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Abstract— This study proposes a Boolean network model to 
identify optimal drug targets and select the most effective FDA-
approved drug combinations for Non-Small Cell Lung Cancer 
(NSCLC). The Boolean network models the signaling pathways 
in NSCLC to capture the intricate molecular interactions 
driving tumor progression. We evaluate the model by employing 
the size difference (SD) score, which reflects the degree of cell 
dysregulation due to gene mutations and allows us to identify 
optimal drug targets in NSCLC cells to address this 
dysregulation. Specifically, leveraging the FDA-approved drug 
database, we identified the robust drug or drug combination for 
1, 2, and 3 mutations that maximize tumor cell death and 
minimize cell proliferation for NSCLC-associated gene 
mutations. Our findings provide a strong foundation for 
personalized therapeutic strategies and hold promise for 
advancing precision oncology to effectively combat NSCLC. 

Keywords—boolean network, combination drug therapy, 
computational model, non-small cell lung cancer, signaling 
pathway, targeted therapy.  

I. INTRODUCTION 

Lung cancer remains one of the leading causes of cancer-
related mortality worldwide, with non-small cell lung cancer 
(NSCLC) accounting for approximately 85% of all diagnosed 
cases [1],[2]. Despite significant advances in therapeutic 
strategies, the management of NSCLC remains a formidable 
challenge due to its complex and multifaceted nature. The 
five-year survival rates for completely removed stage I 
NSCLC can vary from 50% to 70%, whereas for stage IIIA  
NSCLC, the survival rates typically fall within the range of 
10% to 30% [3]. Developing a deeper understanding of the 
underlying cellular mechanisms driving NSCLC progression 
is crucial for identifying effective drug intervention targets 
and improving patient outcomes. 

In recent years, computational modeling has emerged as a 
powerful tool in cancer research, enabling researchers to study 
intricate cellular processes and pathways systematically and 
comprehensively. By integrating experimental data with 
mathematical and computational techniques [4]-[8], these 
models can simulate and predict the behavior of biological 
systems, providing valuable insights that are often difficult to 
obtain through traditional experimental approaches alone. 

In this study, we present a computational model of the 
NSCLC pathway based on basic logic gates, aiming to unravel 
the intricate network of molecular interactions that govern the 
progression and survival of NSCLC cells. By integrating 
specific proteins, and their interconnections in the context of 
NSCLC, our computational model captures the behavior of its 
gene regulatory network [9],[10] and cellular processes that 
govern the development, maintenance, and regulation of 
tissues associated with NSCLC development and progression. 

Several molecularly targeted therapies are designed to 
address various receptor tyrosine kinases (RTKs) that play a 
pivotal role in cellular growth and survival. In non-small cell 
lung cancer (NSCLC), RTKs are frequently subject to 
mutations, resulting in the amplification of RTK signaling and 
the activation of downstream and alternative signaling 
pathways. These pathways often converge on common 
downstream signaling effectors that contribute to 
tumorigenesis [11]. When these growth factor receptors are 
mutated, they can lead to the upregulation and amplification 
of various downstream signaling pathways, including the 
MAP kinase, PI3K/AKT, and mTOR pathways. These 
pathways are responsible for promoting cell survival, 
proliferation, migration, and angiogenesis in cancerous cells 
[12]. 

The primary objective of this research is to leverage our 
computational model to identify optimal drug intervention 
points within the NSCLC pathway for targeted therapy of this 
disease. By simulating this model and analyzing the resulting 
changes in normal (healthy or non-cancerous) cellular 
processes, we can prioritize potential drug targets and predict 
the efficacy of various interventions[7]. This approach has the 
potential to significantly enhance our understanding of 
NSCLC pathogenesis and facilitate the design of personalized 
therapeutic strategies tailored to individual patients. 

The current standard of care for Non-Small Cell Lung 
Cancer (NSCLC) typically involves a multimodal approach, 
which may include surgery, radiation therapy, chemotherapy, 
and immunotherapy, depending on the stage and molecular 
characteristics of the tumor. The advent of targeted therapies 
has revolutionized the management of NSCLC and has 
demonstrated impressive results in specific subsets of patients. 
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In some cases, targeted therapies have shown superiority over 
conventional chemotherapy, leading to improved response 
rates and prolonged survival [13]. Furthermore, targeted 
therapies may be associated with fewer adverse effects 
compared to traditional treatments, resulting in improved 
patient tolerability and compliance [13]. With ongoing 
research and advancements in molecular profiling, the role of 
targeted therapies is expected to grow further, possibly 
supplementing conventional treatments in specific patient 
populations. However, it is important to note that targeted 
therapies are not a one-size-fits-all solution, as not all patients 
have actionable genetic mutations or molecular alterations. 
Therefore, a combination of targeted therapies with traditional 
treatments and immunotherapies may provide a 
comprehensive approach to effectively manage NSCLC [13]. 

II. UNDERSTANDING THE NSCLC PATHWAY 

Non-small cell lung cancer (NSCLC) is characterized by a 
complex interplay of genetic and molecular alterations that 
drive cancer cells' initiation, progression, and metastasis 
within the lung tissue [14],[15]. A comprehensive 
understanding of the NSCLC pathway is paramount to 
developing effective therapeutic interventions. This section 
provides an overview of the key molecular processes and 
signaling pathways implicated in NSCLC development, 
highlighting the crucial factors driving disease progression. 

A. Genetic Mutations: 
NSCLC is characterized by a multitude of genetic 
alterations/mutations that contribute to the malignant 
transformation of lung epithelial cells. The most frequently 
observed mutations involve oncogenes such as epidermal 
growth factor receptor (EGFR) [16], Erb-B2 Receptor 
Tyrosine Kinase 2 (ERBB2)/ human epidermal growth factor 
receptor 2 (HER2) [17], Mesenchymal Epithelial Transition 
factor (MET) [18], Kirsten rat sarcoma viral oncogene 

homolog (KRAS) [19], and anaplastic lymphoma kinase 
fusion gene (EML4ALK) [20]-[22]. These mutations lead to 
dysregulated signaling cascades, promoting cell survival, 
proliferation, angiogenesis, and evasion of apoptosis. 
Furthermore, tumor suppressor genes, including FHIT [23], 
P53, and p16/INK4 [24] are often inactivated, further 
exacerbating the malignant phenotype. In precancerous non-
small cell lung cancer (NSCLC) cells, the p16/INK4a protein 
plays a crucial role by inhibiting the formation of CDK-
cyclin-D complexes through competitive binding with CDK4 
and CDK6 [25]. However, it is often observed that NSCLC 
exhibits a loss of p16INK4a expression, which contributes to 
the uncontrolled cell cycle progression in cancer cells [26]. 
Another important factor in NSCLC is the Retinoic Acid 
Receptor-beta (RAR-beta) [27],[28], which functions as a 
nuclear receptor with vitamin-A-dependent transcriptional 
activity. Additionally, the RASSF1A [29] protein has the 
ability to form heterodimers with Nore-1, an effector of the 
RAS pathway. Consequently, the loss of RASSF1A might 
disrupt the balance of RAS activity, leading to a growth-
promoting effect in NSCLC cells. This alteration in RAS 
signaling may further contribute to the development and 
progression of NSCLC. 

B. Dysregulated Signaling Pathways: 
Several signaling pathways play critical roles in NSCLC 
pathogenesis, orchestrating cellular processes and 
contributing to tumor growth and metastasis [30]. The 
mitogen-activated protein kinase (MAPK) pathway, 
phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, 
ErbB pathway, Ras pathway (Rat Sarcoma), and cell cycle 
(like, p53, p16) pathway [31] are frequently dysregulated in 
NSCLC [32],[33]. The NSCLC signaling pathway with all its 
elements [31]-[33] is shown in Fig. 1. Aberrant activation of 
these pathways can lead to uncontrolled cell growth, 

 
Fig. 1. NSCLC signaling pathway. Legend: The black arrow from A to B shows activation, and the red arrow from C to D shows inhibition. 
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invasion, and resistance to apoptosis [34]. Additionally, DNA 
damage regulates cell fate determination, and proliferation is 
often implicated in NSCLC development [35], as shown in 
Fig. 1. 

III. DESIGN METHODOLOGY 

The signaling pathways discussed earlier play a crucial 
role in regulating various cellular processes, including 
proliferation, survival, and apoptosis. In normal cellular 
conditions, these pathways are tightly controlled to maintain 
cellular homeostasis. However, genetic mutations disrupting 
these pathways can result in the loss of cell cycle control, 
leading to diseases such as cancer. Hence, investigating these 
pathways can provide valuable insights into their behavior and 
aid in the identification of potential drug targets. 
Computational modeling has been widely employed in the 
study of biological signaling pathways [7], [36]. Different 
computational methods, including linear models, differential 
equations, Boolean networks, and Bayesian networks, have 
been successfully utilized for studying the holistic behavior of 
signaling pathways [4], [6]-[8]. The complex interactions 
occurring within signaling pathways establish a cause-effect 
relationship between upstream and downstream molecules. To 
model such interactions in this paper, we employed Boolean 
Networks (BN)(Figs. 2, 3). BNs integrate pathway 

information derived from the biological literature, enabling 
the study of the effects of mutations and drug interventions 
within the pathways [7]. The details about BN modeling for 
the problem of interest are discussed in the subsections to 
follow. This is crucial for identifying optimal drug targets 
within the pathway. Additionally, since publicly available 
large-scale gene expression data specifically of NSCLC are 
limited, exclusively data-driven models cannot be reliably 
employed for analyzing gene interactions in NSCLC [37]. BN 
models based on pathway literature do not require data for 
model building or training, therefore they provide a solution 
to this challenge and offer an appropriate modeling technique 
for studying the NSCLC pathway. 

In this study, the primary goal is to investigate the 
functioning of the NSCLC pathway under normal (healthy) 
conditions and in the presence of genetic alterations. We aim 
to elucidate the fundamental concepts involved in creating a 
Boolean Network (BN) model and demonstrate its utility in 
studying the NSCLC pathway. Specifically, we want to 
understand how various genetic mutations affect the pathway 
and how they relate to the two desired outcomes: increased 
apoptosis (programmed cell death) and suppressed cell 
proliferation. Additionally, we extend the BN model to 
evaluate the effects of small molecule inhibitor drugs on these 
genetic mutations. The objective of analyzing the drug effects 

 
 
Fig. 2. Boolean Network model for NSCLC pathway (a) without any fault where all necessary apoptosis is turned on and all proliferation is under 
control, (b) with faults where some necessary apoptosis is turned off and some cell proliferation is constitutively activated. 
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is to identify potential therapeutic agents that can target 
specific genetic alterations and modulate the NSCLC pathway 
towards increased apoptosis and suppressed cell proliferation. 
Therefore, the drugs' aim is to act as inhibitors or modifiers of 
the pathway components affected by genetic mutations, with 
the ultimate goal of promoting cancer cell death and hindering 
tumor growth. 

A. Construction of the NSCLC Pathway Network 
The construction of the NSCLC pathway model involved 

a systematic process of model development and pathway 
compilation. Our approach relied on a thorough exploration of 
various sources, including publicly available databases [31], 
scientific literature, and experimental findings [36]-[39]. 
Through this genetic network curation process, we gathered 
pertinent information on NSCLC-related genes, signaling 
pathways, protein-protein interactions, and gene regulatory 
relationships. This curated data formed the foundation for the 
construction of the pathway model, enabling us to investigate 
the functioning of the NSCLC pathway under normal and 
genetically altered conditions, as well as to assess the effects 
of small molecule inhibitor drugs on these genetic mutations. 

B. Boolean Modeling and Logical Rules 
The network was designed using a Boolean network 

modeling approach, a computational framework suitable for 
capturing the qualitative behavior of biological systems. 
Nodes in the network represented genes or proteins, and edges 
represented the regulatory relationships between them; like 
activation, inhibition, association, dimerization, etc. The 
network topology was defined based on known interactions 
and literature evidence [31], [37], [38]. Each node in the 
NSCLC pathway network was assigned a Boolean variable, 
representing its activation state (ON or OFF). The logical rules 
governing the activation or inhibition of each node were 
defined based on experimental evidence, and a literature 
survey [36], [38], [39]. These logical rules capture the 
qualitative behavior of the biological system such as 

activation and inhibition. In Fig. 2 the complete BN circuit is 
shown for the NSCLC pathway (Fig. 1) both with fault and 
without faults. In Fig.1 RAS protein is activating MST1 
downstream which is known as a pro-apoptotic gene [40], 
[41]. In cancer, RAS becomes upregulated(K-RAS) or 
overexpressed (always turned on), but the loss of MST1 is a 
cause for NSCLC. In Fig.3(a) all logic behind the main design 
is shown, here mainly four basic Boolean logic gates (buffer, 
not, or, and) are used for NSCLC pathway design as well as 
drug delivery (Figs. 3 (b), (c)) in the faulty locations. More 
details regarding these are presented in the two subsections 
below. 

C. Defining Genetical Mutation Using Fault Model 
Cancer comprises a group of diseases characterized by 

abnormal cell growth (uncontrolled cell proliferation), 
decreased cell death (apoptosis), and the potential spread of 
cancer cells to other parts of the body (metastasis). This 
abnormality can arise from disruptions in normal signaling 
pathways, resulting in the loss of control over cell cycle 
regulation leading to uncontrolled cell growth and tumor 
formation. One well-known cause of such disruptions is gene 
mutations, leading to either excessive or reduced expression 
of the gene. In a Boolean network (BN) model, this type of 
aberration can be represented as a "stuck-at"(SA) fault, where 
the gene's value becomes fixed at either 0 or 1(SA0 or SA1 
fault), making it independent of the activity status of other 
genes. To understand the faults with and without drugs in Figs. 
3 (b), (c) we consider all the inputs are at ‘1’ then the next state 
is supposed to be ‘0’ for Fig 3(b) and ‘1’ for Fig 3(c) but at the 
next state the desired value changes and is stuck to a faulty 
value, SA1 in Fig 3(b) and SA0 in Fig 3(c) irrespective of the 
input values whose states remained fixed. 

TABLE I.  DRUGS USED IN THIS DESIGN AND CORRESPONDING 

TARGETS 

Drugs Targets Drug Type 

Osimertinib [42] EGFR 
Inhibitor 

Trastuzumab deruxtecan [43] ERBB2 
Inhibitor 

Capmatinib [44] EM4ALK 
Inhibitor 

Selpercatinib [45] KIF5BRET 
Inhibitor 

Dabrafenib+Trametinib [46] RAF/BRAF 
Inhibitor 

Copanlisib [47] PTEN 
Inhibitor 

Alpelisib [48] PI3K 
Inhibitor 

Enzastaurin [49] PKC  
Inhibitor 

Lumakras [50] RAS/KRAS 
Inhibitor 

RG7388 [51] MDM2 
Inhibitor 

Ribociclib+Fulvestrant [52] CDK4/6 
Inhibitor 

Everolimus [53] mTOR 
Inhibitor 

Curcumin [54, 55] STAT 3/5 
Activator 

 
Fig. 3. (a) Basic Boolean logic functions used for NSCLC signaling 
pathway (BN) circuit design, (b) drug intervention model(inhibitor) for 
SA1 fault, (c) drug intervention model(activator) for SA0 fault. All 
fault models have an input value of ‘1’ (on state) in their input node. 
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D. Drug Selection and Modelling Drug Intervention 
Typically, drugs exert their effects by interacting with 

receptors present on cell surfaces or enzymes within cells. 
Depending on their mechanisms of action, drugs can act as 
inhibitors (Fig.3(b)), blocking the function of a specific 
protein, or as enhancers, promoting its effect, by binding to 
the respective target receptor sites (Fig.3(c)). In the context of 
a Boolean network (BN), the drug-gene interaction can be 
represented by forcibly suppressing or enhancing the value of 
the gene at the relevant position in the network. 

All the target-specific drugs used for this experiment are 
FDA-approved [42]-[55] and listed in TABLE I, except 
‘Curcumin’ because there are still no FDA-approved drugs for 
inhibiting STAT 3/5 mutation [54], [55]. Drugs or drug 
combinations were demonstrated to inhibit uncontrolled cell 
proliferation and increase apoptosis in the NSCLC pathway. 

E. Simulation and Analysis 
Using the established Boolean model outlined above, we 

are now equipped to contrast various combinations of drugs 
and assess their effectiveness. The aim is to identify the most 
optimal therapeutic combination for mitigating the adverse 
effects of each mutation or fault. Referring to the Boolean 
model depicted in Fig. 2, we have a total of nine inputs and six 
corresponding outputs. For mathematical analysis, we can 
express these inputs and outputs as row vectors. Within this 
representation, a value of zero signifies an inactive gene at the 
corresponding position, while a value of one signifies an 
active gene. Consequently, the binary input and output vectors 
can be expressed as follows: 

Input = [P16, KRAS, EGF, TGFα, HGF, EML4ALK, PTEN, 
KIF5BRET, DNA Damage] and  

Output = [Proliferation1, Proliferation2, Proliferation3, 
Apoptosis1, Apoptosis2, Apoptosis3]  

The ideal values for those are, 

Input = [1, 0, 0, 0, 0, 0, 1, 0, 0] and  

Output = [0, 0, 0, 1, 1, 1] 

In the ideal scenario of input [100000100], the tumor 
suppressors are active, and the growth factors are inactive. 
This input indicates a lack of cell proliferation and no 
reduction in apoptosis. In the fault-free Boolean network, this 
input leads to the output [000111], which also signifies an 
absence of cell proliferation and no inhibition of apoptosis. 
However, in the presence of network faults, the same input 
will result in a different output vector than that for the fault-
free case. Our objective is to steer this faulty output vector 
closer to the ideal output by employing medication. From a 
biological perspective, this is analogous to directing a mutated 
pathway towards non-proliferation and unhampered apoptosis 
through therapeutic intervention. To evaluate the efficacy of 
potential drug interventions, the designed NSCLC pathway 
model was simulated under both untreated and treated 
conditions. Those FDA-approved drugs (TABLE I) selected 
for simulation were based on their known mechanisms of 
action targeting specific nodes or interactions within the 
pathway [56]. The simulation outputs were analyzed using 
quantitative metrics to assess the impact of drug interventions 
on the NSCLC pathway. We used Python programming to 
design all fault models and to simulate that model using 

different choices of drugs or drug combinations. GitHub link: 
https://github.com/PranabeshTAMU/NSCLC 

As previously mentioned, our focus lies in guiding the 
output vector of a network that contains faults toward the 
direction of a favorable output vector. To assess the degree of 
mismatch between two output vectors, we used a metric 
named Size Difference (SD) that quantifies the potential 
efficacy of therapy. It measures the dissimilarity between the 
two vectors. The following mathematical description defines 
the Size Difference (SD) between two n-dimensional binary-
valued vectors a = (a1,...an) and b = (b1,...bn). We use a 
confusion matrix M which consists of four values: A, B, C, 
and D, which represent counts of matches and mismatches 
between the vectors: 

             � � �� � �
�� � �

�� � �	�� � �

� 								�

 							��

                          (1) 

In the matrix M, A represents the number of occurrences 
where the ith element of vectors ‘a’ and ‘b’ are both 1. B 
represents the count of cases where the ith element of vector 
‘a’ is ‘0’ while that of ‘b’ is ‘1’. Similarly, C represents the 
count of cases where the ith element of vector ‘a’ is ‘1’ while 
that of ‘b’ is ‘0’. Lastly, D represents the number of 
occurrences where both the ith elements of vectors ‘a’ and ‘b’ 
are ‘0’. Therefore, A and D correspond to the number of 
matches between the vector components, whereas B and C 
indicate the number of mismatches between the vector 
components. Consequently, using the confusion matrix M, the 
formula for the Size Difference (SD) in terms of the 
components of the matrix M can be as follows: 

           ����� �� � � ���
��������

�                                  (2) 

From Eqs.1,2 it is clear that the SD varies between ‘0’ and 
‘1’, where a score of ‘0’ indicates that the vectors are identical, 
and a score of ‘1’ represents that none of the entries in the two 
vectors match. Therefore, as the SD value increases, the 
difference between the vectors becomes larger. In this study, 
the healthy output state of the fault-free BN requires all output 
genes to be in the state mentioned in the output vector above. 
However, when faults or mutations are introduced into the 
network, the output genes deviate from this healthy state. 
Consequently, our objective is to identify a drug or 
combination of drugs that can drive the output genes toward a 
state close to the healthy output state, even in the presence of 
faults. In the process of identifying the most potent drug for a 
specific fault, our approach involves selecting the drug 
associated with the smallest Size Difference (SD). For 
ascertaining the most potent drug across all possible faults, our 
approach involves computing the normalized mean size 
difference spanning these faults. This entails normalizing the 
mean SD by comparing it to the mean SD observed in the 
untreated scenario, and the results are documented in the 
"normalized mean SD" (Eq. 3) format in TABLE II 
corresponding to the number of mutations. Due to the space 
limitations only the best drug combinations are shown here in 
TABLE II. The calculation of the normalized mean SD 
(NMSD) for a specific drug/combination (Drug_i) is carried 
out using the following equation: 

       ����������� � �� !�"���#$%&��
�� !�"��'!(#� (�)��                   (3) 

 A higher SD value suggests that the drug is unable to 
effectively suppress the cancerous genes in the network. 

This work was supported by the National Science Foundation under Grant 
No. ECCS-1917166. 
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Conversely, an SD value closer to ‘0’ indicates that the drug 
is more successful in suppressing the cancerous output genes. 
To evaluate the efficacy of drugs, we consider the possibility 
of simultaneous faults occurring in the network. This means 
that the NSCLC pathway can have multiple mutations at the 
same time. However, due to computational complexity, our 
study limits the analysis to a maximum of three faults 
(mutations) at a time. 

IV. RESULTS & DISCUSSION 

We computed the normalized NMSD (Eq.3) for each drug 
combination in the Boolean Network   (BN) model, 
considering one, two, and three faults  (mutations) at a time. 
Since there are 37 distinct fault locations in the network, we 
considered a total of 37C1 + 37C2 + 37C3 = 8473. Since there 
are 13 drugs and we analyzed combinations of up to four 
drugs, this resulted in a total of 13C1 + 13C2 + 13C3 +13C4 = 
1093 drug combinations. With 8,473 combinations of faults, 
the resulting NMSD (Eq.3) matrix has dimensions of 1093 
(drugs) by 8,473 (faults). Due to the impracticality of 
presenting and comprehending such a large matrix, we 
included the NMSD scores for each drug combination under 
one, two, and three fault networks in supplemental files. 
Additionally, within each supplemental table, the results have 
been reported with the selected 13 most effective drug 
combinations for each fault combination, ranging from single-
drug interventions to three-drug combinations in the 
subsequent subsections. The whole list of drug combinations 
with their corresponding NMSD score is given in the 
supplementary file.  

A. Drug Efficacy for Single Mutation 
The BN design was first simulated for one fault, which 

means only one mutation is present at a time, for each drug 
combination scenario. For this experiment, 37 fault locations 
were activated one at a time. In Fig. 4 some of the drug 
combinations are shown to have the lowest SD scores. From 
TABLE II, for single mutations, the most effective single 
drug, in terms of the lowest NMSD score, is “Alpelisib”. 
Lower scores were achieved using multiple drug cocktails 
such as “Dabrafenib & Trametinib + Lumakras + RG7388 + 
Everolimus” followed by “Lumakras + RG7388 + 
Everolimus”.  

B. Drug Efficacy for Two Mutations 
After simulating for one mutation, the BN design was 

simulated for two mutations, which means two mutations are 
present at a time, for each drug combination scenario. This 
experiment had 37 fault locations activating two at a time. A 
few of the best results are shown in Fig.4. From TABLE II we 
can observe that the result is along the same lines as that for a 
single mutation; however, with more mutations, the ability for 

a single drug to return the regulatory pathways back to a 
normal state is diminished. 

C. Drug Efficacy for Three Mutations 
In Fig. 4 drug efficacies for three mutations are shown, in 

this case, three faults are present at a time for each drug 
combination scenario. The “supplementary file 1” contains all 
SD values, but this table contains the best results only along 
with the untreated ones.  As in the previous two subsections, 
here “Alpelisib” is the best single drug for targeted treatment, 
and the lowest overall score is achieved by the drug cocktail 
“Dabrafenib & Trametinib + Lumakras + RG7388 + 
Everolimus”. 

V. CONCLUSION 

Non-small cell lung cancer (NSCLC) is a highly 
aggressive form of lung cancer. Based on the results 
presented in the last section, it is evident that the combination 
of “Dabrafenib & Trametinib + Lumakras + RG7388 + 
Everolimus” stands out as the most effective drug 
combination, as determined by our NSCLC signaling 
pathway model. These drugs target key molecules such as 
BRAF, KRAS, MDM2, and mTOR, aligning with the FDA-
approved targeted drug list and our experimental 
computational model. Current research has solidified the 
crucial role of BRAF in NSCLC progression [57], with 
KRAS being central players in governing a wide array of 
cellular processes, including but not limited to proliferation, 
cell cycle progression, angiogenesis, metastasis, apoptosis, 

TABLE II.  DRUG / DRUG COMBINATIONS WITH THEIR CORRESPONDING SD SCORE FOR SINGLE, DOUBLE, AND TRIPLE MUTATIONS 

Drug combinations Single Mutation Two Mutations Three Mutations 

Untreated 1 1 1 

Alpelisib 0.555556 0.664062 0.726732 

Lumakras + RG7388 0.305556 0.354403 0.394645 

Lumakras + RG7388 + Everolimus 0.180556 0.202414 0.226986 

Dabrafenib & Trametinib + Lumakras + RG7388 + Everolimus 0.138889 0.157670 0.184191 

 
Fig. 4. Bar graph showing most effective drug combinations and 
respective size differences for single mutation, two mutations, and three 
mutations. 
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and the development of drug resistance; in NSCLC KRAS 
mutations occur in up to 30% of all cases [58]. MDM2 has 
long been recognized as a potential therapeutic target for 
NSCLC [59], [60], as has mTOR [61], [62], due to their 
involvement in cellular apoptosis which is very important in 
controlling tumor growth. These targets hold promise for 
combatting NSCLC [63]. In TABLE II, it is observed that 
increasing the number of drugs leads to lower size difference 
(SD) values, this also likely increases off-target toxicity.  
Therefore, a balance between on-target effectiveness and off-
target toxicity needs to be considered.  These tools provide 
insight into the potential therapeutic benefits of increasing the 
number of drugs used. Our model is built upon a robust 
theoretical foundation supported by existing literature in the 
field of NSCLC and targeted therapy. The model considers 
pathways involved in NSCLC and the results are consistent 
with observations in existing biological literature. 

VI. LIMITATIONS & FUTURE WORK  

The results presented here are completely 
computational; no clinical trials or in-vivo/vitro models have 
been used to verify them. A positive aspect of our study is that 
all the drugs used here are FDA-approved ones, and so their 
toxicities and doses are known. The conclusion we have 
obtained is constrained by certain assumptions that align with 
prior evidence, but no practical experiment has been done. Our 
model predicted some potential therapeutic targets and drug 
combinations for NSCLC treatment. These predictions can 
serve as valuable starting points for future experimental 
studies to treat NSCLC. A potential avenue for future 
expansion of this study could involve integrating the impacts 
of immunotherapy into the existing model, potentially 
yielding even more favorable outcomes than those achieved. 
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