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Abstract— This study proposes a Boolean network model to
identify optimal drug targets and select the most effective FDA-
approved drug combinations for Non-Small Cell Lung Cancer
(NSCLC). The Boolean network models the signaling pathways
in NSCLC to capture the intricate molecular interactions
driving tumor progression. We evaluate the model by employing
the size difference (SD) score, which reflects the degree of cell
dysregulation due to gene mutations and allows us to identify
optimal drug targets in NSCLC cells to address this
dysregulation. Specifically, leveraging the FDA-approved drug
database, we identified the robust drug or drug combination for
1, 2, and 3 mutations that maximize tumor cell death and
minimize cell proliferation for NSCLC-associated gene
mutations. Our findings provide a strong foundation for
personalized therapeutic strategies and hold promise for
advancing precision oncology to effectively combat NSCLC.

Keywords—boolean network, combination drug therapy,
computational model, non-small cell lung cancer, signaling
pathway, targeted therapy.

1. INTRODUCTION

Lung cancer remains one of the leading causes of cancer-
related mortality worldwide, with non-small cell lung cancer
(NSCLC) accounting for approximately 85% of all diagnosed
cases [1],[2]. Despite significant advances in therapeutic
strategies, the management of NSCLC remains a formidable
challenge due to its complex and multifaceted nature. The
five-year survival rates for completely removed stage I
NSCLC can vary from 50% to 70%, whereas for stage I1IA
NSCLC, the survival rates typically fall within the range of
10% to 30% [3]. Developing a deeper understanding of the
underlying cellular mechanisms driving NSCLC progression
is crucial for identifying effective drug intervention targets
and improving patient outcomes.

In recent years, computational modeling has emerged as a
powerful tool in cancer research, enabling researchers to study
intricate cellular processes and pathways systematically and
comprehensively. By integrating experimental data with
mathematical and computational techniques [4]-[8], these
models can simulate and predict the behavior of biological
systems, providing valuable insights that are often difficult to
obtain through traditional experimental approaches alone.
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In this study, we present a computational model of the
NSCLC pathway based on basic logic gates, aiming to unravel
the intricate network of molecular interactions that govern the
progression and survival of NSCLC cells. By integrating
specific proteins, and their interconnections in the context of
NSCLC, our computational model captures the behavior of its
gene regulatory network [9],[10] and cellular processes that
govern the development, maintenance, and regulation of
tissues associated with NSCLC development and progression.

Several molecularly targeted therapies are designed to
address various receptor tyrosine kinases (RTKs) that play a
pivotal role in cellular growth and survival. In non-small cell
lung cancer (NSCLC), RTKs are frequently subject to
mutations, resulting in the amplification of RTK signaling and
the activation of downstream and alternative signaling
pathways. These pathways often converge on common
downstream  signaling effectors that contribute to
tumorigenesis [11]. When these growth factor receptors are
mutated, they can lead to the upregulation and amplification
of various downstream signaling pathways, including the
MAP kinase, PI3K/AKT, and mTOR pathways. These
pathways are responsible for promoting cell survival,
proliferation, migration, and angiogenesis in cancerous cells
[12].

The primary objective of this research is to leverage our
computational model to identify optimal drug intervention
points within the NSCLC pathway for targeted therapy of this
disease. By simulating this model and analyzing the resulting
changes in normal (healthy or non-cancerous) cellular
processes, we can prioritize potential drug targets and predict
the efficacy of various interventions|7]. This approach has the
potential to significantly enhance our understanding of
NSCLC pathogenesis and facilitate the design of personalized
therapeutic strategies tailored to individual patients.

The current standard of care for Non-Small Cell Lung
Cancer (NSCLC) typically involves a multimodal approach,
which may include surgery, radiation therapy, chemotherapy,
and immunotherapy, depending on the stage and molecular
characteristics of the tumor. The advent of targeted therapies
has revolutionized the management of NSCLC and has
demonstrated impressive results in specific subsets of patients.
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Fig. 1. NSCLC signaling pathway. Legend: The black arrow from A to B shows activation, and the red arrow from C to D shows inhibition.

In some cases, targeted therapies have shown superiority over
conventional chemotherapy, leading to improved response
rates and prolonged survival [13]. Furthermore, targeted
therapies may be associated with fewer adverse effects
compared to traditional treatments, resulting in improved
patient tolerability and compliance [13]. With ongoing
research and advancements in molecular profiling, the role of
targeted therapies is expected to grow further, possibly
supplementing conventional treatments in specific patient
populations. However, it is important to note that targeted
therapies are not a one-size-fits-all solution, as not all patients
have actionable genetic mutations or molecular alterations.
Therefore, a combination of targeted therapies with traditional
treatments and immunotherapies may provide a
comprehensive approach to effectively manage NSCLC [13].

II. UNDERSTANDING THE NSCLC PATHWAY

Non-small cell lung cancer (NSCLC) is characterized by a
complex interplay of genetic and molecular alterations that
drive cancer cells' initiation, progression, and metastasis
within the lung tissue [14],[15]. A comprehensive
understanding of the NSCLC pathway is paramount to
developing effective therapeutic interventions. This section
provides an overview of the key molecular processes and
signaling pathways implicated in NSCLC development,
highlighting the crucial factors driving disease progression.

A. Genetic Mutations:

NSCLC is characterized by a multitude of genetic
alterations/mutations that contribute to the malignant
transformation of lung epithelial cells. The most frequently
observed mutations involve oncogenes such as epidermal
growth factor receptor (EGFR) [16], Erb-B2 Receptor
Tyrosine Kinase 2 (ERBB2)/ human epidermal growth factor
receptor 2 (HER2) [17], Mesenchymal Epithelial Transition
factor (MET) [18], Kirsten rat sarcoma viral oncogene
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homolog (KRAS) [19], and anaplastic lymphoma kinase
fusion gene (EML4ALK) [20]-[22]. These mutations lead to
dysregulated signaling cascades, promoting cell survival,
proliferation, angiogenesis, and evasion of apoptosis.
Furthermore, tumor suppressor genes, including FHIT [23],
P53, and pl6/INK4 [24] are often inactivated, further
exacerbating the malignant phenotype. In precancerous non-
small cell lung cancer (NSCLC) cells, the p16/INK4a protein
plays a crucial role by inhibiting the formation of CDK-
cyclin-D complexes through competitive binding with CDK4
and CDK6 [25]. However, it is often observed that NSCLC
exhibits a loss of p16INK4a expression, which contributes to
the uncontrolled cell cycle progression in cancer cells [26].
Another important factor in NSCLC is the Retinoic Acid
Receptor-beta (RAR-beta) [27],[28], which functions as a
nuclear receptor with vitamin-A-dependent transcriptional
activity. Additionally, the RASSF1A [29] protein has the
ability to form heterodimers with Nore-1, an effector of the
RAS pathway. Consequently, the loss of RASSF1A might
disrupt the balance of RAS activity, leading to a growth-
promoting effect in NSCLC cells. This alteration in RAS
signaling may further contribute to the development and
progression of NSCLC.

B. Dysregulated Signaling Pathways:

Several signaling pathways play critical roles in NSCLC
pathogenesis, orchestrating cellular  processes and
contributing to tumor growth and metastasis [30]. The
mitogen-activated protein  kinase (MAPK) pathway,
phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway,
ErbB pathway, Ras pathway (Rat Sarcoma), and cell cycle
(like, p53, p16) pathway [31] are frequently dysregulated in
NSCLC [32],[33]. The NSCLC signaling pathway with all its
elements [31]-[33] is shown in Fig. 1. Aberrant activation of
these pathways can lead to uncontrolled cell growth,
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Fig. 2. Boolean Network model for NSCLC pathway (a) without any fault where all necessary apoptosis is turned on and all proliferation is under
control, (b) with faults where some necessary apoptosis is turned off and some cell proliferation is constitutively activated.

invasion, and resistance to apoptosis [34]. Additionally, DNA
damage regulates cell fate determination, and proliferation is
often implicated in NSCLC development [35], as shown in
Fig. 1.

III. DESIGN METHODOLOGY

The signaling pathways discussed earlier play a crucial
role in regulating various cellular processes, including
proliferation, survival, and apoptosis. In normal cellular
conditions, these pathways are tightly controlled to maintain
cellular homeostasis. However, genetic mutations disrupting
these pathways can result in the loss of cell cycle control,
leading to diseases such as cancer. Hence, investigating these
pathways can provide valuable insights into their behavior and
aid in the identification of potential drug targets.
Computational modeling has been widely employed in the
study of biological signaling pathways [7], [36]. Different
computational methods, including linear models, differential
equations, Boolean networks, and Bayesian networks, have
been successfully utilized for studying the holistic behavior of
signaling pathways [4], [6]-[8]. The complex interactions
occurring within signaling pathways establish a cause-effect
relationship between upstream and downstream molecules. To
model such interactions in this paper, we employed Boolean
Networks (BN)(Figs. 2, 3). BNs integrate pathway
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information derived from the biological literature, enabling
the study of the effects of mutations and drug interventions
within the pathways [7]. The details about BN modeling for
the problem of interest are discussed in the subsections to
follow. This is crucial for identifying optimal drug targets
within the pathway. Additionally, since publicly available
large-scale gene expression data specifically of NSCLC are
limited, exclusively data-driven models cannot be reliably
employed for analyzing gene interactions in NSCLC [37]. BN
models based on pathway literature do not require data for
model building or training, therefore they provide a solution
to this challenge and offer an appropriate modeling technique
for studying the NSCLC pathway.

In this study, the primary goal is to investigate the
functioning of the NSCLC pathway under normal (healthy)
conditions and in the presence of genetic alterations. We aim
to elucidate the fundamental concepts involved in creating a
Boolean Network (BN) model and demonstrate its utility in
studying the NSCLC pathway. Specifically, we want to
understand how various genetic mutations affect the pathway
and how they relate to the two desired outcomes: increased
apoptosis (programmed cell death) and suppressed cell
proliferation. Additionally, we extend the BN model to
evaluate the effects of small molecule inhibitor drugs on these
genetic mutations. The objective of analyzing the drug effects
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TABLEL DRUGS USED IN THIS DESIGN AND CORRESPONDING
TARGETS
Drugs Targets Drug Type
Osimertinib [42] EGFR Inhibitor
Trastuzumab deruxtecan [43] ERBB2 Inhibitor
Capmatinib [44] EM4ALK Inhibitor
Selpercatinib [45] KIFSBRET Inhibitor
Dabrafenib+Trametinib [46] RAF/BRAF Inhibitor
Copanlisib [47] PTEN Inhibitor
Alpelisib [48] PI3K Inhibitor
Enzastaurin [49] PKC Inhibitor
Lumakras [50] RAS/KRAS Inhibitor
RG7388 [51] MDM2 Inhibitor
Ribociclib+Fulvestrant [52] CDK4/6 Inhibitor
Everolimus [53] mTOR Inhibitor
Curcumin [54, 55] STAT 3/5 Activator

is to identify potential therapeutic agents that can target
specific genetic alterations and modulate the NSCLC pathway
towards increased apoptosis and suppressed cell proliferation.
Therefore, the drugs' aim is to act as inhibitors or modifiers of
the pathway components affected by genetic mutations, with
the ultimate goal of promoting cancer cell death and hindering
tumor growth.

A. Construction of the NSCLC Pathway Network

The construction of the NSCLC pathway model involved
a systematic process of model development and pathway
compilation. Our approach relied on a thorough exploration of
various sources, including publicly available databases [31],
scientific literature, and experimental findings [36]-[39].
Through this genetic network curation process, we gathered
pertinent information on NSCLC-related genes, signaling
pathways, protein-protein interactions, and gene regulatory
relationships. This curated data formed the foundation for the
construction of the pathway model, enabling us to investigate
the functioning of the NSCLC pathway under normal and
genetically altered conditions, as well as to assess the effects
of small molecule inhibitor drugs on these genetic mutations.

B. Boolean Modeling and Logical Rules

The network was designed using a Boolean network
modeling approach, a computational framework suitable for
capturing the qualitative behavior of biological systems.
Nodes in the network represented genes or proteins, and edges
represented the regulatory relationships between them; like
activation, inhibition, association, dimerization, etc. The
network topology was defined based on known interactions
and literature evidence [31], [37], [38]. Each node in the
NSCLC pathway network was assigned a Boolean variable,
representing its activation state (ON or OFF). The logical rules
governing the activation or inhibition of each node were
defined based on experimental evidence, and a literature
survey [36], [38], [39]. These logical rules capture the
qualitative behavior of the biological system such as
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Fig. 3. (a) Basic Boolean logic functions used for NSCLC signaling
pathway (BN) circuit design, (b) drug intervention model(inhibitor) for
SA1 fault, (c) drug intervention model(activator) for SAO fault. All
fault models have an input value of ‘1’ (on state) in their input node.

activation and inhibition. In Fig. 2 the complete BN circuit is
shown for the NSCLC pathway (Fig. 1) both with fault and
without faults. In Fig.1 RAS protein is activating MST1
downstream which is known as a pro-apoptotic gene [40],
[41]. In cancer, RAS becomes upregulated(K-RAS) or
overexpressed (always turned on), but the loss of MST1 is a
cause for NSCLC. In Fig.3(a) all logic behind the main design
is shown, here mainly four basic Boolean logic gates (buffer,
not, or, and) are used for NSCLC pathway design as well as
drug delivery (Figs. 3 (b), (c)) in the faulty locations. More
details regarding these are presented in the two subsections
below.

C. Defining Genetical Mutation Using Fault Model

Cancer comprises a group of diseases characterized by
abnormal cell growth (uncontrolled cell proliferation),
decreased cell death (apoptosis), and the potential spread of
cancer cells to other parts of the body (metastasis). This
abnormality can arise from disruptions in normal signaling
pathways, resulting in the loss of control over cell cycle
regulation leading to uncontrolled cell growth and tumor
formation. One well-known cause of such disruptions is gene
mutations, leading to either excessive or reduced expression
of the gene. In a Boolean network (BN) model, this type of
aberration can be represented as a "stuck-at"(SA) fault, where
the gene's value becomes fixed at either 0 or 1(SAO or SA1
fault), making it independent of the activity status of other
genes. To understand the faults with and without drugs in Figs.
3 (b), (c) we consider all the inputs are at ‘1’ then the next state
is supposed to be ‘0’ for Fig 3(b) and ‘1” for Fig 3(c) but at the
next state the desired value changes and is stuck to a faulty
value, SA1 in Fig 3(b) and SAO in Fig 3(c) irrespective of the
input values whose states remained fixed.
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D. Drug Selection and Modelling Drug Intervention

Typically, drugs exert their effects by interacting with
receptors present on cell surfaces or enzymes within cells.
Depending on their mechanisms of action, drugs can act as
inhibitors (Fig.3(b)), blocking the function of a specific
protein, or as enhancers, promoting its effect, by binding to
the respective target receptor sites (Fig.3(c)). In the context of
a Boolean network (BN), the drug-gene interaction can be
represented by forcibly suppressing or enhancing the value of
the gene at the relevant position in the network.

All the target-specific drugs used for this experiment are
FDA-approved [42]-[55] and listed in TABLE I, except
‘Curcumin’ because there are still no FDA-approved drugs for
inhibiting STAT 3/5 mutation [54], [55]. Drugs or drug
combinations were demonstrated to inhibit uncontrolled cell
proliferation and increase apoptosis in the NSCLC pathway.

E. Simulation and Analysis

Using the established Boolean model outlined above, we
are now equipped to contrast various combinations of drugs
and assess their effectiveness. The aim is to identify the most
optimal therapeutic combination for mitigating the adverse
effects of each mutation or fault. Referring to the Boolean
model depicted in Fig. 2, we have a total of nine inputs and six
corresponding outputs. For mathematical analysis, we can
express these inputs and outputs as row vectors. Within this
representation, a value of zero signifies an inactive gene at the
corresponding position, while a value of one signifies an
active gene. Consequently, the binary input and output vectors
can be expressed as follows:

Input = [P16, KRAS, EGF, TGFa, HGF, EML4ALK, PTEN,
KIFSBRET, DNA Damage] and

Output [Proliferationl, Proliferation2, Proliferation3,
Apoptosisl, Apoptosis2, Apoptosis3]

The ideal values for those are,
Input=1[1,0,0,0,0,0,1,0,0] and
Output=1[0,0,0,1, 1, 1]

In the ideal scenario of input [100000100], the tumor
suppressors are active, and the growth factors are inactive.
This input indicates a lack of cell proliferation and no
reduction in apoptosis. In the fault-free Boolean network, this
input leads to the output [000111], which also signifies an
absence of cell proliferation and no inhibition of apoptosis.
However, in the presence of network faults, the same input
will result in a different output vector than that for the fault-
free case. Our objective is to steer this faulty output vector
closer to the ideal output by employing medication. From a
biological perspective, this is analogous to directing a mutated
pathway towards non-proliferation and unhampered apoptosis
through therapeutic intervention. To evaluate the efficacy of
potential drug interventions, the designed NSCLC pathway
model was simulated under both untreated and treated
conditions. Those FDA-approved drugs (TABLE I) selected
for simulation were based on their known mechanisms of
action targeting specific nodes or interactions within the
pathway [56]. The simulation outputs were analyzed using
quantitative metrics to assess the impact of drug interventions
on the NSCLC pathway. We used Python programming to
design all fault models and to simulate that model using

This work was supported by the National Science Foundation under Grant
No. ECCS-1917166.
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different choices of drugs or drug combinations. GitHub link:
https://github.com/PranabeshTAMU/NSCLC

As previously mentioned, our focus lies in guiding the
output vector of a network that contains faults toward the
direction of a favorable output vector. To assess the degree of
mismatch between two output vectors, we used a metric
named Size Difference (SD) that quantifies the potential
efficacy of therapy. It measures the dissimilarity between the
two vectors. The following mathematical description defines
the Size Difference (SD) between two n-dimensional binary-
valued vectors a = (aj,...an) and b = (by,...bn). We use a
confusion matrix M which consists of four values: A, B, C,
and D, which represent counts of matches and mismatches
between the vectors:

bi= 1 a; = lai= 0

= A B
=0 (7 )
In the matrix M, A represents the number of occurrences
where the i element of vectors ‘a’ and ‘b’ are both 1. B
represents the count of cases where the i element of vector
‘a’ is ‘0’ while that of ‘b’ is ‘1°. Similarly, C represents the
count of cases where the i element of vector ‘a’ is ‘1” while
that of ‘b’ is ‘0’. Lastly, D represents the number of
occurrences where both the i elements of vectors ‘a’ and ‘b’
are ‘0’. Therefore, A and D correspond to the number of
matches between the vector components, whereas B and C
indicate the number of mismatches between the vector
components. Consequently, using the confusion matrix M, the
formula for the Size Difference (SD) in terms of the
components of the matrix M can be as follows:

SD(a,b) = ( )? @

From Eqs.1,2 it is clear that the SD varies between ‘0” and
‘1°, where a score of ‘0’ indicates that the vectors are identical,
and a score of ‘1’ represents that none of the entries in the two
vectors match. Therefore, as the SD value increases, the
difference between the vectors becomes larger. In this study,
the healthy output state of the fault-free BN requires all output
genes to be in the state mentioned in the output vector above.
However, when faults or mutations are introduced into the
network, the output genes deviate from this healthy state.
Consequently, our objective is to identify a drug or
combination of drugs that can drive the output genes toward a
state close to the healthy output state, even in the presence of
faults. In the process of identifying the most potent drug for a
specific fault, our approach involves selecting the drug
associated with the smallest Size Difference (SD). For
ascertaining the most potent drug across all possible faults, our
approach involves computing the normalized mean size
difference spanning these faults. This entails normalizing the
mean SD by comparing it to the mean SD observed in the
untreated scenario, and the results are documented in the
"normalized mean SD" (Eq. 3) format in TABLE II
corresponding to the number of mutations. Due to the space
limitations only the best drug combinations are shown here in
TABLE 1II. The calculation of the normalized mean SD
(NMSD) for a specific drug/combination (Drug_1i) is carried
out using the following equation:

M (M

B+C
A+B+C+D

Mean(SD(Drug;))

NMSD (Drugi) = Mean(SD(Untreated))

3)

A higher SD value suggests that the drug is unable to
effectively suppress the cancerous genes in the network.
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TABLE 1L DRUG / DRUG COMBINATIONS WITH THEIR CORRESPONDING SD SCORE FOR SINGLE, DOUBLE, AND TRIPLE MUTATIONS
Drug combinations Single Mutation Two Mutations Three Mutations
Untreated 1 1 1
Alpelisib 0.555556 0.664062 0.726732
Lumakras + RG7388 0.305556 0.354403 0.394645
Lumakras + RG7388 + Everolimus 0.180556 0.202414 0.226986
Dabrafenib & Trametinib + Lumakras + RG7388 + Everolimus 0.138889 0.157670 0.184191

Conversely, an SD value closer to ‘0’ indicates that the drug
is more successful in suppressing the cancerous output genes.
To evaluate the efficacy of drugs, we consider the possibility
of simultaneous faults occurring in the network. This means
that the NSCLC pathway can have multiple mutations at the
same time. However, due to computational complexity, our
study limits the analysis to a maximum of three faults
(mutations) at a time.

IV. RESULTS & DISCUSSION

We computed the normalized NMSD (Eq.3) for each drug
combination in the Boolean Network (BN) model,
considering one, two, and three faults (mutations) at a time.
Since there are 37 distinct fault locations in the network, we
considered a total of 37C; + 37C, + 37C; = 8473. Since there
are 13 drugs and we analyzed combinations of up to four
drugs, this resulted in a total of 13C; + 13C, + 13C3 +13C4=
1093 drug combinations. With 8,473 combinations of faults,
the resulting NMSD (Eq.3) matrix has dimensions of 1093
(drugs) by 8,473 (faults). Due to the impracticality of
presenting and comprehending such a large matrix, we
included the NMSD scores for each drug combination under
one, two, and three fault networks in supplemental files.
Additionally, within each supplemental table, the results have
been reported with the selected 13 most effective drug
combinations for each fault combination, ranging from single-
drug interventions to three-drug combinations in the
subsequent subsections. The whole list of drug combinations
with their corresponding NMSD score is given in the
supplementary file.

A. Drug Efficacy for Single Mutation

The BN design was first simulated for one fault, which
means only one mutation is present at a time, for each drug
combination scenario. For this experiment, 37 fault locations
were activated one at a time. In Fig. 4 some of the drug
combinations are shown to have the lowest SD scores. From
TABLE 1I, for single mutations, the most effective single
drug, in terms of the lowest NMSD score, is “Alpelisib”.
Lower scores were achieved using multiple drug cocktails
such as “Dabrafenib & Trametinib + Lumakras + RG7388 +
Everolimus” followed by “Lumakras + RG7388 +
Everolimus”.

B. Drug Efficacy for Two Mutations

After simulating for one mutation, the BN design was
simulated for two mutations, which means two mutations are
present at a time, for each drug combination scenario. This
experiment had 37 fault locations activating two at a time. A
few of the best results are shown in Fig.4. From TABLE II we
can observe that the result is along the same lines as that for a
single mutation; however, with more mutations, the ability for
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Fig. 4. Bar graph showing most effective drug combinations and
respective size differences for single mutation, two mutations, and three
mutations.

a single drug to return the regulatory pathways back to a
normal state is diminished.

C. Drug Efficacy for Three Mutations

In Fig. 4 drug efficacies for three mutations are shown, in
this case, three faults are present at a time for each drug
combination scenario. The “supplementary file 1 contains all
SD values, but this table contains the best results only along
with the untreated ones. As in the previous two subsections,
here “Alpelisib” is the best single drug for targeted treatment,
and the lowest overall score is achieved by the drug cocktail
“Dabrafenib & Trametinib + Lumakras + RG7388 +
Everolimus™.

V. CONCLUSION

Non-small cell lung cancer (NSCLC) is a highly
aggressive form of lung cancer. Based on the results
presented in the last section, it is evident that the combination
of “Dabrafenib & Trametinib + Lumakras + RG7388 +
Everolimus” stands out as the most effective drug
combination, as determined by our NSCLC signaling
pathway model. These drugs target key molecules such as
BRAF, KRAS, MDM2, and mTOR, aligning with the FDA-
approved targeted drug list and our experimental
computational model. Current research has solidified the
crucial role of BRAF in NSCLC progression [57], with
KRAS being central players in governing a wide array of
cellular processes, including but not limited to proliferation,
cell cycle progression, angiogenesis, metastasis, apoptosis,
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and the development of drug resistance; in NSCLC KRAS
mutations occur in up to 30% of all cases [58]. MDM2 has
long been recognized as a potential therapeutic target for
NSCLC [59], [60], as has mTOR [61], [62], due to their
involvement in cellular apoptosis which is very important in
controlling tumor growth. These targets hold promise for
combatting NSCLC [63]. In TABLE I, it is observed that
increasing the number of drugs leads to lower size difference
(SD) values, this also likely increases off-target toxicity.
Therefore, a balance between on-target effectiveness and off-
target toxicity needs to be considered. These tools provide
insight into the potential therapeutic benefits of increasing the
number of drugs used. Our model is built upon a robust
theoretical foundation supported by existing literature in the
field of NSCLC and targeted therapy. The model considers
pathways involved in NSCLC and the results are consistent
with observations in existing biological literature.

VI. LIMITATIONS & FUTURE WORK

The results presented here are completely
computational; no clinical trials or in-vivo/vitro models have
been used to verify them. A positive aspect of our study is that
all the drugs used here are FDA-approved ones, and so their
toxicities and doses are known. The conclusion we have
obtained is constrained by certain assumptions that align with
prior evidence, but no practical experiment has been done. Our
model predicted some potential therapeutic targets and drug
combinations for NSCLC treatment. These predictions can
serve as valuable starting points for future experimental
studies to treat NSCLC. A potential avenue for future
expansion of this study could involve integrating the impacts
of immunotherapy into the existing model, potentially
yielding even more favorable outcomes than those achieved.
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