

1 **A Stakeholder-Systems Analysis of Water Provision in Rural Alaska**

2 Michaela LaPatin¹, Nicola Ritsch², Daniel Erian Armanios³, Leif Albertson⁴, Lynn Katz⁵, Kasey M.

3 Faust⁶

4 ¹Fariborz Maseeh Dept. of Civil, Architectural and Environmental Engineering, University of Texas at

5 Austin, ORCID: <https://orcid.org/0000-0001-6304-7592>. Email: mlapatin@utexas.edu

6 ²Dept. of Engineering and Public Policy, Carnegie Mellon University, ORCID: <https://orcid.org/0000-0002-3936-443X>. Email: nritsch@andrew.cmu.edu

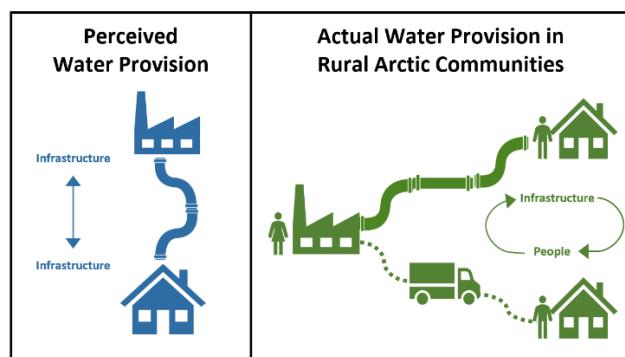
7 ³Saïd Business School, University of Oxford, Oxford, UK; ORCID: <https://orcid.org/0000-0001-7100-2861>. Email: daniel.armanios@sbs.ox.ac.uk

8 ⁴Natural Resources and Extension, University of Alaska Fairbanks, Email: leifalbertson@gmail.com

9 ⁵Fariborz Maseeh Dept. of Civil, Architectural and Environmental Engineering, University of Texas at
Austin, ORCID: <https://orcid.org/0000-0002-4244-334X>. Email: lynnkatz@mail.utexas.edu

10 ⁶Fariborz Maseeh Dept. of Civil, Architectural and Env. Engineering, University of Texas at Austin.
ORCID: <https://orcid.org/0000-0001-7986-4757>. Email: faustk@utexas.edu (corresponding author)

15 **ABSTRACT**


16 People are paramount in the operations of water infrastructure systems. While such processes are
17 similar throughout most communities in the United States, including treatment and distribution,
18 each community encounters localized challenges. In the Yukon-Kuskokwim (YK) Delta of Alaska,
19 specifically, water sector professionals (e.g., water plant operators, water haulers) encounter
20 unique and extreme challenges. The harsh Arctic weather makes road navigation dangerous for
21 water haulers, and water plant operators must contend with a precarious supply chain when
22 ordering supplies for maintenance. Such challenges can disrupt water provision for communities.
23 In this study, we analyze semi-structured interviews with 24 Alaska water sector professionals,

24 using qualitative content analysis and semi-cognitive mapping. We build a conceptual integration
25 of systems and stakeholder theory to identify barriers to water provision and leverage points for
26 improvement. We examine three components of the water provision process in rural Alaska
27 communities: water treatment, hauled water distribution, and piped water distribution. We show
28 that to increase workforce retention, limit worker burnout, and ensure reliable water provision,
29 practices including training and certification need to become more localized. Moreover, working
30 conditions and operating environment around the worker need to be more central in water system
31 considerations, especially for water hauling where workers play a critical role in water distribution.
32 This analysis reveals a key conclusion that underlies all our propositions: people are a leverage
33 point for water provision improvement. In so doing, we contribute to the literatures in public
34 administration and bureaucracy, sociotechnical systems, and stakeholder theory as applied to
35 infrastructure systems, more generally, and water systems, more specifically.

36 **Keywords:** operations; infrastructure; stakeholders; systems; rural; Alaska; training

37 **Synopsis:** Training for water sector professionals in rural Alaska needs to become more localized
38 to ensure reliable water provision for communities.

39 **Abstract Art:**

40

41

42 INTRODUCTION

43 Rural Alaska communities rely on a range of stakeholders to ensure water service provision,
44 including water plant operators, water haulers, administrative workers, and end-users. While the
45 design and physical integrity of infrastructure is essential, people are paramount for ensuring
46 reliable water provision. For instance, water plant operators must understand how seasonal
47 changes influence source water quality, ensuring they adjust chemical treatment accordingly.
48 Workers in administrative roles create workforce schedules and process payments for end-users,
49 ensuring reliable revenue for the utility. Community leaders develop long-term utility expansion
50 plans to accommodate changing populations and system funding. End-users (i.e., the community
51 residents) also hold an important role in water services, whereby they create a demand for water,
52 monitor the aesthetics of water that reaches their homes, and contribute to revenue that supports
53 the utility. In the Yukon-Kuskokwim (YK) Delta of Alaska, where many communities rely on
54 hauled water distribution, water haulers deliver treated water to community residents via truck or
55 all-terrain vehicles (ATVs), filling the essential role of distribution otherwise provided by piped
56 infrastructure elsewhere.

57 The importance of stakeholders, especially the workforce operating the utility, is
58 recognized by industry experts. In the 2023 State of the Water Industry Report, workforce concerns
59 were prominent in the list of the top 20 issues facing the sector. For instance, “aging
60 workforce/anticipated retirements” ranked at number 6 and “talent attraction and retention” at
61 number 12 [1]. To contextualize the starkness of these challenges, a 2018 study noted that 30-50%
62 of employees in the water sector are expected to retire in 5-10 years [2], [3]. To swiftly prioritize
63 these concerns, the American Water Works Association (AWWA) is collaborating with several
64 organizations and government agencies, such as the Water Environment Foundation (WEF), the

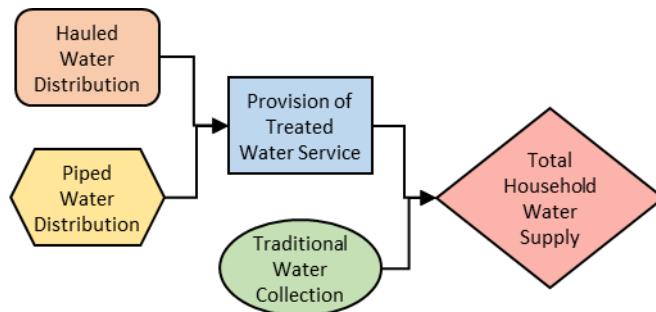
65 U.S. Environmental Protection Agency (EPA), and the U.S. Department of Agriculture (USDA)
66 [4]. Such initiatives include the AWWA-WEF Work for Water program [5], the EPA Water Sector
67 Workforce Initiative development grant scheme [6], and the EPA-USDA Memorandum of
68 Agreement around rural water and wastewater services [7]; all of which prioritize water sector
69 workforce development. The interagency cooperation demonstrated by these initiatives provides
70 assurance that the industry and the government recognize the role of water sector professionals in
71 water service provision, and seek to improve it.

72 While workforce challenges are acute in more “typical” operating conditions, they can be
73 existential in more extreme operating conditions. The unique operating environment of rural
74 Alaska presents significant constraints for water provision. Water sector professionals must
75 contend with extreme weather conditions, precarious supply chains, and skill misalignments to
76 ensure continuity of services [8]. Workers must prepare for the low temperatures and high winds
77 that typify the Arctic. In many communities throughout the YK Delta—the region of focus in this
78 study—water pipes are placed above the ground surface to avoid interference with permafrost [9].
79 These pipes can be damaged by vehicles, especially when covered by snowdrifts, requiring a great
80 deal of knowledge, skills, and time from the water utility workforce to make repairs. Pipes can
81 also be damaged by ground subsidence during freeze/thaw periods, an issue that is only further
82 exacerbated by climate change [10]–[12]. Utility maintenance workers must regularly check and
83 resecure pipes that have moved. Extreme temperatures necessitate the procurement of special
84 materials and operations to prevent water within the distribution pipes and water treatment plant
85 from freezing. These include but are not limited to the use of heat tape, glycol, as well as protocols
86 to ensure water is continuously circulating to prevent blockages due to freezing [13], [14].

87 Other communities in the Delta employ water haulers to deliver water, rather than
88 distributing the water through pipes. These specialized water sector workers must contend with
89 icy roads, low visibility, and extreme cold while delivering water to homes [15]. The arctic weather
90 requires those individuals who operate water utilities to have specialized knowledge and skills to
91 properly maintain such systems. The lack of such knowledge and skills often results in
92 infrastructure damage and service disruptions [16], [17].

93 Adding to these challenges, there are several communities in the YK Delta that are
94 considered unserved, as defined by the Alaska Department of Environmental Conservation, where
95 less than 55% of homes receive treated water through pipes, well, or a covered hauled service [18].
96 These households often must collect their own water, usually from a central community water
97 point.

98 Adding to the environmental challenges, material and equipment needed for repairs and
99 regular maintenance are not readily available or transportable in the rural Arctic [10], [17], [19].
100 When a replacement part is needed for a water pump, for instance, the likelihood that such a piece
101 can be sourced from within the region, let alone in a timely manner, is low [20]. Because
102 communities in the YK Delta are not connected via a highway system, materials are often shipped
103 via air from Anchorage, if the parts are small enough. For larger equipment, water plant operators
104 must place orders months in advance, and often wait for warm weather when a barge can access
105 the area [21]. Amidst these habitual supply shortages, gaps, and delays, water sector workers in
106 the region must develop the logistical skills to plan as much as a full year ahead for when materials
107 and equipment is needed. Alternatively, when repairs must be made promptly to ensure water
108 provision, and supplies cannot be procured, workers must innovate workarounds with readily
109 available materials, such as utilizing coffee cans and other makeshift tools for repairs, which the


110 researchers learned during tours of water treatment facilities in the region. This practice of
111 recombining what is commonly available to innovate is known as bricolage, and in resource-
112 constrained environments, this is not only common but often essential [22]–[24].

113 With water systems facing such extreme supply, social, and environmental conditions, one
114 could argue more rather than less workforce is needed. Yet precisely due to these unwelcoming
115 conditions, Alaska has some of the worst workforce shortages. In Alaska, job opening rates were
116 as high as 11.2% in May 2022, almost twice that of the overall United States [25]. Strict
117 certification testing, scheduling, and administrative requirements present additional barriers in
118 communities with minimal internet access and a fairly informal local economy [26]. Moreover, in
119 the YK Delta, where 85% of the population identifies as Alaska Native (AN) [27], many water
120 sector workers take subsistence leave seasonally for hunting, fishing, and gathering. These
121 subsistence practices are not only essential for preserving the local Indigenous culture, but are
122 necessary for survival in these remote tundra communities [28]. With already existing shortages,
123 most rural utilities cannot employ enough workers to fill important roles while others take
124 subsistence leave, which only further stresses the system. Many workers are forced then to choose
125 between their cultural and professional priorities [29], [30].

126 To explore the complexity of water delivery due to the extreme conditions that we have
127 documented, we first highlight where such complexity critically intervenes in water distribution.
128 Figure 1 details the components that centrally capture the diverse water delivery modes observed
129 in rural Alaska water provision. Total household water supply is comprised of both treated and
130 untreated water, the former of which can be provided by either piped or hauled distribution [18].
131 For piped water distribution, pipes transport treated water from a centralized water treatment plant
132 to homes, with pipes typically placed above the ground surface to avoid disruption from shifting

133 permafrost. For hauled water distribution, treated water is transported by the end-user or municipal
134 worker via truck or ATV, and then stored in tanks inside homes. We posit that there are notable
135 differences between these two service types, which impacts water provision as each mode requires
136 different skills to maintain and operate, and are impacted differently by extreme Arctic weather.
137 Although we focus on treated water in this study, we must acknowledge that traditional water
138 collection practices, such as packing ice and collecting rainwater, contribute to a household's total
139 water supply, although not managed or regulated by a professional workforce.

140

141 Figure 1. Components of water provision that lead to the total household water supply in rural
142 Alaska communities. There are two supply types: treated and untreated water. Treated water can
143 be distributed through either pipes or hauled service. All of these components contribute to the
144 total household water supply.

145 Amidst such relentless complexity in water delivery, our study explores how water sector
146 professionals work within and around water services in rural Alaska communities. Workers hold
147 myriad essential roles in these water treatment and distribution processes, including management,
148 operations, and administration of the utility. Prior work often does not holistically explore the
149 worker and their impact on water provision, but rather focuses on issues such as sanitation [31] or
150 infrastructure design [14]. In other words, the focus has been more on the water “hardware” and
151 less so on the water “software”. More specifically, workers are often the key means by which water

152 systems are linked to key stakeholders (i.e., end users, government agencies, and community
153 organizations). We have yet to fully characterize these interactions, especially amidst such extreme
154 operating conditions. To these ends, we conduct an inductive study to identify such relationships.
155 This study aims to identify salient relationships and synthesize them into testable propositions that
156 can subsequently guide larger scale stakeholder-system analyses.

157 Enabling this study is the qualitative content analysis [32] of semi-structured interviews
158 with 24 regional water sector experts who work in rural Alaska communities. These interview
159 participants provide insight into the regular challenges and rewards of operating a rural Alaska
160 water distribution network that could not be collected via other means. For example, the
161 participants discuss the dynamics of workforce-community interactions, explaining the challenges
162 of accessing private properties to deliver water. Other participants discuss workers' safety
163 considerations of driving on icy roads in low visibility to deliver water. Building on this insight,
164 we develop a semi-cognitive map [33], identifying relationships between factors that enable or
165 inhibit water provision. Semi-cognitive maps provide a structure for knowledge that would
166 otherwise "be loosely-linked, highly complex, or unavailable" [33]. These maps are especially
167 useful in this analysis because they allow for a visual understanding of interactions among systems
168 [17]. Using this information, we build a novel framework to understand the stakeholder-systems
169 involved in water provision. We further utilize this information to provide recommendations for
170 improvement to the water sector workforce to ensure reliable water provision, including training
171 improvements and greater attention to workers' wellbeing.

172 **POINTS OF DEPARTURE**

173 Many studies have examined water infrastructure from various perspectives [14], [34], [35]. Such
174 studies have evaluated planning [36], design [37], and resilience of water utilities [38]. Many

175 studies focus on urban infrastructure, assessing deteriorating water networks and health impacts
176 on communities [39]–[41]. This study departs from existing literature by focusing on the
177 professionals supporting water provision in rural Alaska communities. Understanding water
178 infrastructure here is especially important due to the populations' vulnerability, and the subsequent
179 impact of water services [11], [26], [42].

180 There is a range of literature that explores water access in rural Alaska communities. Such
181 studies provide insight into the barriers to water provision, highlighting environmental [43],
182 economic [13], and cultural [44] factors that can hinder access to safe potable water. Brown et al.
183 explore drivers of declining water access, identifying socioeconomic status as a significant barrier
184 to water access in Alaska communities [10]. Other studies identify climate change and the resulting
185 environmental impacts as barriers to reliable water provision [28], [45]. One challenge is how to
186 understand the preferences of untreated water. There are two competing findings. The first is that
187 some argue residents prefer untreated water, which can result in deleterious health impacts [43],
188 [44], [46]. However, these studies are often conducted in settings where residents have and can
189 afford a choice between treated and untreated water. The second is residents who use untreated
190 water because they have no alternatives and so such practices are argued to be driven more from
191 conservation than preference for such water delivery means [30], [42], [47]. For the purposes of
192 our work, we are largely exploring a setting where both treated and untreated water are available.

193 We begin this study with a focus on water sector professionals, aiming to understand their
194 impacts on the water provision in rural Alaska communities. Some researchers have analyzed
195 stakeholders and infrastructure projects broadly, identifying who is a stakeholder [48], [49], the
196 roles of key stakeholders [36], and even if stakeholders oppose projects [50], [51]. From these
197 studies, we learn that stakeholder cooperation is pivotal in the successful implementation of a

198 project. Such studies cover a range of infrastructure types, including transportation [52], real estate
199 [53], and energy projects [50], demonstrating that commonalities exist across sectors. Some studies
200 focus on rural areas [34], and others on urban areas [54], demonstrating that studies focused on
201 specific regions and contexts yield different results. We build upon such research to evaluate the
202 unique context of rural Alaska, where water sector stakeholders encounter significant challenges.

203 A select group of studies have explored stakeholders and water infrastructure [17], [36],
204 [40], [48], arguing that stakeholders' roles must be understood for successful implementation of a
205 water sector project. We learn from such studies that stakeholders with different backgrounds,
206 careers, and motivations can impact infrastructure projects differently. For instance, Lienert et al.
207 argue that stakeholders are disconnected from one another in water infrastructure planning, and
208 that they need more coordination to ensure successful projects [48]. While most of these studies
209 focus on the development and design of infrastructure [55], we depart from such studies to evaluate
210 the stakeholders involved in water provision. To reiterate, while most focus on the water system
211 "hardware" (i.e., infrastructure design and delivery), we also include the "software" (i.e., workers
212 and stakeholders). Focusing on the provision of service allows us to understand this final step in
213 the distribution process, and to identify possible intervention points, providing practical
214 recommendations for water sector improvement.

215 We employ stakeholder theory in this study as a means to more systematically identify and
216 better understand the stakeholders who are associated with water provision. Stakeholder theory,
217 often used in business ethics and organizational studies, aids in identifying stakeholders for a
218 project or organization [56]. The framework guides us in determining to whom the entity is
219 responsible, considering factors such as safety, happiness, productivity, and finances. In
220 identifying such stakeholders, the entity can better develop their strategy framework, determining

221 which priorities drive success. Stakeholder theory further emphasizes the value of relationships
222 between organizations and society [57]. As such organizations can create jobs, build infrastructure,
223 and impact community wellbeing through these stakeholder relationships. Although not as
224 commonly used in infrastructure studies, stakeholder theory is a useful tool here in the evaluation
225 of water utility operations as it allows us to understand the system beyond just the technical
226 perspective. When dealing with extreme operating conditions, a social perspective is arguably also
227 consequential. Stakeholder theory enables us to identify relationships between utility owners,
228 water sector workers, and community end-users. The literature that uses stakeholder theory to
229 evaluate infrastructure projects primarily does so to identify stakeholders in the development of a
230 new project, including transportation [49], [58], energy [50], and construction projects broadly
231 [51], whereas we are focused on the roles of professionals throughout the daily operation and
232 maintenance of a utility. More specifically, we see that stakeholder influences on service provision,
233 and in our case water service provision, are missing from this scholarly dialogue. We use
234 stakeholder theory to better understand the roles of water professionals in operations and
235 management to fill this operational-focused gap in the literature.

236 This study's analysis of water infrastructure integrates system and stakeholder approaches.
237 Defined by Meadows, a system is “an interconnected set of elements that is coherently organized
238 in a way that achieves something” [59]. Systems thinking requires an understanding that systems
239 are connected and do not function independently [59], [60]. Several studies have integrated this
240 approach into their stakeholder analyses, recognizing that stakeholders will impact and be
241 impacted by many interdependent systems [17], [58], [61], [62]. Much of the previous literature
242 has evaluated water infrastructure from just one or two system types and underlying stakeholders.
243 Here we build on a foundation of existing work that finds interdependencies among a wider set of

244 financial, social, technical, and natural systems [60]. By integrating systems and stakeholder
245 approaches, we can further understand the roles of water professionals and how they impact water
246 provision. Ultimately, this more holistic approach will allow us to better identify solutions to the
247 more extreme water challenges that typify rural Alaska communities.

248 This study provides contributions to literature in three key areas. The first contribution is
249 in the literature on public administration around bureaucracies and the ways in which they
250 administer public services such as water. The originating premise of this group of literature is that
251 the processes for infrastructure service delivery are heavily influenced by those government
252 agencies and bureaucrats nearest to the locus of access [63]–[65]. From that a plethora of literature
253 has explored how such bureaucratic decisions affect delivery of services ranging from those
254 pertaining to environmental protection [66], educational [67], water [68], hydroelectric facilities
255 [69], all the way to even the approval of GMOs and wood pellets [70]. However, in this rich and
256 growing literature, the focus is on detailed ethnographic studies and even when studied at larger
257 scale, the focus is on the bureaucratic agency of interest. These studies are missing an
258 understanding of the ways in which different stakeholder groups interact with such agencies. This
259 is important as these stakeholders rarely act independently and often operate and deliver services
260 as a coalition. In adopting a systems-based approach, we can take greater stock of the
261 sociotechnical landscape around infrastructure services to better understand how multiple
262 stakeholder groups interact to better gauge where there are barriers to service provision.

263 The second contribution is around the literature regarding sociotechnical analyses of water.
264 This work tends to focus on individual preferences [43], [71], [72], how to build social acceptance
265 [73], [74], and legitimacy [75]–[77]. While seemingly intuitive, few incorporate stakeholder theory
266 into this arena [34], and when they do, they do not do so in a way that is actionable and can inform

267 engineering decision-making. Our study advances not just a more structured incorporation of
268 stakeholders into water systems but a methodology through which to chronicle where they are
269 particularly important in the information flows of the system. Our study uses approaches in
270 systems thinking to map where stakeholders interact with each other and other factors to identify
271 where stakeholders have critical challenges and bottlenecks that if addressed, could improve
272 system performance.

273 The third contribution is around stakeholder theory [56]. While much of this literature has
274 focused on non-market strategy, namely the interactions between businesses and civic
275 organizations such as non-profits and communities [78]–[80], this does not cover how these play
276 out in infrastructure systems. This is surprising because there is a set of ethnographic work and
277 more recent large-scale quantitative work that argues stakeholder contentions and interactions
278 around infrastructure systems are especially important. Because infrastructure is often so taken-
279 for-granted, they can have strong yet often obscured influence on how these systems operate, to
280 the point they may skew resource access from these systems [81]–[83]. Here again, our approach
281 to formalizing where precisely such stakeholder interactions play out and how they influence
282 infrastructure systems helps expand the scope and applicability of stakeholder theory to these
283 understudied infrastructure systems.

284 Overall, while many have recognized the value and influence of stakeholders, they do so
285 generally and without a structured methodological approach. Our study helps formalize and
286 structure an approach to more precisely understand where and how stakeholders influence
287 infrastructure systems so as to better recognize and act upon such value and influence in ways that
288 improve infrastructure system performance, better tailor to different stakeholder needs, and more
289 equitably distribute the benefits.

290 **METHODS**

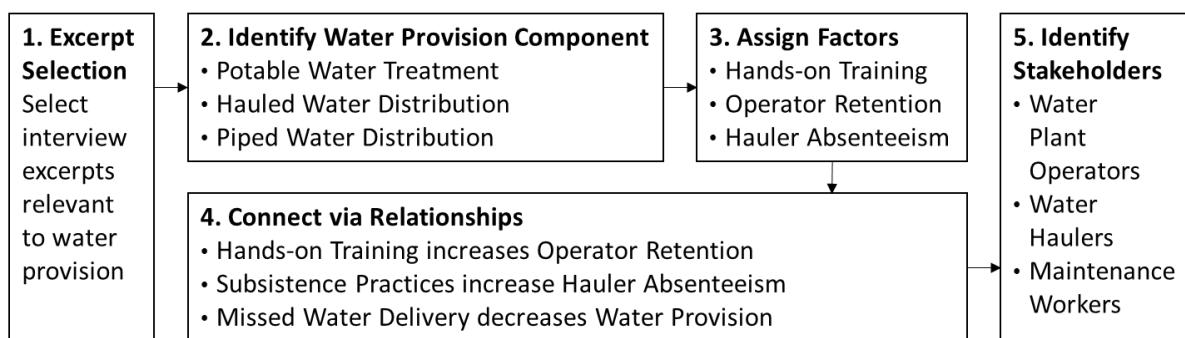
291 **Data Collection**

292 To better understand water provision in rural Alaska communities, we conducted semi-structured
293 interviews with regional water sector experts from the YK Delta. These 24 experts held various
294 roles within their communities, including administrative leadership, healthcare workers, water
295 services operators, and others, as shown in Table 1. In line with Freeman's seminal work, we
296 define a stakeholder as an entity that directly interacts with the water utility [56]. Participants
297 included both members and non-members of Native Alaskan tribes. These interviews were
298 conducted both remotely and in-person between November 2021 and August 2022. Before data
299 collection, the project was reviewed by the Institutional Review Boards at the University of Texas
300 at Austin, Carnegie Mellon University, and the Alaska Area IRB, as well as the YK Health
301 Corporation Human Subject Review Board. Participants were compensated for their time.
302 Interviews ranged in length from 11 to 123 minutes. The interviews were recorded (with
303 permission), transcribed, and checked for quality through reviewing for transcription errors. One
304 interview participant requested not to be recorded, but did agree to participate, and as such a debrief
305 was recorded by the interviewer afterward to capture the discussion.

306 Table 1. List of interview participants, their community roles, and interview details.

Participant	Region of Experience	Organization	Role	Interview Mode	Interview Length
# 01	Rural Hub	Municipal Public Works	Water Hauler	In-Person	27 min
# 02	Rural Hub	Tribal Organization	Administrator	In-Person	38 min
# 03	Rural Hub	Municipal Public Works	Water Hauler	Remote	61 min
# 04	Rural Hub	Tribal Organization	Administrator	In-Person	68 min
# 05	Rural Village	Tribal Organization	Administrator	In-Person	123 min
# 06	Rural Village	Municipal Public Works	Water Plant Operator	In-Person	30 min
# 07	Rural Village	Municipal Administration	Administrator	In-Person	123 min

# 08	Rural Village	Municipal Public Works	Water Plant Operator	In-Person	31 min
# 09	Rural Village	Regional Health Organization	Healthcare Worker	In-Person	28 min
# 10	Rural Village	Regional Health Organization	Healthcare Worker	In-Person	28 min
# 11	YK Delta	Municipal Public Works	Water Hauler	In-Person	11 min
# 12	Rural Village	Municipal Administration	Administrator	In-Person	37 min
# 13	Alaska	Private Firm	Professional Engineer	Remote	59 min
# 14	Alaska	Municipal Public Works	Water Plant Operator	In-Person	90 min
# 15	YK Delta	Regional Health Organization	Public Health Worker	Remote	76 min
# 16	Rural Hub	Municipal Administration	Administrator	In-Person	79 min
# 17	YK Delta	Regional Health Organization	Administrator	Remote	80 min
# 18	YK Delta	Regional Health Organization	Public Health Worker	Remote	61 min
# 19	Rural Hub	Municipal Public Works	Water Hauler	Remote	62 min
# 20	YK Delta	Regional Health Organization	Public Health Worker	Remote	82 min
# 21	Rural Hub	Municipal Administration	Administrator	In-Person	60 min
# 22	YK Delta	Municipal Administration	Administrator	In-Person	108 min
# 23	YK Delta	Regional Health Organization	Water Plant Operator	Remote	73 min
# 24	Rural Hub	Municipal Administration	Administrator	In-Person	79 min


307

308 Interview questions were directed towards understanding the provision of water services
 309 broadly, the stakeholders involved in this process, as well as the unique barriers and impetuses to
 310 water provision in the YK Delta. As per prior exemplars in qualitative research, the core interview
 311 questions of interest were focused more on recounting facts and avoided leading questions [84].
 312 Opinion or perception-based questions were asked to provide additional contextual information
 313 for which to situate the answers to the more core fact-based questions. Moreover, most interviews
 314 were conducted with at least two researchers present to enhance the internal validity and richness
 315 of the data collection as both the interview and additional observational data could be
 316 simultaneously collected [85]. When possible, additional data sources were used to triangulate our
 317 findings such as aforementioned observational data and archival data (e.g., media communications
 318 and policy documents). Our sampling strategy included two steps, as is typical in such work [85],
 319 [88]. We first identified professionals whose work is closely tied to water provision or decision-
 320 making in rural Alaska, and requested their participation. Next, we used snowball and convenience

321 sampling to gather more participants with broad perspectives and experiences [32], [89]. Finally,
322 we followed the principle of saturation, whereby we stopped conducting additional interviews as
323 the focal participant's answer began to increasingly mirror the responses of past participants [90],
324 informing our total of 24 participants. Given a sample as small as 10 can produce 95% of the
325 salient information, our sample mirrors (and even arguably surpasses) that of prior practice [91].

326 Interview questions began with background information about the participant, both to build
327 rapport and to understand their scope of expertise, asking about their community, their family, and
328 their professional background. Next, participants were asked event and fact-based questions about
329 their specific experience working in the water sector in the YK Delta, including daily tasks,
330 challenges, and interactions with others. Finally, participants were asked about what they
331 perceived to be the strengths and weaknesses of the water utility, and how they believed it could
332 be improved. Several questions that are pertinent to the analysis here include:

333 • Can you walk us through a typical workday in your role?
334 • Who do you interact with most often in your role?
335 • What are some of the challenges you face in your role?

336
337 Figure 2. The qualitative coding process used in this study, including examples from interviews.
338 We identified excerpts that included discussion of water provision and assigned each excerpt to a

339 component as applicable. Then we identified factors, relationships, and stakeholders relevant to
340 water provision.

341 **Qualitative Content Analysis**

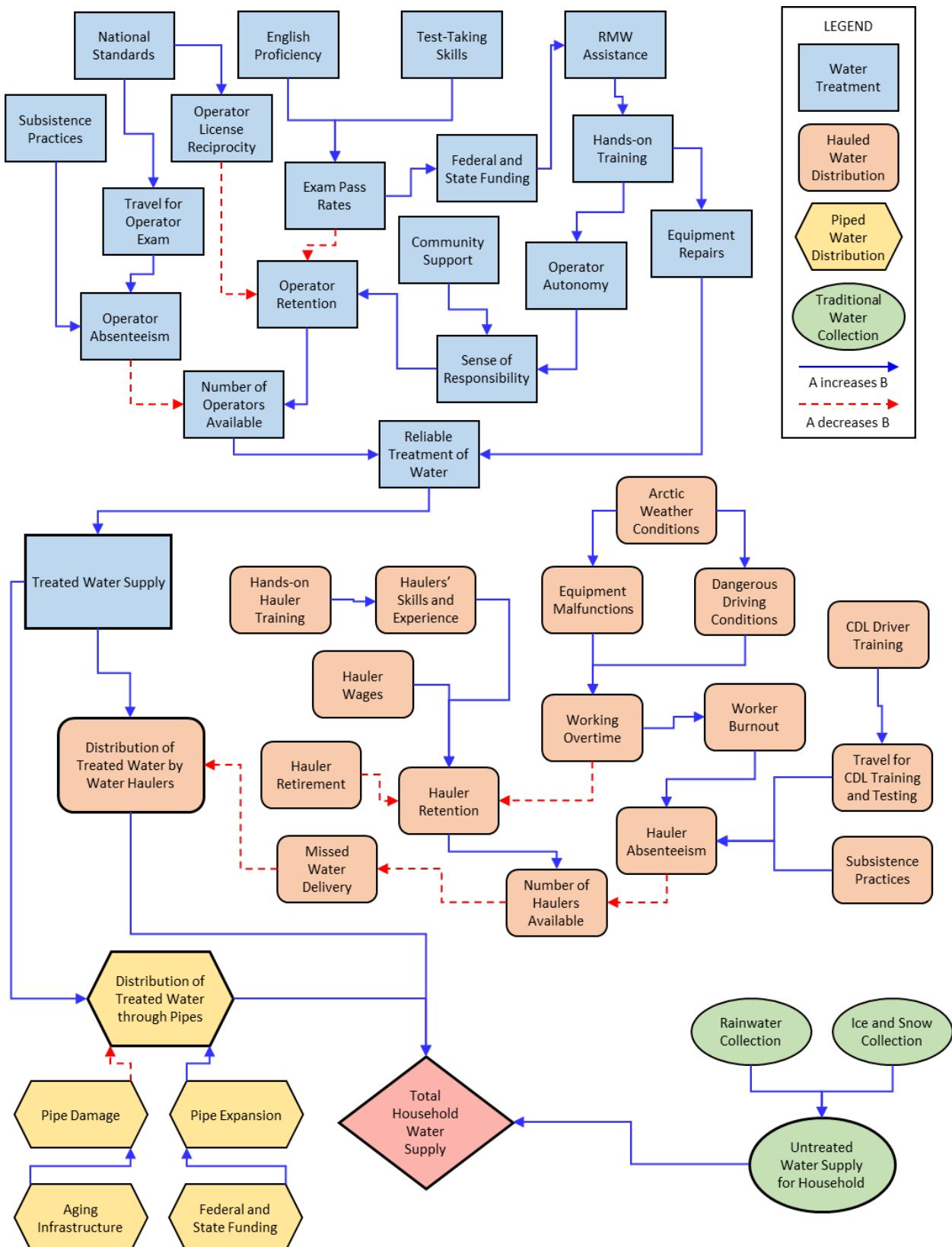
342 We employed qualitative content analysis using NVivo Software to evaluate interviews, as
343 described in Figure 2 [32], [92], [93]. We identified excerpts that included discussion of water
344 provision, then assigned distribution types and stakeholders as applicable. Employing inductive
345 coding, we identified factors that drive or impede water provision and connected these via
346 relationships, following similar work [17], [94]. The unit of analysis was the section of text
347 pertaining to water provision, ranging from a phrase to a paragraph, and could be assigned multiple
348 codes (i.e., simultaneous coding) [32]. Representative examples of interview excerpts with their
349 coded stakeholders, factors, and relationships are included in Table 1. The coding was completed
350 by one researcher who prepared a coding dictionary, then validated by a second researcher,
351 resolving any discrepancies together.

352 Table 2. Examples of interview excerpts and the associated codes identified in the qualitative
353 content analysis. Stakeholders, factors, and relationships are identified for each excerpt. Each
354 relationship includes an associated polarity, indicating if the subsequent factor increases or
355 decreases.

Excerpt	Stakeholders	Factors	Relationships
“They had problems where the boilers kept turning off. Our [Remote Maintenance Worker] came up, [...] and they found the problem and fixed it.”	<ul style="list-style-type: none">• Water Plant Operators• Remote Maintenance Workers (RMW)	<ul style="list-style-type: none">• RMW Assistance• Equipment Repairs• Water Treatment	<ul style="list-style-type: none">• RMW Assistance increases• Equipment Repairs• Equipment Repairs increase• Water Treatment
“The average driver works between 8 and 10 hours a day on good times, and 14 to 15 for wintertime, [...] so we just basically run our drivers to the	<ul style="list-style-type: none">• Water Haulers	<ul style="list-style-type: none">• Working Overtime• Worker Burnout• Hauler Attrition	<ul style="list-style-type: none">• Working Overtime increases• Worker Burnout

point where they don't want to work anymore, and then we try to find more.”			• Worker Burnout increases Hauler Attrition
“We have operators that will take subsistence leave, so sometimes summer times can be hard to find someone around to run the water plant.”	• Water Plant Operators	• Subsistence Practices • Operator Absenteeism • Number of Operators	• Subsistence Practices increase Operator Absenteeism • Operator Absenteeism decreases Number of Operators

356

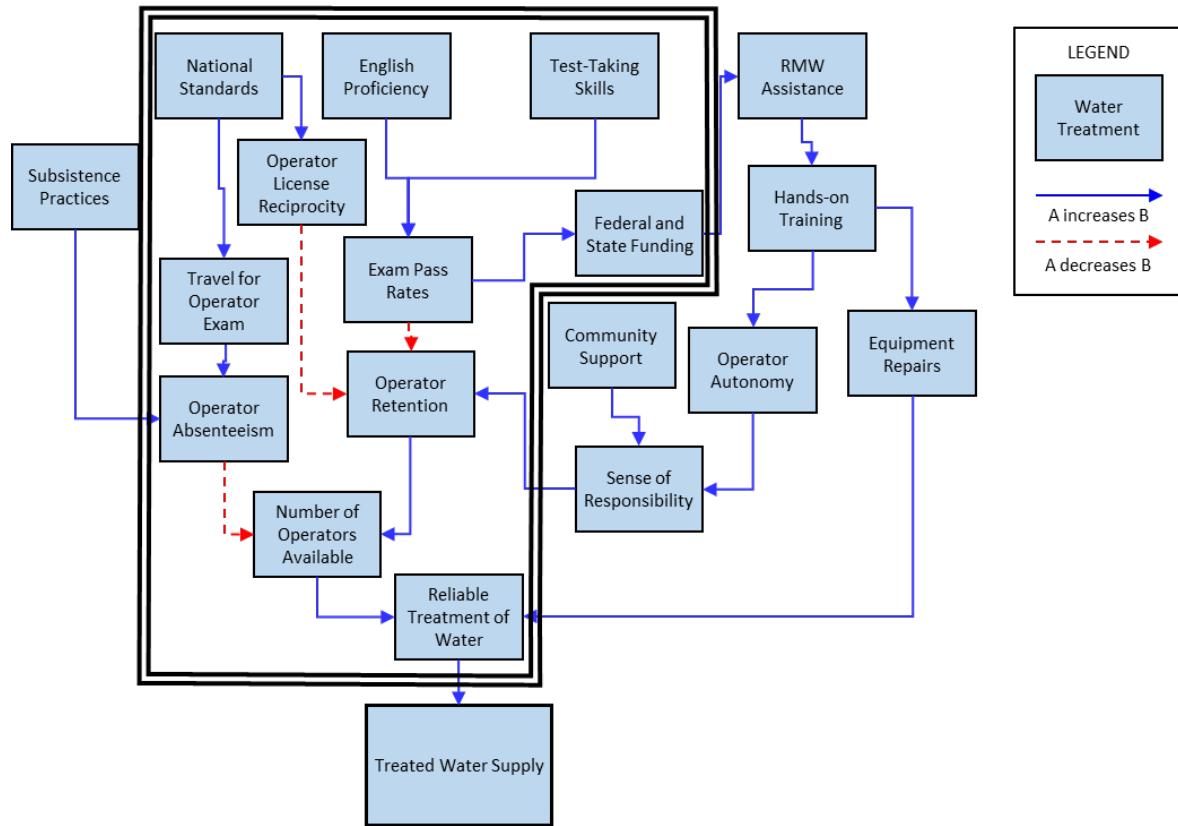

357 **Semi-Cognitive Mapping**

358 Finally, we use the relationships identified in the previous step to develop a semi-cognitive map,
 359 shown in Figure 3. Cognitive mapping is a useful tool to study relationships between factors, and
 360 allows researchers to draw “conclusions about the belief systems of individuals and groups” [33].
 361 In using this method, we aggregate understanding and experience from participants, piecing
 362 together otherwise loosely-linked information. We call the model developed in this study a “semi-
 363 cognitive map” due to the aggregation of knowledge from 24 participants, as well as the informed
 364 interpretation of the researchers. The development of this model allows us to identify shared
 365 knowledge. As shown in Figure 3, we begin with total household water supply at the center of the
 366 map (red diamond). We then add factors connected by arrows representing relationships. The map
 367 arrangement allows for a visual representation of the participants’ understanding of each
 368 component, stakeholder roles, and barriers to water provision. (See Figure 1 for a simplified
 369 version of this map.)

370 **RESULTS**

371 The semi-cognitive map shown in Figure 3 shows each component of water provision in rural
 372 Alaska, revealing distinct challenges as well as professionals impacting such challenges. Water
 373 plant operators, the key professional in water treatment, confront standardized regulations while

374 working in localized contexts. Water haulers, the key professional in hauled water distribution,
375 experience challenges from both working and operating contexts, ultimately leading to worker
376 burnout. Discussion of the piped water distribution component largely omitted conversation
377 around the people involved—an issue that needs to be explored further. All of the challenges
378 identified in the semi-cognitive map can lead to or exacerbate service disruptions, decreasing water
379 provision in communities. Here we discuss such challenges and propose solutions.



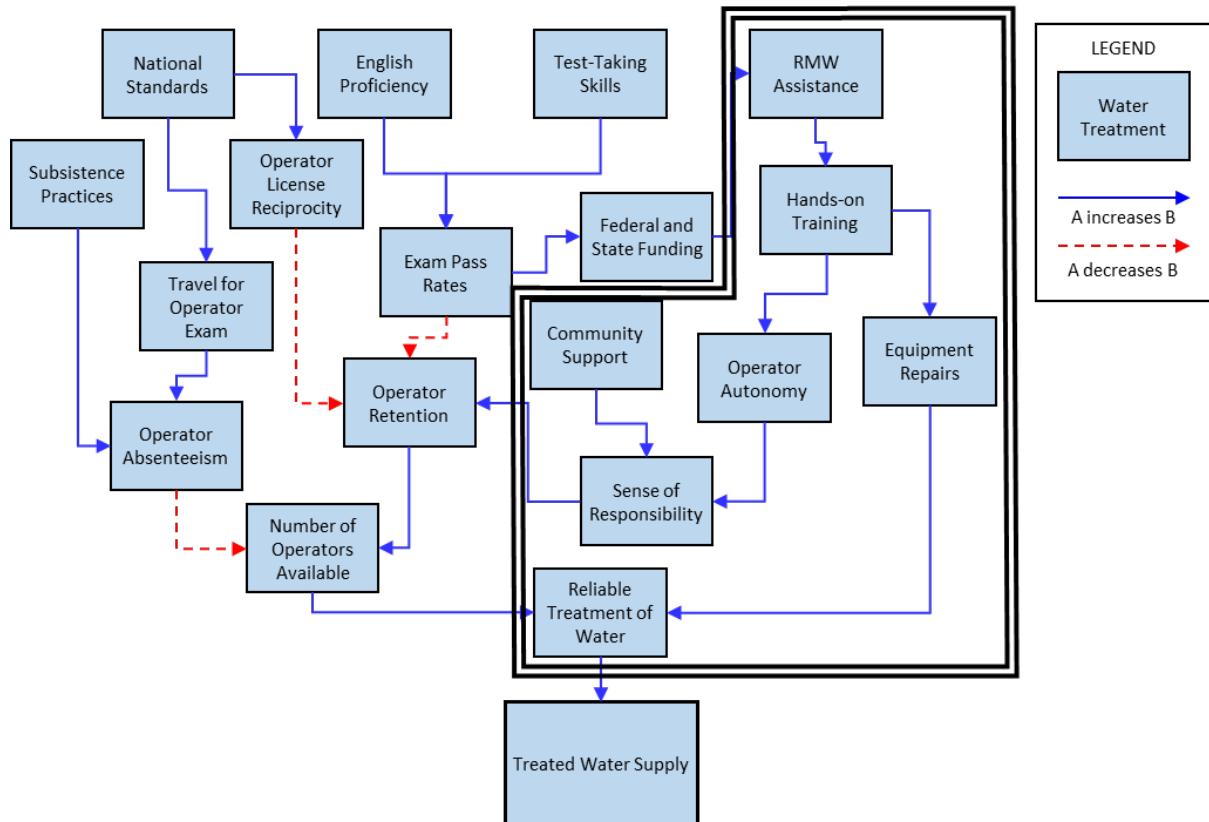
381 Figure 3. Semi-cognitive map showing the water provision process. The arrowheads on each
382 relationship indicate directionality (i.e., A *leads to* B), and the line colors and type (solid blue:
383 positive, dashed red: negative) indicate polarity (i.e., A *increases* B or A *decreases* B). Factors
384 are arranged in the map according to the component of the water provision process (blue
385 rectangles: water treatment, orange rounded rectangles: hauled water distribution, yellow
386 hexagons: piped water distribution, green ovals: natural and traditional collection).

387 **Water Treatment**

388 One group of water professionals, water plant operators, are critical to the water treatment
389 component of the overall water provision process. Before water can be distributed to residents,
390 water plant operators use their extensive training and skills to treat water according to drinking
391 water standards [95]. While the role of water plant operator is generally not unique to rural Alaska,
392 rural operators are responsible for daily operations while often contending with extremely low
393 temperatures, aging infrastructure, and limited supply chains [8], [19], [20]. Such challenges
394 require skills, innovation, and perseverance to avoid service disruptions and ensure service
395 provision for the community. The semi-cognitive map in Figure 3 reveals that the retention of
396 water plant operators is an essential component of treated water provision. When operator retention
397 is low, not only are there few individuals to perform essential duties, but experiential knowledge
398 is lost. This continuity of knowledge is critical for reliable operations of water plants, ensuring
399 water provision. Retention of water plant operators is a growing concern in the water sector [96],
400 [97] and is even more acute in rural Alaska [98]. The semi-cognitive map shows that training and
401 certification can impact operator retention, revealing two pathways. These pathways reveal a
402 dichotomy in the water treatment component: standardization (“one size fits all”) vs. situatedness
403 (“tailoring for every circumstance”), as shown in Figures 4 and 5.

404 The first pathway, shown in Figure 4, focuses on the standardization of credentialing for
405 water plant operators. A study participant who is very familiar with the certification requirements
406 for operators explained that the State of Alaska previously certified operators through their own
407 state-specific program. However, this process was changed to require operators to pass a
408 nationally-recognized exam. Operators who pass this exam and meet the experience requirements
409 can then obtain their operating license in the State of Alaska. The nationally-recognized exam
410 covers a broad range of topics, familiarizing operators with water treatment processes used across
411 the country. The exam is standardized to ensure that there is consistency and reliability amongst
412 water plant operator licenses—those who are licensed have taken the same exam and conceivably
413 possess the same knowledge. By making the exam nationally-recognized, operators can apply for
414 reciprocity in some other states—where operators can transfer to work in another state once they
415 are licensed in Alaska, and vice versa. As a participant explained, “That was done so that operators
416 can enjoy reciprocity. That was supposed to be a good thing to standardize testing. [...] but we lost
417 uniqueness that would apply directly to us.” While there are benefits to standardization and
418 reciprocity for many operators in the contiguous United States, standardization mostly presents
419 barriers for operators in rural Alaska. Interview participants emphasized that most rural water
420 operators are unlikely to pursue reciprocity, as this would require living outside of their home
421 communities.

422


423 Figure 4. Semi-cognitive map focused on the water treatment component of the water provision
 424 process. The area inside the double lines includes the standardization pathways, focused on the
 425 nationally standardized operator exam and certification.

426 Many participants discussed the strict testing and certification requirements, and the low
 427 exam pass rates for rural Alaska operators. They explained, as shown in Figure 4, that test-taking
 428 skills and English proficiency were significant barriers to certification. Many operators living in
 429 rural Alaska communities struggle to align their traditional backgrounds with the regulatory
 430 requirements imposed by state and federal guidelines. The standardized exam created a greater
 431 barrier to certification for Alaska water plant operators, as the exam is more difficult and less
 432 applicable to rural Alaska infrastructure. Further, standardization of operator certification ignores
 433 the specific local context of rural Alaska communities, where utilities are generally smaller than

434 others (usually serving just 100-1,000 people). These communities often use hauled water
435 distribution, which is extremely uncommon in other areas of the United States. Perhaps most
436 significantly, standardized certification requirements can impact funding. Having a licensed water
437 plant operator on staff is a regulatory requirement for both state and federal agencies, and so many
438 communities are refused funding when they cannot comply. There is a clear gap in understanding
439 of Alaska water utilities, where state and federal agencies direct training and certification
440 requirements without the local context informing such decisions.

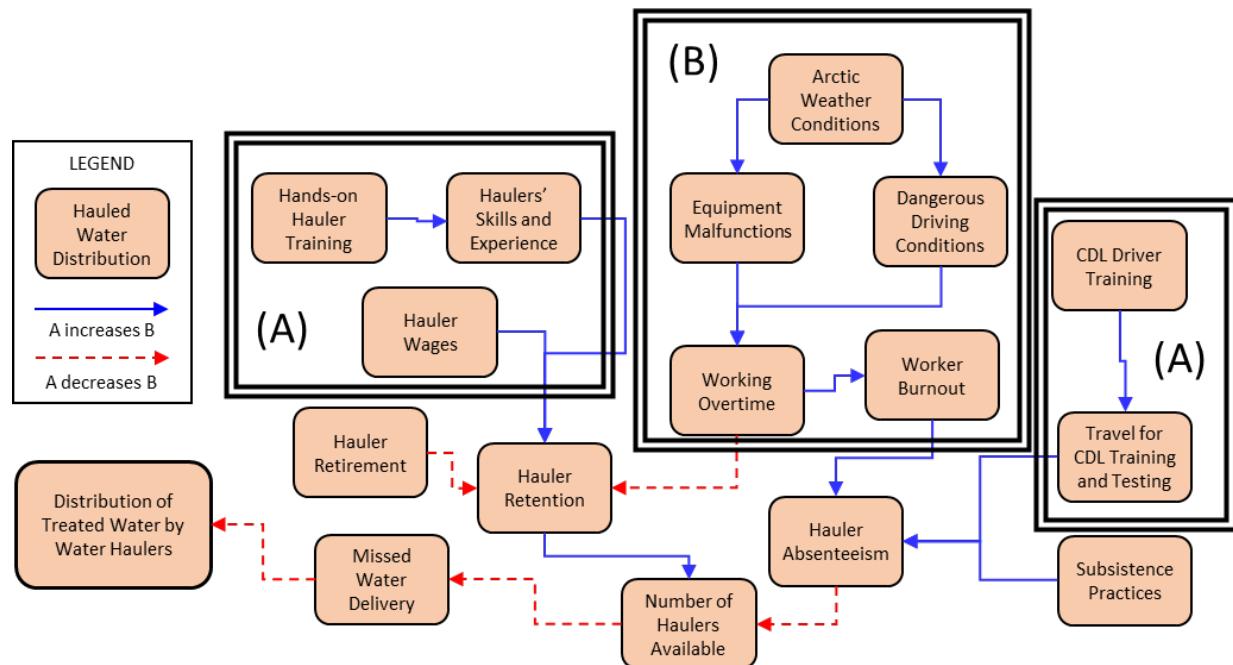
441 Alternatively, the second pathway for water treatment focuses on building tacit knowledge
442 and situating such skill-building in the local operational context. The semi-cognitive map in Figure
443 5 reveals that hands-on training is essential to skill-building for water plant operators. Such training
444 often occurs in an operator's home water plant, with assistance from a Remote Maintenance
445 Worker (RMW) [99]. RMWs are highly skilled and certified operators who travel to communities
446 throughout the YK Delta, assisting local operators when significant challenges arise. Interview
447 participants explained that this hands-on, in-person training is often the most useful form of
448 training, as it enables operators to learn using the specific equipment that they operate every day.
449 Figure 5 also reveals that community support and the operator's sense of responsibility positively
450 impact service provision. As a participant explained, "I think most of the operators that are good
451 at their job, they care about the position and they care about the job. [...] They see it as a service
452 to the community."

453

454

455 Figure 5. Semi-cognitive map focused on the water treatment component of the water provision
 456 process. The area inside the double lines includes the situatedness pathway, focused on the
 457 localized context of water plant operators' responsibilities.

458 The analysis here suggests that in the treatment and provision of potable water to residents
 459 in rural Alaska, there is a tension between standardization and situatedness [100]. Standardization,
 460 a “one size fits all” approach, ensures water operators are evaluated to a common set of guidelines.
 461 Such standardization can be valuable for many “typical” operating contexts to ensure uniformity
 462 of regulations and water quality, and can be especially helpful if operators move between water
 463 treatment plants. However, such standardization may not suffice when applied to extreme
 464 operating contexts which are fundamentally different from “typical” operating contexts. Rather,
 465 situatedness, a “tailoring for every circumstance” approach, can ensure local needs are better


466 considered and served [100]. This suggests that operator training and certification requirements
467 may need to be reassessed amidst this tension of approaches. Fortunately, the need for more
468 localized training has been recognized by organizations in the state, like the Alaska Native Tribal
469 Health Consortium [101]. A virtual training program has allowed rural operators to participate in
470 training, without travel or time away from work. The importance of reciprocity for water plant
471 operators may also need to be balanced with prioritization of local needs and preferences.
472 Participants suggested modifications to the certification requirements, recommending that
473 operators pass a site-specific certification test rather than a test determined by water treatment
474 plant type. A participant explained, “Instead of them getting this huge general test that's for the
475 whole nation, they would get tested on specific components that they have, and they would get
476 certified to work in their plant.” While this may make deployment of tests more costly, such a
477 change would empower local operators to build their skillset to operate their utility at a high level,
478 ensuring water provision for local residents. This would also encourage retention in the water
479 sector, as operators would not be pushed out of their roles for failure to pass a standardized exam.
480 This all suggests the site-specific certification testing benefits (expanding cadre of operators
481 available) may outweigh their costs (more localized site testing) in such extreme contexts.

482 **Hauled Water Distribution**

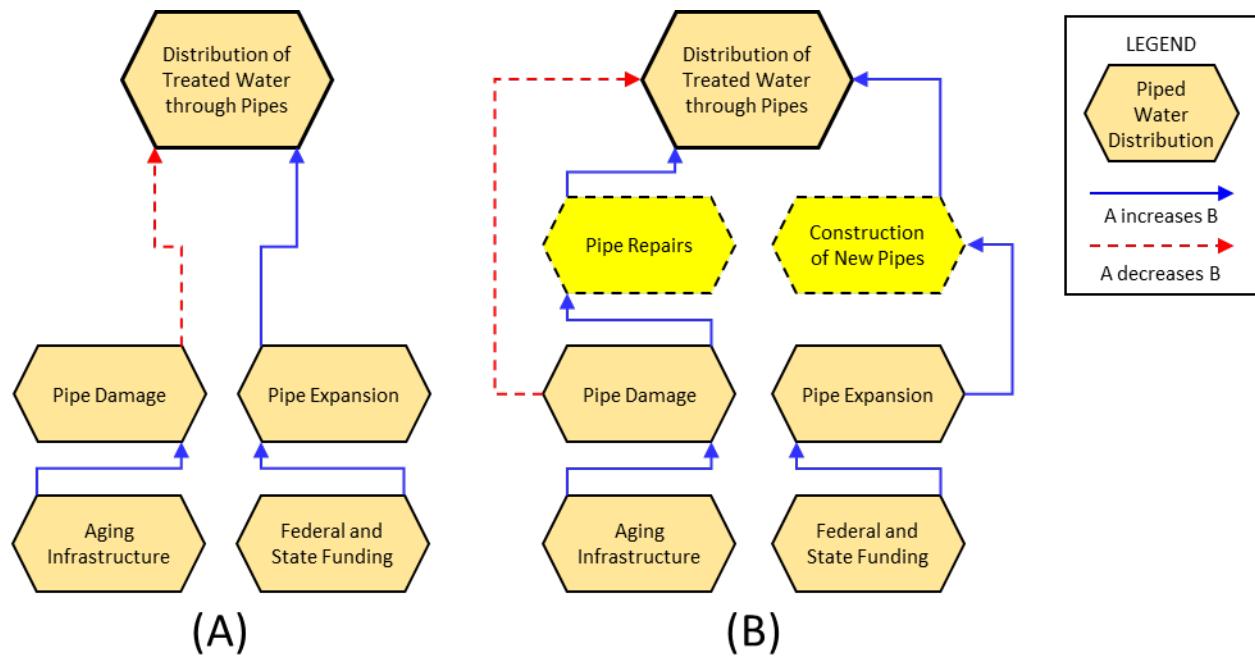
483 The analysis revealed that water haulers are the key water professionals associated with hauled
484 water distribution in rural Alaska communities. In larger communities (e.g., the hub community in
485 the YK Delta), water haulers transport water from the water treatment plant to homes via a water
486 truck, often holding over 3,000 gallons of potable water. In smaller communities, water haulers
487 transport potable water via small tanks and ATVs from the central water treatment plant to
488 residents' homes. Without water haulers, residents of rural Alaska communities would likely need

489 to haul their own water, creating a labor burden, as well as a significant barrier to access for many
 490 residents [13], [102]. Indeed, water haulers directly impact service provision in communities that
 491 utilize the hauled water distribution process. As shown in Figure 6, a major finding emerges—
 492 worker retention impacts water provision via hauled distribution. Workers are affected by pathway
 493 A (working context) and pathway B (operating context) leading to overtime, burnout, and
 494 ultimately attrition. Following these two pathways, we can identify leverage points for improving
 495 working conditions and increasing retention. Ultimately, worker retention can improve service
 496 provision via hauled distribution.

497

499 Figure 6. Semi-cognitive map focused on the hauled water distribution component of the water
 500 provision process. Pathway A inside the double lines shows the working context. Pathway B
 501 inside the double lines shows the operating context.

502 The working context primarily includes training and licensing requirements for water
503 haulers. Water haulers in rural Alaska communities must develop specific skills for their work due
504 to the unique context. Participants explained that water haulers must be able to navigate icy roads,
505 manage deliveries to 40 to 60 homes in one shift, and monitor the water levels in both home tanks
506 and the delivery tank. Without such skills, haulers are more likely to make mistakes, fall behind
507 schedule, or miss houses on their delivery schedule, hindering service provision. To avoid these
508 errors, water haulers participate in training, both formally and informally. In communities that use
509 large water trucks, water haulers are required to obtain a commercial driver's license (CDL) before
510 beginning work [15], [103]. Once hired, haulers participate in hands-on training, where they
511 shadow and work with an experienced driver. A participant explained that this is the most effective
512 training method for drivers to learn: "They ride in the right seat and learn the job. They can see
513 how it's done; we put them with an experienced driver. [...] As far as the pumps go, 40 to 60
514 houses a day, you see it turned on and turned off that many times every single day; you'll pick it
515 up." This one-on-one hands-on training is an essential component of building skills for water
516 haulers. As they develop those skills, and practice them both while supervised and independently,
517 haulers can ensure more reliable service provision for their community.


518 In the operating context, the natural environment emerges as a significant contributor to
519 water provision barriers. While most studies utilizing stakeholder theory solely consider people as
520 stakeholders [104], we follow some researchers who take a broader approach to stakeholder
521 definitions [105], [106]. We define the natural environment as a key stakeholder in hauled water
522 distribution due to its impact on workers, end-users, and infrastructure. This interpretation aligns
523 with the understanding in many indigenous communities that the natural environment is
524 interdependent with other systems [107]. We learn from the Alaska Native communities in the

525 region who hold similar traditions and practices that foster a familial relationship with the natural
526 environment.

527 The semi-cognitive map relates Arctic climate conditions to worker burnout, which then
528 results in water provision gaps that place more stress on the infrastructure and operations. More
529 specifically, Arctic weather and icy roads can lead to difficult working environments and
530 ultimately worker burnout. In turn, worker burnout can increase missed water deliveries, which
531 can further decrease service provision. Burnout, categorized by the World Health Organization as
532 an occupational phenomenon, results “from chronic workplace stress that has not been successfully
533 managed” [108]. Burnout can include symptoms such as fatigue, semi-cognitive impairments, and
534 emotional dysregulation [109]. When experiencing burnout, workers are more likely to make
535 mistakes and are often less effective in their job tasks. Workers might work more slowly than
536 usual, which would require them to work longer days to complete all of their deliveries, or skip
537 deliveries when they run out of time on their shift. Mistakes or accidents can further increase the
538 number of missed deliveries, as water haulers will not be able to complete deliveries if they are
539 injured or their vehicle is damaged. Before reaching burnout, water haulers are likely to experience
540 long work hours due to low staffing and difficult working conditions due to the extreme Arctic
541 weather. For instance, the Arctic environment creates extreme low temperatures, strong winds, and
542 icy conditions, requiring extra precautions to avoid accidents or injuries. The additional time and
543 energy required in such situations contributes to the overload of workplace stress. In addition to
544 safety hazards, extreme weather can cause water haulers to take more time for each delivery,
545 navigating icy driveways and frozen pipes, leading to longer workdays. These long workdays
546 contribute to worker stress and burnout.

547 **Piped Water Distribution**

548 The analysis of piped water distribution reveals that there are two major contributors to water
549 provision via pipes—pipe damage (negative) and pipe expansion (positive), as shown in Figure 7.
550 While these technical factors emerged from the interviews, we intuitively understand that there are
551 factors missing in this map. Specifically, actions by water professionals must be largely inferred,
552 as they were not explicitly discussed amongst most participants. This is interesting as we can infer
553 that there are water professionals who specialize in the piped infrastructure, including maintenance
554 workers, as described in studies of different system types [110], [111]. Such maintenance workers
555 would require specialized knowledge to build, maintain, and repair water distribution pipes in the
556 Arctic conditions of rural Alaska. Due to the extreme weather, maintenance workers are likely
557 essential to monitoring the Arctic pipes for leaks, which are a key disruption to piped water
558 provision [112]. We can assume that these essential workers were overlooked in discussions
559 because of a larger focus on challenges and barriers to hauled water provision. The water treatment
560 and hauled distribution processes currently present significant challenges for those working in the
561 water sector, and so participants who were familiar with the distribution process likely biased their
562 responses toward more pressing issues. In the semi-cognitive map shown in Figure 7B, we add
563 two factors, in bright yellow and dotted-line outlines, that include actions by pipe maintenance
564 workers. To mitigate pipe damage, and subsequent service disruptions, maintenance workers must
565 make repairs to pipes. Additionally, when funding becomes available for new pipe construction,
566 construction workers are heavily involved in that process. Future work can explore piped water
567 distribution further, and the specific challenges faced by workers within these system components.

570 Figure 7. Piped water distribution process. Part A shows the factors that emerged from the
 571 interviews in this study. In Part B, we add two factors that we can infer, but are missing from the
 572 interviews. This gap indicates a need for future discussion.

573 The work required of piped distribution maintenance workers is likely more arduous in
 574 rural Alaska than in other communities due to the extreme Arctic weather. As discussed in the
 575 previous section, the natural environment has emerged as a significant stakeholder in rural water
 576 provision. For the piped distribution process, the natural environment intervenes at many points to
 577 create barriers to provision. For instance, freezing temperatures can lead to frozen pipes if not
 578 maintained properly (i.e., constantly circulating water, utilizing heat tape). To maintain water
 579 utilities properly, energy costs can be exorbitant [113], [114]. The structural supports for water
 580 pipes can sustain damage from intermittent permafrost, further damaging pipes and hindering
 581 distribution [11], [43], [115]. Such challenges result in decreased water provision via piped service

582 for communities. An intervention point here may be greater attention to the tasks of maintenance
583 workers. While the interviews conducted in this study do not shed adequate light into the working
584 conditions and responsibilities of these workers, their omission in of themselves are insightful.

585 **DISCUSSION**

586 We now synthesize our results into propositions which can guide future work. This study revealed
587 that while many stakeholders likely impact water provision as a whole, there are select
588 stakeholders who are more associated with specific components of water provision. For instance,
589 water plant operators are essential for water treatment and water haulers are essential for hauled
590 water distribution. Maintenance workers are likely essential for piped water distribution. As such:

591 *Proposition 1: In extreme environments, stakeholders differ between components of water
592 provision (i.e., water treatment, piped water distribution, hauled water distribution).*

593 We further identified factors that contribute to water provision, as perceived by regional water
594 sector experts. Such experts provided useful insight, as they interact with water operations daily,
595 confronting challenges in water provision. The analysis revealed that the factors impacting water
596 provision are different based on the specific component, including water treatment, piped water
597 distribution, and hauled water distribution. For instance, the national operator certification is an
598 important factor impacting water provision in the water treatment component. As such:

599 *Proposition 2: In extreme environments, stakeholders perceive different factors that impact
600 water provision, depending on the specific component (i.e., water treatment, piped water
601 distribution, hauled water distribution).*

602 We explored the differences in the architecture of water provision contributing to total household
603 water supply in rural Alaska. We define the architecture of such systems as the interfaces among

604 components of the interdependent systems, including social, natural, technical, and financial
605 systems. Factors that lead to or prevent water provision are often related to one another and interact
606 across systems [13], [17], [26]. For instance, extreme Arctic weather (natural system) leads to
607 frozen overflow pipes (technical system) which can lead to water haulers working overtime (social
608 system). The analysis revealed that components of water provision differ in terms of
609 (inter)dependencies among factors. We investigated the interactions among factors that contribute
610 to water service provision for end-users, as viewed by regional water sector experts. As such:

611 *Proposition 3: In extreme environments, the architecture of (inter)dependent systems
612 differs for components of water provision (i.e., water treatment, piped water distribution,
613 hauled water distribution).*

614 Our study identified pathways that differentiated stakeholders as well as components of water
615 provision. Regarding water treatment and water plant operators, there is tension between
616 standardization and situatedness in water provision. In the standardization pathway, state and
617 federal agencies tend to dictate decisions, while in the situated pathway, local leaders drive
618 decisions [100]. Regarding hauled water distribution and water haulers, the localized pathways
619 further split into a tension between working and operating contexts. In the working context, local
620 workers and leaders acting within the utility dominate. In the operating context, the natural
621 environment as a stakeholder, acting outside the utility, tends to dominate. The piped distribution
622 pathways are still fairly unclear as these were not discussed as extensively in interviews. This
623 piped section of the semi-cognitive map requires more detail focused on the water professionals.

624 *Proposition 4: In extreme environments, pathways can be identified and differentiated
625 amongst various contexts and components of water provision (i.e., water treatment, piped
626 water distribution, hauled water distribution).*

627 **PRACTICAL APPLICATIONS**

628 This study demonstrates that specific water professionals are essential to water provision in the
629 YK Delta in three key components: water treatment, hauled water distribution, and piped water
630 distribution. As such, changes can be made in each of these categories to enable professionals to
631 perform their work more effectively, contributing to reliable water provision. Water plant
632 operators, who are responsible for the treatment of potable water in rural Alaska communities, are
633 limited by state and national standards for testing and certification. Such requirements hold them
634 to standards that are designed for communities in the contiguous United States as these
635 certification exams include significant content that is not necessarily aligned to their work in
636 Alaska. Rather than requiring such certification that prioritizes standardization and reciprocity,
637 Alaska policymakers may consider implementing local component-specific requirements for
638 operators. Situated changes to the certification requirements would include more tailored standards
639 regarding the equipment, chemicals, and processes used in rural Alaska water treatment plants.
640 Operators would spend more time studying their treatment process and practicing inside their own
641 water treatment plant, enabling the workforce to be more qualified to provide water to their rural
642 community. Long-term, operators may participate in continuing education programs that cover
643 broader water treatment concepts over time, after learning their utility-specific requirements.

644 Water haulers, who are responsible for delivering water in hauled water distribution, are
645 largely overlooked in the literature regarding water infrastructure in rural Alaska. Because these
646 workers are critical to water provision, conditions can be improved to aid in retention of this
647 workforce. Greater attention to hands-on training practices can help improve haulers' safety and
648 well-being, as well as mitigate missed water delivery. Improved training would be best in one-on-
649 one settings, without formalized testing or certifications. Rather, haulers would benefit from

650 hands-on, on-the-job mentoring and training. In response to this finding, the research team plans
651 to develop an innovative training guide in the next phase of this study. The guide will hopefully
652 serve as a reference for water haulers in the YK Delta and will be developed in collaboration with
653 the local workforce to capture key aspects of their work. Maintenance workers, who are likely
654 essential to piped water distribution in rural Alaska communities, are largely overlooked. Due to
655 the extreme weather conditions of rural Alaska, water distribution pipes should be monitored for
656 damage and resulting leaks, which can help mitigate service disruptions. Future studies can
657 examine in greater depth the roles of these professionals.

658 Beyond the YK Delta, these results provide valuable insight for utility operations in
659 extreme conditions more broadly. The analysis here revealed that extreme weather can lead to
660 worker burnout, which has negative impacts on the system performance. The analysis approach
661 used here better identifies and incorporates extreme factors and connects them to system
662 components. In identifying relationships and developing semi-cognitive maps, we were able to
663 uncover linkages not just between human stakeholders, but between human and non-human
664 stakeholders. This approach may be adapted to other studies seeking to find links between
665 infrastructure system factors and the extreme conditions in which they are placed.

666 CONCLUSION

667 This study analyzed semi-structured interviews with 24 regional water sector experts in the Yukon-
668 Kuskokwim Delta of Alaska, using qualitative content analysis and semi-cognitive mapping. We
669 built a unique conceptual integration of systems and stakeholder theory to identify bottlenecks to
670 water provision and leverage points for improvement. In this framework, we expanded our
671 understanding of both stakeholders and infrastructure systems. Here we examined three
672 components of treated water provision in rural Alaska communities: water treatment, hauled water

673 distribution, and piped water distribution. We identified that within the water treatment process,
674 water plant operators confront a tension between standardization and situatedness in the
675 examination and certification process. While state and federal regulators have increasingly pushed
676 for standardizing exams, rural operators would benefit from situated, localized material. Such
677 changes would allow for greater autonomy and ownership over each component of their water
678 provision process.

679 Further, water haulers, the key professionals in hauled water distribution, confront
680 challenges that lead to high rates of attrition, divided between the working context and the
681 operating context. Within the working context, water haulers are subject to CDL testing and hands-
682 on training for their job tasks. Within the operating context, haulers are subject to the harsh Arctic
683 environment. The weather conditions in the YK Delta lead to more dangerous working conditions
684 and longer workdays, as the ice and snow take more time to navigate safely. Finally, piped water
685 distribution was largely overlooked by interview participants, likely due to other pressing issues.
686 We can, however, infer that water maintenance workers play a key role, and require greater
687 attention.

688 This analysis reveals a key conclusion that underlines each of our propositions: *people are*
689 *often the critical leverage point for water provision improvement.* To improve water provision in
690 rural Alaska communities, consideration must center significantly more on people (i.e., workers).
691 Localized and context-specific training will improve the performance of both water treatment and
692 hauled water distribution. Future work must examine workforce retention in the rural Alaska water
693 sector, as retention directly impacts water provision.

694 **ACKNOWLEDGEMENTS**

695 This material is based upon work supported by the National Science Foundation Awards
696 #2127353/ 2127354.

697 **REFERENCES**

698 [1] American Water Works Association, “State of the Water Industry 2023,” American Water
699 Works Association, 2023.

700 [2] S. T. Dickerson and A. Butler, “Resolve Workforce Challenges to Ensure Future Success at
701 Water and Wastewater Utilities,” *Opflow*, vol. 44, no. 9, pp. 8–9, Sep. 2018, doi:
702 10.1002/opfl.1063.

703 [3] D. Ross, “America’s Water Sector Workforce Initiative: A Call to Action,” U.S.
704 Environmental Protection Agency, 2020.

705 [4] AWWA, “Critical Mission: Recruiting, Training, and Retaining Water Sector
706 Professionals,” American Water Works Association. Accessed: May 14, 2023. [Online].
707 Available: awwa.org

708 [5] Work for Water, “Work for Water,” Work for Water. Accessed: May 14, 2023. [Online].
709 Available: workforwater.org

710 [6] EPA, “New EPA Grant Program: Innovative Water Infrastructure Workforce Development
711 Grant Program,” United States Environmental Protection Agency. Accessed: May 14, 2023.
712 [Online]. Available: epa.gov

713 [7] EPA-USDA, “Memorandum of Agreement (MOA) Between the United States
714 Environmental Protection Agency Office of Water and the United States Department of
715 Agriculture - Rural Development Rural Utilities Service,” EPA and USDA, 2020.

716 [8] K. A. Hickel, A. Dotson, T. K. Thomas, M. Heavener, J. Hébert, and J. A. Warren, “The
717 search for an alternative to piped water and sewer systems in the Alaskan Arctic,” *Environ.
718 Sci. Pollut. Res.*, vol. 25, no. 33, 2018, doi: 10.1007/s11356-017-8815-x.

719 [9] J. Currey, “Building in Permafrost Country,” Alaska Department of Transportation and
720 Public Facilities. [Online]. Available: [https://dot.alaska.gov/traveltopics/building-in-
permafrost.shtml](https://dot.alaska.gov/traveltopics/building-in-
721 permafrost.shtml)

722 [10] M. J. Brown, L. A. Spearing, A. Roy, J. A. Kaminsky, and K. M. Faust, “Drivers of
723 Declining Water Access in Alaska,” *ACS EST Water*, vol. 2, no. 8, pp. 1411–1421, Aug.
724 2022, doi: 10.1021/acsestwater.2c00167.

725 [11] P. H. Larsen *et al.*, “Estimating Future Costs for Alaska Public Infrastructure at Risk from
726 Climate Change,” *Glob. Environ. Change*, vol. 18, no. 3, pp. 442–457, Aug. 2008, doi:
727 10.1016/j.gloenvcha.2008.03.005.

728 [12] Denali Commission, “Statewide Threat Assessment: Identification of Threats from Erosion,
729 Flooding, and Thawing Permafrost in Remote Alaska Communities,” The Denali
730 Commission, INE 19.03, Nov. 2019.

731 [13] L. Eichelberger, “Living in Utility Scarcity: Energy and Water Insecurity in Northwest
732 Alaska,” *Am. J. Public Health*, vol. 100, no. 6, pp. 1010–1018, Jun. 2010, doi:
733 10.2105/AJPH.2009.160846.

734 [14] D. H. Schubert, J. A. Crum, G. V. Jones, and A. D. Ronimus, “Water Distribution Design
735 and Construction in Alaska-Historic Perspectives and Current Practice,” in *ISCORD 2013:
736 Planning for Sustainable Cold Regions*, 2013, pp. 840–851.

737 [15] L. Demer, “Big need for water truck drivers shows itself in Bethel -- when water runs out,”
738 *Anchorage Daily News*, Anchorage, AK, May 31, 2016. Accessed: Jun. 02, 2023. [Online].
739 Available: <https://www.adn.com/rural-alaska/article/big-need-water-truck-drivers-shows->
740 [itself-bethel-when-water-runs-out/2016/01/23/](https://www.adn.com/rural-alaska/article/big-need-water-truck-drivers-shows-itself-bethel-when-water-runs-out/2016/01/23/)

741 [16] S. Haley, “Financing Water and Sewer Operation and Maintenance in Rural Alaska,”
742 Institute of Social and Economic Research, University of Alaska Anchorage, Sep. 2000.
743 Accessed: Mar. 20, 2023. [Online]. Available: <http://hdl.handle.net/11122/12069>

744 [17] L. A. Spearing, P. Mehendale, L. Albertson, J. A. Kaminsky, and K. M. Faust, “What
745 Impacts Water Services in Rural Alaska? Identifying Vulnerabilities at the Intersection of
746 Technical, Natural, Human, and Financial Systems,” *J. Clean. Prod.*, vol. 379, pp. 1–12,
747 Dec. 2022, doi: 10.1016/j.jclepro.2022.134596.

748 [18] Department of Environmental Conservation, “Rural Alaska Unserved Communities,”
749 Alaska Department of Environmental Conservation. Accessed: Jun. 16, 2023. [Online].
750 Available: <https://dec.alaska.gov/water/water-sewer-challenge/rural-communities/>

751 [19] ASCE, “2021 Infrastructure Report Card,” 2021.

752 [20] K. George, “Think you have supply chain woes? Try building in rural Alaska, where prices
753 are high and the season is short.,” *ktoo.org*. Accessed: Mar. 20, 2023. [Online]. Available:
754 <https://www.ktoo.org/2022/02/21/construction-supply-chain-woes-in-rural-alaska/>

755 [21] D. Fancher, “Yukon Kuskokwim Delta Transportation Plan,” Alaska Department of
756 Transportation and Public Facilities, 2018. [Online]. Available:
757 https://dot.alaska.gov/stwdplng/areaplans/areaRegional/assets/ykd/2_YK_Executive-
758 [Summary.pdf](https://dot.alaska.gov/stwdplng/areaplans/areaRegional/assets/ykd/2_YK_Executive-)

759 [22] T. Baker and R. E. Nelson, “Creating Something from Nothing: Resource Construction
760 through Entrepreneurial Bricolage,” *Adm. Sci. Q.*, vol. 50, no. 3, pp. 329–366, Sep. 2005,
761 doi: 10.2189/asqu.2005.50.3.329.

762 [23] C. Busch and H. Barkema, “From necessity to opportunity: Scaling bricolage across
763 resource-constrained environments,” *Strateg. Manag. J.*, vol. 42, no. 4, pp. 741–773, Apr.
764 2021, doi: 10.1002/smj.3237.

765 [24] C. Lévi-Strauss, *The Savage Mind*. Chicago: The University of Chicago Press, 1966.

766 [25] S. Whitney and D. Robinson, “Alaska Economic Trends August 2022,” Alaska Department
767 of Labor and Workforce Development, 8, Aug. 2022.

768 [26] A. Sohns, J. D. Ford, J. Adamowski, and B. E. Robinson, “Participatory Modeling of Water
769 Vulnerability in Remote Alaskan Households Using Causal Loop Diagrams,” *Environ.*
770 *Manage.*, vol. 67, no. 1, pp. 26–42, Jan. 2021, doi: 10.1007/s00267-020-01387-1.

771 [27] AK DOT, “Yukon-Kuskokwim Delta Transportation Plan 2018,” *Alsk. Dep. Transp. Public*
772 *Facil.*, 2018, [Online]. Available:
773 <https://dot.alaska.gov/stwdplng/areaplans/areaRegional/ykd.shtml>

774 [28] K. Cozzetto *et al.*, “Climate change impacts on the water resources of American Indians
775 and Alaska Natives in the U.S.,” *Clim. Change*, vol. 120, no. 3, pp. 569–584, Oct. 2013,
776 doi: 10.1007/s10584-013-0852-y.

777 [29] J. A. Kruse, “Alaska Inupiat Subsistence and Wage Employment Patterns: Understanding
778 Individual Choice,” *Hum. Organ.*, vol. 50, no. 4, pp. 317–326, 1991.

779 [30] K. J. Mattos, L. Eichelberger, J. Warren, A. Dotson, M. Hawley, and K. G. Linden,
780 “Household Water, Sanitation, and Hygiene Practices Impact Pathogen Exposure in
781 Remote, Rural, Unpiped Communities,” *Environ. Eng. Sci.*, vol. 38, no. 5, pp. 355–366,
782 May 2021, doi: 10.1089/ees.2020.0283.

783 [31] T. K. Thomas *et al.*, “Impact of providing in-home water service on the rates of infectious
784 diseases: Results from four communities in Western Alaska,” *J. Water Health*, vol. 14, no.
785 1, pp. 132–141, Feb. 2016, doi: 10.2166/wh.2015.110.

786 [32] J. Saldaña, *The Coding Manual for Qualitative Researchers*, Second. in SAGE
787 Publications. SAGE Publications, 2013. doi: 10.1017/cbo9780511527630.008.

788 [33] S. A. Gray, E. Zanre, and S. R. J. Gray, “Fuzzy Cognitive Maps as Representations of
789 Mental Models and Group Beliefs,” in *Fuzzy Cognitive Maps for Applied Sciences and*
790 *Engineering*, vol. 54, E. I. Papageorgiou, Ed., in Intelligent Systems Reference Library, vol.
791 54., Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 29–48. doi: 10.1007/978-3-
792 642-39739-4_2.

793 [34] D. E. Armanios, “Sustainable development as a community of practice: insights from rural
794 water projects in Egypt,” *Sustain. Dev.*, vol. 20, no. 1, pp. 42–57, Jan. 2012, doi:
795 10.1002/sd.463.

796 [35] K. J. Mattos and T. Blanco-Quiroga, “Water Infrastructure Brief: Opportunities and
797 Challenges for Washeterias in Unpiped Alaska Communities,” Aug. 2020. Accessed: Mar.
798 20, 2023. [Online]. Available: <https://anthc.org/wp-content/uploads/2021/04/Washeteria-Technical-Brief.pdf>

800 [36] G. J. Roovers and M. W. van Buuren, “Stakeholder participation in long term planning of
801 water infrastructure,” *Infrastruct. Complex.*, vol. 3, no. 1, p. 1, Dec. 2016, doi:
802 10.1186/s40551-016-0013-3.

803 [37] L. E. A. Bradford *et al.*, “Co-design of water services and infrastructure for Indigenous
804 Canada: A scoping review,” *Facets*, vol. 3, no. 1, pp. 487–511, 2018, doi: 10.1139/facets-
805 2017-0124.

806 [38] H. R. Tiedmann, L. A. Spearing, S. Castellanos, K. K. Stephens, L. Sela, and K. M. Faust,
807 “Tracking the post-disaster evolution of water infrastructure resilience: A study of the 2021
808 Texas winter storm,” *Sustain. Cities Soc.*, vol. 91, p. 104417, Apr. 2023, doi:
809 10.1016/j.scs.2023.104417.

810 [39] C. K. Barstow, A. D. Dotson, and K. G. Linden, “Assessing point-of-use ultraviolet
811 disinfection for safe water in urban developing communities,” *J. Water Health*, vol. 12, no.
812 4, pp. 663–669, 2014, doi: 10.2166/wh.2014.223.

813 [40] K. Faust, D. M. Abraham, and D. DeLaurentis, “Assessment of stakeholder perceptions in
814 water infrastructure projects using system-of-systems and binary probit analyses: A case
815 study,” *J. Environ. Manage.*, vol. 128, pp. 866–876, 2013, doi:
816 10.1016/j.jenvman.2013.06.036.

817 [41] E. Mosites *et al.*, “Community water service and incidence of respiratory, skin, and
818 gastrointestinal infections in rural Alaska, 2013–2015,” *Int. J. Hyg. Environ. Health*, vol.
819 225, p. 113475, Apr. 2020, doi: 10.1016/j.ijheh.2020.113475.

820 [42] T. K. Thomas, K. Hickel, and M. Heavener, “Extreme water conservation in Alaska:
821 limitations in access to water and consequences to health,” *Public Health*, vol. 137, pp. 59–
822 61, Aug. 2016, doi: 10.1016/j.puhe.2016.06.002.

823 [43] E. Marino, D. White, P. Schweitzer, M. Chambers, and J. Wisniewski, “Drinking Water in
824 Northwestern Alaska: Using or Not Using Centralized Water Systems in Two Rural
825 Communities,” *Arctic*, vol. 62, no. 1, pp. 75–82, 2009.

826 [44] T. L. Ritter *et al.*, “Consuming Untreated Water in Four Southwestern Alaska Native
827 Communities: Reasons Revealed and Recommendations for Change,” *J. Environ. Health*,
828 vol. 77, no. 5, pp. 8–13, 2014.

829 [45] M. Brubaker, J. Berner, R. Chavan, and J. Warren, "Climate Change and Health Effects in
830 Northwest Alaska," *Glob. Health Action*, vol. 4, no. 8445, pp. 1–5, 2011, doi:
831 10.3402/gha.v4i0.8445.

832 [46] C. Lucas, B. Johnson, E. H. Snyder, S. Aggarwal, and A. Dotson, "A Tale of Two
833 Communities: Adopting and Paying for an In-Home Non-Potable Water Reuse System in
834 Rural Alaska," *ACS EST Water*, vol. 1, no. 8, pp. 1807–1815, Aug. 2021, doi:
835 10.1021/acsestwater.1c00113.

836 [47] T. W. Hennessy *et al.*, "The relationship between in-home water service and the risk of
837 respiratory tract, skin, and gastrointestinal tract infections among rural Alaska Natives,"
838 *Am. J. Public Health*, vol. 98, no. 11, pp. 2072–2078, Nov. 2008, doi:
839 10.2105/AJPH.2007.115618.

840 [48] J. Lienert, F. Schnetzer, and K. Ingold, "Stakeholder analysis combined with social network
841 analysis provides fine-grained insights into water infrastructure planning processes," *J.
842 Environ. Manage.*, vol. 125, pp. 134–148, 2013, doi: 10.1016/j.jenvman.2013.03.052.

843 [49] A. Wojewnik-Filipkowska, A. Dziadkiewicz, W. Dryl, T. Dryl, and R. Bęben, "Obstacles
844 and Challenges in Applying Stakeholder Analysis to Infrastructure Projects: Is There a Gap
845 Between Stakeholder Theory and Practice?," *J. Prop. Invest. Finance*, vol. 39, no. 3, pp.
846 199–222, 2021, doi: 10.1108/JPIF-03-2019-0037.

847 [50] M. LaPatin *et al.*, "Controversy in wind energy construction projects: How social systems
848 impact project performance," *Energy Policy*, vol. 176, p. 113507, 2023, doi:
849 10.1016/j.enpol.2023.113507.

850 [51] S. Olander and A. Landin, "Evaluation of stakeholder influence in the implementation of
851 construction projects," *Int. J. Proj. Manag.*, vol. 23, no. 4, pp. 321–328, 2005, doi:
852 10.1016/j.ijproman.2005.02.002.

853 [52] M. Mojtahedi and B. L. Oo, "The impact of stakeholder attributes on performance of
854 disaster recovery projects: The case of transport infrastructure," *Int. J. Proj. Manag.*, vol.
855 35, no. 5, pp. 841–852, 2017, doi: 10.1016/j.ijproman.2017.02.006.

856 [53] A. Wojewnik-Filipkowska and J. Węgrzyn, "Understanding of Public–Private Partnership
857 Stakeholders as a Condition of Sustainable Development," *Sustainability*, vol. 11, no. 4, p.
858 1194, 2019, doi: 10.3390/su11041194.

859 [54] A. Lück and I. Nyga, "Experiences of stakeholder participation in multi-criteria decision
860 analysis (MCDA) processes for water infrastructure," *Urban Water J.*, vol. 15, no. 6, pp.
861 508–517, 2018, doi: 10.1080/1573062X.2017.1364394.

862 [55] A. McErlane, G. Heaney, M. Haran, and S. McClements, "The Application of Stakeholder
863 Theory to UK PPP Stakeholders," in *Proceedings of the 32nd Annual ARCOM Conference*,
864 Manchester, UK, 2016, p. 863.

865 [56] R. E. Freeman, *Strategic management: a stakeholder approach*. in Pitman series in business
866 and public policy. Boston: Pitman, 1984.

867 [57] R. E. Freeman, J. Harrison, A. Wicks, B. Parmar, and S. de Colle, *Stakeholder Theory: The
868 State of the Art*. Cambridge University Press, 2010.

869 [58] M. Demartini, M. Ferrari, K. Govindan, and F. Tonelli, "The transition to electric vehicles
870 and a net zero economy: A model based on circular economy, stakeholder theory, and
871 system thinking approach," *J. Clean. Prod.*, p. 137031, Apr. 2023, doi:
872 10.1016/j.jclepro.2023.137031.

873 [59] D. H. Meadows, *Thinking in Systems: A Primer*. London: Earthscan, 2008.

874 [60] S. Rinaldi, J. Peerenboom, and T. Kelly, “Identifying, understanding, and analyzing critical
 875 infrastructure interdependencies,” *IEEE Control Syst.*, vol. 21, no. 6, pp. 11–25, Dec. 2001,
 876 doi: 10.1109/37.969131.

877 [61] A. A. Elias, “Systems Thinking and Modelling for Stakeholder Management,” *IIM
 878 Kozhikode Soc. Manag. Rev.*, vol. 6, no. 2, pp. 123–131, Jul. 2017, doi:
 879 10.1177/2277975216681105.

880 [62] T. Rebs, M. Brandenburg, and S. Seuring, “System dynamics modeling for sustainable
 881 supply chain management: A literature review and systems thinking approach,” *J. Clean.
 882 Prod.*, vol. 208, pp. 1265–1280, Jan. 2019, doi: 10.1016/j.clepro.2018.10.100.

883 [63] M. Lipsky, *Street-level bureaucracy: dilemmas of the individual in public services*. New
 884 York: Russell Sage Foundation, 1983.

885 [64] J. L. Pressman and A. B. Wildavsky, *Implementation: How great expectations in
 886 Washington are dashed in Oakland; or, why it's amazing that federal programs work at all*,
 887 2. ed., Expanded. in Oakland project series. Berkeley: University of California Press, 1979.

888 [65] J. Q. Wilson, *Bureaucracy: What Government Agencies do and Why They Do it*. New York:
 889 Basic Books, 1989.

890 [66] I. Ding, “Performative Governance,” *World Polit.*, vol. 72, no. 4, pp. 525–556, 2020, doi:
 891 10.1017/s0043887120000131.

892 [67] A. Mangla, *Making Bureaucracy Work: Norms, Education and Public Service Delivery in
 893 Rural India*, 1st ed. Cambridge University Press, 2022. doi: 10.1017/9781009258050.

894 [68] M. Rouse, “Can water professionals do more?,” *Int. J. Water Resour. Dev.*, vol. 36, no. 2–3,
 895 pp. 325–337, Mar. 2020, doi: 10.1080/07900627.2019.1685952.

896 [69] J. B. Grandy and S. R. Hiatt, “State Agency Discretion and Entrepreneurship in Regulated
 897 Markets,” *Adm. Sci. Q.*, vol. 65, no. 4, pp. 1092–1131, Dec. 2020, doi:
 898 10.1177/0001839220911022.

899 [70] S. R. Hiatt and S. Park, “Shared Fate and Entrepreneurial Collective Action in the U.S.
 900 Wood Pellet Market,” *Organ. Sci.*, vol. 33, no. 5, pp. 2065–2083, Sep. 2022, doi:
 901 10.1287/orsc.2021.1532.

902 [71] M. F. Doria, “Bottled Water Versus Tap Water: Understanding Consumers’ Preferences,” *J.
 903 Water Health*, vol. 4, no. 2, pp. 271–276, 2006, doi: 10.2166/wh.2006.0023.

904 [72] E. Yang and K. M. Faust, “Human–Water Infrastructure Interactions: Substituting Services
 905 Received for Bottled and Filtered Water in US Shrinking Cities,” *J. Water Resour. Plan.
 906 Manag.*, vol. 145, no. 12, p. 04019056, 2019, doi: 10.1061/(ASCE)WR.1943-
 907 5452.0001126.

908 [73] A. Mankad and S. Tapsuwan, “Review of socio-economic drivers of community acceptance
 909 and adoption of decentralised water systems,” *J. Environ. Manage.*, vol. 92, no. 3, pp. 380–
 910 391, 2011, doi: 10.1016/j.jenvman.2010.10.037.

911 [74] P. R. Nkhoma, K. Alsharif, E. Ananga, M. Eduful, and M. Acheampong, “Recycled water
 912 reuse: what factors affect public acceptance?,” *Environ. Conserv.*, vol. 48, no. 4, pp. 278–
 913 286, 2021, doi: 10.1017/S037689292100031X.

914 [75] C. Binz, S. Harris-Lovett, M. Kiparsky, D. L. Sedlak, and B. Truffer, “The thorny road to
 915 technology legitimization — Institutional work for potable water reuse in California,”
 916 *Technol. Forecast. Soc. Change*, vol. 103, pp. 249–263, Feb. 2016, doi:
 917 10.1016/j.techfore.2015.10.005.

918 [76] M. E. Hacker, J. Kaminsky, and K. M. Faust, "Legitimizing Involvement in Emergency
919 Accommodations: Water and Wastewater Utility Perspectives," *J. Constr. Eng. Manag.*,
920 vol. 145, no. 4, Apr. 2019, doi: 10.1061/(asce)co.1943-7862.0001622.

921 [77] S. R. Harris-Lovett, C. Binz, D. L. Sedlak, M. Kiparsky, and B. Truffer, "Beyond User
922 Acceptance: A Legitimacy Framework for Potable Water Reuse in California," *Environ.
923 Sci. Technol.*, vol. 49, no. 13, pp. 7552–7561, Jul. 2015, doi: 10.1021/acs.est.5b00504.

924 [78] A. J. Hillman and G. D. Keim, "Shareholder value, stakeholder management, and social
925 issues: what's the bottom line?," *Strateg. Manag. J.*, vol. 22, no. 2, pp. 125–139, Feb. 2001,
926 doi: 10.1002/1097-0266(200101)22:2<125::AID-SMJ150>3.0.CO;2-H.

927 [79] N. Jia, J. Shi, and Y. Wang, "The Interdependence of Public and Private Stakeholder
928 Influence: A Study of Political Patronage and Corporate Philanthropy in China," in
929 *Advances in Strategic Management*, vol. 38, S. Dorobantu, R. V. Aguilera, J. Luo, and F. J.
930 Milliken, Eds., Emerald Publishing Limited, 2018, pp. 69–93. doi: 10.1108/S0742-
931 332220180000038007.

932 [80] K. Odziedkowska and W. J. Henisz, "Webs of Influence: Secondary Stakeholder Actions
933 and Cross-National Corporate Social Performance," *Organ. Sci.*, vol. 32, no. 1, pp. 233–
934 255, Jan. 2021, doi: 10.1287/orsc.2020.1380.

935 [81] J. D. Desai and D. E. Armanios, "What Cannot Be Cured Must Be Endured: Understanding
936 Bridge Systems as Institutional Relics," *J. Infrastruct. Syst.*, vol. 24, no. 4, p. 04018032,
937 Dec. 2018, doi: 10.1061/(ASCE)IS.1943-555X.0000451.

938 [82] S. H. Jones and D. E. Armanios, "Methodological Framework and Feasibility Study to
939 Assess Social Equity Impacts of the Built Environment," *J. Constr. Eng. Manag.*, vol. 146,
940 no. 11, p. 05020016, Nov. 2020, doi: 10.1061/(ASCE)CO.1943-7862.0001914.

941 [83] S. L. Star and K. Ruhleider, "Steps Towards an Ecology of Infrastructure: Complex
942 Problems in Design and Access for Large-Scale Collaborative Systems," in *Proceedings of
943 the 1994 ACM conference on Computer supported cooperative work - CSCW '94*, Chapel
944 Hill, North Carolina, United States: ACM Press, 1994, pp. 253–264. doi:
945 10.1145/192844.193021.

946 [84] K. M. Eisenhardt, "Making Fast Strategic Decisions in High-Velocity Environments,"
947 *Acad. Manage. J.*, vol. 32, no. 3, pp. 543–576, 1989.

948 [85] K. M. Eisenhardt, "Building Theories from Case Study Research," *Acad. Manage. Rev.*,
949 vol. 14, no. 4, pp. 532–550, 1989.

950 [86] K. M. Eisenhardt, M. E. Graebner, and S. Sonenschein, "Grand Challenges and Inductive
951 Methods: Rigor without Rigor Mortis," *Acad. Manage. J.*, vol. 59, no. 4, pp. 1113–1123,
952 Aug. 2016, doi: 10.5465/amj.2016.4004.

953 [87] T. D. Jick, "Mixing Qualitative and Quantitative Methods: Triangulation in Action," *Adm.
954 Sci. Q.*, vol. 24, no. 4, pp. 602–611, Dec. 1979, doi: 10.2307/2392366.

955 [88] K. M. Eisenhardt and M. E. Graebner, "Theory Building From Cases: Opportunities And
956 Challenges," *Acad. Manage. J.*, vol. 50, no. 1, pp. 25–32, Feb. 2007, doi:
957 10.5465/amj.2007.24160888.

958 [89] J. Corbin and A. Strauss, *Basics of Qualitative Research (3rd Ed.): Techniques and
959 Procedures for Developing Grounded Theory*. Thousand Oaks, CA, 2008. doi:
960 10.4135/9781452230153.

961 [90] B. Glaser, "The Constant Comparative Method of Qualitative Analysis," in *Social
962 Problems*, 4th ed., vol. 12, Oxford University Press, 1965, pp. 436–445.

963 [91] S. C. Weller *et al.*, “Open-ended interview questions and saturation,” *PLoS ONE*, vol. 13,
964 no. 6, p. e0198606, 2018, doi: 10.1371/journal.pone.0198606.

965 [92] QSR International Pty Ltd, “NVivo,” 2020, [Online]. Available:
966 <https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home>

967 [93] L. A. Spearing, A. Bakchan, L. C. Hamlet, K. K. Stephens, J. A. Kaminsky, and K. M.
968 Faust, “Comparing Qualitative Analysis Techniques for Construction Engineering and
969 Management Research: The Case of Arctic Water Infrastructure,” *J. Constr. Eng. Manag.*,
970 vol. 148, no. 7, pp. 1–12, 2022, doi: 10.1061/(ASCE)CO.1943-7862.0002313.

971 [94] L. A. Spearing and K. M. Faust, “Cascading system impacts of the 2018 Camp Fire in
972 California: The interdependent provision of infrastructure services to displaced
973 populations,” *Int. J. Disaster Risk Reduct.*, vol. 50, no. March, pp. 101822–101822, 2020,
974 doi: 10.1016/j.ijdrr.2020.101822.

975 [95] Department of Environmental Conservation, “Water and Wastewater Operators
976 Certification and Training,” State of Alaska, 2016. [Online]. Available:
977 <https://dec.alaska.gov/media/ikmdy5mz/18-aac-74.pdf>

978 [96] AWWA, “State of the Water Industry ’22,” American Water Works Association, 2022.

979 [97] J. Kane and A. Tomer, “Renewing the Water Workforce,” Jun. 2018.

980 [98] A. DeMarban, “‘Burnout city’: The labor shortage has dragged on, and Alaska workers and
981 business owners are exhausted,” *Anchorage Daily News*, Aug. 29, 2021. Accessed: Jun. 21,
982 2023. [Online]. Available: <https://www.adn.com/business-economy/2021/08/28/burnout-city-the-labor-shortage-has-dragged-on-and-alaska-workers-and-businesses-owners-are-exhausted/>

983 [99] Alaska Department of Environmental Conservation, “Remote Maintenance Work
984 Program,” [dec.alaska.gov](https://dec.alaska.gov/water/remote-maintenance/). Accessed: Mar. 25, 2023. [Online]. Available:
985 <https://dec.alaska.gov/water/remote-maintenance/>

986 [100] N. Ritsch *et al.*, “Standardization versus Situatedness: How Focus on Alaskan Water
987 Infrastructure Operations, Maintenance and Management Varies Across Government
988 Jurisdictions,” *Rev.*, 202X.

989 [101] ANTHC, “Meeting Remote Alaska Challenges with Modern Ingenuity,” Alaska Native
990 Tribal Health Consortium. [Online]. Available: <https://www.anthc.org/news/meeting-remote-alaska-challenges-with-modern-ingenuity/>

991 [102] D. Fuente *et al.*, “Health-Related Economic Benefits of Universal Access to Piped Water
992 in Arctic Communities: Estimates for the Yukon-Kuskokwim Delta Region of Alaska,” *Int.
993 J. Hyg. Environ. Health*, vol. 240, pp. 1–9, Mar. 2022, doi: 10.1016/j.ijheh.2021.113915.

994 [103] Indeed, “How To Become a Water Truck Driver in 6 Steps,” Indeed. Accessed: Jun. 19,
995 2023. [Online]. Available: <https://www.indeed.com/career-advice/finding-a-job/how-to-become-water-truck-driver>

996 [104] R. A. Phillips and J. Reichart, “The Environment as a Stakeholder? A Fairness-Based
997 Approach,” *J. Bus. Ethics*, vol. 23, pp. 185–197, 2000.

998 [105] M. Laine, “The Nature of Nature as a Stakeholder,” *J. Bus. Ethics*, vol. 96, no. S1, pp.
999 73–78, Aug. 2010, doi: 10.1007/s10551-011-0936-4.

1000 [106] M. Starik, “Should Trees Have Managerial Standing? Toward Stakeholder Status for
1001 Non-Human Nature,” *J. Bus. Ethics*, vol. 14, no. 3, pp. 207–217, 1995, doi:
1002 10.1007/BF00881435.

1003 [107] C. McDonough, “Will the River Ever Get a Chance To Speak? Standing Up For the
1004 Legal Rights Of Nature,” *Villanova Environ. Law J.*, vol. 31, no. 1, pp. 143–164, 2020.

1009 [108] World Health Organization, “ICD-11: Factors Influencing Health Status or Contact with
1010 Health Services,” World Health Organization, Chapter 24, Apr. 2019.

1011 [109] J. Brassey *et al.*, “Addressing employee burnout: Are you solving the right problem?,”
1012 McKinsey Health Institute, May 2022. Accessed: Jun. 02, 2023. [Online]. Available:
1013 <https://www.mckinsey.com/mhi/our-insights/addressing-employee-burnout-are-you-solving-the-right-problem>

1014 [110] N. S. Grigg, “Workforce development and knowledge management in water utilities,” *J. - Am. Water Works Assoc.*, vol. 98, no. 9, pp. 91–99, Sep. 2006, doi: 10.1002/j.1551-8833.2006.tb07756.x.

1015 [111] D. Kocarek, “Doing More with Less: A Strategy for Creating a Good Quality
1016 Maintenance Workforce,” in *Proceedings of the Water Environment Foundation*, in 16, vol.
1017 2010. 2010, pp. 1724–1735. doi: 10.2175/193864710798158742.

1018 [112] S. El-Zahab and T. Zayed, “Leak detection in water distribution networks: an
1019 introductory overview,” *Smart Water*, vol. 4, no. 1, p. 5, 2019, doi: 10.1186/s40713-019-0017-x.

1020 [113] R. Allen, D. Brutkoski, D. Farnsworth, and P. Larsen, “Sustainable Energy Solutions for
1021 Rural Alaska,” Lawrence Berkeley National Laboratory, Berkeley, CA, Apr. 2016.

1022 [114] T. Wu, J. D. Englehardt, T. Guo, L. Gassie, and A. Dotson, “Applicability of energy-
1023 positive net-zero water management in Alaska: technology status and case study,” *Environ. Sci. Pollut. Res.*, vol. 25, no. 33, pp. 33025–33037, Nov. 2018, doi: 10.1007/s11356-017-0743-2.

1024 [115] L. Suter, D. Streletskiy, and N. Shiklomanov, “Assessment of the cost of climate change
1025 impacts on critical infrastructure in the circumpolar Arctic,” *Polar Geogr.*, vol. 42, no. 4,
1026 pp. 267–286, Oct. 2019, doi: 10.1080/1088937X.2019.1686082.

1027

1028

1029

1030

1031

1032

1033