,K(K + 1)/2}\SB . Evi-

dently, we have |SB | ≤ D0 + S0, where D0 is introduced in
Assumption 4 and S0 is defined as the maximum number of
nonzero elements in Θ�

ij , i.e., S0 = maxi,j{‖Θ�
ij‖0}.

Assumption 5 (Irrepresentability condition (IC), Lee et al.
[49]). We have∥∥∥BSc

B :B
†
SB : sign

(
(BΘ�

ij)SB :

)∥∥∥
∞

≤ 1− α (4)

for some 0 < α ≤ 1, where B†
SB : is the Moore-Penrose pseudo-

inverse of a matrix BSB :.
The irrepresentability condition (IC) entails that the rows of

B corresponding to the zero elements of BΘ�
ij must be nearly

orthogonal to the other rows. Despite the seemingly complicated
nature of IC, classical results on Lasso have shown that it is a
necessary condition for the exact sparsity recovery, and hence,
cannot be relaxed [50], [51]. Later, we show that this condition
is satisfied for our problem under a mild condition on the weight
matrix W and parameters μ and γ.

Another quantity that plays a central role in our derived
bounds is the so-called compatibility constant defined as

κIC :=
∥∥∥BSc

B :B
†
SB :

∥∥∥
∞
+ 1.

The compatibility constant κIC is closely related to IC. In par-
ticular, if ‖BSc

B :B
†
SB :‖∞ ≤ 1− α (which is a slightly stronger

version of IC), then κIC ≤ 2− α. Similar to IC, we will
later show that κIC remains bounded under a mild condi-
tion on the weight matrix W . Finally, we define ΔΘmin =
mink,i,j{|Θ�

k;ij −Θ�
l;ij | : Θ�

k;ij −Θ�
l;ij �= 0}.

Theorem 2 (Sparsely-changing SV-GMRFs): Consider a
sparsely-changing SV-GMRFs with parameter D0, and weakly-
sparse covariance matrices with parameter s(p) for some 0 ≤
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p < 1. Suppose that the number of samples satisfies

nmin � L
log d

min{Θ2
min,ΔΘ2

min}
,

where L=

{(
s(p)

κ2

) 2
1−p

κ2
3,

(
κICκ1κ3

κ2α

)2

(‖W‖maxD0+S0)

}
.

Define nmin=mink{nk}. Suppose that F̃ ∗(Σ̂k) = [STνk

(Σ̂k)]
−1 with νk � κ3

√
log d/nk. Moreover, suppose that the

weight matrix W and parameters μ and γ are chosen such
that IC (Assumption 5) is satisfied. Then, the solution obtained
from Elem − q with q = 1 and parameter

μ � κICκ1κ3

κ2α

√
log d

nmin
,

satisfies the following statements with probability 1−Kd−10:
� Sparsistency: The solution is unique and satisfies
supp(Θ̂k) = supp(Θ�

k) for everyk and supp(Θ̂k − Θ̂l) =
supp(Θ�

k −Θ�
l ) for every k > l.

� Estimation error: For every (i, j), the solution satisfies∥∥∥Θ̂ij−Θ�
ij

∥∥∥
2
�
(√

‖W‖maxD0+
√

S0

)
κICκ1κ3

κ2α

√
log d

nmin
.

The above theorem characterizes the sample complexity of
inferring sparsely-changing SV-GMRFs, showing that the spar-
sity pattern of the precision matrices and their differences can
be recovered exactly, given that the number of samples scale
logarithmically with the dimension and the problem satisfies IC.
Evidently, our result crucially relies on IC and κIC being small.
This leads to a follow-up question: how restrictive are these
conditions in practice? Our next proposition shows that both
conditions hold if γ and μ are selected such that μ ≤ γ ≤ 2μ
and Wkl is the same for every k > l.

Proposition 1: Suppose that 0 < μ ≤ γ ≤ 2μ and Wkl is the
same for every k > l. Then, 1 ≤ κIC ≤ 5 and IC holds with
α = μ/γ.

Proposition 1 can be easily extended to general choices of
W . In particular, suppose that W = τ11� + E for some τ > 0,
where 1 is the vector of ones. Then, Proposition 1 combined
with a simple matrix perturbation bound reveals that

α ≥ 1/2−O(‖E‖max), and 1 ≤ κIC ≤ 5 +O(‖E‖max).

In other words, IC holds and κIC remains bounded, provided
that ‖E‖max = O(1), that is, the elements of the weight matrix
W do not vary too much. Later in our numerical experiments,
we will show that such choices of W provide the best statistical
results on both synthetically generated as well as gene expression
datasets.

V. PARAMETER TUNING AND IMPLEMENTATION

In this section, we explain different implementation aspects
of our proposed method. First, we focus on parameter tuning.

Parameter Tuning: To obtain a solution for Elem − q, we
first need to fine-tune the parameters μ, γ, νk,W based on the
available data samples. Recall that, for every pair (k, l), the
value of W−1

kl can be interpreted as the ”distance” between

precision matrices for distributions k and l. Intuitively, Θ�
k and

Θ�
l are close if their corresponding covariance matrices Σ�

k

and Σ�
l are close. For synthetically generated data, we have

observed that the distance between any pair of sample covariance
matrices Dkl = ‖Σ̂k − Σ̂l‖�2 can be directly used to provide
reasonable values for the weight matrix W . In particular, we
have observed throughout our experiments that the choice of
Wkl = 1/(1 +Dkl) for every k �= l leads to a desirable per-
formance for our estimator. Indeed, this choice of W remains
well-conditioned in all of our experiments, which is aligned with
our discussion after Proposition 1. It is worth noting that in the
high-dimensional setting, Dkl may not be a reliable estimate
of the distance between the true covariance matrices Σ�

k and
Σ�

l . Nonetheless, our numerical results reveal that the proposed
estimation framework is robust against possible inaccuracies in
Dkl. Finally, we note that our choice of W for the GB dataset is
different, which is explained in detail in Section VI-B.

Next, we explain our approach for fine-tuning the parameters
μ, γ, and νk. Recall that the parameter μ controls the sparsity
of the estimated precision matrices, whereas γ penalizes their
differences. Moreover, νk is the threshold used in the proposed
approximate backward mapping. In Theorems 1 and 2, we
provide an explicit value for these parameters that depend on
the parameters of the true solution, which are not known a
priori. Without any prior knowledge on the true solution, these
parameters can be selected by minimizing the extended Bayesian
Information Criterion (BIC) [52]:

(μ̂, γ̂, ν̂) = arg min
μ,γ,ν

BIC(μ, γ, ν), where

BIC(μ,γ,ν) :=
K∑

k=1

nk[Tr(Σ̂kΘ̂k(μ,γ,ν))−log det Θ̂k(μ,γ,ν)]

+ log(nk)df(k) + 4df(k) log d, (5)

In the above definition, Θ̂k(μ, γ, ν) is the optimal solution
of (Elem − q) with parameters (μ, γ, ν). Moreover, df(k) is
defined as the number of nonzero elements in Θ̂k(μ, γ, ν).
Theorems 2 and 1 suggest that γ = C1

√
log d/nmin, μ =

C2

√
log d/nmin, and νk = C3

√
log d/nk, where C1, C2, and

C3 are constants that depend on the true solution. To pick the
parameters μ, γ, and νk, we perform a grid search over the
constants (C1, C2, C3), solve (Elem − q) for each choice, and
pick those that minimize BIC(μ, γ, ν). An important benefit of
our method compared to other MLE-based approaches is the
efficient solvability of (Elem − q) for each choice of parameters,
which in turn makes the proposed grid search feasible in practice.
The details of our algorithm are presented next.

Algorithm: Next, we explain a general algorithm for solv-
ing Elem − q. As mentioned before, Elem − q decomposes
over different coordinates (i, j), where each subproblem can be
written as Elem − (i, j, q). This decomposition leads to a paral-
lelizable algorithm, where each thread solves Elem − (i, j, q),
for a subset of the coordinates (i, j). This approach is outlined
in Algorithm 1.

Next, we analyze the computational cost of each step of our
proposed algorithm. Given nk number of samples, the sample
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Algorithm 1: General Algorithm for Solving Elem − q.

covariance matrix Σ̂k can be computed in O(nkd
2) time and

memory (Line 3). Moreover, given each sample covariance ma-
trix, the approximate backward mapping can be obtained by an
element-wise soft-thresholding followed by a matrix inversion,
which can be done in O(d3) time and memory (Line 4). Finally,
for each (i, j) and the choices of q = 1, 2, the subproblem
Elem − (i, j, q) can be reformulated as a linearly constrained
convex quadratic problem. Suppose that W has nnz number
of nonzero elements. Then, each subproblem can be solved
in O(nnz3) [53]. Moreover, assuming that the algorithm is
parallelized overM machines, the total complexity of solving all
subproblems is O((d2/M)nnz3). In the next section, we show
that our proposed algorithm is extremely efficient in practice.

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed method on synthetically generated dataset, as well as the
Glioblastoma spatial transcriptomics dataset. All experiments
are implemented using MATLAB 2021b, and performed with a
3.2 GHz 8-Core AMD Ryzen 7 5800H CPU with 16 GB of RAM.
We use the function quadprog in MATLAB to solve each
subproblem. To compare our algorithm with FGL and FASJEM,
we used the R packages JGL and fasjem.

A. Synthetically Generated Dataset

We use synthetically generated dataset to compare the statis-
tical performance of our proposed method with two other esti-
mators: the fused graphical lasso (FGL) [23] and FASJEM [30].
FGL is an MLE-based approach augmented by a regularizer to
promote spatial similarity among different distributions. On the
other hand, FASJEM uses the same Elementary Estimator [29]
framework as ours while having different regularization term.
By comparing the estimated parameters with their true counter-
parts, we will show that our method outperforms both FGL and
FASJEM in recovering the true precision matrices.

Data Generation: Our data generation procedure is motivated
by ideas proposed by Peng et al. [54] and Lyu et al. [55] to
imitate gene expression profiles from a synthetically-generated
co-expression network. Our goal is to generate the data syn-
thetically from a known distribution, and then evaluate the
performance of the estimated parameters by comparing them
to the ground truth.

Fig. 1. The child cluster is obtained from the parent cluster by regenerating
module 5 and perturbing the edge weights of module 10.

We simulate the true precision matrices for K distinct clus-
ters (populations) with varying level of similarity. Within each
cluster, we assume that the graph representing the true precision
matrix has a disjoint modular structure, with power law degree
distribution for nodes within each module. Specifically, we split
d genes into M modules, with d/M genes per module gener-
ated based on Barabasi-Albert model [56]. Within each cluster,
the modules are simulated independently and concatenated to
produce a block-diagonal matrix, which is treated as the true
precision matrix for the corresponding cluster. In appendix 13.1,
available online, we provide more simulations on instances with
different number of genes in each module.

In order to simulate population-specific precision matrices,
we first generate a random spanning tree over clusters. Starting
with the root population, we generate M modules, and in each
module, we randomly generate a graph with d/M vertices
according to the Barabasi-Albert model. Based on the adjacency
matrix of this graph, we select the edge weights uniformly from
[−1,−0.4] ∪ [0.4, 1]. To ensure the positive semi-definiteness
of the constructed precision matrix, we use 1.1 times the sum
of the absolute values of all off-diagonal elements in each
row as the value of the diagonal elements in that row. The
simulated modules are used to generate the population-specific
block-diagonal precision matrix. We then traverse the spanning
tree from the root cluster and, at every new cluster, construct the
precision matrix by perturbing its parent cluster. We consider
two types of perturbations: (i) edge weight perturbation; and
(ii) edge reconnection. To perform Type (i) perturbation, we
sample a subset of the M modules at the parent cluster, and
add a uniform perturbation from the interval [−0.04, 0.04] to
the non-zero edges. For Type (ii) perturbation, we replace one
of the M modules with a newly simulated one following a
power-law degree distribution. Thus, at every cluster, the pre-
cision matrix is slightly perturbed relative to its parent, and the
precision matrix differences accumulate, which means that the
number of different edges of two precision matrices increases
with their distance. Fig. 1 illustrates the precision matrices
for the two adjacent clusters. Having simulated the precision
matrices, at every cluster k, we next collect nk samples from a
zero-mean Gaussian distribution with the constructed precision
matrix.
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Fig. 2. Precision, Recall, and F1-score for the estimated precision matrices for different methods with varying sample size. We assume that nk = N for
every k = 1, . . . ,K. Elem-1 and Elem-2 perform similarly, and they both outperform FGL and FASJEM. The higher value of Recall for FASJEM is due to the
underestimation of the regularization parameters that promote sparsity, which in turn leads to a large value of TP.

Fig. 3. Precision, Recall, F1-score for the estimated precision matrices, as well as the runtime of our proposed method with varying dimension. Here, Kp is total
number of parameters to be estimated by our method. Elem-1 and Elem-2 outperform FASJEM in terms of Precision and F1-score, while FASJEM outperforming
Elem-1 and Elem-2 in terms of Recall. Similar to the previous experiment, the higher value of Recall for FASJEM is due to the underestimation of the regularization
parameters which lead to overly dense precision matrices. Moreover, both Elem-1 and Elem-2 are drastically faster than FASJEM.

Experiment 1. Varying number of samples: In our first exper-
iment, we fix K = 5, d = 250, and M = 5, and compare the
performance of Elem − q with FGL and FASJEM with varying
number of samples nk. We compare the estimation accuracy in
terms of Recall = TP/(TP + FN), Precision = TP/(TP + FP),
and F1-score = 2(Recall × Precision)/(Recall + Precision),
where TP, FN, and FP correspond to the number of correctly
identified nonzero elements (true positive), incorrectly identified
zero elements (false negative), and incorrectly identified nonzero
elements (false positive), respectively. To fine-tune the weight
matrix W and the parameters (μ, γ, νk), we use the distance
measure and BIC approach delineated in Section V. Moreover,
we use the same BIC approach to fine-tune the parameters of
FGL and FASJEM.

Fig. 2 illustrates the performance of different estimation
methods. It can be seen that Elem − q with q = 1, 2 (denoted
as Elem-1 and Elem-1) perform almost the same, and they both
outperform FASJEM and FGL in terms of the Precision and
F1 scores. On the other hand, the Recall score for FASJEM is
artificially high due to the underestimation of the regularization
parameters via BIC, which in turn leads to overly dense estima-
tion of the precision matrices.

Experiment 2. Varying dimension: Next, we analyze the
performance of our proposed method for different dimen-
sions d. In particular, we consider a high-dimensional regime

where d is significantly larger than the number of avail-
able samples nk. We fix K = 5 and set nk = d/2. The pa-
rameters μ, γ, νk and the weight matrix W are tuned as
before.

Fig. 3 depicts the Precision, Recall, and F1-score, as well as
the runtime of our proposed method and FASJEM with respect
to Kp = Kd(d+ 1)/2 which ranges from 105 to 2.5× 106.
For these instances, FGL did not converge within 10 minutes
even for the smallest instance with d = 200. Therefore, it is
omitted from our subsequent experiments. It can be seen that
the runtime of our proposed method scales almost linearly with
p, with the largest instance solved in less than 2 minutes. On the
contrary, FASJEM has an undesirable dependency on p, with
a runtime exceeding 10 minutes for medium-scale instances of
the problem. The linear time of our algorithm with respect to p
is due to its decomposable nature of over different coordinates
of the precision matrices.

Experiment 3. Varying number of clusters: Finally, we eval-
uate the performance of our method with varying number of
clusters K. We fix d = 500, M = 10 and nk = 250, and use the
same tuned parameters in the previous experiment. Fig. 4 shows
the Precision, Recall, and F1 score for our proposed method and
FASJEM, as well as their runtime with respect to K. Similar to
the previous experiments, both Elem-1 and Elem-2 outperform
FASJEM in terms of the estimation accuracy. Moreover, it can
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Fig. 4. Precision, Recall, F1-score for the estimated precision matrices, as well as the runtime of our proposed method with varying number of clusters. Elem-1
and Elem-2 outperform FASJEM in terms of Precision and F1-score, while FASJEM outperforming Elem-1 and Elem-2 in terms Recall. Similar to the previous
experiments, the higher value of Recall for FASJEM is due to the underestimation of the regularization parameters which lead to overly dense precision matrices.
Moreover, both Elem-1 and Elem-2 are drastically faster than FASJEM.

Fig. 5. Adjacent tumor sections from a primary GB patient sample are sepa-
rated into five distinct clusters informed by their expression similarity and spatial
proximity.

be seen that in practice, the runtime of Elem-1 and Elem-2 scale
almost linearly with K.

B. Application to Glioblastoma Spatial Transcriptomics

1) Visium Data Collection and Clustering: We assayed spa-
tial gene expression profiles using the Visium platform from
a primary patient tumor area showing high perfusion signal
in diffusion MRI. The Visium slides profile gene expression
from a 6.5× 6.5 mm section of tumor tissue. We sampled two
adjacent tissue sections from this region, yielding 6158 spots
with expression data.

We integrate data from adjacent tissue slices using the re-
ciprocal PCA method in Seurat [57]. We use the dimension
reduction algorithm PHATE [58] to obtain a 3D embedding of
the integrated counts data that captures the expression similarity
of spots. To cluster the data in a spatially informed manner, we
compute two separate distance matrices between spots, from
their PHATE embedding and tissue coordinates. We perform
upper quantile normalization of the distance matrices based on
their 75th quantile to ensure that both expression and spatial
distances are in the same scale, and use their sum to define
pairwise distances between spots. This dissimilarity matrix is
used as input for PAM clustering. Optimal number of clusters
(k = 5) is identified using the Calinski-Harabasz criterion [59],
with the resulting clusters shown in Fig. 5.

To understand biological characteristics of these clusters, and
to aid in downstream interpretation of inferred networks, we
performed spot deconvolution using the RCTD algorithm [60].

Fig. 6. Output of RCTD spot deconvolution algorithm, visualized as fraction
of spots composed of major contributing cell types. Cluster 4 is enriched
for Vascular and immune cells, and cluster 5 has some nascent astrocytic
populations.

Since spots in the Visium microarray have a resolution of about
60 μm, they could be composed of multiple cell types. We
thus used annotated single cell RNASeq dataset from Darmanis
et al. [61] to identify compositional differences between the
regions. Fig. 6 shows the deconvolution results. We see that the
tissue is primarily composed of neoplastic cells. Cluster 4 repre-
sents a distinctive peri-vascular niche with significant immune
infiltration, and cluster 5 has a high proportion non-neoplastic
cells. With this knowledge, we now seek to understand how the
gene interaction network vary in different regional microenvi-
ronments of this tumor section.

2) Data Preparation for Network Inference: We identify the
top 2500 genes showing significant spatial trends in their ex-
pression determined using the SparkX algorithm [62]. Since
gene expression counts data follow a negative-binomial dis-
tribution rather than Gaussian, we use the non-paranormal
transformation to make the data amenable for analysis us-
ing the Gaussian graphical modeling framework [63]. This
procedure works by non-parametrically estimating monotone
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Fig. 7. Top 15 strongest edges in each network are shown. Size of the nodes
reflects their degree. Dotted lines indicate negative interactions. The nodes are
colored by the cluster identity.

functions fj such that the transformed variables f(X) =
(f1(X1), f2(X2), . . .fp(Xp)) are normally distributed (f(X) ∼
N(μ,Σ)). Importantly, the transformation preserves the inde-
pendence relations between the variables Xj , so the graph
structure is not altered. We use the R package huge [64] for
transforming the normalized spot-level counts data.

Inter-cluster similarity constraints for network inference are
imposed based on pairwise distances between cluster medoids.
Since our clustering is based on proximity in both expression and
spatial coordinates, we believe this is a reasonable biological
constraint to impose on the network inference algorithm. We
transform distances into similarity using the formula Wi,j =
1/(1 + di,j), where di,j is the sum of expression and spatial
distance between medoids for clusters i, j.

We use BIC criterion to identify the optimal sparsity and sim-
ilarity constraint parameters for the network inference. Network
inference showed that of the 2500 genes considered, 1180 have
an edge in at least one cluster.

3) Network Structures and Biological Significance: The tis-
sue section shows large variations in number of expressed genes
between clusters (visualized in Fig. 13 in the appendix, available
online), reflecting biological trends in transcriptional activity
across the tumor slide. The number of inferred edges per cluster
are respectively 4511, 13785, 446, 8400 and 4534. The spatial
region in Cluster 3 has significantly fewer detected genes than
other regions explaining the very low connectivity in its net-
work. To compare the extent of similarity between the inferred
networks, we use the DeltaCon algorithm [65], a statistically
principled and scalable inter-graph similarity function. We see
that inferred networks from the different clusters share little
similarity, with Clusters 1 and 3 having the maximum pairwise
similarity of 0.27. The network in Cluster 4 is maximally differ-
ent from the other regions. This is as expected, given that this
region is compositionally most unique.

Fig. 7 shows the top 15 strongest edges in each cluster from
the inferred network, with node sizes scaled by their respective
degree and negative interactions shown as dotted lines. We
can immediately see that each cluster has distinct underlying
regulatory interactions driving their transcriptional states, even
if they appear compositionally homogeneous.

Fig. 8. Transcription factor interactions in each cluster are highlighted. For
each cluster, we show the top 100 strongest edges involving TFs. The graphs are
visualized using the Davidson-Harel layout. Color scheme is same as in Fig. 7.

Transcription factors are proteins that play a dominant role in
regulating gene expression networks of cells and are particularly
important in driving tumor growth and evolution [66]. By bind-
ing to regulatory regions of target genes, they are responsible for
regulating gene expression and thereby controlling cell states.
Regulatory interactions involving TFs are therefore of particular
interest in understanding gene networks. We highlight these
interactions in Fig. 8. Since Cluster 2 has an order of magnitude
more edges than other networks, we highlight only the top 100
edges.

Frequently highlighted TFs active across different regions
include the AP1 family TFs FOS and JUN, which are known
downstream effectors of the Mesenchymal state in Gliomas [67],
and other master regulators such as CEBPD [68] and oligo-
dendroglial lineage factors OLIG1 and OLIG2 [69]. We also
see significant activity of SOX2 in Cluster 1, a known drivers
of stemness features and radiation-resistance in Gliomas [70].
Cluster 3 shows significant activity of Lactotransferrin (LTF),
which encodes an iron-binding protein with known innate im-
mune and tumor-suppresive activity [71]. Interestingly, this gene
has also been characterized as being an upstream master regula-
tor of different GB subtypes [72], warranting further exploration
of this gene in driving tumorigenesis in GB.

The TF network in Cluster 4, which represents the peri-
vascular niche, is most different from the other regions, as
expected given its unique microenvironment. This region shows
prominent activity of HES4, a known downstream effector of
the NOTCH signaling pathway that is known to inhibit cell
differentiation and helps maintain the stemness features in
Gliomas [73]. HES4 specifically regulates proliferative proper-
ties of neural stem cells, and reduces their differentiation. This is
a very promising observation, given that the perivascular niche
is known to harbor therapy-resistant glioma stem cells whose
properties are critically driven through NOTCH signaling [36].
Cluster 5 has dominant activity of NME2, a nucleotide diphos-
phate kinase enzyme involved in cellular nucleotide metabolism
and DNA repair [74]. The NME2 protein has also been identified
to be a highly specific Tumor-associated antigen in IDH mutant
Gliomas [75]. By studying the regulatory networks in each
cluster, we are thus able to infer differential activity of different
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Fig. 9. GO enrichment analysis for cluster-specific hub genes shows specific
activity of different biological processes across the tumor section. Cluster 4 that
represents a perivascular niche shows a high level of activity of ribosomal genes
and translational activity.

master regulators in distinct micro-environmental niches across
the tissue section.

To aid with biological interpretation, we compute different
centrality measures (degree, betweenness, closeness, eigen and
pagerank centrality) for genes in each network, each of which
measures a different aspect of importance of nodes [76]. We
reduce each network to its set of unique edges, and consider the
top 10% of nodes by each centrality measure to be hub genes.
We then perform a Gene Ontology Enrichment analysis with
the cluster-specific hub genes shown in Fig. 9. This highlights
specialized activity of different biological processes in each
cluster. Cluster 1 shows an enrichment for neuronal differen-
tiation related genes. Cluster 2 specific hub genes are associated
with metabolic and biosynthetic processes. Cluster 3 hubs are
associated with innate immune responses, in agreement with our
observation that LTF is a major TF in this network. Cluster 4 has
a large number of ribosomal genes with high connectivity. High
levels of ribosomal protein activity has been shown to be asso-
ciated with promoting stemness characteristics of Gliomas [77],
and we see it to be a defining characteristic of the peri-vascular
niche. Cluster 5 shows enrichment for neuronal processes like
synaptic transmission, consistent with the presence of significant
astrocytic population in this region.

4) Potential Limitations of Our Approach: In this section,
we have striven to highlight how our algorithm for joint net-
work estimation can be paired with the fast-evolving spatial
transcriptomics technology to understand molecular drivers of
tumor heterogeneity and identify context-specific vulnerabili-
ties of cancer. Even though our algorithm is highly scalable
and can be used for transcriptome-wide network inference, the

findings depend on sensitivity and resolution of the underlying
sequencing technology. Visium data is known to suffer from
significant gradients in RNA detection sensitivity [78], as we
observe here in our tissue slides that significantly affects the
structure of inferred networks. We however believe that with
increasing sensitivity and resolution of spatial transcriptomics
technologies, our algorithm will be extensively applicable to
infer gene regulatory networks driving context-specific tumor
evolution. Finally, we provide more experiments and discussions
on our biological observations in Appendix 14, available online.

VII. CONCLUSION

In this work, we study the inference of spatially-varying Gaus-
sian Markov random fields (SV-GMRFs) and its application in
gene regulatory networks in Spatially resolved transcriptomics.
The existing methods for inferring GMRFs suffer from the
so-called curse of dimentionality, which limit their applicability
to small-scale and spatially-invariant networks. To address this
challenge, we propose a simple and efficient inference frame-
work for inferring SV-GMRFs that comes equipped with strong
statistical guarantees. Contrary to the existing MLE-based meth-
ods, our proposed method is amenable to parallelization and is
based on solving a series of decomposable convex quadratic
programs. We show that our proposed method is extremely
efficient in practice, and outperforms the existing state-of-
the-art techniques—both computationally and statistically. We
study the developed framework in the context of inferring gene
networks underlying oncogenesis, using Glioblastoma as case
study. We characterize gene networks of tumor cells within
different microenvironments, and identify drivers of context-
dependent tumor adaptation which is an important step towards
developing targeted therapies for cancer.
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