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Abstract: This paper presents a comparative analysis of two hydrogen station configurations during
the refueling process: the conventional “directly pressurized refueling process” and the innovative
“cascade refueling process.” The objective of the cascade process is to refuel vehicles without the
need for booster compressors. The experiments were conducted at the Hydrogen Research and
Fueling Facility located at California State University, Los Angeles. In the cascade refueling process,
the facility buffer tanks were utilized as high-pressure storage, enabling the refueling operation.
Three different scenarios were tested: one involving the cascade refueling process and two involving
compressor-driven refueling processes. On average, each refueling event delivered 1.6 kg of hydrogen.
Although the cascade refueling process using the high-pressure buffer tanks did not achieve the
pressure target, it resulted in a notable improvement in the nozzle outlet temperature trend, reducing
it by approximately 8 °C. Moreover, the overall hydrogen chiller load for the two directly pressurized
refuelings was 66 Wh/kg and 62 Wh/kg, respectively, whereas the cascading process only required
55 Wh/kg. This represents a 20% and 12% reduction in energy consumption compared to the
scenarios involving booster compressors during fueling. The observed refueling range of 150-350 bar
showed that the cascade process consistently required 12-20% less energy for hydrogen chilling.
Additionally, the nozzle outlet temperature demonstrated an approximate 8 °C improvement within
this pressure range. These findings indicate that further improvements can be expected in the
high-pressure region, specifically above 350 bar. This research suggests the potential for significant
improvements in the high-pressure range, emphasizing the viability of the cascade refueling process
as a promising alternative to the direct compression approach.

Keywords: hydrogen refueling station; hydrogen compressor; hydrogen refueling; cascade refueling;
direct refueling

1. Introduction

Concerns about the economic and geopolitical ramifications of potential oil short-
ages as a pillar of our globalized, transport-based society, as well as the need to reduce
greenhouse gas emissions in the transportation sector, are driving the search for alternative
fuels [1].

Among the various proposals of the scientific community for new alternative fuels,
hydrogen is gaining attention from both the research and industrial communities. The
Clean Hydrogen Partnership is a distinctive partnership between the public and private
sectors that supports hydrogen technology research and innovation (Ré&I) throughout
Europe, a successor of the Fuel Cells and Hydrogen Joint Undertaking (FCHJU). In 2022 [2],
the partnership examined a European battery electric vehicles (BEV)—fuel cell electric
vehicles (FCEV) ecosystem. The analysis determined that a 100% BEV ecosystem only
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might cost EUR 3 to EUR 5 trillion more in infrastructure by 2050 than the ecosystem with
a combination of both. Multiple technology development with both BEVs and FCEVs
reduces resource exhaustion and implementation constraints. In 2020, in another report [3],
the partnership estimated a 17% fuel cell truck market share in 2030, based on a significant
cost-reduction trajectory. FCH heavy-duty trucks (FCH HDT) could match diesel trucks in
daily range, refueling time, cargo capacity, and total cost of ownership due to scaled-up
manufacturing and hydrogen prices < 6 EUR/kg. The report recommended short-term
R&I projects and policies to overcome such impediments.

Other tailored studies on fuel cell-based mobility in specific countries have been de-
ployed, such as in UK [4] and in Poland [5]. Hydrogen, according to proponents of a global
hydrogen economy, can be an ecologically cleaner energy carrier for end users, especially in
transportation applications [6,7], without emitting pollutants such as particulate matter or
carbon dioxide [8]. The future success of FCEVs also depends on the presence of adequate
infrastructures, such as hydrogen refueling stations (HRS), so that this technology can be
introduced to a large market [9]. Currently, HRS installation and availability are one of the
most significant obstacles to the proliferation of these vehicles [10,11], as the number of
installed and functioning stations, while increasing, is still much fewer than the number of
conventional refueling stations [12,13].

Before being supplied into the tanks, hydrogen is supplied at 35 MPa (for “Bus” uses)
or 70 MPa (for FCEV applications) in refueling stations [14,15]. This is necessary to ensure
vehicle performance over a range of around 450 km and a full-tank refilling duration in
about 5-7 min, thanks to a hydrogen precooling of about —40 °C [16,17], achieving state of
charge in high nineties [18,19].

However, the high pressure needed for the onboard hydrogen storage and the intense
precooling require the installation of energy-demanding components, such as high-pressure
compressors and chillers [20,21]. These components account for most of the energy required
during a refueling process. According to the NREL composite data, hydrogen compression
requires an average of 1.31 kWh/kg, while the hydrogen chiller requires about 1.35 kWh/kg
on average for more than 500 kg dispensed [22]. The European Union identified the station
energy efficiency as of the key performance indicators (KPI) to be improved with further
research and development actions, as well as with new approaches to energy management.
The overall refueling process energy consumption is expected to decrease from 5 kWh/kg
referring to 2020 to about 3 kWh/kg in 2030 [23].

The scientific community can support this goal and transition by investigating tech-
nologies, energy management strategies, and approaches to the operation of an HRS to
improve its energy efficiency and decrease energy consumption [24,25].

Elgowainy et al. [26] proposed a new approach to decrease the hydrogen compres-
sion energy expenditure, saving about 60% of energy thanks to a new technique called
“pressure consolidation” by using trailers to consolidate the pressure in different tanks.
Reddi et al. [27] further expanded this approach, proposing a “two-tier pressure consolida-
tion strategy”. Kuroki et al. [28] proposed a dynamic modeling method to optimize and
simulate a real refueling procedure and predict the transient temperature and pressure
levels. Handa et al. [29] presented a new hydrogen refueling method, different from the
SAE J2601 [30], called “MC Multi Map”, which is an improvement of the MC Formula
refueling method [31]. The authors found out that it may be possible to lower the hydrogen
precooling temperature to —20 °C instead of —40 °C, while retaining a filling time of around
three minutes. Chen et al. [32] proposed the introduction of a turbo-expander in the station
layout. This configuration allowed an energy decrease of more than 50% at the chiller
while meeting the fueling requirements established by the SAE ]J2601 [33,34]. Xu et al. [35]
presented a novel control procedure for the storage tanks, relying on three banks operating
in sequence of decreasing pressure. This method increases the HRS refueling capacity by
5% compared to the conventional cascade refilling control technique. Genovese et al. [36]
proposed a new approach to auxiliary cooling system tuning to reduce energy consumption
at the station, lowering between 3 and 9% of the total energy needed for a single refueling.
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Several authors investigated the management of the storage tank pressure levels to
better operate the station with less energy expenditure [37,38]. Luo et al. [39] developed
a mathematical tool in Matlab environment that identifies the optimal storage operating
parameters for a less energy-demanding refueling process. The model identified the op-
timal parameters that can allow a reduction of about 11% of the hydrogen chiller energy
consumption. Xiao et al. [40] identified that operating the HRS with three banks instead
of only one can allow a reduction of about 34% in the station energy consumption. Sim-
ilarly, Caponi et al. [41] investigated the adoption of multiple tanks in an HRS serving
hydrogen buses.

The study revealed that the single-tank system generates 20% more heat compared
to a multiple tanks system operating with varying pressure levels. This increase in heat is
attributed to the Joule-Thomson effect, which occurs due to a larger pressure difference
between the vehicle and storage tanks during refueling. Furthermore, the cascade refueling
process demonstrated a 10% reduction in energy consumption for operating the compressor
during refueling.

The lack of a comprehensive infrastructure for hydrogen refueling continues to be a
major obstacle to the adoption of hydrogen fuel cell vehicles, despite the growing interest in
them. The hydrogen refueling process must be optimized in order to handle this problem,
both in terms of efficiency and security. In this sense, the cascade hydrogen refueling
procedure has become a promising substitute for the conventional directly pressurized
refueling procedure since it can lessen the station’s cooling and compression demands
while also giving the vehicle a more steady pressure. As shown in the presented literature
review, while several theoretical studies have looked at the advantages of the cascade
refueling approach, there is a dearth of experimental evidence to support and contrast the
effectiveness of the two procedures in practical settings.

This study addresses the research gap by comparing the cascade hydrogen refueling
process with the directly pressurized hydrogen refueling method. It emphasizes the
importance of conducting experimental activities to gather essential data and insights on
the performance and energy efficiency of both processes in different operating scenarios.
These findings have the potential to contribute to the development of more reliable and
efficient hydrogen refueling systems. Specifically, the paper focuses on analyzing hydrogen
refueling station (HRS) configurations during the refueling process, considering the current
layout of the Hydrogen Research and Fueling Facility (HRFF) at California State University,
Los Angeles (Cal State LA). The objective is to reduce energy consumption in HRS during
refueling, aligning with the overarching goal of improving efficiency.

The purpose of the experimental activities described in this paper was to compare
two different potential configurations during a vehicle refueling: the traditional process
used to fill vehicles, known as the “directly pressurized” refueling, and an alternative
approach, known as the “cascade” refueling, which aims to fuel the vehicle without the use
of booster compressors. During the operation of boosters, compression causes an increase
in the compressor outlet temperature. Even though Hydro-Pac (used at Cal State LA)
designed its compressors with an intermediate cooling stage, the hydrogen temperature at
the compressor outlet can easily reach 50-60 °C, which has a negative impact on the hose
temperature down the stream, as previously investigated by the authors [36].

The goal and the novelty of the presented activities are therefore to investigate em-
pirically and improve the nozzle outlet temperature trends and reduce the load on the
hydrogen chiller. Additionally, the present research activity can clarify the viability, poten-
tial limitations, and prospective areas for improvement of the cascade refueling procedure.

The hydrogen refueling infrastructure designs and performance optimization could
be considerably impacted by the availability of this experimental data and comparative
analysis of these two approaches. Additionally, it might help scientists, engineers, and
decision-makers create hydrogen refueling systems that are more efficient and affordable,
promulgating a wider use of hydrogen vehicles. The proposed experimental activities
have the potential to significantly contribute to the existing body of knowledge regarding
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the cascade hydrogen refueling process, thereby advancing the field of hydrogen fuel
cell technology.

2. Materials and Methods

The Hydrogen Research and Fueling Facility (HRFF) is a hydrogen station for fuel
cell electric vehicles on the California State University Los Angeles campus in the greater
Los Angeles area that also serves as a research center for hydrogen infrastructure [42,43].
Since 2014, the HRFF staff have committed themselves to exploring station performance
and operational configurations. The HRFF features on-site production via an alkaline water
electrolysis unit with a 10 bar working pressure. Given that the maximum pressure ratio
limit of the single-stage booster compressors is fixed at 8:1, the storage pressure of 400 bar
(40 times) necessitates a two-stage compressor from production to local storage. The PDC
diaphragm compressor with a suction pressure of 10 bar and delivery pressure of up to
400 bar performs the initial compression step to medium pressure storage. The compressed
hydrogen is then stored in the tube storage of 3 tanks with a capacity of 20 kg each at
about 400 bar. The HRFF also features two hydrogen booster compressors (BC), a —20 °C
hydrogen precooling system (PCU), and four high-pressure buffer tanks (BT) as detailed
in [44] and below. As fueling commences, the initial flow to the vehicle tank(s) is provided
from the medium pressure storage tanks, and later, when the pressure inside the vehicle
tank approaches the pressure of the hydrogen within the main ground storage [45], the
booster compressors begin their operation.

During the upper range of refueling, two Hydro-Pac booster compressors draw hy-
drogen from the main storage tanks to refuel an FCEV at 700 bar. As recommended by
SAE ]2601 [46], hydrogen is cooled in a 70 MPa-rated chiller with a working fluid set to
approximately —36 °C before entering the vehicle tank. This maintains a temperature of
—20 °C for the dispensed hydrogen and ensures a rapid and secure refueling process [47].
This method of hydrogen dispensing is referred to as a “directly pressurized” refueling
and is typically utilized by station operators, as depicted in Figure 1. Each of the two
booster compressors is designed with a tube-in-tube interstage water cooling system, but
the outlet temperature can easily reach 50-60 °C as described in [36], influencing both the
energy consumption of the hydrogen chiller and the temperature of the dispenser nozzle
outlet temperature.

Another potential option, utilized by stations with a different layout, is to refuel the
vehicle by cascading hydrogen from about 900 bar of high-pressure local storage. Booster
compressors are then used to fill the vehicles if the pressure level within the local storage is
insufficient for a full tank refueling process (State of Charge (SOC) greater than 95% and
final pressure greater than 650 bar) [48]. To simulate this potential operation, the station
control was set to manual mode, and the buffer tanks were completely refilled by activating
the booster compressors when no vehicle required refueling, as depicted in Figure 1. The
boosters are then disabled, and the Air Operating Solenoid Valve (AOV) is controlled
manually. As depicted in Figure 2, the AOV valve is located close to the buffer tanks so that
hydrogen can be drawn from or added to them. Notably, the buffer tanks in this instance
are not used to smooth the flow [49] but rather as high-pressure storage.

Table 1 describes the features of high-pressure buffer tanks that are installed at the
HREFF. The tanks have a working pressure of 85 MPa and are tested to withstand a pressure
of 127.5 MPa. The alloy used is chromium-molybdenum steel, which is hoop-wrapped
using carbon fiber. The nominal water capacity of the tanks is 50 L, and their external
diameter and length are 256 mm and 1800 mm, respectively. The nominal weight of the
tanks is 221 kg. The tanks have an allowable temperature range of —40 °C to +65 °C.
Overall, these tanks have been designed and tested to meet the demanding requirements
of a hydrogen refueling process without pulsations, as described elsewhere [49], and their
features have been carefully chosen to ensure their safety, reliability, and performance.

The hydrogen chiller, which is situated immediately behind the boosters” discharge
line, mostly consists of an evaporator using industrial ethylene glycol (60% aqueous
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concentration) as its coolant. The ethylene glycol mixture is kept at a uniform temperature,
called the “target temperature”, in the refrigeration system 200 L barrel that contains a 72 m
long stainless steel coil in which hydrogen being cooled flows [50].

The purpose of the experiments described in this paper was to compare two different
ways to refuel a vehicle: a “directly pressurized” refueling, and a “cascade” refueling,
which tries to fill the vehicle without using booster compressors.

Table 2 lists the conditions of the experiments. Three tests were executed:

e  The first experiment, identified as “BT Cascade” in Table 1, was characterized by a
cascade refueling process. The booster compressors were disabled, and the hydrogen
was directly cascaded from the high-pressure buffer tanks. All four high-pressure
buffer tanks were indeed used simultaneously. During the experiment, an equal level
of pressure in each tank was maintained throughout the process, meaning they were
all opened at the same time. There was no sequential change in connection according
to the APRR.

e  The second experiment, identified as “BC and BT First Scenario” in Table 1, was
characterized by a directly pressurized refueling process. The booster compressors
were operated to directly fill vehicles, and the high-pressure buffer tanks had the sole
role to prevent pressure pulsations.

e  The third experiment was essentially run with almost identical conditions to the
second one, in order to have redundancy of data to be compared with.

Directly Pressurized Refueling Process Cascade Refueling Process
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Figure 1. Hydrogen Refueling Process Methods.



Energies 2023, 16, 5749 6 of 14
N
H; Vent
Safety Vent
Hand Valves }3/[('
: ‘i i E GX Air Operating
E ﬁ ﬁ i  Solenoid Valve
E High Pressure Buffer Tank E
- Nozzle Outlet Temperature
pooTmmmmmmmmmEEEs : E}J_Pm‘mgn Unit - Pressure
i\ Booster Compressor fee==sssssss==s ¥
From Local : ~. ! Check Valve ' _,[ ) ' - Mass Flow Rate
Hy St _ LTy ' | (et L
; Storage : D : Nl ' ‘ %TIF L - >
1 \{‘:}/ ' ] k AL ]
| ! R ' To H Dispensing
: Booster Compressor E
: - i Check Valve
Iz‘:l\;ﬁ : S
Figure 2. Blueprint zoom on the circuit for high-pressure buffer tanks.
Table 1. Features of the high-pressure buffer tanks at the HRFFE.
Feature Description
Working Pressure 85 MPa
Test Pressure 127.5 MPa
Material Chromium-molybdenum steel, hoop-wrapped using carbon fiber
Water Capacity (nominal, L) 50
External Diameter (D) (nominal, mm) 256
Length (L) (nominal, mm) 1800
Weight (nominal, kg) 221
Specifications Minimum/maximum allowable temperature: —40 °C—+65 °C
Standards Cylinders for compressed hydrogen (according to ISO 11114-1)
Table 2. Experiment Conditions.
BC and BT BC and BT
Parameter BT Cascade First Scenario Second Scenario
Ambient Temperature [°C] 23.5 22.2 23.0
CoP [-] 1.05 1.07 1.06
Average Pressure Ramp rate [MPa/min] 7.03 7.3 7.2
Vehicle Initial Pressure [MPa] 13.6 9.6 5.5
Vehicle Initial Temperature [°C] 8.3 4.1 6.3
Initial Chiller Coil Temperature [°C] —34 —34.6 —35.5
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During a vehicle filling, it was essential to monitor the chiller cooling conditions and
ensure that the initial pressure and temperature of the vehicle were nearly identical to the
benchmark configurations to maintain similarity (the hydrogen chiller coil temperature
and hydrogen chiller target temperature). The vehicle refueling processes were carried out
with nearly identical initial pressure and temperature conditions within the fuel tank, as
well as nearly identical ambient temperature and APRR. In fact, the refueling procedure at
the station adheres to the SAE J2601 Protocol, and a crucial model parameter is the ambient
temperature, which influences the CoP of the hydrogen chiller and the operating pressure
ramp rate of the J2601 tables (APRR). Real vehicles have been refueled during the described
experiments, which had an overall capacity of 5 kg.

The purpose of the experiments was to fuel the vehicles with hydrogen cascading
directly from the high-pressure buffer tanks. Due to the absence of boosters during the
refueling process, the experimental setup aimed at reducing the temperature of the hose,
thereby reducing the energy requirement of the hydrogen chiller.

3. Results

This section presents the results of a series of experiments focused on refueling pro-
cesses and their impact on pressure and mass flow rate by providing a visual representation
of the trends observed, highlighting the outcomes of utilizing booster compressors in the
directly pressurized process versus the high-pressure buffer tank cascade in manual mode.
After completing a series of successful experiments as previously discussed, Figure 3 illus-
trates the pressure and mass flow rate trends for the three refueling processes. During the
two refueling events utilizing the booster compressors in the directly pressurized process,
the vehicle tank pressures reached 550 bar and 710 bar, starting from initial pressures of
approximately 140 bar and 100 bar, respectively. On the other hand, the refueling event con-
ducted using the high-pressure buffer tank cascade, in manual mode, began with a buffer
storage pressure of 800 bar and a mass of about 8 kg, and with a vehicle tank pressure of
55 bar and only achieved 550 bar. This outcome was anticipated due to limited capacity of
the actual high-pressure storage. Consequently, this experiment was limited by insufficient
hydrogen in the buffer tanks to attain the desired target pressure of around 72 MPa in the
vehicle tank. Increases in the mass flow rate are associated with the dispenser checking for
leaks. BC and BT Second Scenario and BT Cascade experienced prolonged pressure leaks,
respectively close to 160 s and 360 s for the BC and BT Second Scenario and 180 s, 240 s,
and 360 s for BT cascading. BC and BT’s First Scenario had a very rapid pressure leak at
about 190 s, resulting in no peak in mass flow rate.

The vehicle temperatures, shown in Figure 4a, present levels under the safety thermal
limit within the vehicle tanks, which is currently 80 °C. The chiller coil temperature
trends, shown in Figure 4b, have almost the same temperature ramp rate, given the
slight temperature delta between the three events for the initial chiller coil temperature
(respectively of —34 °C, —34.6 °C, and —35.5 °C). Figure 4c reports the temperature trend
at the receptacle (70 MPa hose), and it anticipates the benefits related to the cascading
process with a lower nozzle outlet final temperature level (8 °C) than those resulting from
the adoption of the directly pressurized refueling events.

For all of them, the hydrogen mass flow rate is stopped when the leak tightness
integrity checks are performed, in accordance with the safety procedures. The nozzle outlet
temperature increases that are shown in the trends displayed in Figure 4c are related to
these safety procedures, namely the stopping of the hydrogen flow to perform the leak
checks. The station is equipped with leak sensors, flame detectors, and other safety devices
which constantly monitor the production and fueling process. A leak test is performed at
every 3000 psi pressure increase during fueling. The test checks for leaks in the fueling
hose, nozzle, and vehicle receptacle. To perform this test, the system periodically pauses
and closes the hydrogen inlet valve to the dispenser. If no measurable drop in pressure is
detected during a 5 s pause, this indicates the absence of leaks, and fueling is allowed to
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In order to conduct the cascade refueling experiment, the station was put in the manual
mode, and the booster compressors were turned off. During the manual procedure, the
booster power meter stopped its recording, also affecting the data collection.

To compare the three events from an energy point of view, a time shift has been
performed by reporting the data related to the three refueling events starting from the
same pressure level, 150 bar, up to 350 bar, to use the available data recorded during the
experimental activities.

Figure 5 shows the re-organized trends after the time shift for the three refueling
events, characterized by having dispensed in the analyzed window, respectively 1.58 kg (BT
Cascade), 1.6 kg (BC and BT—First Scenario), and 1.62 kg (BC and BT—Second Scenario).

—— BT Cascade
- BC & BT - First Scenario
——BC & BT - Second Scenario

—— BT Cascade
——— BC & BT - First Scenario
—— BC & BT - Second Scenario

400

300

200

Vehicle Pressure [bar]
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Figure 5. Timeshift and Trend Comparisons for Vehicle Pressure (a), 70 MPa nozzle outlet tempera-
ture (b), and Hydrogen Mass Flow Rate (c).

The pressure trends are illustrated in Figure 5a, and it is worth mentioning how the
cascade fueling process provided the same amount of hydrogen in a lower elapsed time.
The cascade refueling process indeed provided a more natural refueling given the absence
of compressors during the fueling operation. The hydrogen mass flow rate has, in the first
part of the fueling, higher values than the other two scenarios, as shown in Figure 5c. The
nozzle outlet temperature trend, displayed in Figure 5b, resulted to have a lower level
for the cascade configuration: the difference is more visible before the leak checks when a
marked temperature delta has been found.

Figure 6 shows the power trends for the analyzed scenarios. The upper graph (Figure 6a)
illustrates the booster power consumption recorded each second during their operation.
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Figure 6. Power Trends for Booster Compressors (a) and Hydrogen Chiller (b).

A different comparison must be made for the hydrogen chiller power consumption,
shown in Figure 6b. The hydrogen chiller power consumption is measured every minute,
and it is noteworthy to observe that the cascade refueling process resulted in lower power
consumption for a shorter duration while dispensing the same amount of hydrogen. In
fact, for the three fueling events, the average amount of hydrogen dispensed was about
1.6 kg per fueling.

This result can be primarily attributed to the absence of booster operation during the
refueling process. The booster heat transfer heavily affects the hydrogen temperature at the
compressor outlet and, therefore, the hydrogen chiller power consumption and the final
temperature at the nozzle outlet.

Figure 7 shows the energy analysis for the pre-cooling unit. The overall hydrogen
chiller demand, for the two directly pressurized refueling processes, resulted to be, re-
spectively, 66 Wh/kg and 62 Wh/kg, while the cascading process required 55 Wh/kg,
respectively 20% and 12% lower than the first and second scenarios with the boosters active
during the fueling operation.
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4. Conclusions

This study explores two potential station configurations during a refueling process:
the classic process used to fill the vehicles, namely the “directly pressurized” refueling,
and a different approach, called the “cascade refueling”, aiming at fueling the vehicle
with or without boosters. Due to the facility’s lack of high-pressure storage capability,
the experimental activities involved filling the high-pressure buffer tanks prior to the
refueling process and subsequently cascading hydrogen into the vehicle. In this case, the
buffer tanks are not used to smooth the flow, as intended by the design, but as a real
high-pressure storage.

The analysis has shown that the actual size of the installed high-pressure buffer tanks
did not allow the station to provide a “regular” refueling process, since the hydrogen
quantity was not enough to guarantee a full tank for the vehicle. Part of the hydrogen
mass—maximum up to 200 g as per SAE J2601 protocol—within the high-pressure buffer
tanks has been also used for the pressure initial pulses.

However, even if the cascade refueling process did not reach the pressure target due
to the limited size of BT, the nozzle outlet temperature trend showed improvement by
about 8 °C by cascading hydrogen from the high-pressure buffer tanks, if compared to
the normal operation of the station and by maintaining almost the same values. During a
directly pressurized refueling process with booster compressors, the compressors” outlet
temperature can easily reach 60 °C, which has a negative effect on the hose temperature.
On the contrary, in a cascade refueling process, the hydrogen flow is maintained at lower
temperatures due to an opportunity for heat rejection to the environment.

Moreover, the hydrogen chiller showed a lower energy load, requiring between 12-20%
less energy over the pressure range between 150 bar and 350 bar. The cascade configuration
reached 550 bar as the maximum delivery pressure to the vehicle tank. Given the resulting
trends, a more marked improvement in the high-pressure area is surely expected since a
marked improvement in the nozzle outlet temperature has been found in the high-pressure
zone (about 8 °C).

In economic terms, the energy used by the boosters was always the same: the boosters
were active before or after refueling, only to fill the high-pressure buffer tanks, but not
during the process. This is a very important aspect because it allows the boosters to
consume the same amount of energy, meanwhile improving the nozzle outlet temperature
trend and reducing the hydrogen chiller energy consumption.
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A similar effect has been achieved by tuning the water closed-loop cooling system
of the boosters, but requiring a more energy-demanding energy operation for the water
circuit [36].

The results presented could be generalized for further investigations. It is in the future
plans of the authors to verify the experimental results via numerical models. The modeling
will aim to scale up the obtained results and investigate the implementation of a cascade
refueling process in the whole pressure range of a refueling process.

These activities could further support the evolution of the station by providing guide-
lines on potential layouts to be taken into account if a station upgrade towards a bigger
station capacity is considered. For instance, some insights can be related to a potential
booster operation only for the initial pulses and for the high-pressure storage replenishing
and then adopting bigger high-pressure storage to cascade hydrogen during refueling.
Based on the current findings, the cascade refueling approach can be an effective alternative
to the directly pressurized refueling of hydrogen vehicles. Specifically, this method can
improve the nozzle outlet temperature trend and reduce the hydrogen chiller’s energy
consumption. When designing or upgrading hydrogen refueling stations, it is advised to
consider the potential benefits of the cascade refueling approach, which includes the use of
high-pressure tanks for hydrogen storage and the cascading of hydrogen into the vehicle
during the refueling process. In addition, the research results may provide guidelines
for potential layouts of hydrogen refueling stations with varying capacity needs, serving
hydrogen infrastructure with valuable design recommendations.
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